
A SCALA DSL FOR FIRST-ORDER LOGIC
The ECRO approach augments sequential data types with a distributed specification. These spec-

ifications describe operations and application invariants using first-order logic. As described in

Section 2.2, we designed an embedded domain specific language (DSL) for programming first-order

logic formulas in Scala, which are then translated to Z3 formulas. We now briefly discuss the

different components of the language.

Types, values, and operators. The DSL features three primitive types (booleans, integers, and

strings) and supports custom types that can be used to represent complex types such as user-

defined classes (cf. Table 1). Primitive values are represented by the BoolValue, IntValue, and
StringValue wrappers. We also provide the traditional numeric operators, boolean operators, and

comparison operators and provide convenient infix notation for them (cf. Table 2).

Variables and identifiers. Programmers can declare free variables by providing a name and type

for them and refer to them using identifiers (cf. Table 3). Note that declarations do not assign a

value to the variable, i.e. they may hold any value of the given type. In order to “assign” a value to a

variable, one can state that the variable equals the desired value. For example, Identifier("age")
=== IntValue(25) “assigns” the value 25 to an existing variable “age”.

Relations and states. Relations constrain the state of an object. The DSL provides two special state

types: OldState and NewState (cf. Table 3). The former represents the state of the object prior to

applying an operation, whereas the latter represents the state after applying the operation. This

enables programmers to express the effects of an operation. For instance, the value of a counter

can be represented with a relation value :: State → Inteдer . Incrementing the counter can then be

expressed as value(newState) === value(oldState) |+| 1.

Table 1. Types supported by the DSL.

Type Type Representation Value Representation
Boolean case object Bool extends Type case class BoolValue(value: Boolean)
Integer case object Integer extends Type case class IntValue(value: Int)
String case object Stringg extends Type case class StringValue(value: String)
<Custom> case class CustomType(name: String) extends Type /

Table 2. List of operators provided by the DSL.

Description Representation Infix Notation
Equals case class Equals(lhs: Any, rhs: Any) lhs === rhs
Not Equals case class NotEquals(lhs: Any, rhs: Any) lhs <> rhs
Boolean and case class And(lhs: Any, rhs: Any) lhs /\ rhs
Boolean or case class Or(lhs: Any, rhs: Any) lhs \/ rhs
Negation case class Not(stat: Any) /

Plus case class Plus(lhs: Any, rhs: Any) lhs |+| rhs
Minus case class Minus(lhs: Any, rhs: Any) lhs |-| rhs
Multiplication case class Times(lhs: Any, rhs: Any) lhs |*| rhs
Division case class Divide(lhs: Any, rhs: Any) lhs |/| rhs
Smaller than case class SmallerThan(lhs: Any, rhs: Any) lhs << rhs
Smaller than or equal to case class SmallerThanOrEq(lhs: Any, rhs: Any) lhs <<= rhs
Bigger than case class BiggerThan(lhs: Any, rhs: Any) lhs >> rhs
Bigger than or equal to case class BiggerThanOrEq(lhs: Any, rhs: Any) lhs >>= rhs

1

107:2 De Porre, et al.

Table 3. Logic building blocks provided by the DSL.

Description Representation Notation
Identifier case class Identifier(name: String) /

Variable case class Var(name: String, tpe: Type) Identifier(name) :: tpe
Relation case class Relation(name: String, vars: Var*)(ret: Type) /

First-Order Logic Formula case class RelationInstance(name: String, args: Any*) Relation(name, _)(args)
State sealed trait State /

Old State class OldState extends State /

New State class NewState extends State /

Current State class CurrentState extends State /

Universal Quantifier case class Forall(vars: Set[Var], body: Formula) forall(vars) :- body
Existential Quantifier case class Exists(vars: Set[Var], body: Formula) exists(vars) :- body
Logical Implication case class Implication(ante: Formula, conse: Formula) ante ==> conse

1 case class Relation(name: String, vars: Var*)(ret: Type) {
2 def instance(args: Any*): RelationInstance
3 def apply(args: Any*) = instance(args:_*)
4 def copy(fromTo: (State, State)): Formula
5 def copyExcept(fromTo: (State, State), condition: Formula): Formula
6 def copyWhen(fromTo: (State, State), condition: Formula): Formula
7 // `key`-`v` must be unique
8 def unique(key: Var, v: Var, state: State): Formula
9 def assertion(cond: Formula, state: State): Formula
10 }

Listing 1. Overview of the relation class’ interface.

