
SN Computer Science manuscript No.
(will be inserted by the editor)

A Survey on Mobile Applications for Smart Agriculture

Making Use of Mobile Software in Modern Farming

∗‡Isaac Nyabisa Oteyo ·
‡Matteo Marra ·

†Stephen Kimani ·
‡Wolfgang De Meuter ·

‡Elisa Gonzalez Boix

Received: date / Accepted: date

Abstract The increasing global demand for food and nu-

trition security has raised the need to automate processes

in modern farming. As such, a promising way to automate

those processes is by using smart agriculture applications

(SAAs). Different studies in the literature classify these ap-

plications based on agricultural themes, agricultural domains,

and farming scenarios. However, this classification is not

sufficient for researchers and industry to gain deeper insights

on software engineering issues pertaining to SAAs. In this

survey, we explore SAAs and further classify them based

on architectural models, supported software engineering is-

sues, and target mobile platforms. The survey results show

that SAAs in general (i) follow different architectural mod-

els, (ii) are targeted for different mobile platforms, and (iii)

satisfy different software engineering issues. Most impor-

tantly, the key findings from this study reveal that SAAs can

fail to meet their intended purpose if developers ignore key

software engineering issues. These findings can be used as

a starting point for researchers and industry to implement

smart agriculture related mobile applications.

Keywords mobile applications · cloud computing · smart

farming · internet of things · smart agriculture applications

∗Corresponding author. E-mail: isaac.nyabisa.oteyo@vub.be; Tel.: +32

484 739 336;

‡I. N. Oteyo (ORCID iD: 0000-0002-2682-605X)

·
‡M. Marra (ORCID iD: 0000-0002-8037-0567)

·
‡W. De Meuter (ORCID iD: 0000-0002-5229-5627)

·
‡E. Gonzalez Boix (ORCID iD: 0000-0002-9966-6421)

Software Languages Lab; Department of Computer Science; Vrije

Universiteit Brussel; Pleinlaan 2, 1050, Elsene, Brussels, Belgium

†S. Kimani

School of Computing and Information Technology; Jomo Kenyatta

University of Agriculture and Technology; Postal address: 62000

00200, Nairobi, Kenya

1 Introduction

Recently, efforts are being harnessed to increase food pro-

duction to address food and nutrition security [?,?,?,?]. This

has put a demand for automation of processes in modern

farming to improve farm efficiency and increase productiv-

ity [?,?]. Broadly, the processes in modern farms as iden-

tified by Wolfert et al. [?] can be condensed into four cat-

egories [?]: (i) data collection, (ii) data transformation and

processing, (iii) data dissemination, and (iv) evaluation and

impact. In practice, these processes are a chain of system-

atic, repetitive, and time-dependent tasks that can be per-

formed on devices via smart agriculture applications (SAAs)

[?,?]. These applications can function as standalone or as

distributed applications exploiting technologies such as In-

ternet of Things, cloud computing etc.

In the latest years, SAAs have become popular because

of their versatility to be used in one or more of the smart

agriculture processes [?,?,?,?,?]. In fact, SAAs can be used

to collect data, inserted directly by farmers in the appli-

cations or in communication with sensors, to process such

data and provide indicative suggestions on the required re-

sources to the farmers, as well as allowing them to easily

interact with farm equipment and machinery [?]. Whereas,

using SAAs can improve the data collection process, such

data collection can happen in remote and rural areas that are

characterised with no internet access or poor quality con-

nections [?]. The collected data can be compared with set

thresholds to trigger indicative suggestions when the limits

are exceeded. These indicative suggestions can be sent to the

end-users as timely notifications via SAAs. Additionally, the

different farming activities may require these applications to

be adaptable for different functions in the farm. The above

aspects should be part of the software engineering design

considerations for SAAs.



2 Oteyo et al.

Different studies in the literature have attempted to clas-

sify these applications based on agricultural themes, agricul-

tural domains, application scenarios, and agricultural func-

tions [?,?,?,?,?,?,?,?]. However, to the best of our knowl-

edge, none of the existing studies classify these applica-

tions based on architectural models, target platforms, and

software engineering issues. As such, the existing classifi-

cation is not sufficient for researchers and industry to gain

deeper insights on software engineering issues pertaining to

SAAs. For example, it is important to understand how dif-

ferent SAAs handle network connection issues in farms with

poor quality connections.

In this paper, we combine the criteria used in the existing

literature with architectural models, software engineering is-

sues, and target mobile platforms to survey SAAs. In partic-

ular, in our proposed classification, we group SAAs into the

following categories: (i) 1-tier (standalone), (ii) 2-tier, (iii)

3-tier, and (iv) edge computing applications. Furthermore,

we identify three issues that should be addressed by devel-

opers of SAAs: (i) offline accessibility, (ii) reactivity, and

(iii) reconfigurability. Offline accessibility allows SAAs to

continue functioning when there is no internet at all or the

connection is limited due to poor quality. On the other hand,

reactivity allows SAAs to generate and send timely noti-

fications to the end users. Lastly, reconfigurability allows

end-users to add new services to SAAs or extend existing

services and adapt them for different farming activities. In

this survey, we show how different SAAs have addressed the

above issues and identify opportunities for further research.

The survey also investigates the mobile platforms that SAAs

target. Lastly, the survey findings provide a state-of-the-art

snapshot on classifying SAAs and insights in the domain.

We believe that those insights can help researchers and in-

dustry towards the implementation of SAAs. The rest of the

paper is organised as follows. Section 2 gives the motivation

for this study and describes the state-of-the-art, while Sec-

tion 3 presents our classification of SAAs and discussions.

This is followed by Section 4 that presents the open issues

and gives directions for further research. Lastly, Section 5

presents our conclusions.

2 Motivation and Background

Smart agriculture refers to the incorporation of information

and communication technologies into modern farming pro-

cesses for improved management of farm activities [?,?,?].

In literature, the terms agriculture 4.0 [?,?], facility agri-

culture [?,?], order agriculture [?], smart agriculture/farm-

ing [?,?], precision agriculture/farming [?,?], digital agri-

culture/farming [?], and intelligent agriculture/farming [?]

have been used interchangeably. Other terms that have been

used to refer to smart agriculture include [?]: (i) prescrip-

tion farming, (ii) farming-by-the-foot, (iii) site-specific crop

management, (iv) satellite farming, and (v) precision live-

stock farming. From the definition, the unifying factor for all

these terms is using information and communication tech-

nologies in “farm management concepts”. In this article, we

define smart agriculture applications (SAAs) as mobile soft-

ware applications that can be used in any of the smart agri-

culture processes such as data collection, processing and dis-

semination as illustrated in Figure 1. As such, in this article,

we focus on SAAs that can execute on mobile devices.

