
Building Smart Agriculture Applications Using
Low-Code Tools: The Case for DisCoPar

Isaac Nyabisa Oteyo∗†, Angel Scull Luis Pupo†, Jesse Zaman†, Stephen Kimani∗,
Wolfgang De Meuter† and Elisa Gonzalez Boix†

†Software Languages Lab Vrije Universiteit Brussel, Brussels, Belgium
∗School of Computing & IT, Jomo Kenyatta Univ. of Agric. & Tech., Nairobi, Kenya

Abstract—Modern farming is experiencing increased adoption
of mobile and cloud computing applications as efforts are being
made to automate farming processes. In this context, the mobile
and cloud computing applications, that we refer to as smart agri-
culture applications (SAAs), can be used in data collection that
can be entered directly into the applications by end-users (i.e.,
farmers) or via sensors. Implementing SAAs is often done using
text-based techniques that require advanced skills and experience
in software programming. There are low-code development tools
(LCDTs) that farmers with less programming experience can use
to implement their own SAAs. The LCDTs offer different features
and techniques for application development e.g., some employ
form-based application specification while others use graphical
drag-and-drop techniques. As such, the different LCDTs are best
suited for different specific tasks. For instance, a farmer may need
to implement an application that connects to sensors to receive
data and generate timely notifications when set thresholds are
exceeded. However, to the farmer, it can be difficult to know
which kind of LCDTs to choose and what category of these tools
are best suited for the task. In this paper, we contrast different
LCDTs and show how to use DisCoPar to develop SAAs by
non-expert programmers. As a contribution, this paper presents
properties for LCDTs that can be beneficial to farmers and
demonstrates how DisCoPar can be used in developing SAAs.

Index Terms—pervasive computing, mobile applications, SA
applications, distributed computing, visual programming

I. INTRODUCTION

Smart agriculture (SA), which advocates for using infor-
mation and communication technologies (ICTs) in farming
activities, is a promising revolution for modern farming to
realise the global demand for food and nutrition security
[1]. In this regard, SA puts emphasis on automating farming
processes for increased farm productivity such as using sen-
sors to monitor soil nutrient levels and mobile applications
to predict farm yields. Broadly, the automation of farming
processes can be done using mobile and cloud computing
applications. In this work, we refer to such applications as
smart agriculture applications (SAAs). In particular, these
SAAs are gaining increased popularity among farmers in
developed and developing regions [2]–[4]. This increasing
popularity is continuously putting a demand for developers
of SAAs that if not addressed can limit the full exploitation
of ICTs in modern farming. For instance, developers are
required that can program different kinds of sensor devices
and at the same time develop corresponding mobile and web
applications. In addition, the same developers are required to
offer user support services to farmers such as configuring data

collection surveys in the SAAs – tasks that can be done by the
farmers themselves. On the other hand, constructing SAAs is
a complex undertaking that requires advanced programming
skills [5]. For instance, modern SAAs are often composed
of many layers that talk to each other in a distributed way.
These layers are a cross-cutting concern that can be abstracted
from the application’s domain. Moreover, implementing these
layers can take considerable time, effort, and resources that
may not be worth for low to medium-scale farmers to invest
in hiring experienced programmers. As such, some tasks can
be handled by farmers with less programming experience
using LCDTs such as: (i) configuring SAAs for different crops
in different seasons, (ii) changing data collection surveys in
SAAs for various crops, and (iii) experimenting on modern
farming aspects like the rate of reading data from sensors
and information processing. By definition, LCDTs are visual
programming environments that permit developers such as
farmers that do not have strong programming experience
to produce complex software systems [6], [7]. To farmers,
LCDTs provide features that they can use to specify SAAs as
workflows of connected components that provide application
services. There exists different LCDTs in the literature such
as Mendix1 and WaveMaker2 that offer different application
development features and techniques. Moreover, these LCDTs
are best suited for different tasks. However, to the farmer,
being presented with a set of LCDTs, it can be challenging to
know which tools to choose that are best suited for the task
at hand.