Custom relations, such as the aforementioned value example, are defined by instantiating the

Relation class shown in listing 1. More concretely, relations are instatiated with a name, a variable

number of typed arguments, and a return type. As shown in listing 1, relations provide methods

to copy facts from one state to another (copy, copyExcept, and copyWhen), express uniqueness
constraints (unique), or assert any other condition (assertion). Relations are instantiated by

applying them to some arguments and yields a first-order logic formula, e.g. value(newState).

Quantifiers and implications. The DSL provides universal and existential quantifiers (forall
and exists functions, cf. Table 3) which take one or more variables and a boolean formula that

specifies a property about these variables. Logical implication can be expressed using the ==> infix

notation which expects two boolean formulas: the antecedent and the consequent.

A.1 Complete Set Specification
We now present the complete specification of the Set ECROs discussed in Section 2 using our DSL.

Listing 2 shows the distributed specification of the Add-Wins Set ECRO. To represent elements

contained by the set we will need a predicate
1 contains :: V × State → Boolean. To this end, line 4

defines a custom type V which is the abstract type of the elements that are contained by the set

(i.e. it corresponds to the type parameter V in AWSet[V]). Line 6 then defines the contains relation
which takes one argument elem and is true if elem is contained by the set, false otherwise. Note

that we do not define a “set” argument explicitly because every relation is defined over a state,

hence, the DSL adds a state argument (representing the object) behind the scenes.

1
A predicate is a relation that returns a boolean.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:3

1 case class AWSet[V](set: Set[V]) extends ESet[V]
2 object AWSet extends DistributedSpec {
3 // Declarations
4 val V = CustomType("V")
5 val elem = "elem"
6 val contains = Relation("contains", Var(elem, V))(Bool)
7 val x = Identifier("x")
8

9 // Specs
10 val add = classOf[AWSet[_]].getDeclaredMethod("add", classOf[Object])
11 val remove = classOf[AWSet[_]].getDeclaredMethod("remove", classOf[Object])
12

13 val relations = Set(contains)
14 val operations: Map[Method, Mutator] = Map(
15 add -> Mutator(
16 post = (old: OldState, res: NewState) => {
17 contains(res, x) /\ contains.copyExcept(old -> res, elem === x)
18 },
19 inv = (_: OldState, res: NewState) => contains(res, x)), // add wins
20 remove -> Mutator(
21 post = (old: OldState, res: NewState) => {
22 not (contains(res, x)) /\ contains.copyExcept(old -> res, elem === x)
23 }))
24 }

Listing 2. Distributed specification of the Add-Wins Set.

Now that we defined the contains predicate, we can implement the actual specification of the

operations. First, we inform the DSL about all relations we will use, by providing a set containing

the relations (see the relations field on line 13). Then, we provide the DSL with an operations
field that maps each method to its specification (lines 14 to 23). As explained in Section 2, the

postconditions of add and remove state that the added element x2 is present/absent in the resulting

set and use the copyExcept method defined on relations to copy all the other elements from the

old set to the res set (lines 17 and 22). The invariant on add states that the added element must

occur in the resulting state and thus guarantees add-wins semantics. The Remove-Wins Set is

similar, except that it puts an invariant on remove such that the removed element is not present in

the resulting state (cf. Listing 2 in Section 2.2).

A.2 RUBiS Specification
We now present the complete specification of the RUBiS ECRO discussed in Section 2.3 using our

DSL. More concretely, we provide the complete implementation of the placeBid and closeAuction
operations for the RUBiS application. Listing 3 shows the sequential implementation of the RUBiS

data type. It keeps a set of users and a map from auction IDs to auctions (line 24). Auctions consist

of a set of bids, a status (open or closed), and optionally a winner (line 14). Method placeBid
(line 32) retrieves the auction and places the bid on the auction. closeAuction (line 37) retrieves
the auction and puts its status on closed.

2x is defined on line 7 and corresponds to the parameter of the add and remove operations.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:4 De Porre, et al.

