
Master thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Applied Sciences and Engineering: Computer Science

BoaSpect
Portable and performant
interpreter-based instrumentation for
JavaScript

Aäron Munsters
2021–2022

Promotor: Prof. Dr. Elisa Gonzalez Boix
Advisor: Dr. Angel Luis Scull Pupo
Science and Bio-Engineering Sciences

Proefschrift ingediend met het oog op het behalen van de graad van Master of
Science in de ingenieurswetenschappen: computerwetenschappen

BoaSpect
Draagbare en performante
interpreter-gebaseerde instrumentatie
voor JavaScript

Aäron Munsters
2021–2022

Promotor: Prof. Dr. Elisa Gonzalez Boix
Begeleider: Dr. Angel Luis Scull Pupo
Wetenschappen en Bio-ingenieurswetenschappen

Abstract

Although JavaScript is the programming language dominating the web, applica-
tions built with it are hard to diagnose due to its dynamic and permissive features.
As a consequence, programmers use dynamic analysis tools to facilitate debugging
and testing, putting the focus of research on instrumentation platforms which
support the implementation and deployment of dynamic analyses.

With current instrumentation platforms for JavaScript, analysis developers face
the choice between portability or performance. Source code instrumentation plat-
forms inject the analysis into the target program by rewriting its source code to a
variant including the analysis. Thereby it provides a portable approach that can
run in any JavaScript engine but suffers from a high-performance overhead and a
lack of transparency. In contrast, abstract syntax tree instrumentation platforms
wrap the parsed program tree within the engine with instructions that include the
dynamic analysis for further execution. This approach offers high performance but
suffers from a lack of portability as it is often specific to a JavaScript engine. The
choice between portability or performance limits the analysis developer as they
would preferably have both.

In this work, we explore our implementation BoaSpect, an instrumentation
platform which offers portability to enable execution in different runtimes while
offering good performance. BoaSpect is built at the level of bytecode interpretation
in the JavaScript interpreter Boa, which leverages on WebAssembly as its com-
pilation target for portability. A benefit of designing BoaSpect at the interpreter
level is the opportunity to extend the instrumentation interface with lower-level
traps to the analysis developer which is hard, if not impossible, to implement and
maintain using source code instrumentation.

To evaluate BoaSpect, we develop analyses using our extended instrumentation
interface. More specifically we evaluate its performance using the Sunspider bench-
mark suite. We observe three key insights. First, our extended interface enables
defining analyses which cannot be implemented for source code instrumentation
platforms due to source code reflection limitations. Next, when comparing the
same input analyses for both BoaSpect and source code instrumentation running
on the Boa execution engine, we observe BoaSpect’s execution to be 3 to 5 times
faster than that of source code instrumentation. Third, when targetting our ap-
proach to WebAssembly it has a performance similar to source code instrumenta-
tion, while still enabling more analyses and better instrumentation transparency.

i

ii

Abstract

Hoewel JavaScript de programmeertaal is die het web domineert, zijn toepassingen
die ermee gebouwd zijn moeilijk te diagnoseren door de dynamische en toegeefelijke
eigenschappen ervan. Als gevolg gebruiken ontwikkelaars dynamische analyse-
instrumenten om het debuggen en testen te vergemakkelijken. Hierdoor heeft
onderzoek zich toegespitst op instrumentatieplatformen die de implementatie en
het gebruik van dynamische analyses ondersteunen.

Met de huidige instrumentatieplatformen voor JavaScript moeten analyse-
ontwikkelaars de afweging maken tussen overdraagbaarheid of prestatie. Broncode-
instrumentatieplatformen plaatsen de analyse in het doelprogramma door de bron-
code ervan te herschrijven naar een variant die de analyse bevat. Zo bieden ze een
overdraagbare aanpak die in elke JavaScript omgeving kan draaien. Het nadeel is
dat deze aanpak lijdt aan een hoge prestatie kost en een tekort aan transparantie.
Abstracte syntax boom instrumentatieplatformen daarentegen omhullen de pro-
grammaboom binnen in de engine met instructies die de dynamische analyse voor
verdere uitvoering bevatten. Deze aanpak biedt hoge prestaties, maar lijdt aan
een gebrek aan overdraagbaarheid omdat hij vaak specifiek is voor een JavaScript
engine. De keuze tussen overdraagbaarheid of prestatie bemoeilijkt het voor de
analyse-ontwikkelaar aangezien de combinatie van beiden het meest wenselijke is.

In dit werk verkennen we een instrumentatieplatform dat zowel goede prestaties
als overdraagbaarheid biedt om de uitvoering in verschillende JavaScript omgev-
ingnen mogelijk te maken. Daartoe stellen we BoaSpect voor, een instrumen-
tatieplatform ontwikkeld op het niveau van bytecode-interpretatie in de JavaScript-
interpreter Boa, dat gebruik maakt van WebAssembly als compilatiedoel voor ver-
hoogde overdraagbaarheid. Een voordeel van de ontwikkeling van BoaSpect op
interpreterniveau is de mogelijkheid om de instrumentatie-interface uit te brei-
den met traps op lager niveau voor de analyse-ontwikkelaar. Deze zijn met de
broncode-instrumentatie methode moeilijk, zo niet onmogelijk, te implementeren
en te onderhouden.