2.1 Smart Agriculture Processes

In smart agriculture, farm processes are managed on a site-

specific basis; farm inputs are applied at variable rates at

each site on a farm field depending on the agronomic needs

of that particular location. As such, for the purpose of this

paper, we summarise the processes in modern farming as

identified by Wolfert et al. [?] into four categories as illus-

trated in Figure 1, namely: (i) data collection, (ii) data trans-

formation and processing, (iii) data dissemination, and (iv)

evaluation and impact.

Data collection processes can use sensors that are connected

within modern farms e.g., motion cameras to capture

crop images or temperature and humidity sensors to mon-

itor environmental conditions. The data can also be en-

tered directly by farmers manually via forms or dedi-

cated applications.

Data transformation and processing converts raw data into

meaningful information e.g., converting accelerometer

values collected from wearable devices to determine an-

imal location and movements. This transformation and

processing relies on statistical tools available on data

analytic platforms. Additionally, the data transformation

and processing may happen using big data frameworks

and techniques to process high volumes of data. It can

further include agricultural prediction using machine learn-

ing techniques. Lastly, this process can be performed lo-

cally or in the cloud.

Data dissemination serves to sensitise different end-users

on the kind of meaning and value they can derive from

the processed data. The data dissemination process en-

tails using web dashboards, mobile applications, and in-

teractive maps to present processed data to the end-users.

Lastly, the dissemination can also be done via alerts or

notifications.

Evaluation and impact is performed to ascertain and give

perspective to farming activities. This serves to provide

feedback and inform the farmer on subsequent data col-

lection phases e.g., the dimension, volume, and quality

of data to be collected.



Making Use of Mobile Software in Modern Farming 3

Data collection

Data 
transformation 
and processing

Data 
dissemination

Evaluation and 
impact

Sensor based 
data collection

Prediction using ML 
techniques

Web dashboards, mobile 
apps, interactive maps etc.

Assessing processed data & 
providing feedback

Fig. 1: Key smart agriculture processes based on Wolfert et al. [?].

SAAs are diverse and can target one or more of the above

processes.

2.2 Software Engineering Issues in SAAs

Recall from Section 1 that for this work, there are three

software engineering issues that developers should address

when programming SAAs: (i) offline accessibility, (ii) reac-

tivity, and (iii) reconfigurability.

Offline accessibility: Modern farming activities can happen

in remote and rural areas. As noted in the literature, these ar-

eas continue to experience a digital-divide in terms of inter-

net and broadband access [?]. For instance, the penetration

of broadband access in rural areas for developing regions

has been noted to be significantly low and of poor quality

[?]. As a result, using SAAs that require internet connec-

tivity in such areas can be challenging. This issue can limit

and make the end-users shy away from adopting and using

SAAs in their farming activities. As such, to support dis-

tributed applications from a software engineering perspec-

tive, some SAAs need to be offline accessible, hence capa-

ble to continue functioning when the network connection is

not available or the connection quality is poor.

Reactivity: While using SAAs, end-users may expect to re-

ceive feedback on farming activities. For instance, when col-

lecting data using remote sensors, the end-users may need

to receive timely notifications when the sensors go off or

when other crucial farming activities require some attention

such as when crops need pesticides, fertilisers, and irrigation

[?,?]. The end-users can utilise the received notifications to

take decisions such as turning on irrigation systems when

the soil-water levels drop below certain thresholds or apply-

ing fungicides to crops. To handle such notifications in a

timely way, SAAs require to be reactive.

Reconfigurability: SAAs may require new services to en-

rich the existing functionalities. Additionally, SAAs may re-

quire adapting the existing functionalities to different farm-

ing scenarios. For instance, the workload conditions for SAAs

may change such as connecting to new data sources that

never existed before. Such changes can often require adding

new functionalities to SAAs or re-adapting the existing func-

tionalities. As such, SAAs require extensibility features such

as APIs to add new functionalities and configurability fea-

tures such as widgets that can be used to adapt existing func-

tionalities to different scenarios. Additionally, modern farm-

ing activities can vary based on context e.g., collecting data

for dairy cows and on a different date collecting data on

dairy goats. In this regard, the end-users can use widgets to

reconfigure data collection forms that suits both situations.

In order to support these requirements, some SAAs should

be reconfigurable.

Different architectural models exists in software engi-

neering to handle the above issues differently.

2.3 Architectural Models for SAAs

SAAs consist of interconnected components that can handle

different application concerns such as information presenta-

tion and display, data fetching and manipulation, and data

storage. These components can be layered based on their

functionalities from which architectural models for SAAs

can be derived. These layers can be broadly grouped into:

(i) presentation layer, (ii) business layer, and (iii) database

layer. The presentation layer communicates and passes in-

formation given by the end-user to the business layer. On the

other hand, the business layer performs the business logic by

fetching data from the database layer and manipulating the

data based on the specified business rules. In fact, the busi-

ness logic performed in this layer controls the application

functionality. Additionally, this layer can perform computa-

tions based on input that received from the end-users via the

presentation layer. Lastly, the database layer performs stor-



4 Oteyo et al.

age functionalities for both raw and processed application

data.

The architectural models for SAAs are similar to the

ones found in distributed systems. In this article, we base

ourselves on the architectural roles from Tanenbaum and

Van Steen [?] that we later use to classify SAAs. As such,

depending on where the above layers are deployed, SAAs

present different architectural models, namely: (i) 1-tier (stan-

dalone), (ii) 2-tier, (iii) 3-tier, and (iv) edge computing mod-

els.

1-tier (standalone) model: In this model, the presentation,

business, database layers are contained in a single applica-

tion. The data in this model is stored in the local system.

Applications that follow this model often execute entirely

on mobile devices. As such, these applications do not re-

quire network connections to perform their functionalities.

2-tier model: This model has two tiers i.e., the client-tier

and the server-side tier illustrated in Figure 2 as Tier-1 and

Tier-2 respectively. In Figure 2(a) the client-tier contains

only the presentation layer, while in Figure 2(b), Figure 2(c)

and Figure 2(d), the client-tier contains both the presentation

and business layers. In Figure 2(d), the client-tier contains a

database layer that executes on the client-side. The database

tier serves as the server that receives client requests, pro-

cesses them, and sends back responses to the clients. Gen-

erally, in this model, the database tier becomes the server to

the client tier. The business and data logic can be stored at

either the client-side or the server-side. When the business

and data logic are stored on the server-side, the architecture

is referred to as thin-client fat-server model (Figure 2(a)).