To turn this sequential RUBiS data type into an ECRO, we augment it with a distributed speci-

fication, shown in Listing 4. First, we declare three first-order logic predicates to represent auc-

tions, users, and bids on auctions: auction(id, status), user(name), and bid(auction, user,
amount) (line 13 to 15). Then, we use these predicates to describe the placeBid and closeAuction
operations, as explained in Section 2.3. The precondition of placeBid (line 32 to 35) requires the

auction to be open, the user to exist, the price to be bigger than zero, and every auction to be

well-formed (i.e. either open or closed but not both). The postcondition of placeBid (line 36 to 37)

adds the bid and copies all the existing bids from the old state to the new state. The context of

closeAuction (line 39) states that the auction was open when the method was called at the origin

replica. Its precondition (line 40) states that auctions must be well-formed. Its postcondition (line 41

to 45) closes the auction, states that the auction can no longer be open, and copies all other auctions

from the old state to the new state.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:5

1 import scala.collection.SortedSet
2

3 type User = String
4 type AID = String
5 sealed trait Status
6 case object Open extends Status
7 case object Closed extends Status
8

9 case class Bid(userId: User, bid: Int) extends Ordered[Bid] {
10 def compare(that: Bid): Int = bid.compareTo(that.bid)
11 }
12 val bidOrdering = Ordering.by[Bid, Bid](b => b.copy(bid = b.bid * -1)) // big to small
13

14 case class Auction(bids: SortedSet[Bid] = SortedSet.empty[Bid](bidOrdering), status:
Status = Open, winner: Option[User] = None) {

15 def bid(userId: User, price: Int) = copy(bids = bids + Bid(userId, price))
16

17 def close() = {
18 val highestBid: Option[Bid] = bids.headOption
19 val winner = highestBid.map(_.userId)
20 copy(status = Closed, winner = winner)
21 }
22 }
23

24 case class Rubis(users: Set[User] = Set(), auctions: Map[AID, Auction] = Map())
extends ECRO {

25 private def getAuction(auctionId: AID) = {
26 auctions.get(auctionId) match {
27 case Some(auction) => auction
28 case None => throw new Error("Auction " + auctionId + " does not exist.")
29 }
30 }
31

32 def placeBid(auctionId: AID, userId: User, price: Int): Rubis = {
33 val auction = getAuction(auctionId)
34 copy(auctions = auctions.updated(auctionId, auction.bid(userId, price)))
35 }
36

37 def closeAuction(auctionId: AID): Rubis = {
38 val auction = getAuction(auctionId)
39 copy(auctions = auctions.updated(auctionId, auction.close))
40 }
41 }

Listing 3. Sequential RUBiS implementation.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:6 De Porre, et al.

1 object Rubis extends DistributedSpec {
2 // Declarations
3 val id = "id"
4 val idVar = Variable(id, Stringg)
5 val statusV = Variable("status", Bool)
6 val auctionVar = Variable("auction", Stringg)
7 val userVar = Variable("user", Stringg)
8 val amountVar = Variable("amount", Integer)
9 val Open = True
10 val Closed = False
11

12 // Relations
13 val auction = Relation("auction", idVar, statusV)(Bool)
14 val user = Relation("user", userVar)(Bool)
15 val bid = Relation("bid", auctionVar, userVar, amountVar)(Bool)
16

17 val auctionId = Identifier("auctionId")
18 val price = Identifier("price")
19 val userId = Identifier("userId")
20

21 val placeBid = classOf[Rubis].getDeclaredMethod("placeBid", classOf[String],
classOf[String], classOf[Int])

22 val closeAuction = classOf[Rubis].getDeclaredMethod("closeAuction", classOf[String])
23

24 // Specs
25 val relations = Set(auction, user, bid)
26

27 // auctions are either open or closed but not both
28 def auctionsOpenOrClose(state: State) = auction.unique(idVar, statusVar, state)
29

30 val operations: Map[Method, Mutator] = Map(
31 placeBid -> Mutator(
32 pre = (state: CurrentState) => {
33 auction(auctionId, Open, state) /\
34 user(userId, state) /\ (price >> 0) /\
35 auctionsOpenOrClose(state) }
36 post = (old: OldState, res: NewState) => {
37 old + bid(auctionId, userId, price, newState) /\ bid.copy(old -> res) }),
38 closeAuction -> Mutator(
39 ctx = (state: CurrentState) => auction(auctionId, Open, state)
40 pre = (state: CurrentState) => auctionsOpenOrClose(state)
41 post = (old: OldState, res: NewState) => {
42 old + auction(auctionId, Closed, newState) /\
43 not (auction(auctionId, Open, newState)) /\
44 auction.copyExcept(old -> res, id === auctionId)
45 }))
46 }

Listing 4. Distributed specification for RUBiS.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:7

B ECRO REPLICATION ALGORITHM
We now discuss how the ECRO replication algorithm copes with cycles. Afterwards, we provide the

complete proof of convergence which was omitted from Section 4.2. To this end, we first introduce

some helper lemmas and prove them.

