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Abstract
We present PrintTalk, a DSL to “program” 3D objects, called
“gadgets”. PrintTalk also features “topologies”, which are pre-
defined spacial arrangements of gadgets. Gadgets are com-
posed by executing a gadget script (possibly consisting of
subscripts) that ‘draws’ the gadget in the 3D scene. How-
ever, executing the script also returns a number of constraint
variables. These variables can be constrained inside the gad-
get and can also be bound outside the gadget in order to
constrain the produced gadgets after the facts. This is the
essence of the gadget composition mechanism of PrintTalk.
PrintTalk is implemented in DrRacket. Running a

PrintTalk program generates a file that is sent to the 3D
printer. We validate PrintTalk qualitatively by comparing
the code for complex gadgets with the code needed to print
those gadgets in existing languages.

CCS Concepts: • Software and its engineering → Do-
main specific languages; Multiparadigm languages; Con-
straints.
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1 Introduction
Ever since the invention of the 3D printer in 1983, 3D print-
ing technology has evolved enormously. Hobbyist 3D print-
ers can be bought for less than 1000 euro1. Professional 3D
printers can print objects the size of a speedboat2.
Instructing a 3D printer to print a shape is a software

problem. Two approaches exist. Direct Modelling allows a
designer to draw a 3D shape in an advanced editor. Such an
editor is essentially the equivalent of 2DWYSIWYG drawing
editors: a shape is manually designed, element by element,
and then sent to the printer as soon as it is ready.Parametric
Modelling allows a designer to program and/or describe the
object by parameterising a suite of shapes in some advanced
3D design tool or in a textual language. In the latter case, the
3D designer writes a script and executing that script prints
a 3D shape.

Direct modelling has the drawback that it hampers a sys-
tematization of the 3D printing process. Copying and pasting
components and carefully assembling them “by hand” is the
technique used for reuse and composition. The possibilities
for putting shapes together are essentially limited by the
number of menu items featured by the editor being used.
Parametric modelling clearly has a larger potential to turn
3D programming into a true software engineering discipline
where parts of a composite 3D design can be assembled,
adapted and reused in a systematic way. However, as we will
argue in this paper, existing languages are still rudimentary.
We present PrintTalk, an experimental DSL that fosters

a high-level specification, composition, and reuse of 3D de-
signs. The main characteristics of PrintTalk are:

• PrintTalk was designed in DrRacket [5] which makes
it easy to extend and modify the language.

• PrintTalk focuses on the assembly process generating
the objects (called ‘gadgets’ in PrintTalk) to be printed,
rather than on the objects themselves.

• PrintTalk features both imperative and constraint-
based constructs. The composition of gadgets is done

1https://www.prusa3d.com/
2https://composites.umaine.edu/3dirigo-the-worlds-largest-3d-printed-
boat/
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in an imperative way: subgadgets of a gadget are
printed one after the other in a 3D scene. However, by
associating every gadget with a number of constraint
variables, some aspects of the composition are
determined by a constraint solver.

• PrintTalk is compiled into STL, which can be used to
generate so-called G-code [11] by publicly available
slicing software. This means that PrintTalk can be
deployed for many different brands of 3D printers.

The paper is structured as follows. In Section 2, we mo-
tivate PrintTalk. Section 3 presents its basic concepts, and
the features it offers for reuse and composition. Section 4
explains PrintTalk’s toolchain which turns PrintTalk into a
practical language that enables developers to really print 3D
objects. Section 5 evaluates PrintTalk.

2 State of the Art
We review the state of the art in Computer-Aided Design
(CAD) technology for 3D printers. As explained in the in-
troduction, two main philosophies for 3D modelling exist.
Direct modelling can be thought of as sculpting 3D shapes
in some editor before sending them to the printer. 3D mod-
els designed like this lack parameters and relations. Editing
consists of drawing and scaling geometries visually. Direct
modelling thus requires a 3D designer to compose a 3D shape
‘by hand’. Reusing designs typically happens via ‘copy-paste
reuse’, i.e., by copying and pasting an existing design and al-
tering the copy in the editor [7]. Examples of direct modelling
CAD software are Creo Direct3 and Shapr3D4. Parametric
modelling builds a history tree of a 3D shape. Designing
happens by describing and manipulating this tree. A well-
known parametric modelling technique is Constructive Solid
Geometry (CSG) [9]. In CSG, complex 3D shapes consist of
combinations of primitive shapes (such as cubes, spheres,
and cylinders). In CSG, leaf nodes of the tree correspond
to the primitive shapes. Non-leaf nodes represent binary
operations such as intersections, unions and differences.

Parametric modelling can also be supported by editors sim-
ilar to, but more powerful than, their direct modelling coun-
terparts (e.g., FreeCAD5). However, things become much
more interesting if an actual program or script can be used to
generate the history tree of the 3D model. Two approaches
exist. Either the script is written in some mainstream pro-
gramming languages such as Python and performs a number
of calls to some library that was developed in the same lan-
guage, or the script is written in a dedicated DSL for 3D
printing. We review the state of the art for both approaches
in the forthcoming sections.

3https://www.ptc.com/en/products/creo/direct
4https://www.shapr3d.com/
5https://www.freecadweb.org/

Figure 1. A CSG tree.
1 function main() {
2 return difference(
3 cube({size: 10, center: true}),
4 cylinder({r:3,h:10, center:true}),
5 cylinder({r:3,h:10, center:true}).rotateX(90),
6 cylinder({r:3,h:10, center:true}).rotateY(90));}

Listing 1. 3D model designed using JSCAD.