Om BoaSpect te evalueren, ontwikkelen we analyses met behulp van onze
uitgebreide instrumentatie-interface. Meer specifiek maken we gebruik van het
Sunspider benchmark pakket. We bekomen drie hoofdzakelijke inzichten. Ten
eerste, maakt onze uitgebreide interface het mogelijk om analyses te definiëren die
niet gëımplementeerd kunnen worden met broncode instrumentatie platformen als

iii

iv

gevolg van de beperkingen van broncode reflectie. Ten tweede, zien we dat wanneer
we de broncode-instrumentatie techniek vergelijken met BoaSpect, gebruik mak-
end van dezelfde invoeranalyses en beiden draaiend op de Boa engine, dat onze
aanpak 3 tot 5 keer sneller programma’s uitvoert dan de uitvoering met broncode-
instrumentatie. Ten derde, wanneer we onze aanpak draaien op WebAssembly,
merken we een gelijkaardige prestatie-verhoudingen op als die van de broncode-
instrumentatie, terwijl we toch meer analyses en een betere transparantie van de
instrumentatie mogelijk maken.

Acknowledgements

First, I would like to express my gratitude to my promotor, Elisa Gonzalez Boix, for her invaluable
guidance and support during my work on this thesis. Second, I sincerely thank my advisor, Angel
Luis Scull Pupo, for the many hours we shared both on and off-topic. For pushing me further
than I could ever imagine myself going on my journey at the university, in doing so further
shaping my knowledge and enriching my experience.

To my parents, for their love and care, supporting me in every way they could, I am grateful
on so many levels, I could not have done this without you.

And finally, to my girlfriend, who has been with me since I first set foot on campus, helping
me all the way through, sharing many beautiful moments of happiness, I thank you.

v

vi

Declaration of originality

I hereby declare that this thesis was entirely my own work and that any additional sources of
information have been duly cited.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright
nor violate any proprietary rights and that any ideas, techniques, quotations, or any other
material from the work of other people included in my thesis, published or otherwise, are fully
acknowledged in accordance with the standard referencing practices. Furthermore, to the extent
that I have included copyrighted material, I certify that I have obtained a written permission
from the copyright owner(s) to include such material(s) in my thesis and have included copies of
such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to any other University
or Institution.

vii

viii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Developing a Portable Interpreter-Based Instrumentation Platform 2
1.3 Roadmap . 3

2 State of the Art and Motivation 5
2.1 Program Analysis . 6

2.1.1 Challenges for Dynamic Analyses of JavaScript 7
2.2 Dynamic Analysis Instrumentation Approaches 8

2.2.1 Interpreter-Based Instrumentation . 9
2.2.2 Abstract syntax Tree (AST) Instrumentation 9
2.2.3 Source Code Instrumentation . 10
2.2.4 Meta Circular Evaluation Instrumentation 13

2.3 Instrumentation Techniques − One Size Does Not Fit All 13
2.4 Comparing Different Instrumentation Techniques 14

2.4.1 Transparency . 15
2.4.2 Performance . 15
2.4.3 Portability . 16
2.4.4 Expressiveness . 17

3 Portable interpreter-based instrumentation 19
3.1 Approach . 19
3.2 BoaSpect’s Architecture . 20

3.2.1 Analysis API Design . 20
3.2.2 Supporting the Trap toPrimitive . 26

3.3 Research Design Considerations . 28
3.3.1 Safety . 30

3.4 Research Questions . 31

4 BoaSpect’s implementation 33
4.1 Architectural Overview of Boa . 33

4.1.1 Running JavaScript Programs Using Boa 33
4.1.2 Boa’s Bytecode Interpreter . 35

4.2 Modifying Boa to Include BoaSpect . 37
4.2.1 Accepting and Installing an Advice . 38
4.2.2 Distinguishing the Execution Context . 38
4.2.3 Hooking in the Operations . 41
4.2.4 Interpreter Operation Reification . 43

ix

x CONTENTS

4.3 Targetting WebAssembly . 45

5 Evaluation 47
5.1 Experimental Setup . 47

5.1.1 Input Programs . 47
5.1.2 Input Analyses . 48

5.2 Compatibility . 49
5.3 Evaluating Transparency . 50
5.4 Evaluating Performance . 52

5.4.1 Absolute Time to Execute: Node Against Boa 53
5.4.2 Slowdown for Instrumentation with Boa as the Engine 53

5.5 Evaluating Portability . 57
5.6 Evaluating Expressiveness . 58
5.7 Evaluation w.r.t. the Research Questions . 61

6 Conclusion 65
6.1 Our Approach . 66

6.1.1 Interpreter-Based Instrumentation . 66
6.2 Evaluation . 67
6.3 Contributions . 68
6.4 Future Work . 68

List of Figures

3.1 A high-level overview of the architecture of our approach in which we extend the
JavaScript engine Boa to account for support of instrumentation. The platform
accepts two JavaScript programs. One is the JavaScript input program which
is the application which is subject to a dynamic analysis. The other input pro-
gram is an analysis advice specification which is compatible with the Aran API
implementing the hooks to which the interpreter will call back to complete the
instrumentation. 21