This paper begins by contrasting LCDTs in terms of features
and techniques that they provide for application development.
We then demonstrate how to build SAAs using DisCoPar, a
component-based LCDT. We extend the tool with components
to register and receive data from sensors, filter the data for
display and show notifications as pop-up messages. These
components are important to support implementing SAAs
that can benefit from sensor data. Showing notifications as
pop-up messages can enhance timely communication of farm
conditions to the farmers. Based on this, the goal of this paper
is to depict the status of existing LCDTs that can be used
to develop SAAs. This work also pursues the identification
of the potential benefits that LCDTs can bring to farmers in

1https://www.mendix.com/low-code-guide/
2https://www.wavemaker.com/

terms of developing their own SAAs. Lastly, this work models
communication to sensors that can be used to monitor farm
environmental conditions in DisCoPar.

II. MOTIVATION AND BACKGROUND

Essentially, low-code tools are based on graphical user in-
terface (GUI) techniques in designing applications as opposed
to text-based techniques. Moreover, recall from the definition
of LCDTs in Section I that LCDTs are visual programming
tools that can make application development more intuitive.
For instance, in visual programming, an application is con-
structed by dragging-and-dropping blocks on GUIs and then
connecting the blocks together. The blocks can be arranged
either as an overlay of application elements side-by-side as
shown in Fig. 1(a) or connected via links as shown in Fig. 1(b).

(a) (b)

Fig. 1: (a) Overlay of blocks in Scratch programming, and (b)
Connecting blocks via links in Node-RED.

The drag-and-drop feature is fundamental in LCDTS to
make application development easier. This implies that with
LCDTs, it can be quick to generate and deliver applications
with minimum effort to both experienced and non-experienced
developers [7]. For instance, some LCDTs such as Mendix
and WaveMaker were designed to help experienced developers
improve on their productivity to deliver business software
applications. In addition to the drag-and-drop feature, LCDTs
provide: (i) data centric features that can make it easy to
integrate new data sources for data-centric applications, and
(ii) cloud-based architectures with application development
elements. The cloud-based architectures can reduce the burden
of locally installing and setting up software development kits.

The GUI-based techniques coupled with the above features
are making LCDTs popular to both experienced and non-
experienced developers [8]. Non-experienced developers can
use LCDTs to develop applications with less concern and focus
on text-based techniques. Based on the features supported,
different LCDTs are suited for different tasks. As such, it is
important to perform a comparison of LCDTs based on the
supported properties as we describe in the subsequent sections.

A. Criteria for Comparing LCDTs

This section presents the criteria for comparing LCDTs such
as focus domain and application development techniques.

a) Focus domain: This feature is important to know
where each tool can be applied e.g., business process mod-
elling (BPM) and application development. BPM is aimed
at identifying potential areas of improvement such as crop
monitoring in modern farming. On the other hand, application
development is meant to yield software products such as web
and mobile applications that can be used in modern farming.

b) Application development techniques: These tech-
niques show the kind of features that are available for applica-
tion development such as visual modelling and drag-and-drop.
Both of these features are supported by GUI techniques to help
farmers construct applications. The drag-and-drop feature can
allow farmers to select application elements and drop them on
a visual programming environment, while visual programming
can allow the farmers to visually model the application.

c) Application type: This intuitively explains where the
application is going to run. For instance, web applications can
run on browsers both on PCs and mobile devices, while mobile
applications can run on mobile devices such as smartphones
and tablets.

d) Application representation: This shows the mecha-
nisms that can be used to represent an application such as flow-
graphs or layers of application elements. Both mechanisms
can allow the farmer to have a quick overview of the entire
application structure. Intuitively, the flow-graph can show how
data flows within the application.