Similarly, when the business and data logic are stored on

the client-side, the architecture is referred to as fat-client

thin-server model (Figure 2(b), Figure 2(c) and Figure 2(d)).

This model can be useful where clients talk directly to the

servers with no intervening server (middleware). Data pro-

cessing can be split between the user interface environment

and the database management server environment.

3-tier model: This model has the client tier, middle tier, and

the database tier. The client tier handles the presentation and

application layer, while the middle tier handles the business

layer and application server, and lastly the database tier han-

dles data storage as illustrated in Figure 3. In this model,

both the application and database tiers become servers to

the client tier. As illustrated in Figure 3, the middle tier runs

on the application server and sits in between the client and

the server. Client requests go to the server through this mid-

dle tier. Similarly, responses from the server first go through

the middle tier before they can reach the client. Addition-

ally, the business and data access logic can be stored in the

middle tier; and if there are multiple business and data ac-

cess logic, then it is referred to as n-tier architecture. The

middle tier performs various tasks such as database stag-

ing, queuing/scheduling tasks, and executing applications.

Though this model improves flexibility and gives better per-

formance, the development environment is more difficult to

use.

Edge computing model: This model is a variation of the

3-tier model that brings computational resources closer to

the end-users. In particular, the model brings data process-

ing closer in proximity to the sources of data generation.

The data processing can be performed in the same devices

that are used for data collection or in computing infrastruc-

ture that is close to the devices used in data collection. This

model is aimed at reducing the number of requests made to

and responses received from distant servers over communi-

cation networks.

The SAAs that follow the 2-tier, 3-tier, and edge com-

puting model are generally client/server applications.

2.4 Target Platforms for SAAs

From our definition of SAAs, these applications can be tar-

geted to different platforms such as Android, iOS, Windows

mobile etc. In this work, we note that the choice of a tar-

get platform for SAAs depends on a number of factors such

as existing mobile operating systems, mobile software de-

velopment kits, mobile device models, and existing mobile

application development technologies. In the case for de-

velopment kits, there not only exists dedicated software de-

velopment kits (SDKs) that are unique for particular plat-

forms, but also cross platform development kits and tech-

nologies. The cross platform kits are based on the principle

of ‘develop once, and deploy many’. In addition, some cross

platform technologies such as HTML5 yield hybrid appli-

cations. Also, some technologies such as mobile-first tech-

nologies for developing mobile-web applications require that

SAAs should be designed for smaller devices first before

scaling up and adapting to larger devices as responsive mo-

bile designs. For mobile device models, it is worth to note

that some device models like iPhones are only meant for iOS

applications.

Lastly, in terms of space and time dimensions, some plat-

forms are well adopted in some regions than others. For

example, the Android platform has been noted to be more

popular in developing regions [?,?]. Application developers

should the take the above factors into considerations when

programming SAAs.



Making Use of Mobile Software in Modern Farming 5

Mobile UI

SA application

Database server

SA application SA applicationSA application

Mobile database

SA application

Database server Database server Database server

Mobile UI Mobile UI Mobile UI

Tier 1

Tier 2

(a) (b) (c) (d)

Fig. 2: 2-tier architectural models for SAAs adapted from Tanenbaum and Van Steen [?]. The arrows show the commu-

nication happening between the tier 1 and tier 2. This figure depicts 2-tier thin client fat server and fat client thin server

applications.

SA application

Middleware

Database server

Mobile UI

SA application 
server

Tier 1

Tier 3

Tier 2

Fig. 3: 3-tier architectural model adapted from Tanenbaum

and Van Steen [?] with arrows showing the communication

happening between the different tiers.

2.5 Existing Classifications

From the literature surveyed, existing studies classify SAAs

based on agricultural themes, domains, and functions [?,?,?,?,?,?,?,?].

Ayaz et al. [?], Minet et al. [?], and O’Grady et al. [?]

base their classifications on agricultural domains such as ir-

rigation management, weed and pest control, yield predic-

tion, animal welfare, aqua farming etc. Ayaz et al. [?] note

that Internet of Things sensors can be used to collect data

on important farm characteristics such as soil type, nutrient

presence, flow of irrigation, pest resistance etc. Using sen-

sors can lead to achieving higher accuracy levels in data col-

lection for timely reporting. The higher accuracy levels of

collected data can then be used to detect early stages of un-

wanted states in modern farming activities. Minet et al. [?]

show that different agricultural data can be collected through

crowdsourcing such as land-use, soil, weather, yields, prices,

and crop phenological data. However, the authors note that

crowdsourcing applications in agriculture can be hindered

by privacy issues. O’Grady et al. [?], in addition to classify-

ing SAAs, show how different edge computing techniques

(e.g., latency-sensitive analytics, edge mining for data com-

pression, reducing data traffic and latency, and offloading

computation) have been used in different agricultural do-

mains such as animal surveillance, forest fire detection etc.

Lastly, Bacco et al. [?] suggest application scenarios that

can be used to classify SAAs such as crop health monitor-

ing, yield prediction, weed mapping, soil assessment etc.

The study focused on digitising agriculture without delv-

ing much into the actual classification of SAAs. The study

findings show that pushing technology into rural areas can

encounter several challenges such as data security, data pri-

vacy, and network capabilities.

Pongnumkul et al. [?], Inwood et al. [?], Barh and Bal-

akrishnan [?], and Patel and Patel [?] base their classifica-

tions on agricultural functions such as farm management,

extension services, journaling farming activities, equipment



6 Oteyo et al.

tracking, managing human resource in farms etc. In their

study, Pongnumkul et al. [?] focused on applications that

use built-in smartphone sensors to provide agricultural sens-

ing solutions. The authors note that when designing applica-

tions that utilise smartphone sensors, requirements and be-

haviours of end-users can be different across different farm-

ing communities. For instance, when designing applications

for pest prediction, alerts can be necessary to notify the end-

users on pest outbreaks. Inwood et al. [?] focused on tools

for information provisioning and sharing that can connect

decision-makers to knowledge in support of sustainable agri-

culture, while Barh and Balakrishnan [?] examined how smart-

phone mobile applications can help in agricultural devel-

opment. Additionally, Barh and Balakrishnan [?] argue in

support of SAAs as being part of the transformative tech-

nologies that can be used to improve productivity in modern

farming especially in developing regions. Lastly, Patel and

Patel [?] observe that most of the SAAs are used in farm

management activities.