3.2 An example input program “input.js” is subject to a dynamic analysis specified
by the “advice.js” file. The blue dashed arrows show the control flow jumps
the instrumentation platform needs to perform from the input program to the
advice. The purple dotted arrows show the control flow jumps the instrumentation
platform needs to perform from the advice to the input program. 23

4.1 The Boa interpreter pipeline [1]. The pipeline showcases the process from input
JavaScript source code to an output JavaScript value which is the result of its
evaluation. The grey highlighted areas further showcase the possible points of
introducing the additional operations to make instrumentation possible. 34

5.1 The different benchmark experiment setups in terms of the execution environment
for the input programs. 52

5.2 A bar chart plotting the absolute time in milliseconds it takes to instrument input
programs of the Sunspider suite for the “forward.js” analysis specification. This
chart compares the experiment setups for running Aran on top of Node and our
instrumentation platform BoaSpect. 54

5.3 A bar chart plotting the absolute time in milliseconds it takes to execute input
programs of the Sunspider suite. This chart compares the experiment setups for
the Node execution engine and the Boa execution engine. 54

5.4 A set of bar charts plotting the slowdown factors for executing input programs
of the Sunspider suite for different analyses. The charts compare the slowdown
factors for running Aran on Boa, running BoaSpect, and running BoaSpect on
WebAssembly in Node. 56

5.5 A bar chart plotting the absolute time in milliseconds it takes to execute input
programs of the Sunspider suite. This chart compares the experiment setups for
running Aran on top of Boa and running BoaSpect on WebAssembly on top of
Node. 57

xi

xii LIST OF FIGURES

5.6 A depiction of the abstract operations ToPrimitive and OrdinaryToPrimitive as
they are defined in the ECMAScript specification, including the operations that
call into ToPrimitive and OrdinaryToPrimitive. The schematic also illustrates
how additional operations of the surrounding host may hook into the abstract
operations such as ToPrimitive, bypassing the source-level operations that may
yield the same result. 60

List of Listings

1 A JavaScript program for which a static analysis could infer incorrect function
usage while a dynamic analysis could suggest program optimizations. 6

2 An example Aran-compatible analysis specification for profiling function invoca-
tions and tracking caching opportunities. 11

3 The transformed output for the fibonacci function in Listing 1 if it were instru-
mented by source code instrumentation for the analysis in Listing 2. 11

4 The reported results from instrumenting the program in Listing 2 with the analysis
specification from Listing 1. The conclusion can be drawn that most function
invocations happen for the function fibonacci and the results from calling the
function for different values give rise to memoization. 12

5 A JavaScript program where the assertions rely on a dynamically bound function
name and the function source code. 15

6 The JavaScript implementation of the Buffer library of Node version 6.5. 27

7 The C++ implementation of the Buffer library of Node version 6.5. 27

8 The malicious input program that bypasses both JavaScript bound-checks in List-
ing 6 and the host bound-checks in Listing 7. 28

9 The analysis implementation using the toPrimitive trap to uncover unconventional
or malicious use of overriding the behaviour of the abstract operation ToPrimitive. 29

10 The function eval which corresponds with the evaluation pipeline laid out in Fig-
ure 4.1 which interprets the JavaScript source code as a string reference and yields
the evaluation result as a Rust JsValue. 34

11 A portion of the Rust source code is responsible for interpreting the opcodes
that are a result of the Boa bytecode compiler. The code illustrates how the
opcode Opcode::Add further instructs the VM to pop the operands and call the
function add on the operands, which will further call the abstract operation
ApplyStringOrNumericBinaryOperator as defined by the ECMAScript standard. 36

12 Parts of the Boa interpreter command line interface that were extended for in-
strumentation support. The highlighted lines show the inclusion of BoaSpect for
installing an advice. The main function illustrates the additional support for read-
ing an analysis specifications. The install_advice function for a Context illustrates
the evaluation of the advice specification after which the traps are extracted and
references to both are kept in the Context. 39

13 Parts of the Boa interpreter for the creation and usage of function objects. The
highlighted lines illustrate the storage and retrieval of the interpreter state which
enables the interpreter to determine at call-time for a function if it should be
instrumented or not. 42

xiii

xiv LIST OF LISTINGS

14 A portion of the code present in the virtual machine component of Boa that
interprets the compiled bytecode. The highlighted lines show the inclusion
of BoaSpect for instrumenting primitive expressions. This code intercepts reg-
ular execution to collect the primitive value which it passes to the trap function
for further analysis. After the result is returned from the trap function the result
is pushed on the stack, replacing the primitive expression. 44