e) Tool type: This shows whether the LCDT supports
entirely visual programming or a mixture of visual and text-
based programming. Purely visual LCDTs often require zero
text-based development, while hybrid tools require a mixture
of two worlds i.e., visual and textual programming. Whereas,
the hybrid tools can be more flexible compared to the purely
visual tools, they can impose an extra difficulty level to the
farmers since they have to know and understand required code
modifications.

f) Support for APIs: The support for third party APIs
gives an indication as to whether new data sources can be
added to an application or an existing application can be
integrated with new services. The APIs can also help when
integrating SAAs to other software systems.

g) Distributed: Often, SAAs connect to sensors that are
spread across the farm and in different geographical locations.
This presents a distributed setting where communication is
important. However, in this setting the communication can be
complex. As such, the LCDTs need to abstract the communi-
cation from farmers in components.

h) Reconfigurability: Low to medium scale farmers often
practice rotational cropping where they grow different crops
in different seasons. For SAAs, this implies a high rate of
maintainability for the application to be reusable. As such,
LCDTs should provide reconfigurability features e.g., for
changing data collection surveys or changing the data reading
rate from sensors.

B. State of the Art Analysis

Table I gives a summary on the state-of-the-art (SOTA)
for different LCDTs based on the criteria established in
Section II-A.

a) Focus domain: From the SOTA analysis, LCDTs like
Aurea BPM [7] and DISME [12] are focussed on BPM, while
other tools like OutsSystems3, Mendix, Salesforce4, Servi-

3https://www.outsystems.com/low-code-platforms/
4https://www.salesforce.com/eu/products/platform/overview/

TABLE I: Analysing and contrasting low-code development tools.

Tool Focus area AppDev technique App type App representation Tool type API support Distributed Reconfigurable
Aurea BPM [7] BPM VM Web Flow-graph Hybrid 7 – –
Mendix [9] [10] AppDev GDD Mobile & web Flow-graph Hybrid 3 3 3

AppGyver AppDev GDD Mobile & web Layers of app elements Pure visual 3 3 3

OutsSystems [11] AppDev VM Mobile & web Layers of app elements Pure visual 3 3 3

DISME [12] BPM FBS Web Flow-graph Hybrid 7 – –
Salesforce AppDev GDD Mobile & web Layers of app elements Hybrid 3 3 3

ServiceNow AppDev GDD Mobile & web Layers of app elements Hybrid 3 3 3

Netcall AppDev VM Mobile & web Flow-graph Hybrid 3 3 3

WaveMaker AppDev GDD Mobile & web Layers of app elements Hybrid 3 3 3

Thinkwise AppDev VM Mobile & web Flow-graph Hybrid 3 3 3

DisCoPar [13] AppDev VM, GDD Mobile & web Flow-graph Pure visual 3 3 3

BPM:- Business process modelling; AppDev:- Application development; VM:- Visual modelling; GDD:- Graphical drag-and-drop; FBS:- Form-based specification

ceNow5, Netcall6 and Thinkwise7 are focussed on application
development.

b) Application development techniques: Some LCDTs
offer visual modelling options for application development
such as Aurea BPM, OutsSystems, Netcall, and Thinkwise.
Other LCDTs support graphical drag-and-drop functionalities
such as Mendix, AppGyver, Salesforce, ServiceNow, and
WaveMaker. From Table I, only DISME supports form-based
specification technique. DisCoPar supports both visual mod-
elling and graphical drag-and-drop techniques.

c) Application type: From Table I, most of the LCDTs
support implementing mobile and web applications. Only,
Aurea BPM and DISME do not support mobile applications.

d) Application representation: For LCDTs, application
representation can be done in two ways: (i) using flow-graphs
and (ii) using an overlay of application elements. From Table I,
Aurea BPM, Mendix, DISME, Netcall, Thinkwise, and Dis-
CoPar use the flow-graph way. In this approach, application
elements are linked via connections. The connections are used
as data transfer channels. AppGyver, OutsSyetems, Salesforce,
ServiceNow, and WaveMaker use an overlay of application
elements. As the name suggests, in this approach, applications
elements are laid side-by-side.