2.6 Our Taxonomy

Based on the above state-of-the-art analysis, the existing stud-

ies do not consider the architectural models, target mobile

platforms, and software engineering issues as classification

criteria for SAAs. From an application design and devel-

opment point of view, classifying SAAs based on architec-

tural models can help researchers and industry in imple-

menting SAAs targeting different mobile platforms for dif-

ferent modern farming scenarios. As such, the architectural

models can help determine how to structure different parts

of SAAs and how these different parts can seamlessly talk

to each other. Moreover, classifying these applications based

on how the previously mentioned software engineering is-

sues are handled can help in understanding the features and

limitations of SAAs. In particular, some SAAs might fit well

to the end-user requirements and some may be better than

others. Furthermore, the software engineering aspects can

help developers give proper attention to required applica-

tion properties for different farming scenarios and activities.

Additionally, the classification based on software engineer-

ing issues can help end-users to evaluate a set of alternative

applications to identify a candidate target application based

on their needs. In conclusion, in this survey, we classify the

state of the art based on (i) the architectural model of the

applications, (ii) the targeted platform, and (iii) how they

handle the identified software engineering issues.

3 Classifying Smart Agriculture Applications

In this section, we combine the agricultural themes, domains,

architectural models, target platforms, and software engi-

neering issues to classify SAAs as shown in Table 1. The

surveyed applications cover different agricultural themes e.g.,

irrigation management, geographic information systems, fer-

tiliser management etc. Furthermore, the applications also

cover different agricultural domains e.g., irrigation schedul-

ing, leaf area index estimation, soil assessment etc. Most of

the applications surveyed (at 71.70%) are based on the clien-

t/server model, while few applications (at 28.30%) are based

on the standalone (1-tier) model. There are more SAAs that

follow the client/server model because the model is scalable.

From the literature surveyed, some 2-tier and 3-tier com-

ponents such as application and database servers can exe-

cute in the cloud to support cloud computing applications.

Based on their nature, these applications are best suited in

scenarios that require large storage spaces, advanced cloud-

based data analytics and computational capabilities that can-

not be readily available on mobile devices. Most of the clien-

t/server SAAs surveyed are based on the 2-tier model, while

few applications often follow the edge computing and 3-tier

models.

3.1 Classification Based on Architectural Models

Table 1 shows classified SAAs based on standalone and clien-

t/server architectural models. As mentioned before, the clien-

t/server model encompasses 2-tier, 3-tier, and edge comput-

ing models that were described in Section 2.3.

3.1.1 1-tier Applications

From the literature surveyed, 1-tier (standalone) SAAs serve

different agricultural themes such as irrigation management

[?,?,?], pest control and management [?,?,?], and risk man-

agement [?]. The examples of these applications are as indi-

cated in Table 1. Some of the SAAs in this category are used

to estimate water needs for crops. Such applications are im-

plemented to exploit sensors in mobile phones such as phone

cameras, accelerometer, ambient light sensors etc. For in-

stance, PocketLAI [?,?], VitiCanopy [?,?,?], and pCAPS [?]

use the phone cameras to capture crop images that are pro-

cessed within the applications to determine water require-

ments for crops. On the other hand, SmartfLAIr [?] uses the

ambient light sensor in phones to estimate crop leaf area in-

dex which is then used to estimate the water requirements

for crops.

Other applications in this category serve as decision sup-

port tools to farmers. For instance, AgroDecisor EFC [?]

that recommends to farmers on proper application of fungi-

cides by comparing the user input against threshold. On the

other hand, SnapCard [?] and DropLeaf [?] use image anal-

ysis techniques to compare fungicide spray nozzles against

end-user specifications. The analysed outcome is then used

to recommend to the farmer whether to apply fungicide or



Making Use of Mobile Software in Modern Farming 7

Table 1: Classifying smart agriculture application based on themes, domains, architectures, and target mobile platforms.

Application Agricultural theme Agricultural domain Architectural model Target mobile platform

PocketLAI [?,?] Irrigation management Estimating crop water needs 1-tier Android

WISE [?] Irrigation management Irrigation scheduling 2-tier iOS

EVAPO [?] Irrigation management Evapotranspiration estimation 2-tier Android

PIS [?] Irrigation management Soil moisture sensing 2-tier iOS, Android

SoilWaterApp [?] Irrigation management Soil moisture monitoring 2-tier iOS

RaGPS [?] Irrigation management Extraterrestrial solar radiation 1-tier Windows

SmartIrrigation [?] Irrigation management Irrigation scheduling 2-tier iOS, Android

Crop Water Stress [?] Irrigation management Vine water stress 2-tier Android

pCAPS [?] Irrigation management Crop water needs 1-tier Android

VitiCanopy [?,?,?] Irrigation management Plant water requirement 1-tier iOS, Android

SmartfLAIr [?] Yield management Crop yield estimation 1-tier Android

PETEFA [?] Geographic information systems Geo-referenced soil analysis 2-tier Android

eFarm [?] Geographic information systems Geo-tagging land data 2-tier Android

PAMS [?] Geographic information systems Managing farmland spatial data 2-tier iOS, Android, Windows

AMACA [?] Farm machinery/tools Estimating machinery cost 2-tier iOS, Android

Ecofert [?] Fertiliser management Crop fertiliser estimation 2-tier Android

cFertigUAL [?] Fertiliser management Crop fertiliser estimation 2-tier Android

BaoKhao [?] Fertiliser management Leaf colour estimation for N fertiliser 1-tier Android

SnapCard [?] Weed and pest control Crop spraying 1-tier Android

VillageTree [?] Weed and pest control Gathering pest incidence reports 2-tier iOS, Android

MobiCrop [?,?] Weed and pest control Sharing information on pesticides 3-tier iOS

AgroDecisor EFC [?] Weed and pest control Fungicide treatment estimation 1-tier Android

DropLeaf [?] Weed and pest control Crop health 1-tier Android

AgriMaps [?] Land management Crop and land management recommendation 2-tier Android