15 An example input program for which the assertions fail for the Aran instrumen-
tation platform but do not fail for the BoaSpect instrumentation platform. . . . 51

16 The ECMAScript specifications of the abstract operations ToPrimitive and Ordi-
naryToPrimitive. The specifications define how a non-primitive JavaScript value
is converted to a primitive value at the level of interpretation. These operations
are internally performed by an interpreter and are not available at the level of the
source language. 58

List of Tables

2.1 A comparison table for the different instrumentation platform properties, per row,
for different instrumentation platform techniques, per column. 17

3.1 A listing of known JavaScript engines with support to compile to WebAssembly. 20
3.2 An overview of the trap functions supported by BoaSpect which can be defined by

the analysis developer. The instrumentation column showcases the semantics of
the call performed by the instrumentation platform applied to the sample state-
ment in the JavaScript example column. The bottom row states the trap function
toPrimitive which is not supported by Aran. 25

5.1 The considered input program suites to validate Boa’s compatibility with the
ECMAScript language. Total indicates the number of input programs per suite,
Success the number of programs that Boa can execute successfully, Crash the
number of programs which Boa does not support and Timeout for the number of
programs that did not terminate within our devoted time budget per program. . 49

5.2 The set of files from the Sunspider benchmark suite that are left out from the
evaluation of BoaSpect, including the interpreter which does not support the file
and the reason why the file is not included. 53

xv

xvi LIST OF TABLES

Chapter 1

Introduction

The ubiquity of JavaScript as the dominating language for the web is undeniable. It powers web
and mobile applications. JavaScript also serves as the driving mechanism for backend services
or even a combination of both in the case where JavaScript is used for full-stack applications [2].

The dynamic nature of JavaScript and its flexibility often results in vulnerable or misbehaving
code. For example, JavaScript allows loading new code at runtime through the use of <script>-
tags in webpages or the use of eval to evaluate a string as a program in the same context. Another
example of JavaScript’s dynamic nature is that the language at runtime allows changing the
layout of objects flowing through the program at will [3]. This dynamicity offers a high degree of
freedom and flexibility to developers, however, it also comes at a cost. These features pose certain
risks to the quality of ever-growing programs, including, but not limited to the introduction of
application vulnerabilities, poorly optimizable code to execute or sleeping bugs that wake at
runtime [3].

Program analysis helps developers to test and debug programs. We distinguish between two
big families of program analysis tools: static and dynamic programming tools.

Static analysis tools analyze the code without execution [4, 5]. These static analysis tools
for JavaScript, however, are severely limited in their ability to draw conclusions from programs
that rely on these dynamic features. For example, a static analysis tool that detects the presence
of dead code (code that is never used at runtime) cannot answer with certainty whether a
JavaScript-defined function will be used if a portion of the program will be added at runtime by
a <script>-tag.

On the other hand, dynamic program analysis tools trace the program execution while using
instruments to reason and potentially act on the program behaviour [6]. These instruments
measure properties of the program under execution including aspects such as the memory use,
the values handled by a program or the input and output values. The focus of this work is to
support the development of dynamic program analysis for JavaScript.

1.1 Problem Statement

Automatically augmenting a program with instruments to enable dynamic analysis can be
achieved using an instrumentation platform. An instrumentation platform is there to ease the
development of an analysis and provide the mechanisms to inject the analysis into the execution
of the target program under analysis.

For JavaScript, there exist different families of instrumentation platforms categorized by their
implementation approach [7, 8, 9, 10, 11].

1

2 CHAPTER 1. INTRODUCTION

On the one hand, JavaScript instrumentation platforms have been developed to run the
analysis and instrumentation at the source code level [9, 10]. This technique rewrites the target
program source code to a variant in which the instrumentation and analysis code is included.
Thus, the analysis and instrumentation are shipped with the target program under analysis to
an execution environment. On the other hand, the JavaScript instrumentation can take place
at the level of the program interpretation. This entails that the interpreter that executes the
target program under analysis additionally performs the instrumentation as instructed by the
analysis [11] during evaluation.

As both these approaches for implementing an instrumentation platform share the same
goal, ie. enabling analysis developers to deploy a dynamic analysis, we introduce four different
properties in Section 2.3 which we will use to compare state of the art (in Section 2.4): portability,
performance, transparency and expressiveness.

As we argue later in Section 2.4.3, instrumenattion at the level of source code excels in
portability property. This instrumentation technique can be deployed in a multitude of execution
environments as the instrumentation is included alongside the source code of the target JavaScript
program. However, source code instrumentation suffers from its performance property. This is
concerned with the instrumentation platform performance overhead, affecting the overall time
required to execute the target program. This performance overhead is high for source code
instrumentation as each event of interest is rewritten to code that calls into the analysis definition,
losing opportunities for the execution engine to optimize the input program [11].