e) Tool type: AppGyver8, OutsSystems and DisCoPar
[13], are purely visual. This implies that farmers are only
required to specify configuration settings for application el-
ements. The hybrid LCDTs such as Aurea BPM and Mendix
require some textual modifications to application parts.

f) Support for APIs: From Table I, only Aurea BPM and
DISME do not support APIs; all the other LCDTs offer support
for APIs. As mentioned before, these APIs can be used to
connect to new data sources and integrating to other software
systems in modern farms.

g) Distributed: Most of the LCDTs presented in Table I
support developing distributed applications. For example, Dis-
CoPar uses components that can execute on the client-side and
the server-side. Connecting client-side components to those on
the server-side automatically yields distributed applications.

5https://www.servicenow.com/
6https://www.netcall.com/
7https://www.thinkwisesoftware.com/en/
8https://www.appgyver.com/

h) Reconfigurability: Most LCDTs support this feature
through configurable surveys and component. For example,
DisCoPar supports configurable surveys that can be reconfig-
ured to collect data for different crops in different farming
seasons.

C. Key Conclusions from SOTA Analysis

From the SOTA analysis, we make the following con-
clusions: (i) some LCDTs like DisCoPar combine different
application development techniques which can be beneficial
to the farmers, and (ii) pure visual LCDTs can be easier
to use for non-experienced farmers compared to the hybrid
LCDTs. Based on these conclusions, ideal LCDTs for SAAs
should have a combination of features such as visual mod-
elling, drag-and-drop, flow-graphs for application represen-
tation, distributed, reconfigurable, and purely support visual
programming. We believe that this combination of features
is important for farmers with less programming experience.
From the LCDTs presented in Table I, DisCoPar supports
all the above features and therefore we consider it ideal for
developing SAAs. In the subsequent section, we describe
DisCoPar and show how it can be used to build SAAs.

III. DISCOPAR EXPLAINED

DisCoPar is based on the visual flow-based programming
approach where applications are represented as graphs of
connected components. As such, the main ingredients for an
application in DisCoPar are: (1) flow-graph, (2) components,
and (3) component links.

1) Application flow-graph: Fig. 2 shows an application
flow-graph composed of four components i.e., C1, C2, C3,
and C4. The flow-graph represents linked services offered
by the components. Depending on their position in the flow-
graph, components can be either in the upstream or the down-
stream. Upstream components come before, while downstream
components come after the reference component. For instance,
in Fig. 2, using C3 as the reference component, components
C1 and C2 are upstream components, while component C4
is a downstream component.

2) Components and component categories: In DisCoPar,
components represent services in the application. As such,
DisCoPar provides two categories of components: (i) data pro-
cessing components and (ii) data viewing components. Data

Fig. 2: Application flow-graph with four components.

processing components perform computations on data and
produce some output. The data viewing component are used to
build graphical user interfaces for applications and displaying
data that flows through the application. Both categories can
have source and sink components.

3) Component execution scope: In order to support dis-
tributed applications, components have an execution scope. As
such, there are three main execution scopes for components
i.e., mobile, server, and web. The components that have
a mobile scope execute on the mobile client, while those
with a server scope execute on the server-side. Components
that have a web scope execute on the web and act as the
dashboard for the server-side. In the application flow-graph,
components scopes are distinguished through colours e.g., in
Fig. 2, components C1 and C2 are coloured black to show
that they can only execute on the mobile device. Components
that execute on the server are coloured light-grey as shown in
C3, while those that execute on the web are coloured grey as
shown in C4.