LandPKS [?] Land management Soil assessment 2-tier Android

SOCiT [?] Land management Soil assessment 2-tier Android

SIFSS [?] Land management Soil assessment 2-tier Android

GeoFoto [?] Land management Land parcel identification 2-tier Android

MapIT [?] Farm management Equipment tracking 2-tier Android

SafeDriving [?] Farm management Equipment tracking 1-tier iOS

FarmManager [?] Farm management Capturing farm data 2-tier Android

SmartHof [?] Animal welfare Monitoring animal health Edge computing Android

SmartFarm [?] Animal welfare Monitoring animal health Edge computing Android

Agri-IoT [?] Animal welfare Livestock fertility management 2-tier –

BioLeaf [?] Crop health Leaf health monitoring 1-tier Android

Plant Disease [?,?] Crop health Plant disease diagnosis 1-tier iOS, Android, Windows

Canopeo [?] Crop health Estimating canopy development 2-tier iOS, Android

vitisFlower [?] Crop health Flower assessment 1-tier Android

vitisBerry [?] Crop health Berry assessment 1-tier Android

FruitSize [?] Crop health Fruit size assessment 2-tier Android

PulAm [?] Crop health Crop pest monitoring 2-tier Android

UbiQON [?] Greenhouse monitoring Oyster mushroom monitoring 2-tier Android

Blynk [?] Storage monitoring Paddy rice monitoring 2-tier iOS, Android

iDee [?] River monitoring Water assessment 2-tier Android

ConnectedFarm [?] Environment monitoring Remote monitoring and control 2-tier Android

SmartFarmKit [?] Environment monitoring Oyster mushroom and maize monitoring 2-tier –

Nitrogen Index [?] Environment monitoring Nitrogen monitoring 1-tier Android

WheatCam [?] Risk management Crop insurance 2-tier Android

SMILEX [?] Risk management Tracking sick plants 2-tier Android

AgDataBox [?] Data collection Field data recording 2-tier Android

IRIS [?] Data collection Field data recording 2-tier –

iFarm [?] Data collection Field data recoding 2-tier –

GeoFarmer [?] Data collection Field data recording 2-tier Android

not. BioLeaf [?] exploits image processing to measure foliar

damage in crop leaves, which farmers can also use to de-

termine whether to apply fungicides or not. Similarly, Plant

Disease [?,?] uses image analysis to help end-users detect

crop diseases against predefined disease signatures. Addi-

tionally, SAAs such as vitisFlower [?] and vitisBerry [?] use

image analysis to help farmers count the number of flowers

for grapes and berries respectively. This count can be useful

in predicting possible crop yields.

Lastly, Nitrogen Index [?] application can be used to as-

sess the risk of nitrogen losses. The application allows on-

site analysis of nitrogen levels to reduce the potential risk of

nitrate leaching. The analysis is done via nitrogen leaching

simulations on the application. The simulations are saved

on the device storage in XML-based file format. Assessed

nitrogen loss risk is correlated with observed values and the

results are saved locally on the device.

3.1.2 2-tier Applications

As previously mentioned, applications that follow this model

have a client-tier and database tier. These applications can

serve different functions in smart agriculture such as data



8 Oteyo et al.

presentation and display, data fetching, and information dis-

semination. Other SAAs in this category are multipurpose

and can serve different functions in the smart agriculture

processes as illustrated in Figure 1.

Data presentation and display: Some of the SAAs that use

this model such as WISE [?] and AMACA [?] can be used

as data monitors to display information to the end-users. The

displaying can be done either on the applications themselves

or web interfaces. Thus, such SAAs should have compre-

hensive graphical user interfaces that can be useful to end-

users in viewing farming information such as soil moisture

levels, location of farm machines etc. Furthermore, to get

value out of the displayed information, some of the SAAs

permit data input from the end-users. Meaningful informa-

tion can be derived when the input data is compared to the

application data. One such application that performs such

comparison is EVAPO [?]. This application receives loca-

tion coordinates as end-user input and performs irrigation

scheduling after correlating the user input with weather data

fetched from a server. On the other hand, SoilWaterApp [?]

communicates to online climate, crop, and soil database to

fetch data that it compares to on-farm data to generate mean-

ingful infographics. Generating these infographics is done

within the application. As such, the application can allow

simulations on crop water balance levels to be performed

on smartphones or tablets. In particular, the application uses

multiple threads to perform parallel processing of the re-

ceived data. The processed data is then saved to a cloud-

hosted database which is periodically synchronised for up-

dates.

Data fetching: In order to fetch data from the server, some

SAAs such as SmartIrrigation [?], PETEFA [?], and Ecofert

[?] employ pull-based techniques. The data is pulled at reg-

ular intervals to make it real-time i.e., almost at the rate at

which it is generated from weather stations and pushed to the

cloud. The received data can be used to trigger different ser-

vices within the application such as generating notifications.

For instance, in SmartIrrigation [?], a notification is gener-

ated and sent to the end-user whenever rainfall data that is

recorded at the nearest weather station is received. On the

other hand, in PETEFA [?], field images pulled from a geo-

server are used to visualise information on evapotranspira-

tion. Additionally, in some SAAs such as Ecofert [?] and

cFertigUAL [?], data is pulled from cloud-hosted databases

to help end-users compute the amount of fertiliser and water

that can be applied to different crops. Such computations are

often performed within the applications.

Data dissemination: On the issue of data dissemination, some

SAAs such as LandPKS [?] uses mobile phones to exchange

knowledge and information. Furthermore, this particular ap-

plication uses cloud computing to integrate, interpret, and

access relevant knowledge and information about land with

similar potential. Also, the application primarily supports

icon-based end-user inputs that are uploaded to the cloud

databases. These databases provide input for predictive mod-

els. On the other hand, GeoFoto [?] uses smartphone sen-

sors like GPS or camera to collect data and broadcast it to

a remote server for analysis in real-time. The data collected

by this application can be used in identifying farm fields.

The real-time communication ensures and supports verify-

ing that the end-user collecting data has visited the correct

farm fields or ascertain that the sufficient number of data

samples has been collected.

Multi-process applications: These applications are at the in-

tersection of different domains and smart agriculture pro-

cesses. For instance, AgDataBox [?] allows farmers in ru-

ral areas to collect and send environmental data for storage

remotely. The application can also serve as a support tool

for recording rainfall and scheduling tasks. Furthermore, as

a software tool, this application was initially implemented

as an API testing tool to send requests and receive responses

depending on the selected operation. On the other hand, IRIS

[?] is an integrated smart agriculture application with a web

and mobile application. The application measures ambient

parameters below the soil, crop level, and the ambient envi-

ronment. Collected data is sent to the cloud for processing

and visualisation is done on the web dashboard. End-users

can then use the mobile application to view the processed

and visualised data. These applications focus and empha-

sise on real-time monitoring of environmental conditions.