2.1 Parametric Modelling with Libraries
Many libraries for modelling 3D shapes with varying levels
of maturity can be found on the internet. The following
is a list of some popular ones that are each hosted by a
different mainstream programming language. CadQuery is
a Python library that supports common CAD file formats
such as STEP and STL. Lua Cad is a collection of Lua-scripts
that make it possible to generate OpenSCAD scripts (see
Section 2.2). JSCAD enables 3D design in JavaScript. All
such libraries are very similar mainly differ in technicalities
and in the infrastructure they support. To give a feeling
about the way they are used, Listing 1 illustrates a 3D model
written in JSCAD. The model represents a cube from which
three rotated cylinders are cut. The resulting 3D shape is
illustrated in Figure 2.
The library approach has the advantage in that it can be

used in combination with the entire host language, along
with the infrastructure provided by the IDE that is used.
Programmers that are already familiar with the language are
not required to learn an entirely new programming language,
which results in a less steep learning curve.

2.2 Parametric Modelling with Specific Languages
In contrast to libraries, a number of dedicated programming
languages exist of which OpenSCAD6and ImplicitCAD7are
the most advanced. Listing 2 expresses the same shape as
in Listing 1 and is valid for both OpenSCAD and Implicit-
CAD. OpenSCAD compiles ‘scad scripts’ into STL. A scad
script describes a 3D shape using Constructive Solid Geom-
etry (CSG) and extrusion of 2D outlines. OpenSCAD also
features assert statements to be used when the values of
the configurable parameters must meet some requirements,
e.g., when a dimension determined by a variable may not
exceed a certain length. Apart from the declarative definition
of 3D shapes, OpenSCAD also includes if statements and
for loops, requiring programmers to describe complex 3D
models imperatively.

6https://openscad.org/
7https://implicitcad.org/
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1 difference () {
2 cube(10, center = true);
3 cylinder(r=3, h=10, center = true);
4 rotate([90, 0, 0]) cylinder(r=3,h=10, center=true);
5 rotate([0, 90, 0]) cylinder(r=3,h=10, center=true);}

Listing 2. 3D model designed using OpenSCAD.

Figure 2. 3D model resulting from Listing 1 and Listing 2.
2.3 Comparing the Approaches
Describing 3D models by code has serious advantages when
it comes to reuse via composition and abstraction.

Reusability. As soon as reuse of 3D models becomes an
issue, tool-based approaches are restricted to copy-paste
reuse. In code-based approaches, much richer reuse
mechanisms can be conceived. The simplest form of reuse
is instantiation: ‘copies’ of a 3D objects are created by
calling some constructor multiple times, each time with
different parameters. Constructors themselves emerge from
using abstraction and composition: the ability to compose a
number of 3D shapes into a composite 3D shape and then
abstract over this 3D shape by giving it a meaningful name
that can be used for composition in its turn. It is clear that
this is the bread and butter of any modern programming
language, which makes the possibilities for reuse much
more advanced in the code-based approach.

Parameterisation. As said before, parametric modelling
allows some aspects of 3D models to be modified by filling
in parameters. In tool-based approaches, this happens by
clicking and editing windows. In code-based approaches,
parametric values can be passed on to constructors.
However, combined with abstraction and composition,
this results in an inherently more powerful mechanism
because a composed 3D model can depend on a parame-
ter and pass this parameter to one or more of its constituents.

Automation. A powerful aspect of programming
languages is that they allow expressing an entire process
with just one construct. For example, when building a
composition, the repetition of a particular 3D shape can be
done with iteration and selection (i.e., if tests) constructs.
This is more powerful than some set of predefined menu
items in an editor.

Testing and Static Analysis. Once 3D models are de-
scribed by code, it becomes possible to write unit tests. For
example, one could test whether the dimensions of an object
comply with a certain specification. Additionally, it becomes
possible to perform static analysis on the code in order to ver-
ify aspects such as manufacturability, rigidity and stability
of the 3D model.

We conclude that a code-based approach has clear advan-
tages over editor-based approaches, especially if the goal is to
turn 3D printing into a systematic engineering process that
can simplify the production of variations of the same object
and that can build objects by composing and parameterising
the description of previously designed objects.

2.4 Towards More Powerful 3D Printing DSLs
One can wonder what the requirements are for powerful 3D
printing DSLs. In 1976, Niklaus Wirth postulated the by now
classic equation:

Programs = Algorithms + Data Structures

When it comes to the data structures being used, we envi-
sion a 3D printing DSL to be at least as powerful as Open-
SCAD and its derivatives. In other words, a powerful 3D
printing DSL will need:

1. a series of built-in 3D shapes such as spheres, cubes,
etc., which form the primitive building blocks of the
language.

2. a compositionmechanism to compose primitive 3D
shapes into more complex shapes that can, in their
turn, be used for composition.

3. an abstraction mechanism that allows a 3D mod-
eler to abstract over the composition (for example, by
giving it a name), and that allows parameterisation of
the composed 3D shape for future deployment.