4) Component ports: Components can have zero, one or
multiple input and output ports. Input ports are used for
channeling data to the component, while the output ports are
used to channel computation results out of the component.
In Fig. 2, components C1, C2, and C3 have one output port
each (i.e., C1(out), C2(out), and C3(out) respectively), while
component C4 has no output port. In this case, component C4
is referred to as a sink component since it only receives data.
Similarly, components C1 and C2 have no input ports, while
component C3 has two input ports (C31(in) and C32(in))
and component C4 has one input port (C4(in)). Compo-
nents with at least one output port are referred to as source
components. Source components push data to components in
the downstream, while sink components receive data from the
upstream. Component ports have specific colours that show the
kind of data they emit or receive. For example, the port colour
in C4 is black to indicate that the component can receive any
type of data. The blue colour in C1, C2, and C3 represents
numeric data.

5) Component links: Components in the application flow-
graph are connected together via links that originate from the
source component port to the destination component port. For
example, link(C1(out), C3(in)) in Fig. 2 that connects com-
ponent C1 as the source component to C3 as the destination
component. The arrows on the links show the direction in
which data is flowing through the application, while the link

colour shows the type of data flowing through the link. The
link colour is inherited from the port colour of the source
component. Linking components that have mobile or web
scopes to those that have a server scope automatically yields
a distributed application.

IV. SMART AGRICULTURE APPLICATIONS IN DISCOPAR

Often, SAAs benefit from environmental data collected
via sensors. Therefore, LCDTs for SAA should provide the
means to access this data e.g., by enabling plugin sensors
in the application. As such, in order to support SAAs, for
each incoming sensor data to the server-side, we needed a
component to register to the data source and configure it to
extract parts of the data e.g., temperature, humidity, and soil
moisture values. In addition, for the temperature data received,
we needed to perform a comparison to the set threshold and
fire a notification whenever the threshold was exceeded. As
such, we needed a notification component to display alerts
on the dashboard by means of pop-ups. Existing DisCoPar
components were not enough for the tasks that we needed
SAAs to perform such as displaying notifications as pop-
ups and connecting to sensors to receive data. However, the
components in DisCoPar can easily be extended. Therefore,
we extended DisCoPar with components to: (i) register and
receive data from sensors, (ii) filter and extract respective data
from the edge, and (iii) display alerts as pop-ups.

A. Application Scenario and Architecture

The application that we present in this section is aimed
at connecting to sensors to receive data on environmental
conditions such as temperature, humidity, and soil moisture
for crops. These conditions are essential for crop development
and growth; and they vary for different crops. For example,
different species of the common beans (Phaseolus vulgaris
L.) that are grown in developing regions require different
environmental conditions for better development and growth.
As such, having accurate information about the required
conditions, can help the farmer to make decisions on when
to irrigate these crops and the required amount of water based
on the measured soil moisture levels. Overall, the application
contributes towards the data collection process that is vital in
modern farming.

Fig. 3 shows the high level architecture for the application
prototype that we consider. This architecture is composed of
two main parts: (i) sensor components and (ii) a visualisation
dashboard which is composed of data viewing components.
The sensor components run at the server from where they can
connect to the physical sensors. The visualisation components
execute on the mobile phone to display received data and
notifications. In Fig. 3, these components are represented as
label and alert on the mobile application part.

B. Communication between Application Server and Sensors

In our prototype application, we use M5StickC ESP32-
PICO hardware (orange device in Fig. 4) that comes integrated
with WiFi and 4MB flash memory capabilities. We attach

Sensors SAAWeb socket
connection

{
“temperature”: 32.8,
“humidity”: 35.6,
 “soilmoisture”: 58
}

Parse and process
received data

Display processed data
and alerts as popups

Application serverPhysical sensors

Processed
data

{
temperature: 32.8,
humidity: 35.6,
soilmoisture: 58
}

Environment
sensing

Label: Temperature 32.8
Label: Humidity 35.6,
Label: Soil moisture 58
Alert: Message popup
Label: Average

Sensor
component

Mobile application

Fig. 3: Prototype application architecture.

temperature, humidity, and soil moisture sensors to the hard-
ware as shown in Fig. 4. In order to support communication
between the attached sensors and the components running
on the application server, we deploy firmware code that is
based on duktape9 and Arduino. We use duktape to lay ground
for our future iterations that will be based on JavaScript to
conform to the language used in implementing components
in DisCoPar. In addition, we use the web socket plugin10

for Arduino to support communication between the sensors
and the application server. Finally, we use the ArduinoJson
plugin11 to send sensor data in JSON format to the component
running on the application server.