In, GeoFarmer [?] data collection surveys are pre-created

and then assigned to registered end-users. The collected data

include spatial observations. The application uses local phone

storage to support offline accessibility. When the application

is online the central database and the local phone storage can

be synchronised, and after which the application can be used

offline.

Other multipurpose SAAs include eFarm [?] and Vil-

lageTree [?]. The eFarm [?] application can be used by the

end-users to collect geo-tagged agricultural land system in-

formation based on remotely sensed images. The main func-

tionalities of this application include visualising base-maps,

data management (both for land parcels and users), and data

sensing. Data processing is done locally on a desktop ma-

chine and sent to a cloud server for storage. Candidate base-

maps are processed in data centres before they can be visu-

alised in the application. On the other hand, VillageTree [?]

offers intelligent pest management by gathering pest inci-

dence reports from farmers. The application gathers crowd-

sourced reports on pest incidences from end-users. The col-

lected data is analysed on a backend-end server using spatial-



Making Use of Mobile Software in Modern Farming 9

temporal analytics and image recognition algorithms. Anal-

ysed information is then used to send contextualised notifi-

cations for end-users to take preventive measures. Also, the

application uses the crowdsourcing approach to send images

together with location information to other farmers that may

be affected. This application offers different mobile inter-

faces designed for different stakeholders on different mobile

platforms.

3.1.3 3-tier Applications

From the SAAs surveyed, MobiCrop [?,?] falls in this cat-

egory. This application is designed to follow a mobile dis-

tributed architecture pattern with a three-layered deployment

approach. In particular, this application is composed of mo-

bile clients, a cloud-based middleware, and a cloud-based

database server. The middleware runs in the middle tier as

depicted in Figure 3 and is mainly used to shield the database

server from the mobile clients. For this reason, the mid-

dleware is responsible for data routing, pre-fetching, and

caching for offline accessibility. To achieve this, a policy-

based system was implemented in the middleware as con-

figuration file with a set of rules. These rules aid the system

to control information being sent to the end-user; new up-

dates are pushed to the end-user through the pre-fetching

technique. The data being sent to the end-user follows a per-

sonalised content adaptation delivery approach. In this ap-

proach, content adaptation was done based on user prefer-

ences and device specific content adaptation. On the other

hand, for offline accessibility, the application uses caching

both at the middleware and the mobile client. Furthermore,

in this application, data is modelled following the REST de-

sign standard. As such, it is manageable to process the end-

user requests in the middleware.

3.1.4 Edge Computing Applications

From the literature surveyed, the SAAs that follow this model

offload part of their computations to the edge to reduce de-

lays that can be experienced when communicating to cloud-

hosted services [?]. The SAAs surveyed that fall in this cat-

egory include SmartHof [?] and SmartFarm [?] that were

designed to monitor animal welfare.

The implementation of SmartHof follows a standard hi-

erarchical structure with three components i.e., cloud com-

puting, edge computing, and sensing (and actuation). The

cloud provides data processing and storage, while at the edge,

Raspberry Pi devices are used for data collection via sen-

sors. A part of the client is worn by the animal to collect

body temperature and animal movements using temperature

and accelerometer sensors. Unlike, temperature data that can

be used without processing, accelerometer data is processed

first in the wearable component to derive meaningful infor-

mation about the physical location of the animal and the

number of steps moved. The processed data is then used by

the application to trigger an alarm about the animal health

when it is unable to move by correlating data in the cloud

processing component. The edge component is implemented

as a wearable and environment client to process data as it is

being collected by sensors. The mobile application acts as

an interface to manage farm configurations and evaluate an-

imal welfare factors in the cloud. SmartFarm [?] follows a

similar approach to SmartHof [?]. In particular, for this ap-

plication, the environment and wearable clients are mostly

used for data collection. Both applications enable the end-

users to visualise and interact with the farm in real-time.

3.2 Classification Based on Software Engineering Issues

Table 2, which is a subset of Table 1, classifies SAAs based

on how they deal with the software engineering issues iden-

tified in Section 2.2. Most of the applications in Table 1 are

not 1-tier applications because they support features that are

closely related to distributed SAAs. As mentioned before,

such applications have different parts that talk to each other

over communication networks. In Table 2, we write (✓) if

the application supports the software engineering issue and

(✗) if the application does not.

3.2.1 Offline Accessible Applications

Client/server applications can employ different techniques

to ensure that they remain offline accessible and continue to

function when the network becomes unavailable. Such tech-

niques include buffering, synchronisation, client-side databases,

and caching. Based on the literature surveyed, some SAAs

employ caching for offline accessibility, while others use lo-

cal databases e.g., SQLite and persistent databases at the

client-side. These databases are synchronised to the server-

side when the network becomes available.

In this regard, MobiCrop [?,?] uses a cloud-hosted mid-

dleware for data caching to offer offline accessibility. As

noted before, this application exploits a dual caching tech-

nique where data is cached both on the mobile client and

on the middleware. On the other hand, PAMS [?] uses a

database at the client-side to store data upon network discon-

nection, while GeoFarmer [?] uses the local phone storage

that is synchronised to a central database when the applica-

tion is online. cFertigUAL [?] uses a persistent database on

the client-side to minimise the number of requests that can

be made to the server. This way the application can func-

tion offline in-between server request windows. PulAm [?]

exploits an SQLite database that runs locally on the mobile

device to minimise network connection issues. This appli-

cation consist of four modules: (i) capturing crop inspec-



10 Oteyo et al.

Table 2: Classifying smart agriculture applications based on software engineering issues. The applications in this table are a

subset of Table 2 for distributed SAAs that support at least one of the software engineering issues.