The combination of these three mechanisms enables the
construction of any complex 3D object as a composition
of built-in objects. This is very similar to the CSG concept
featured by languages like OpenSCAD.
When it comes to algorithms, the design of the DSL is

less obvious. One could embed the data structures described
above in a general purpose language with recursion and
iteration. However, this is exactly what the library approach
does. A potentially more powerful approach is to look at
more declarative languages. In analogy to 2D GUI software,
the family of constraint programming languages naturally
comes to mind: we use constraints to specify how several
constituents of a 3D shape should fit together. E.g., in a
constraint programming language, it is very simple to specify
things like “this object should be on top of that object and
underneath this object”. However, declarative programming
sometimes results in very unnatural programs. E.g., given
some 𝑛, drawing exactly 𝑛 copies of the same object typically
requires the programmer to rely on recursion. Languages
like Prolog show that this easily results in unnecessarily
complex programs that are typically expressed much simpler
in a scripting language like Python.
We therefore argue for a multiparadigm approach in

which the programmer can (i) write an (imperative) script
that draws a 3D shape possibly relying on iteration, and (ii)
have his objects parameterised by constraint variables that

13
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can be filled in later, when the shape becomes part of a larger
composite shape.

2.5 Mixing Constraints and Imperative Features
Constraint languages allow the programmer to use constraint
variables and ‘connect them’ to one another by constraints
[12]. A constraint solver is used to find bindings for the vari-
ables such that all constraints of the program are satisfied.
Many constraint solvers exists. Examples include Cas-

sowary [1] and ‘satisfiability modulo theories’ (SMT) solvers
such as the Z3 theorem prover [2]. Not all solvers are equally
powerful. For example, Z3 is able to solve nonlinear con-
straints, while Cassowary is unable to do so.

Constraint programming languages typically result inmul-
tidirectional programs. When pegging a constraint variable
to some value, the constraint solver will automatically deter-
mine the value for the other variables, irrespective of which
variable was initially pegged by the programmer. It is not
trivial to reconcile this mechanism with imperative program-
ming since this style of programming is all about executing
unidirectional programs that peg the value of their variables
‘manually’ by means of an assignment construct.

The work by Felgentreff et al. [3] discusses two main
approaches for integrating constraints into an imperative
language. Constraint Satisfaction Libraries can be used
without requiring changes to the host programming lan-
guage [3]. The ‘constraint variables’ of the library are actu-
ally data values of the host language. It is up to the user
of the library to maintain the connection between both
types of variables as needed. Constraint-Imperative Pro-
gramming (CIP) Languages (e.g., [8] and [10]) reconcile
constraint-based and imperative properties by design. CIP
languages provide a dedicated syntax for asserting and defin-
ing constraints. The semantics of the variables is an integral
part of the semantics of the programming language.

In the next section, we present PrintTalk, a CIP DSL with
both imperative and constraint-based characteristics.

3 PrintTalk: Concepts and Examples
PrintTalk is DSL that enables abstraction, composition, and
reuse of 3D shapes. In addition to primitive values such as
numbers and strings, PrintTalk features two concepts that
are specific to 3D modelling: gadgets and topologies. These
can be combinedwith one another by amixture of imperative
and constraint-based concepts.
In the remainder of this section, we present an overview

and examples of PrintTalk and its concepts, and explain how
they enable abstraction, composition, and reuse.

3.1 Gadgets
Gadgets represent 3D shapes. Gadgets can be parameterised
and instantiated with arguments. PrintTalk contains na-
tive gadgets for primitive 3D models that represent cubes,

cuboids, spheres, and cylinders. For example, the instantia-
tion (cube x y z size) creates a gadget that represents a
cube of size size with its centre at position (x, y, z).
A new type of gadgets is defined using the gadget: con-

struct whose general form is as follows:
1 (gadget: <name>
2 (<parameters>)
3 (<constraint-vars>)
4 (script: <scripts>)
5 (constraints: <constraints>))

The definition of a gadget consists of a name, a list of (ordi-
nary) parameters, a list of constraint variables, a sequence of
script statements and a set of constraints. An example can
be found in Listing 3.

The script of a gadget specifies the instantiation and com-
position of one or more “subgadgets”. Subgadgets can be
instantiated with both ordinary ‘parameter’ variables and
constraint variables in their argument expressions. The num-
ber of argument expressions of each subgadget instantiation
must be the same as the number or ordinary variables (i.e.
not constraint variables) defined by those subgadgets. Hence,
gadget instantiation only peggs the value of the ordinary
variables and leaves the value of the constraint variables
open.
PrintTalk implements the Constructive Solid Geometry

(see Section 2) modelling technique to design complex 3D
shapes by combining multiple simpler 3D shapes. By default,
all subgadgets instantiated in a gadget’s script are combined
by means of a ‘union’. When these gadgets are instantiated,
their gadget scripts are executed as well, thereby possibly
instantiating other subgadgets in their turn. It is possible
to subtract gadgets from other gadgets by using the cut:

statement. While PrintTalk does not directly support inter-
sections, the same can be achieved by combining cut: state-
ments, using the following formula: A intersect: B = A cut:

(A cut: B). Gadget scripts may not be empty and may not
consist solely of cut: statements.
Constraint variables are variables of which the value is

not specified when instantiating a gadget. Instead, values
for constraint variables will be assigned by the underly-
ing constraint solver at a later moment in time, when a
3D model consisting of various gadgets is finally generated
using PrintTalk’s print: statement. It is only when calling
print: that a 3Dmodel is rendered, thus it is only required to
solve constraints just before this rendering takes place. We
will discuss the exact semantics of the constraint variables
in Section 3.2.