B.1 Detecting and Solving Cycles
We now explain how ECRO’s replication algorithm keeps the execution graph acyclic. Algorithm 1

extends the replication algorithm presented in Section 4.1 with a deterministic approach to detect

and solve cycles. While adding new edges, the algorithm continuously checks for cycles (line 15).

If a newly added edge c1 → c2 causes a cycle, at least one path exists from c2 to c1. To solve the

cycle, the algorithm computes all paths from c2 to c1 (line 38) and breaks them one by one by

removing one ao-edge on each path (line 41). These edges can be removed without putting at risk

convergence since they impose an artificial ordering between non-commutative operations (say

ci
ao
−−→ c j) but we know that they are already ordered by one or more paths (from c j to ci) between

them (otherwise they would not be part of the cycle). As a result, we solved the cycle while ensuring

that all non-commutative operations remain ordered. Sometimes it is not possible to break each

path only by removing ao-edges. In that case the cycle is caused by a combination of hb-edges and
co-edges. These cannot be removed as this would violate either convergence or safety. Instead,

the algorithm deterministically discards a call that breaks the cycle (line 18). Information about

discarded ao-edges and discarded calls is propagated between the replicas to ensure that all replicas

eliminate the same ao-edges and/or calls and thus still converge. Since the set of discarded edges

and the set of discarded calls grow monotonically and Algorithm 1 is deterministic, all replicas

converge to the same execution graph and hence to equivalent states as proven in Section 4.

B.2 Convergence Proof
Lemma 4.1. Two replicas of an ECRO that observed the same calls have the same execution graph:

∀r1 = ⟨Σ,σ0, M, G1, t1, F⟩, r2 = ⟨Σ,σ0, M, G2, t2, F⟩�
G1 = ⟨C1, E1⟩ ∧ G2 = ⟨C2, E2⟩ ∧ C1 = C2 =⇒ E1 = E2 =⇒ G1 = G2

Proof. For every local or remote method call c , Algorithm 1 adds c to the replica’s execution

graph. Therefore, if both replicas observed the same calls, both execution graphs contain the same

vertices. We now show that even if the (concurrent) calls were processed in a different order by

these replicas, their execution graphs contain the same edges. When a (local or remote) call c is
received, Algorithm 1 checks the relation between c and every other call. Hence, independent of

the order in which calls are processed, every call is eventually compared to every other call. For

every pair of calls ⟨c1, c2⟩, the algorithm ensures that both replicas add an hb-edge if c1 ≺ c2 or
c2 ≺ c1 and they do not sequentially commute. If c1 and c2 are concurrent but do not commute, and

Ordana’s resolution function imposes an ordering between these calls, then both replicas will

add the same co-edge. If Ordana does not impose an ordering on these non commutative calls, then

both replicas will add the same ao-edge between these calls based on the calls’ globally unique

identifiers. Therefore, we conclude that both graphs G1 and G2 are the same. □

Lemma B.1. An ECRO replica’s execution graph G = ⟨C, E⟩ contains at most one edge between any
two method calls.

Proof. When a method is called on a replica, it is handled by the execute_local function and

later integrated at remote replicas using the execute_remote function (Algorithm 1). At the origin

replica, execute_local adds an hb-edge from every previous non-commutative call v in C to c

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:8 De Porre, et al.

Algorithm 1 ECRO replication algorithm: function execute_remote

1: ⟨Σ,σ0, M, G, t, F⟩, with G = (C, E) ▷ ECRO’s internal state
2: σ : Σ ▷ object current state σ
3: discarded ▷ set of discarded edges

4: function execute_remote(c) ▷ execution of call c at remote replica

5: new_edges← ∅ ▷ initialise set to keep edges related to call c
6: new_discarded← ∅ ▷ initialise set to keep discarded edges related to call c
7: C← C ∪ { c } ▷ update graph vertices

8: E← E \ discarded ▷ remove discard edges from the following analysis

9: for v ∈ C ∧ v , c do ▷ determine hb and co-edges between existing calls and call c
10: if v ≺ c ∧ not seqCommutative(c, v) then
11: edge← ⟨v, hb, c⟩ ▷ add hb relation for every sequential non-commutative call v

12: else if v ∥ c then ▷ v is a concurrent call to c
13: if resolution(c, v) = < then edge← ⟨c, co, v⟩ ▷ ordering c before v