Interpreter-based instrumentation performs better in terms of lower performance over-
head [11]. Furthermore, interpreter-based instrumentation remains more easily uncovered from
the target program under analysis compared to source code instrumentation, which we qualify
as the transparency property. Reflective JavaScript such as querying the string-representation of
a function body can leak instrumentation information when the function is rewritten to include
instrumentation and analysis code [12]. Contrary to source code instrumentation, interpreter-
based instrumentation operates at the level of the interpreter, making it more difficult to uncover
the modifications as the interpreter internals are not exposed to JavaScript.

Finally, interpreter-based instrumentation offers higher expressiveness for the analysis devel-
oper, with which we mean that it can more easily provide program execution information to the
analysis [11]. An example of information that can be challenging to provide to the analysis de-
veloper is operations that are taking place within the interpreter, such as whenever the execution
engine internally performs type conversion on its values.

So far, these distinct families of instrumentation platform implementation techniques for
JavaScript seem to point out that an analysis developer has to decide between either two. This
implies the analysis developer has to choose between either portability or performance, trans-
parency and expressiveness. Preferably, one would have both portability to analyse code which
runs in browsers and servers while maintaining performance, transparency and expressiveness to
enable the analysis to trace an execution true to the intended target application behaviour.

We observe there is no instrumentation platform that can offer a good solution for portability
and performance. We hypothesize that it is possible to have an interpretation-based approach
which pays little performance overhead but offers portability.

1.2 Developing a Portable Interpreter-Based Instrumenta-
tion Platform

In this work, we explore the implementation of an interpreter-based instrumentation platform
that can compile to WebAssembly [13] that combines portability with performance, transparency

1.3. ROADMAP 3

and expressiveness. The goals of our design are threefold.
First, we want high execution speeds by keeping the instrumentation overhead to a minimum.

Existing instrumentation platforms for JavaScript are either implemented at the level of source
code instrumentation [9, 10] or within an interpreter at the level of the abstract syntax tree
before the input program is further optimized for high execution speeds [11]. JavaScript engines,
however, typically compile their input programs at runtime to an intermediate representation to
then interpret this representation for faster execution. Thus, we envision that an instrumentation
platform operating at the level of this intermediate representation interpretation will provide high
execution speeds.

Second, we want to provide an instrumentation interface which is familiar to developers but it
enables functionalities from the interpreter that are hard to do with source code instrumentation.

Third, we want to enable our instrumentation platform to run on WebAssembly execution
engines. WebAssembly is a compilation target designed for portable applications that aim at
operating at high speeds in a secure sandboxed environment. One of the hosts that enables the
execution of WebAssembly is JavaScript, such that it enables the execution of computationally
expensive programs at higher and more predictable performance. Thus we would leverage on
the guarantees of WebAssembly to have a fast, open, tamper-proof, transparent and portable
interpreter-based instrumentation platform.

1.3 Roadmap

Chapter 2 provides the reader with the needed background on the existing state of the art on
instrumentation platforms for JavaScript and the techniques for implementing them. It further
provides a comparison of these techniques on different scales, after which we revisit the problem
statement as motivation for our work.

Chapter 3 covers our approach, a portable interpreter-based instrumentation platform we
name BoaSpect. We cover BoaSpect’s architecture, followed by an explanation of its interface
and usage. The end of the chapter covers the goals of BoaSpect which we later evaluate.

Chapter 4 discusses the implementation of BoaSpect, including the challenges we had to
overcome such as exposing internals from the interpreter to the analysis operating at the level
of source code.

Chapter 5 explains how we test JavaScript compatibility for BoaSpect and evaluates it with
respect to the properties transparency, performance, portability and expressiveness.

In Chapter 6 we conclude this thesis and elaborate on future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art and Motivation

Within the domain of computability, a well-established but unfulfilling theorem, known as Rice’s
theorem, states that non-trivial semantical properties of programs are undecidable [14]. This
theorem carries the meaning that one cannot define a general algorithm that can decide on the
behaviour of programs. Thus algorithms to answer interesting properties such as “Will this
program terminate?” or “Will this program throw an error?” cannot be defined.

Regardless of the implications of Rice’s theorem, developers use tools to improve the quality,
security, performance and overall correctness of code. Program analysis is a discipline in computer
science to automatically analyse the behaviour of programs against those properties. Program
analysis can be done without executing a program, which is known as static analysis, or during
runtime, known as dynamic analysis, or as a combination of both.

To further demonstrate how static and dynamic analysis work, we use the example JavaScript
program shown in Listing 1. The program defines the function fibonacci which operates on
numbers and the function main which is the program entry point. The main function prompts for
external input count after which it sums the result of calling the fibonacci function for values
over the range (0, count]. The program is syntactically correct, but we will show how a static
and dynamic analysis could be done to further improve the program.