Example: Cube with a Hole. To exemplify the concepts
explained so far, Listing 3 contains the definition of a gadget
named cube-hole which represents a cube with a hole in it.
cube-hole takes four parameters (line 2). The first three pa-
rameters (x, y, and z) represent the absolute 3D position (i.e.,
The position relative to the origin at (0, 0, 0)) of the gad-
get. The fourth parameter (cube-size) represents the length
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1 (gadget: cube-hole
2 (x y z cube-size)
3 (cyl-dia)
4 (script: (cube x y z cube-size)
5 (cut: (cylinder x y z cyl-dia cube-size)))
6 (constraints: (constraint:<! cyl-dia cube-size)))

Listing 3. A gadget that represents a cube with a hole.

Figure 3. 3D model representing the cube-hole gadget in
Listing 3.

of every rib. cube-hole can be instantiated and converted
into an .stl file using a print: statement, as shown below.
The resulting shape, stored in an .stl file, is depicted in Fig-
ure 3. Gadget cube-hole introduces one constraint variable,
cyl-dia), that represents the diameter of the hole (line 3).
The value of this variable is determined automatically by
print:. Line 6 represents the constraints that are local to the
gadget. In this example, there is one constraint that states
that the diameter of the hole cyl-dia must be smaller than
the size of the cube cube-size. Lines 4–5 represent the gad-
get’s script. This script instantiates two subgadgets: a cube
with size cube-size, and a cylinder with size cyl-dia. The
cylinder is cut from the cube by means of the cut: statement.
1 (print: (cube-hole 0 0 0 10) "cube-hole.stl")

3.2 Gadget Constraints
In addition to the ordinary variables that correspond to a
gadget’s parameters, PrintTalk also features constraint vari-
ables. While an ordinary variable is explicitly given a value
in a program, constraint variables get a value assigned by
a constraint solver (discussed further below). This happens
when gadgets are printed. At that moment, the constraints
of a gadget are solved, thereby taking into account the con-
straints of its subgadgets as well.

To constrain the possible values a constraint variable may
attain, declarative constraints must be specified. Constraints
in PrintTalk can only be specified as part of a gadget defi-
nition. By convention, identifiers used for constraints end
with an ! to indicate that a condition is being asserted. A
constraint’s arguments can either be numbers, constraint
variables or solver-expressions. A solver-expression is an
expression that is not evaluated by PrintTalk, but by the
underlying constraint solver instead. It is up to the program-
mer to ensure that the provided expression is supported by
the underlying solver, and that the number and type of ar-
guments matches with what is expected by the underlying
solver. Identifiers of solver-expressions start with solver:.
For example, (constraint:=! radius (solver:/ diameter

2)) expresses a constraint that radius must always be equal
to half of diameter.

Type of Constraints. PrintTalk supports three types of
constraints: comparative constraints, geometric constraints,
and user-defined constraints.
Comparative constraints, such as =!, >! and <!, are used

to constrain the values of constraint variables based on the
values of ordinary and/or other constraint variables. For
example, in Listing 3 on line 6, gadget cube-hole asserts a <!

constraint between constraint variable cyl-dia and ordinary
variable cube-size.

Geometric constraints constrain geometric elements such
as distances or angles in an Euclidean space. In its cur-
rent implementation, PrintTalk supports distance!, angle!,
parallel!, and perpendicular! geometric constraints. For
example, constraint (constraint:distance! u v w x y z 42)

constrains the Euclidean distance between positions (𝑢, 𝑣,𝑤)
and (𝑥,𝑦, 𝑧) to be equal to 42.

Finally, user-defined constraints are defined as composition
of other constraints.
For example, Listing 10 in Section 5 introduces two user-

defined constraints that are used in the remainder of that
section.

Constraint Combination across Subgadgets. The ordi-
nary variables of a gadget can be thought of as variables that
are part of PrintTalk’s imperative side. They are bound when
instantiating a gadget. Whenever a gadget instantiates sub-
gadgets, the ordinary parameters of these subgadgets get
bound as well. Hence, an entire tree of gadgets is instantiated
and all ordinary parameters of the gadgets occuring in that
tree get a value that is pegged forever.

The semantics of the constraint variables of a gadget
is totally different. Constraint variables can be thought of a
part of the ‘return value’ of the gadget script. Obviously that
return value is the gadget itself but the important thing to
understand is that this gadget is automatically ‘decorated’
with its constraint variables. They are an integral part of
the gadget. This mean that it must also be possible to refer
to the constraint variables of a gadget if that gadget becomes
part of a composition. This is accomplished by the g@c nota-
tion which can be used to designate a constraint variable c

that resides in a gadget g.
This entire mechanism is illustrated by Listing 4, which

describes three gadgets. Notice that this gadget script uses
the named: form for the first time in the paper. named: can be
used in a gadget script to introduce local gadgets that can
be referred to further up in the same script. Hence, named:
corresponds to the let-form that exists in many program-
ming languages. The block and ball gadgets have ordinary
variables (x, y, z) that represent their positions. Their sizes
are represented by constraint variables on which constraints
are placed from within the gadget-definitions. The size of
block gadgets is constrained to be smaller than 10 (line 3).
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The size of ball gadgets is constrained to be greater than 8
(line 7).

The block and ball gadgets are instantiated and combined
by the combine gadget (lines 10–11). This gadget further con-
strains the sizes of the newly instantiated gadgets by stating
that they must be equal (lines 12–13). This is where the @

notation is used to refer to the size constraint variables of
both subgadgets.