Application Agricultural theme Agricultural domain Offline accessible Reactive Reconfigurable

EVAPO [?] Irrigation management Evapotranspiration estimation ✗ ✓ ✗

PIS [?] Irrigation management Soil moisture sensing ✗ ✓ ✗

SmartIrrigation [?] Irrigation management Irrigation scheduling ✗ ✓ ✗

PAMS [?] Geographic information systems Managing farmland spatial data ✓ ✗ ✗

VillageTree [?] Weed and pest control Gathering pest incidence reports ✗ ✓ ✗

MobiCrop [?,?] Weed and pest control Sharing information on pesticides ✓ ✗ ✓

SmartHof [?] Animal welfare Monitoring animal health ✗ ✓ ✓

SmartFarm [?] Animal welfare Monitoring animal health ✗ ✗ ✓

Agri-IoT [?] Animal welfare Livestock fertility management ✗ ✓ ✓

SafeDriving [?] Farm management Equipment tracking ✗ ✓ ✗

UbiQON [?] Greenhouse monitoring Oyster mushroom monitoring ✗ ✓ ✗

Blynk [?] Storage monitoring Paddy rice monitoring ✗ ✓ ✗

SmartFarmKit [?] Environment monitoring Oyster mushroom and maize monitoring ✗ ✓ ✓

cFertigUAL [?] Fertiliser management Crop fertiliser estimation ✓ ✗ ✗

ConnectedFarm [?] Environment monitoring Remote monitoring and control ✗ ✗ ✓

PulAm [?] Crop health Crop pest monitoring ✓ ✗ ✗

AgDataBox [?] Data collection Field data recording ✗ ✗ ✓

IRIS [?] Data collection Field data recording ✗ ✓ ✗

iFarm [?] Data collection Field data recoding ✓ ✗ ✗

GeoFarmer [?] Data collection Field data recording ✓ ✓ ✗

tion data, (ii) database management, (iii) crop verification,

and (iv) database synchronisation. The database manage-

ment module is responsible for consulting, editing, delet-

ing, and adding new crop inspection registers and pests. The

changes that are made to the database when in offline mode

are inserted into a queue. When internet connection becomes

available, the contents of the queue are sent and synchro-

nised to the server via http by the database synchronisation

module. Lastly, iFarm [?] uses synchronisation to ensure

offline accessibility. The client-side is synchronised to the

server when the network is available to guarantee up-to-date

data is available for local computations.

3.2.2 Reactive Applications

In order to offer reactivity, SAAs often use notifications and

visualisations to give real-time feedback to end-users. The

notifications are triggered upon external events that can hap-

pen in modern farming such as changes in weather condi-

tions and market prices. The visualisations can be displayed

on dashboards to help in tracking trends for different activi-

ties in modern farming. Notifications and visualisations can

be generated by push-based or pull-based mechanisms, of-

ten via external services employed by the applications. For

instance, Blynk [?] uses text messages to notify system ad-

ministrators when sensing devices get disconnected from the

system. Sensors that are used in this application automati-

cally push the collected data to the application. Failure to

receive such data triggers sending a text message to the end-

user. In this example, push-based notifications and visuali-

sations are automatically triggered once the desired events

occur. On the other hand, pull-based notifications and visu-

alisations rely on query fetching and processing which can

have an implication on managing the network bandwidth

[?]. The choice of either approach depends entirely on the

application context. From the SAAs presented in Table 2,

SmartHof [?] and SafeDriving [?] use push-based notifica-

tions, while SmartFarmKit [?] and IRIS [?] use pull-based

approach to fetch data from sensors. Lastly, VillageTree [?]

uses SMS texting to send contextualised alerts and relevant

solutions to farmers for them to take preventive measures in

pest control and management.

3.2.3 Reconfigurable Applications

Recall from Section 2.2 that building comprehensive SAAs

that can cover all business domains may not be feasible since

the workload conditions for SAAs can change over time and

as such reconfigurability is important. As such, reconfig-

urable SAAs provide mechanisms that end-users can use to

adapt them to different farming activities. In particular, re-

configurability in these applications can be achieved through

APIs to add and extend existing application services, and

widgets to change application user interfaces such data col-

lection forms and alert messages. Additionally, APIs can be

used to integrate SAAs to other systems in the farm. For in-

stance, in AgDaBox [?], APIs are used to integrate to any

other application that allows http communication with the

server. Similarly, Agri-IoT [?] connects to other applications

using APIs, while in SmartFarmKit [?], farm services are

published as RESTful APIs with JSON data format. On the

other hand, ConnectedFarm [?] uses APIs to allow third-

party developers to implement their own farm services. Sim-

ilarly, in other SAAs such as SmartHof [?], SmartFarm [?]

and GeoFarmer [?], REST APIs are used to communicate

to web servers in order to access backend application func-



Making Use of Mobile Software in Modern Farming 11

tionalities. Lastly, as mentioned above, some SAAs such as

SmartFarm [?], SmartHof [?], Agri-IoT [?] use widgets as a

reconfiguration mechanism.

3.3 Discussion

In this article, we classified SAAs based on (i) architectural

models and (ii) software engineering issues that we identi-

fied as important for software developers to deal with when

building these applications. The combination between archi-

tectural models and mechanisms to deal with software en-

gineering issues can determine which SAAs end-users will

choose for their modern farming tasks. In what follows, we

discuss the different trade-offs in order to guide those choices.

From the literature reviewed, common uses for applica-

tions that exploit the 1-tier model include journaling farm-

ing activities (data collection) and in-application data pro-

cessing such as image processing that may not require net-

work access. As such, SAAs that follow the 1-tier model

adapt better to rural areas that have zero or poor quality net-

work connections since, by design, they do not require net-

work access to function. However, these SAAs have a single

point of failure and as such they may not be scalable. Ad-

ditionally, such applications may suffer from resource con-

straints to handle large datasets, support advanced data an-

alytics and computational capabilities that are necessary in

data transformation, processing, and storage. These limita-

tions notwithstanding, as software developers, it should be

important to make 1-tier applications rich in functionality

to benefit the end-user. For instance, 1-tier SAAs that rely

on historical data for prediction can be pre-loaded with such

data to support machine learning and prediction.

From the state-of-the-art analysis, few client/server SAAs

follow the 3-tier and edge computing model, while most

SAAs follow the 2-tier model. These models can be used

when computational resources required by SAAs to process

and store high volume data are not sufficient locally, and as

such rely on cloud-hosted computational resources. In ad-

dition, both 3-tier and edge computing models can be used

when communication latency is an issue in the client/server

setting. In this regards, the middleware in the 3-tier model

can be used for caching responses to repetitive client re-

quests to minimises queries that go directly to the server,

while edge computing can be used to bring computational

recourses closer to the data sources. Moreover, edge com-

puting can be used to perform data analysis at the source

before such data is sent to the cloud for further processing

or storage.