A static analysis tool may offer, for example, type inference checks. The function main includes
two calls to the fibonacci function. The actual parameter passed is bound to an argument of
type number during the first call. During the second call to main, however, the actual parameter
will be bound to an argument of type string as the result of calling prompt. From the definition
of the fibonacci function, however, we can derive that the function expects an argument of type
number. We derived this information by noticing the operations applied on the formal parameter
n are restricted to the arithmetic operations n <= 1, n - 1, and n - 2. With this information from
the analysis, the developer might reconsider adjusting the second call or adjusting the definition
of the factorial function to account for the possible type differences. The tool could also run a
variable liveness analysis and determine that for all possible program paths, the variable extra

in the body of the main function does not affect the program behaviour, as the program assigns
values to the variable but does not use the variable in subsequent program statements. This
information could inform the developer that there might be missing statements that would make
use of this variable or that the variable its existence is redundant.

As dynamic analyses can check properties of the behaviour while running the program, exam-
ples of such program properties include memory usage and safe access. Consider a profiler which
checks the memory usage through the execution of the program in Listing 1 as a concrete example
of a dynamic analysis. For different input values, the analysis will point out that the majority of

5

6 CHAPTER 2. STATE OF THE ART AND MOTIVATION

1 function fibonacci(n) {

2 if (n <= 1)

3 return 1

4 else

5 return fibonacci(n-1) + fibonacci(n-2)

6 }

7

8 function main() {

9 let count = parseInt(prompt());

10 let total = 0;

11 let extra = 0;

12 while (count > 0) {

13 total += fibonacci(count);

14 extra += total + count;

15 count -= 1;

16 };

17 console.log(`Total = ${total}`);

18 console.log(`Fib(5) = ${fibonacci(prompt())}`);

19 }

Listing 1: A JavaScript program for which a static analysis could infer incorrect function usage
while a dynamic analysis could suggest program optimizations.

execution time and use of memory for the call-stack is spent on the fibonacci function rather
than the main function. Using this information, the developer might decide to reimplement the
function or remain cautious with the number of calls to the function if a reimplementation is out
of the developer’s control. Furthermore, a dynamic program trace profiling function calls will
point out that for ever-larger growing inputs, the number of function calls grows exponentially
while the output value is determined exclusively by the input value. Based on these insights,
the developer may decide to employ memoization optimization, in which function results are
cached, to lower these computational expenses. For larger code bases, such insights could help
developers pinpoint the program points where to put optimization efforts.

2.1 Program Analysis

Static program analysis attempts to uncover the runtime properties of the program while ab-
staining from concrete evaluation, through means of approximating the program evaluation [4].
The applications of static analysis vary from informing optimizing compilers on possible program
transformations that preserve the program semantics but improve the execution performance to
analyses that prove the program correctness [5]. Other applications for static analysis reason
about the code structure to enrich the developer experience by reporting on program modifi-
cation suggestions. Such suggestions include, but are not limited to, refactorings which alter
the program structurally without altering it semantically [15] or code completions based on the
available code [16]. Static analyses are different for dynamic languages such as JavaScript since
they will approximate the behaviour as it is not computationally possible to have a sound static
analysis.

The dynamic process that a program describes can surpass the approximation capabilities of
static analysis [6]. These limitations become ever more apparent for programming languages that
are of dynamic nature, that involve dynamic typing, dynamic code generation and evaluation or
support of incomplete program definitions that are further defined during their execution. Thus,
in contrast to static analysis, a dynamic program analysis allows more in-depth verification or
enforcement of program runtime properties by augmenting the process that stems from the pro-

2.1. PROGRAM ANALYSIS 7

gram with an additional process that gathers the runtime-behaviour information of the program
during a concrete evaluation. Optionally, during the trace of the execution, the dynamic anal-
ysis could alter the program execution if the analysis deems the program execution behaviour
incorrect.

Existing dynamic analysis tools offer developers means to instrument programs to rea-
son about runtime information such as code coverage achieved by a program run for a test
suite [17, 18], tracing the memory allocation, leakage or corruption of programs [19, 20], enforc-
ing the program to uphold semantical guarantees through security analyses [21, 22], tools such
as GDB enable tracing the program execution [23] and tools like VALGRIND allow profiling
performance [19] for a multitude of programming languages.

2.1.1 Challenges for Dynamic Analyses of JavaScript

One particular language that gained interest from the research community for program analysis
is JavaScript.

JavaScript is an interpreted dynamically typed object-oriented programming language, which
has been adopted on several platforms. These platforms include web browsers such as Mozilla’s
Firefox [24] and Google’s Chrome [25] or server backend infrastructures using NodeJS [26]. With
the widespread adoption of the language, the core semantics and syntax are standardised by the
ECMA association in the ECMAScript specification [27].