1 (gadget: block (x y z) (size)
2 (script: (cube x y z size))
3 (constraints: (constraint:<! size 10)))
4
5 (gadget: ball (x y z) (size)
6 (script: (sphere x y z size))
7 (constraints: (constraint:>! size 8)))
8
9 (gadget: combine () ()
10 (script: (named: block (block 0 0 0))
11 (named: ball (ball 10 0 0)))
12 (constraints: (constraint:=! (block@size)
13 (ball@size))))

Listing 4. Combining Constraints in PrintTalk.

Constraint Solving. When a 3Dmodel is generated from
a gadget, ordinary variables such as gadget parameters will
have a value that was explicitly assigned by the program
at some point, but the constraint variables will not have a
value, even though they may be heavily constrained by the
entire constraint-network that emerges by composing the
tree of subgadgets comprising the gadget.

We call a constraint variable without a value “unresolved”.
It is the role of the constraint solver to try to satisfy all con-
straints and assign values to all constraint variables. It is up
to the programmer to ensure that all constraint variables that
are necessary for generating the 3D model are sufficiently
constrained, so that they can be resolved by the constraint
solver. When a gadget is underconstrained, the overal final
gadget can be given extra constraints (e.g. (constraint:=!
convar 42) ) to pegg the value of a constraint variable and
force the constraint solver to trickle that value through the
entire gadget (and all the subgadgets that transitively depend
on that variable).

PrintTalk raises an error when an unresolved constrained
variable is involved in generating a 3D model upon running
the print: statement.

3.3 Topologies
3D shapes often contain a pattern or repeated shapes in their
design that are straightforward to construct in an imperative
style. We invite the reader to have a look at Figure 6 which
shows a table with three legs. PrintTalk supports such rep-
etitions of gadgets in the form of topologies. A topology
creates a gadget that consists of a union of repetitions of the
same gadget instantiated by the topology. At the time of writ-
ing, PrintTalk supports three types of topologies. Figure 4
illustrates them visually.

Figure 4. PrintTalk’s topologies: a) linear-repeated:, b)
linear-spaced:, and c) ring-repeated:.

The linear-spaced: topology evenly distributes a certain
number of instantiations of the same gadget between two
Euclidean positions.

(linear-spaced: <number>
(<beginX> <beginY> <beginZ>)
(<endX <endY> <endZ>)
<gadget>)

The topology takes four parameters that specify the number
of gadgets to be instantiated between the two provided posi-
tions (with an additional gadget being instantiated at these
positions as well), the begin-position, end-position and the
gadget instantiation. In the gadget instantiation argument of
the linear-spaced: topology, PrintTalk offers the program-
mer three pseudo-variables8 that are automatically filled in
by PrintTalk, namely X, Y and Z, as the x, y, and z coordinates
of the gadget instantiation.
An example illustrating the use of the linear-spaced:

topology is provided in Listing 5. The resulting 3D model is
illustrated in Figure 4(b). The gadget resulting from using a
1 (linear-spaced: 3 (0 0 0) (60 50 70) (cube X Y Z 10))

Listing 5. PrintTalk’s linear-spaced: topology.
linear-spaced: topology contains three constraint variables
(deltaX, deltaY and deltaZ), which represent the difference
between adjacent gadgets’ x, y, and z-coordinates, respec-
tively. The code presented in Listing 6 uses this feature to
state that the value of deltaX should be equal to 10.
1 (gadget: spacedCubes () (endX)
2 (script:
3 (named: spaced (linear-spaced: 3
4 (0 0 0) (endX 50 70)
5 (cube X Y Z 10))))
6 (constraints: (constraint:=! (spaced@deltaX) 10)))

Listing 6. Specifying the distance between gadgets
instantiated by the linear-spaced: topology.
The linear-repeated: topology instantiates a gadget a

number of times, where the position of each gadget instance
is determined by the position of the previous gadget instance
or by the iteration count. Pseudo-variables PREVIOUS and
COUNT are available to reference the previous gadget and to
obtain the iteration count, respectively.
8Pseudo-variables are variables like this or self. They can be used but
not given a value by the programmer.
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(linear-repeated: <number> <first-gadget> <gadget>)

The topology takes three arguments that represent the num-
ber of gadgets to be instantiated (apart from the first gadget),
the first gadget to be instantiated and the remaining gadgets
to be instantiated. The PREVIOUS and COUNT pseudo-variables
can only be used in the (final) parameter that represents the
remaining gadgets. The code presented in Listing 7 uses the
COUNT pseudo-variable to specify the z-coordinate of cubes.
The resulting 3D model is illustrated in Figure 4(a).

1 (linear-repeated: 3 (cube 0 0 0 5)
2 (cube 0 0 (* 10 COUNT) 5))

Listing 7. PrintTalk’s linear-repeated: topology.
The ring-repeated: topology instantiates the same gadget

a number of times and places them in a ring.
(ring-repeated: <centreAxis1> <centreAxis2>

<radius>
<amount>
<gadget>)

This topology takes five parameters that represent the centre
coordinates and the radius of the ring, the number of gadgets
to be instantiated and the gadget instantiation expression
itself. The topology exposes two pseudo-variables (X and
Y) that automatically contain the values for the parameters
that represent the coordinates of the gadgets on the axes
that make up the plane of the ring. The code presented in
Listing 8 illustrates how the ring-repeated: topology can
be used to construct a ring of cubes on the xy-plane with the
centre of the plane on position (0, 0, 0). The resulting 3D
model is illustrated in Figure 4(c).