Fig. 4: Sensors deployed to a plant in a pot to send data to
the prototype application.

C. Application Prototype

To validate the scenario depicted in Fig. 3, we implemented
a prototype SA application using DisCoPar as shown in Fig. 5.
From a software engineering perspective, the application pre-
sented in Fig. 5 has two parts that are arranged and put together
as layers: (i) presentation layer which executes on the client-
side and (ii) business layer which can execute both on the
client-side and the server-side. The business layer which con-
trols the application functionalities cuts across the two layers
because: (i) some processing can be done in both locations,
and (ii) the server-side can be used to control a large number

9https://github.com/svaarala/duktape
10https://www.arduino.cc/reference/en/libraries/websockets/
11https://arduinojson.org/

of sensors. From the application flow-graph, the presentation
layer is represented by the viewing components such as the
Label component, while the business layer is represented
by the source components such as WebSocketInput and
Average components.

Fig. 5 shows the prototype application flow-graph and the
resulting mobile application in use. The application flow-
graph is read from left-to-right. The arrows on the links
connecting the components show the direction in which data
is flowing through the graph. As mentioned before, the black
coloured components execute on the mobile phone and the
light-grey coloured components execute on the server-side.
The application registers to receive data from physical sensors
using web sockets via the WebSocketInput component.
The data received by this component is passed through the
FilterData component that splits the received data into
respective data elements. The filtered data is then passed
through the Rounding components for precision setting.
The Label components display the data on the application
GUI. For computations, the application uses the components
on the mobile side such as the Counter and Average
components to keep track of the number of readings and
the averages. Additionally, to compare values and trigger
alerts, the application uses the Threshold and Compare
components to set the limits and perform the comparison
between the set limits and input data coming from sensors.
The output from the Compare component is then used to
trigger alerts that are generated and displayed on the mobile
screen as pop-ups by the Alert component. Fig. 6(a) shows
how the farmer can configure the sensor address and the data
rate. Similarly, Fig. 6(b) shows how the farmer can select the
data parameters to be filtered once sensor data is received.
Lastly, Fig. 6(c) shows how the limit for the thresholds can
be set.

V. DISCUSSION

We believe that for farmers with less programming experi-
ence, purely visual LCDTs can be a good option for devel-
oping SAAs since they do not require text-based techniques.
Furthermore, from our prototype application, the farmer needs
to drag-and-drop, connect, and configure components on a
visual interface. The configuration can be done to many sensor
devices from the graphical interface. This can easily be done
by non-expert programmers like farmers.

Programming distributed SAAs can be a complex under-
taking. From our prototype application, distributed communi-
cation is abstracted into components that farmers can use to
build SAAs. These abstractions can help in minimising errors
that can arise when developing distributed SAAs. For example,
with most LCDTs, farmers do no need to structure databases
or queries to fetch data from databases. As such, query-related
errors that can degrade the performance of SAAs are avoided.

To farmers, we believe that LCDTs can speed-up the
development process for SAAs. The graphical drag-and-drop
techniques that they provide can be a faster way to yield SAAs
as compared to text-based approaches.

Fig. 5: SA application implemented using DisCoPar to monitor environmental conditions.

(a) (b) (c)

Fig. 6: (a) Configuring the sensor address and data rate, (b) Specifying data filters and (c) Setting the threshold.