As JavaScript is an interpreted language, wherever the code must be executed a JavaScript in-
terpreter is responsible for executing the statements that make up the JavaScript program. These
JavaScript interpreters are typically referred to as JavaScript execution engines. The execution
engines, which closely follow the ECMAScript standard, are then embedded in host environments
that extend upon the ECMAScript specification to allow the interaction of JavaScript programs
with their host environment. An example of a set of standardised operations that extends on
the ECMAScript specification is defined as the WHATWG Standards [28], which defines the
JavaScript web standards to interact with entities such as filesystems or interactions with the
webpage Document Object Model (DOM).

This thesis focuses on dynamic analysis for JavaScript, for which we briefly discuss the impli-
cations the language has on applying program analysis for JavaScript programs. The language
is highly dynamic in nature, making it less suitable for static analysis but a good fit for dynamic
analysis [29]. Some high-dynamic features that are extensively used include but are not limited
to [3]:

� Dynamic typing
Since JavaScript is dynamically typed, the runtime values in the program are bound to
a type. This is in contrast to statically typed languages in which it is the variables that
are bound to a type. This feature makes it hard for static analyses to reason about the
program behaviour as it further increases the search space in which the static analysis tools
look to reason about the analysis [30].

� Dynamic code generation and evaluation
JavaScript features dynamic code evaluation through the eval function, which is a built-
in function that accepts code as a string and interprets this code in the context where
the eval function is called. Whereas the use of the eval function is considered a bad
practice [31] and thus is further discouraged to use, dynamically loading or generating
new code is possible in other ways such as using the Function constructor or the use of
<script>-tags in webpages that load code from third parties over the network. This feature

8 CHAPTER 2. STATE OF THE ART AND MOTIVATION

makes it impossible for static analyses to reason about the complete program, limiting the
knowledge with which reasoning can be performed.

� Object layout changes
At runtime, JavaScript objects can be extended or deprived of properties at any point in
time. This is possible not only with static properties, which are denoted using the dot
notation such as “object.property”, but also using computed properties using the bracket
notation such as “object[compute()]”, addressing the need for code to be evaluated dynam-
ically to determine what properties may affect which objects. This is in contrast with
statically typed languages that typically require developers to declare the layout of com-
pound data structure definitions before the code is executed, like struct definitions for
the C or Rust. This dynamic feature further increases the search space for static analysis
tools.

Despite the better fit for a dynamic analysis as it manages to trace a concrete execution
overcoming the limits of static analysis, JavaScript still challenges dynamic analysis in several
aspects [3]:

� No crash philosophy
Starting and growing as a language within the context of web browsers, the language aims to
hide a program crash from the web user. Exceptions that do occur are shown at developer
consoles but do not interfere with other registered event handlers such that they remain
responsive. Furthermore, the language operations remain rather permissive in nonsensical
operations such as dividing a number by a string, yielding the value NaN (which stands for
“not a number”) rather than crashing the program. This behavior makes it difficult still
for dynamic analyses to tell apart intensional from unintentional program behaviour.

� Non-determinism
As the JavaScript interpreter is embedded in a host, the interaction between the host and
the running program introduces the main source of non-determinism. This may come from
user interaction with a webpage within browsers to additional network requests that return
results that trigger further events.

Given that dynamic analyses trace a concrete program execution, this high source of non-
determinism challenges dynamic analyses to identify the possible order of events such that
certain code is executed which may be of particular interest to the analysis at hand.

Yet, a variety of dynamic analysis tools have been built for JavaScript. These dynamic
analysis tools range from pinpointing application security issues [22, 32], to lowering the number
of code smells in code [33, 34] or addressing dynamic race detection [35]. Other dynamic analysis
tools may further uncover code that gives rise to poor performance characteristics by execution
engine unfriendly code [36, 37, 38].

2.2 Instrumentation-based solutions for Dynamic Analysis
of JavaScript programs

Within the domain of computer science, the collection of program behaviour is referred to as
the act of instrumentation, where one instruments certain aspects of the process. A metaphor
for instrumentation from electrical engineering would be the act of inserting “probes” in certain
parts of the electronic circuit to listen to signals and connect those probes to instruments to
analyze those signals.

2.2. DYNAMIC ANALYSIS INSTRUMENTATION APPROACHES 9

Similarly in the field of computer science, instrumentation is achieved through injecting
additional code in the program under instrumentation which will collect information about the
running process. The process of injecting a specific dynamic analysis into a process is automated
through the use of dynamic analysis tools, which abstract from the specific process and provide
means for developers to put the focus on the analysis.

While an analysis may be implemented for one specific purpose, we focus in this work on the
use of an instrumentation platform as a tool which supports analysis developers with the creation
of a dynamic analysis. An instrumentation platform abstracts from both a specific analysis
and a specific program by supporting the developers in both implementing the analysis and
injecting it into a program. For JavaScript programs, several approaches to implementing such
an instrumentation platform have been developed [39, 10, 7, 11, 8, 9]. Marchand de Kerchove
et al. [40] describe three main techniques for dynamic analysis instrumentation platforms for
JavaScript, runtime, source-code and meta-circular instrumentation.