1 (ring-repeated: 0 0 50 10 (cube X Y 0 10))

Listing 8. PrintTalk’s ring-repeated: topology.
Discussion. The list of topologies that are currently sup-

ported has emerged organically from using PrintTalk on
various examples. We therefore do not claim that this is the
ultimate set of topologies that is necessary and sufficient
to generate all possible gadgets whose constituents contain
patterns of repeated subgadgets.

The point of PrintTalk’s topologies is that they expose an
iterative process without polluting the language with imper-
ative loops, iteration variables and variables that need to be
updated manually by the programmer using the assignment
statement. Our conjecture is that, in specifying 3D shapes,
such variables are only justified when calculating the way
subgadgets generated by the loop relate to one another spa-
tially. In PrintTalk, updating the variables is hidden in the
language run-time. The variables themselves are exposed to
the programmer as pseudo-variables.

4 Implementation
We implemented PrintTalk as an embedded DSL on top of
Racket [4], a powerful and extensible language that makes

Racket
Parser

PrintTalk
Program

Racket Expander +
Evaluator Z3

RacketOpenSCADSlicer3D Printing
Object

S-expressions
SMT 
script

Values

G-code STL file
OpenSCAD

script

Figure 5. The PrintTalk toolchain.
it highly suitable for implementing DSLs. PrintTalk inherits
Racket’s host features such as garbage collection and interac-
tion with the operating system. Racket was chosen as a base
for PrintTalk for its powerful macro system, which allows for
the definition of new syntax without requiring the modifica-
tion of lexers and parsers. Our implementation uses Z3 for
solving constraints, and OpenSCAD for generating STL files
that represent 3D models that can be visualized and printed.
We discuss these tools and how they work together in our
current implementation in the remainder of this section. The
entire toolchain is shown in Figure 5.

4.1 The Racket Front-End
Upon execution, a PrintTalk program is first transformed
into a set of Racket S-expressions that then are executed by
a Racket interpreter. It is the role of PrintTalk’s parser to
perform this transformation, and it relies on twomechanisms
built into Racket for doing so: macros, and a parser library.
Pattern-based macros are used to transform the

S-expression-based portion of PrintTalk’s syntax, using
Racket’s define-syntax.
The PrintTalk syntax contains three language elements

that are not S-expressions: constraint variable access, con-
straint assertions, and solver expressions. We used Racket’s
parser-tools-lib package to implement a LALR(1) parser
for transforming this portion of PrintTalk’s syntax into S-
expressions as well.
The resulting S-expressions form a Racket program

that generates an SMT script. This program internally
represents PrintTalk’s gadgets as Racket objects, and
gadget variables are fields of these objects. A constraint
variable expression such as (cube@x) is converted into
the application (dynamic-get-field ’x cube), using
Racket’s dynamic-get-field procedure to access object
fields. A constraint assertion such as (constraint:<! a b)

is converted into the application (make-constraint ’< a

b), and similarly a solver expression such as (solver:+ a

b) is converted into (solver-expression ’+ a b), where
both applied procedures are implemented by us to return a
Racket object that represents the specific element.

4.2 The Z3 Constraint Solver
PrintTalk requires a constraint solver that supports both
nonlinear equations (e.g., trigonometric functions for the cir-
cular topology) and geometric constraints. Therefore, we use
Z3. Some constraints are easy to express in Z3. For example,
an equality-constraint (constraint:=! a b) in PrintTalk is
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translated into a single assert-statement (assert (= a b))

in Z3. More effort is required for (more complex) geometric
constraints.While Z3 does not support geometric constraints
directly, some geometric constraints can be supported by
combining other constraints. E.g, a distance-constraint is
implemented using the Pythagorean theorem and an angle-
constraint is implemented using the law of cosines.
In our current implementation, constraints are solved

when the print: form is encountered. Constraint solving
consists of four steps. First, All constraints that are placed
on gadgets are collected. Because gadgets and their subgad-
gets are organized in a tree structure, this is implemented
as a straightforward tree traversal. Second, all collected con-
straints are converted into an SMT script that is saved to the
file. Third, Z3 is called with the SMT script as input, using
Racket’s built-in subprocess procedure to invoke Z3 as a
subprocess. The final step consists of examining Z3’s output,
which is based on S-expressions and therefore straightfor-
ward to read using Racket’s read procedure. If Z3 successfully
solves the constraints, the resulting values are assigned to
their corresponding constraint variables in PrintTalk. When
the constraints are not satisfiable an error is raised.

4.3 Generating 3D Models
The output of a PrintTalk program is an STL file that contains
a triangle mesh representation of the gadget. The STL file
can be used as input for other tools to render and visualize
the 3D model on screen, or to actually print the model in 3D
using slicer software [11]. Our Racket code thus generates a
scad script which can be sent to OpenSCAD for generating
that STL file.

5 Evaluation
In this section, we evaluate PrintTalk by comparing it to
OpenSCAD, as it is one of the most widely used program-
matic CAD languages. We compare an OpenSCAD script to
a PrintTalk program that describes the same 3D model. The
model represents a round table with a ball on top of it, as
illustrated by Figure 6. The ratio between the diameter of the
ball and the diameter of the tabletop is equal to the golden
ratio. The ratio between the thickness of the tabletop and
the length of the table’s legs is also equal to the golden ratio.

Figure 6. 3D model representing a round table with a ball
on top of it.