14: else if resolution(c, v) = > then edge← ⟨v, co, c⟩ ▷ ordering v before c

15: if causesCycle(edge) then ▷ checks whether the new edge being added causes a cycle

16: new_discarded← resolveCycle(edge) ▷ tries to solve cycle by discarding ao-edges

17: if hasNoSolution() then ▷ cycle caused by hb and co-edges

18: C← C \ { c } ▷ discard call c
19: E← E \ new_edges ▷ discard edges related to call c
20: propagateDiscardedCall(c) ▷ propagate discard call to remote replicas

21: return ▷ function terminates

22: new_edges← new_edges ∪ { edge } ▷ continue to collect edges related to call c

23: for v ∈ C ∧ v ∥ c do ▷ determine ao-edges between existing calls and call c
24: if resolution(c, v) = ⊤ ∧ not commutative(c, v) then
25: if Id(c) < Id(v) then edge← ⟨v, ao, c⟩ ▷ arbitrate an order when calls do not commute

26: else edge← ⟨v, ao, c⟩

27: if causesCycle(edge) then ▷ an ao-edge that causes a cycle can be immediately discarded

28: new_discarded← new_discarded ∪ { edge } ▷ discard ao-edge that caused a cycle

29: else new_edges← new_edges ∪ { edge } ▷ continue to collect edges related to call c

30: discarded← discarded ∪ new_discarded ▷ update discarded edges

31: propagateDiscardedEdges(discarded) ▷ if needed, propagate discarded edges to remote replicas

32: E← (E ∪ new_edges) \ new_discarded ▷ update graph edges

33: t← dynamicTopologicalSort(new_edges)

34: commit() ▷ Commit causally stable operations

35: σ ← apply(σ0, t) ▷ execute the sequence of calls on the initial state σ0

36: function resolveCycle(⟨c1, rel, c2⟩)
37: new_discarded← ∅ ▷ initialize set to keep discarded edges to solve the cycle

38: paths← allPaths(c2, c1, G) ▷ determine all paths that close the cycle

39: for p ∈ paths do
40: if existsArbitrationOrderEdge(p) then ▷ search for ao-edges that are unique to path p

41: d← removeEdge(p) ▷ remove the ao-edge that has a minimal id

42: new_discarded← new_discarded ∪ { d } ▷ update discarded edges

43: else return no_solution ▷ cycle is caused by an hb or co-edge

44: return new_discarded

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

ECROs: Building Global Scale Systems from Sequential Code 107:9

(line 10). Hence, there cannot be an hb-edge from c to v or any other type of edge between them.

For every incoming call c , execute_remote considers two disjoint cases: v ≺ c and v ∥ c . The case
where c ≺ v cannot occur because calls are propagated in causal order and we already observed v .

Case 1 (v ≺ c): if v and c sequentially commute the algorithm does nothing, else, it adds an

hb-edge from v to c (line 22). Hence, there cannot be an hb-edge from c to v , nor can there be any

other type of edge (co-edge or ao-edge) between v and c since case 1 and 2 are disjoint.

Case 2 (v ∥ c): Calls v and c can be safe or unsafe. We thus distinguish two disjoint subcases.

Case 2.1: If v and c are unsafe then we know that Ordana found an ordering of the calls that

solves the conflict (either c < v or v < c), otherwise Ordana would have restricted the calls and

they cannot have executed concurrently (line 6). If resolution(c, v) = < then every replica

adds a co-edge from c to v (line 25), and there cannot be an edge from v to c , nor can there be any

other type of edge between them since case 1 and 2 are disjoint as well as case 2.1 and 2.2. The case

where resolution(c, v) = > is analogous.

Case 2.2: In this case, calls v and c are safe. If v and c commute the algorithm does nothing, else,

it deterministically adds an ao-edge from the call with the smallest ID to the call with the biggest ID

(line 28 to 32). Since the identifiers are globally unique, all replicas add the same ao-edge between
v and c and there cannot be an edge in the opposite direction. There also cannot be any other type

of edge (hb-edge or co-edge) between v and c because case 1 and 2 are disjoint as well as case 2.1

and 2.2.