VI. CONCLUSION

LCDTs can offer intuitive capabilities for developing SAAs
by both experienced and non-experienced developers. In this
paper, we categorise LCDTs and show their properties (such
as reconfigurability, visual modelling etc.) that are important
to farmers as non-expert programmers. LCDTs that combine
these properties can be more beneficial to farmers when
expressing and representing SAAs. As a demonstration, we
show how to use DisCoPar to develop SAAs. From our
prototype implementation, we believe that LCDTs can open
programming to farmers. For future work, we aim to quantify
the application development cost using LCDTs and revenue
benefits to farmers.

ACKNOWLEDGMENT

This work is supported by the Legumes Centre for Food and
Nutrition Security (LCEFoNS) programme which is funded by
VLIR-UOS.

REFERENCES

[1] M. O’Grady, D. Langton, and G. O’Hare, “Edge computing: A tractable
model for smart agriculture?” Artificial Intelligence in Agriculture,
vol. 3, pp. 42–51, 2019.

[2] S. J. Janssen, C. H. Porter, A. D. Moore, I. N. Athanasiadis, I. Foster,
J. W. Jones, and J. M. Antle, “Towards a new generation of agricultural
system data, models and knowledge products: Information and com-
munication technology,” Agricultural Systems, vol. 155, pp. 200–212,
2017.

[3] A. Walter, R. Finger, R. Huber, and N. Buchmann, “Opinion: Smart
farming is key to developing sustainable agriculture,” Proceedings of
the National Academy of Sciences, vol. 114, no. 24, pp. 6148–6150,
2017.

[4] M. Michels, V. Bonke, and O. Musshoff, “Understanding the adoption
of smartphone apps in crop protection,” Precision Agriculture, vol. 21,
no. 6, pp. 1209–1226, 2020.

[5] M. K. Khachouch, A. Korchi, Y. Lakhrissi, and A. Moumen, “Frame-
work Choice Criteria for Mobile Application Development,” in 2020
International Conference on Electrical, Communication, and Computer
Engineering (ICECCE), 2020, pp. 1–5.

[6] A. Sahay, D. Di Ruscio, and A. Pierantonio, “Understanding the Role
of Model Transformation Compositions in Low-Code Development Plat-
forms,” in Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion
Proceedings, ser. MODELS’20. New York, NY, USA: Association
for Computing Machinery, 2020.

[7] R. Waszkowski, “Low-code platform for automating business processes
in manufacturing,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 376–381,
2019, 13th IFAC Workshop on Intelligent Manufacturing Systems IMS
2019.

[8] R. Sanchis, Ó. García-Perales, F. Fraile, and R. Poler, “Low-Code as
Enabler of Digital Transformation in Manufacturing Industry,” Applied
Sciences, vol. 10, no. 1, 2020.

[9] M. Henkel and J. Stirna, “Pondering on the Key Functionality of Model
Driven Development Tools: The Case of Mendix,” in Perspectives in
Business Informatics Research, P. Forbrig and H. Günther, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 146–160.

[10] L. Michael and D. Field, “Mendix as a solution for present gaps
in Computer Programming in Higher Education,” in Twenty-fourth
Americas Conference on Information Systems, 07 2018, pp. 1–5.

[11] A. N. Alonso, J. Abreu, D. Nunes, A. Vieira, L. Santos, T. Soares,
and J. Pereira, “Towards a Polyglot Data Access Layer for a Low-Code
Application Development Platform,” 2020.

[12] M. Andrade, D. Aveiro, and D. Pinto, “DEMO based Dynamic Informa-
tion System Modeller and Executer,” in 10th International Conference
on Knowledge Engineering and Ontology Development, 01 2018, pp.
383–390.

[13] J. Zaman, K. Kambona, and W. De Meuter, “DISCOPAR: A visual
reactive programming language for generating cloud-based participatory
sensing platforms,” ser. REBLS 2018. New York, NY, USA: Associa-
tion for Computing Machinery, 2018, pp. 31–40.