In terms of supported software engineering issues, Ta-

ble 2 does not show any SAAs that support all the three

software engineering issues considered in this work. From

the survey analysis, few client/server applications are both

offline accessible and reconfigurable, offline and reactive,

and lastly, reactive and reconfigurable. We think that these

groupings are based on developer design choices based on

contextual constraints such as communication and latency

limits. In addition, most reactive applications use text and

email messaging. Moreover, reconfigurable applications use

APIs to allow addition of new services and extending exist-

ing application services. As such, the quality of these APIs

should be enhanced to have minimal impact on application

performance and user experience. Similarly, some applica-

tions use widgets to make them easier for end-users to re-

configure. Such widgets can facilitate modifying parts of an

application that do not require hard-coding e.g., modifying

data entry forms. Lastly, from this analysis, we observe that

some SAAs address domain specific issues, while others

address technological and software engineering issues. As

technology advances, new techniques of implementing dif-

ferent software parts are designed. These techniques have to

be implemented in the future versions of SAAs in an evolv-

ing manner. In terms of mobile platforms, most of the SAAs

surveyed run on Android. We believe this is the case because

it is cheaper to acquire an Android phone than an iPhone and

those applications are sometimes used in developing coun-

tries where Android devices are increasingly being adopted.

From the perspective of smart agriculture processes de-

scribed in Section 2, some SAAs can be dedicated to particu-

lar processes, while others can be multipurpose to cut across

all the processes. In addition, the SAAs also cut across mul-

tiple research domains such big data applications in smart

agriculture, Internet of Things, artificial intelligence appli-

cations in smart agriculture, and agricultural robotics. As

such, we think that SAAs maybe widely spread than per-

ceived from the literature.

Lastly, the distributed nature of client/server SAAs can

allow end-users to monitor farming activities and receive

timely notifications. Such notifications can be generated us-

ing push-based or pull-based techniques. The choice of which

technique depends on the constraints at hand such as net-

work bandwidth and the cost of processing queries sent or

received from a remote server.

4 Open Issues and Research Directions

Based on the survey results, we note that SAAs are gain-

ing traction both in research and industry. However, some

issues and challenges are still open that can hinder adoption

of SAAs especially in developing countries. In the follow-

ing sections, we describe some of those open issues, related

to some of the smart agriculture processes identified in Sec-

tion 2.1, as well as to the different software engineering is-

sues defined in Section 2.2.



12 Oteyo et al.

4.1 Architectural Models

Data collection is an essential smart agriculture process, and

is often implemented by using sensors, or by letting end-

users (i.e., farmers) enter data directly into SAAs. The SAAs

that present a more than 1 tier architecture, however, often

rely on remote connections to one (or more) server(s) for

processing and storage. If applications are not designed for

providing offline accessibility, this can present a problem

since broadband internet access in rural areas, where many

farms are located, still remains a problem globally [?,?].

As a result, problematic network connections often lead to

SAAs not functioning when not available. In Section 3.2.1,

we provided an overview on how some offline accessibility

techniques (e.g., database synchronisation) have been used

in SAAs to deal with this problem. We believe, however, that

not enough effort has been done in this direction, and that

many farms, especially in developing countries, are pretty

limited in the use of such applications.

For instance, to the best of our knowledge, no atten-

tion has been given to peer-to-peer (P2P) as an architectural

model for SAAs. By providing a direct communication be-

tween different devices connected in one or more local net-

works, a P2P architecture could help in solving some data

transmission problems brought about when communication

networks are not available. In this regard, the P2P model

can be used to transform mobile devices into data transmis-

sion nodes using wireless communication techniques such

as Bluetooth and ZigBee. As such, we think that P2P ap-

plications can be exploited over ad-hoc wireless sensor net-

works to relay data to an edge server from where it can be

uploaded to the cloud. This could lead to further research

on specific P2P issues in the context of smart agriculture,

such as the placement of edge devices, fault tolerance for

edge devices, and deployment strategies according to farm

segmentations and end-user requirements.

4.2 Scalability and Performance

Considering that part of the smart agriculture processes need

often to be deployed on one or more low-resource devices,

we believe that scalability and performance issues should

also be addressed. None of the surveyed literature, however,

focusses on analysing the application performance and scal-

ability. For instance, it is interesting to evaluate and com-

pare the effect of different offline availability techniques on

memory as it is a scarce resource in mobile and embedded

devices that can be used for data collection. Furthermore,

from the surveyed SAAs, we noted that big amounts of data

can be generated at global scales with diverse and multiple

sensors. We think that this data can be used to validate big

data processing techniques for smart agriculture. Lastly, in

smart agriculture, SAAs rely on data fetched from sensors

or servers through push-based and pull-based mechanisms.

None of the surveyed literature compares these approaches

in a large scale smart agriculture setting and their effects on

application performance.

4.3 Security and Privacy

Overall, security and privacy issues are still a concern in all

smart agriculture processes, since it has not been given much

attention[?]. For instance, sending data to common cloud

platforms, especially when using crowdsourcing techniques,

may require end-users to share information that can be in-

tercepted in cyber-security bridges. This can be related to

information flow control, but, to the best of our knowledge,

that has never been contextualised or adapted to SAAs.

5 Conclusion

In smart agriculture, SAAs are varied and spread over dif-

ferent agricultural domains such as irrigation management,

fungicide management, risk management, fertiliser manage-

ment, etc. Our study classifies SAAs based on (i) architec-

tural models and (ii) on how they tackle specific software en-

gineering issues such as offline accessibility, reactivity, and

reconfigurability. We believe that these issues are important

in the context of SAAs, since they represent problems often

happening in smart farms; hence we present how different

surveyed applications deal with them.

Based on the survey findings, most of the SAAs follow

the 2-tier client/server model for data collection, data pro-

cessing, data storage and information dissemination. From

a software engineering perspective, these applications can

serve different roles in a modern smart farm such as provid-

ing interfaces for farmers to interact with sensors, as func-

tional blocks for Internet of Things implementations, and

integrating with farm management information systems to

help end-users in decision-making. However, none of the

SAAs surveyed tackles all the three software engineering

issues considered in this work.

Finally, we suggest how some issues such as scalability,

performance, security, and privacy are all possible open av-

enues for future research, since they all represent important

concerns of SAAs, that have not been investigated in detail.

Acknowledgements This work is supported by the Legumes Cen-

tre for Food and Nutrition Security (LCEFoNS) programme which is

funded by VLIR-UOS. The programme is a North-South Collaboration

between the Katholieke Universiteit Leuven, Vrije Universiteit Brussel

(both in Belgium) and Jomo Kenyatta University of Agriculture and

Technology (Kenya).

Conflict of interest: The authors declare that they have no

conflict of interest.


	Introduction
	Motivation and Background
	Classifying Smart Agriculture Applications
	Open Issues and Research Directions
	Conclusion