We thus proved that there can be at most one edge between any twomethod calls in the graph. □

Theorem 4.5. Two ECRO replicas that observed the same calls C converge to equivalent states.
Formally: ∀r1 = ⟨Σ,σ0, M, ⟨C1, E1⟩, t1, F⟩, r2 = ⟨Σ,σ0, M, ⟨C2, E2⟩, t2, F⟩ � C1 = C2 =⇒ r1 ≡ r2

Proof. We follow a proof by contradiction. Since both replicas r1 and r2 observed the same calls

C, we know from Lemma 4.1 that they have the same execution graph, G1 = G2. This graph is

constructed by successive applications of Algorithm 1. Now, assume that their states diverge, i.e.

apply (σ0, t1) . apply (σ0, t2). Since r1 and r2 diverge we know that at least two non-commutative

calls c1 and c2 occur in a different order in t1 and t2. Let’s consider the case where t1[c1] < t1[c2] and
t2[c1] ≮ t2[c2]. Since calls c1 and c2 do not commute we have to consider three distinct cases. In the

first case, calls c1 and c2 are unsafe and the algorithm coordinates them to avoid that they execute

concurrently (line 6 in Algorithm 1), thus imposing a happened-before relation (hb-edge) between
c1 and c2 (leading to t2[c1] < t2[c2]). We reach a contradiction since in t2, by hypothesis, these calls

appear in a different order (t2[c1] ≮ t2[c2]) but from Lemma B.1 it follows that there is at most one

edge between any two calls, i.e. there cannot be an edge from c2 to c1 since there is already an

hb-edge from c1 to c2. In the second case (line 23 to 27 in Algorithm 1), c1 and c2 are unsafe but the
analysis found a safe ordering of the calls. Assuming the resolution places c1 before c2, we again
reach a contradiction since in t2 these calls occur in a different order and there can be at most one

edge between them. If the resolution places c2 before c1 we reach a similar contradiction because t1
already has an edge from c1 to c2. In the last case (line 28 to 32 in Algorithm 1), calls c1 and c2 are
safe but do not commute, so the algorithm uses the globally unique identifiers to deterministically

order c1 and c2 using an ao-edge. Assuming the arbitration relation orders c1 before c2, we reach a

contradiction since in t2 these calls occur in a different order and there can be at most one edge

between them. If the arbitration relation orders c2 before c1, we reach a similar contradiction since

in t1 there is already an edge from c1 to c2. The other case where t1[c1] > t1[c2] and t2[c1] ≯ t2[c2]
can be argued likewise.

We showed that both topological orderings t1 and t2 keep the relative order of all non-commutative

calls. It follows from Definitions 4.2 and 4.3 that the replicas converge. □

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

107:10 De Porre, et al.

C GEO-DISTRIBUTED RUBIS BENCHMARK ON A READ-MOSTLYWORKLOAD
Section 6.5 presented a geo-distributed benchmark for the RUBiS application. The benchmark

was executed by measuring the latency of operations at DC Paris while the other DCs execute an

update-heavy workload consisting of 100 operations per second with 50% reads and 50% writes.

We now perform the same experiment with a read-mostly workload consisting of 1000 operations

per second with 95% reads and 5% writes.

0

500

1000

1500

ge
tS

ta
tu

s

op
en

Auc
tio

n

sto
re

Buy
Now

re
gis

te
rU

se
r

pla
ce

Bid

clo
se

Auc
tio

n

La
te

nc
y

(in
 m

s)

ECRO
PoR
RedBlue

Fig. 1. Average latency of RUBiS operations as observed by users at DC Paris. Error bars represent the 99.9%
confidence interval.

Figure 1 shows the average latency of RUBiS operations under this read-mostly workload. The fig-

ures are similar to those depicted Section 6.5. The getStatus and openAuction operations are safe,
hence, they are not coordinated, resulting in low latencies. The storeBuyNow and registerUser
operations are unsafe and require coordination in all implementations (see Table 4), inducing high

latencies. The placeBid and closeAuction operations are unsafe and require coordination in

both PoR and RedBlue (see Table 4). ECROs do not coordinate these operations because Ordana

found a solution to the conflict, which consists of locally ordering placeBid operations before

closeAuction operations when they affect the same auction concurrently (see Table 2 in Section 5).

As a result, ECROs achieve low latency (less than 1ms) while PoR and RedBlue exhibit high latencies

(more than 900ms).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 107. Publication date: October 2021.

	A Scala DSL for First-Order Logic
	A.1 Complete Set Specification
	A.2 RUBiS Specification

	B ECRO Replication Algorithm
	B.1 Detecting and Solving Cycles
	B.2 Convergence Proof

	C Geo-Distributed RUBiS Benchmark on a Read-Mostly Workload