1 module table(x, y, z, dia, height, nrOfLegs){
2 legHt = height / ((1.0 + sqrt(5)) / 2.0);
3 tabtopHt = height - legHt;
4 legZ = z - (tabtopHt/2) - (legHt/2);
5 legRadius = (dia/2) - 10;
6 union(){
7 translate([x, y, z]){
8 cylinder(h=tabtopHt, d=dia, center=true);
9 }
10 for(count = [0 : nrOfLegs-1]){
11 angle = ((2*PI*count)/nrOfLegs) * 180 / PI;
12 cx = x + (cos(angle) * legRadius);
13 cy = y + (sin(angle) * legRadius);
14 translate([cx, cy, legZ]){
15 cylinder(h=legHt, d=10, center=true);
16 }}}}
17
18 module scene(x, y, z, tabDia, height){
19 ballDia = tabDia / ((1.0 + sqrt(5)) / 2.0);
20 ballZ = z + (ballDia/2) +
21 ((height-(height/((1.0 + sqrt(5))/2.0)))/2);
22 union(){
23 translate([x, y, ballZ]){
24 sphere(d= ballDia);
25 }
26 table(x, y, z, tabDia, height, 3);
27 }}
28
29 scene(0, 0, 0, 150, 80);

Listing 9. OpenSCAD code representing a round table with
a ball on top of it.

5.1 OpenSCAD Script
Listing 9 contains the OpenSCAD code that represents the
3D model illustrated in Figure 6. This code consists of two
modules. The table module (lines 1–16) represents a round
table. The total height of the table is provided as a parameter.
Given this height, the thickness of the tabletop and the length
of the legs can be calculated (lines 2–3). This calculation
makes use of the number determined by (1.0 +

√
5)/2.0),

which represents the algebraic notation of the golden ratio.
As a consequence, the ratio between the tabletop’s thickness
and the length of the legs is equal to the golden ratio. The
table consists of a tabletop (line 8) and a number of legs,
which are placed in a circular pattern under the tabletop
by a for loop (lines 10–15). The scene module (lines 18-27)
represents the entire scene (i.e., A table with a ball on top
of it). The z-coordinate and the diameter of the ball must be
calculated manually, so that the ball is on top of the table and
the ratio between the diameter of the ball and the diameter
of the table is equal to the golden ratio. Finally, the scene
is instantiated by calling the scene module with the correct
number of parameters (line 29).

5.2 PrintTalk Program
This section discusses a PrintTalk program that describes
the same 3D model as the OpenSCAD script discussed in
Section 5.1. We first introduce two user-defined constraints
in Listing 10. The golden-ratio constraint (lines 1–6) con-
strains two parameters (numbers or constraint variables) so
that the ratio between them is equal to the golden ratio. The
on-top-of constraint (lines 8–11) can be used to constrain the
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1 (constraint: golden-ratio (a b) ()
2 (constraints:
3 (constraint:>! a 0)
4 (constraint:>! b 0)
5 (constraint:=! (solver:/ a b)
6 (solver:/ (solver:+ a b) a))))
7
8 (constraint: on-top-of (aZ aHt bZ bHt) ()
9 (constraints:
10 (constraint:=! (solver:- aZ (solver:/ aHt 2))
11 (solver:+ bZ (solver:/ bHt 2)))))

Listing 10. User-defined constraints in PrintTalk.

z-coordinates of two shapes, so that one shape is placed on
top of the other shape. The constraint takes four parameters,
representing the z-coordinates and the heights of two shapes.
Notice that these constraints are not part of the definition of
the 3D model that we are describing. Instead, golden-ratio
and on-top-of are general reusable constraints that can be
imported and that can also be used in the definition of other
3D designs.
Listing 11 contains the actual PrintTalk code that repre-

sents the 3D model illustrated by Figure 6. The code consists
of two gadgets, and the constraints defined in Listing 10 are
reused in their definition. The table gadget (lines 1–13) rep-
resents a round table. The total height of the table is provided
as an argument. Given this height, the thickness of the table-
top and the length of the legs are determined by constraints
(lines 9–10). Other constraints determine the radius of the
ring of legs (lines 11–12) and the Z-coordinate of the legs
(line 13). The table consists of a tabletop (line 5) and a num-
ber of legs, which are placed in a circular pattern under the
tabletop by a ring-repeated: topology (lines 6–7). The scene
gadget (lines 15–24) represents the entire scene, i.e., a table
(line 20) with a ball (line 19) on top of it. The z-coordinate
and the diameter of the ball are represented by constraint
variables (lines 22–24). Finally, the scene is converted into
an STL file using the print: statement (line 26).

5.3 Comparison
While the overall structure of the OpenSCAD code and the
PrintTalk code is similar, there are three key differences:
First, PrintTalk provides a ring-repeated: topology that

makes it straightforward to instantiate gadgets in a circular
way. In OpenSCAD programmers are condemned to using a
for loop with complicated trigonometric calculations.

Second, one of the key features of PrintTalk is its support
for constraints. PrintTalk makes it possible to describe the
golden ratio by its equation using a user-defined constraint.
As a consequence, not all calculations must be performed
explicitly by the end-programmer. Again, in OpenSCAD,
programmers are condemned to performing calculations
using the algebraic representation of the golden ratio.

Finally, in addition to constraints, PrintTalk includes con-
straint variables. Using constraint variables in the definition
of constraints increases the reusability of gadgets, as demon-
strated by the example below.

1 (gadget: table
2 (x y z dia height nrOfLegs)
3 (legZ legRadius legHt tabtopHt)
4 (script:
5 (cylinder x y z dia tabtopHt)
6 (ring-repeated: x y legRadius nrOfLegs
7 (cylinder X Y legZ 10 legHt)))
8 (constraints:
9 (constraint:golden-ratio! legHt tabtopHt)
10 (constraint:=! height (solver:+ legHt tabtopHt))
11 (constraint:=! legRadius
12 (solver:- (solver:/ dia 2) 10))
13 (constraint:on-top-of! z tabtopHt legZ legHt)))
14
15 (gadget: scene
16 (x y z tabDia height)
17 (ballZ ballDia)
18 (script:
19 (named: ball (sphere x y ballZ ballDia))
20 (named: tab (table x y z tabDia height 3)))
21 (constraints:
22 (constraint:on-top-of! ballZ ballDia
23 z (tab@tabtopHt))
24 (constraint:golden-ratio! tabDia ballDia)))
25
26 (print: (scene 0 0 0 150 80) "table.stl")

Listing 11. PrintTalk code representing a round table with
a ball on top of it.

Variation: The ball must have a specific size. This ex-
ample illustrates how PrintTalk’s constrained gadgets foster
the reusability of 3D designs. We explain how the Open-
SCAD and PrintTalk code, as described by Sections 5.1 and
5.2 respectively, is reused to generate a 3D model of which
the ball on top of the table has a specific diameter.
The scene module (resp. gadget) specifies a parameter

to represent the diameter of the tabletop. In contrast, the
diameter of the ball is not provided explicitly. Instead, it is
derived from the diameter of the table.

In OpenSCAD, we are condemned to calculating the value
of the parameter that represents the diameter of the table
explicitly so that the ball has the desired diameter. This is
shown in Listing 12.
1 module scene2(x, y, z, ballDia, height){
2 tabDia = ballDia * ((1.0 + sqrt(5)) / 2.0);
3 scene(x, y, z, tabDia, height);
4 }
5 scene2(0, 0, 0, 100, 80);

Listing 12. OpenSCAD code for generating a 3D model
where the ball has a specific size.

Listing 13 illustrates how the same can be achieved in
PrintTalk, without requiring any explicit calculations. We in-
stantiate the scene (line 3) using a constraint variable tabDia
(line 1) that represents the diameter of the table. We can re-
trieve the ballDia constraint variable from this gadget, and
constrain it to be equal to the desired diameter (line 5).

6 Limitations and Future Work
We envision several avenues for future research:

Maturity of the Prototype. Since Z3 is not a geometric
constraint solver, geometric constraints must be converted
into a combination of constraints that are supported by Z3.
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1 (gadget: scene2 (x y z ballDia height) (tabDia)
2 (script:
3 (named: scene (scene x y z tabDia height)))
4 (constraints:
5 (constraint:=! (scene@ballDia) ballDia)))
6 (print: (scene 0 0 0 100 80) "table.stl")

Listing 13. PrintTalk code for generating a 3D model where
the ball has a specific size.

In future work, PrintTalk may be extended with support
for a geometric constraint solver that natively supports
these constraints. The implementation can also be improved
by making PrintTalk generate STL files directly instead
of relying on 3rd party software such as OpenSCAD for
this. Finally, topologies can only be added by modifying
the underlying Racket code, and not from within PrintTalk
itself. In future work, concepts that enable programmers to
define their own topologies from within PrintTalk may be
introduced.

Error Handling. In the current implementation, all
errors are handled at the level of the tool where the error
manifests itself. Since PrintTalk is built atop the Racket
platform, it would be interesting to investigate how Racket’s
advanced contract system [6] can be employed to track
errors and ‘assign blame’ to the right code. This is especially
relevant in the face of constraint programming because
the program location where an error occurs can be very
different from the location that is actually responsible
for the error. This is an interesting avenue for future research.

Static Analysis. Some of the errors are not really
software errors but stem from the fact that the resulting 3D
shape does not make much sense in the real world. E.g.,
a 3D printer automatically inserts supporting legs when
printing objects of which the centre of gravity lies too
high. It would be nice to preclude such objects from being
printed in the first place. Hence, another avenue for future
research is to apply static analysis to ‘check the laws of
physics and stability’ on a program before printing happens.
Additionally, static analysis could be applied to analyse the
cost and time associated with printing the 3D model.

Validation and Evaluation. We have only used
PrintTalk for simple designs. Much more experience is
needed to test how well it scales to larger and more complex
shapes. We also want to perform usability evaluations
with end-users to assess the strengths and weaknesses of
PrintTalk, and to learn what users think about the language.

7 Conclusion
In this paper, we present PrintTalk, a DSL for programmatic
3D modelling. PrintTalk allows programmers to construct
3D models using the CSG modelling technique. In PrintTalk,
CSG components are represented by gadgets. Next to ordi-
nary parameters, gadgets contain constraint variables, to

which values can be assigned by the underlying Z3 solver.
PrintTalk sits on a sweet spot for combining constraints
with imperative programming for designing 3D models. We
achieved this by integrating constraint variables and con-
straints (which can be user-defined) directly into an imper-
ative host language. To evaluate PrintTalk, we compared
it with OpenSCAD, one of the most widely used program-
matic CAD languages. This comparison demonstrated the
advantages of PrintTalk’s constraint-imperative approach
over purely imperative programming languages.
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