We further describe each of the techniques in a dedicated subsection, while we distinguish
the runtime instrumentation technique into interpreter -based and abstract syntax tree-based
instrumentation.

2.2.1 Interpreter-Based Instrumentation

As JavaScript programs are interpreted, their runtime environment can be altered to include
instrumentation instructions [41, 42]. A JavaScript interpreter typically features a just-in-time
(JIT) compiler to gain performance, which compiles JavaScript to an intermediate representation
(IR) language for further execution.

An approach to enable the collection of runtime information would be to modify the inter-
preter to include additional operations during the execution of the JIT-compiled IR language.
This approach, however, comes with certain challenges for the instrumentation developer.

First, it requires a solid understanding of the inner workings of the interpreter to avoid the
violation of JavaScript semantics. Second, this modification requires much engineering effort as
the JavaScript interpreters are often large and complex software projects as they attempt to
remain faithful to the JavaScript semantics defined by the ECMAScript standards. In addition
to its faithfulness, the interpreters tend to include several additional software components to op-
timize the interpretation of the JavaScript programs to maximize the execution performance of
the input program for the host, such as the aforementioned JIT compiler. Third, the JavaScript
language follows an ever-growing language specification thus requiring the instrumentation plat-
form developers to adopt the instrumentation components to the evolving execution engine. And
fourth, an additional disadvantage of implementing instrumentation directly in the interpreter
is that this restricts the deployment of the instrumentation exclusively to where the engine can
be deployed.

On the other hand, this approach comes with the advantage that the instrumentation executes
at the level of the interpreter. This benefits the instrumentation in more easily accessing the
available interpretation information.

2.2.2 Abstract syntax Tree (AST) Instrumentation

Abstract syntax tree instrumentation is the technique of performing modifications to the program
abstract syntax tree (AST). The AST is a tree-like representation of the input program, which
is then passed on to a component in the interpreter that further interprets it. We consider
AST instrumentation as a second instrumentation technique which also takes place within the
JavaScript interpreter.

10 CHAPTER 2. STATE OF THE ART AND MOTIVATION

A well-known AST-based instrumentation platform for JavaScript is NodeProf [11]. Their
implementation is built on top of Graal.JS [43], a JavaScript interpreter designed to run on the
GraalVM [44] language runtime. They rely on the GraalVM high-performance optimizations for
the AST interpretation by performing partial evaluation on the AST nodes by specializing them
for runtime assumptions, which for invalid specializations is deoptimized [45]. NodeProf uses the
infrastructure of GraalJS to extend the AST with events that perform the analysis by wrapping
the nodes with hooks to the analysis instructions. By doing so NodeProf is leveraging the efforts
that further optimize the AST nodes during their execution resulting in high-performance benefits
while reasoning about JavaScript statements rather than requiring extending the interpreter and
maintaining the original program structure.

This brings the additional benefit that the input program remains more easily separated from
the analysis, and as such, we say that the analysis is transparent to the program.

By design of the polyglot runtime of the GraalVM interpreter on top of which GraalJS is
built, the analysis developer can express their analysis in either JavaScript or Java, the host
language for the JavaScript execution engine. As far as we can determine, NodeProf cannot be
used for client-side JavaScript code.

2.2.3 Source Code Instrumentation

Source code instrumentation systematically rewrites the input program its source code to trans-
form every single code location with an event of interest, into a function call that invokes the
analysis with the respective properties of that event while maintaining equal semantics of the
input program.

Examples of such source code rewriting instrumentation platforms are Jalangi2 [10, 46] and
Aran [9, 12]. These platforms perform their transformation by relying on existing AST transfor-
mation tools such as Esprima [47], Acorn [48] and Escodegen [49].

From the point of the user of an instrumentation platform user, we would define an analysis
specification to be provided to the platform. For example, the dynamic analysis explained in the
introduction of this chapter had two goals. The first goal was to model the use of the call stack
by tracking the number of function applications per function. The second of its goals was to
model the relationship between the function calls, in what arguments are provided to the callee
and what results are returned to the caller.

An example of a dynamic analysis as it would be developed for Aran, an instrumentation
platform, is provided in Listing 2, which is in particular the implementation of the dynamic
analysis motivated for the input program in Listing 1. In Listing 2 the analysis comprises an
advice, specified as a JavaScript object that describes procedurally what additional operations
should take place for what particular program operations, in this case for function applications.

The analysis instructs the instrumentation platform to intercept function applications by
providing the apply trap function with a signature of four arguments, the function as a first-
class value, the this context bound to the function at call-time, the arguments and a serial
identification. The body of the apply trap declares the additional operations that are required to
take place. The expected value of the function is called through a reflective Reflect.apply call,
after which the analysis code performs additional instructions before yielding the result value and
control to the instrumentation platform. The rest of the analysis expands the objects invocations

and callResults with the number of function calls and input-output combinations respectively as
dictionaries where the keys are the function name and the values are the collected information.

The transformation output for the input program in Listing 1 where the analysis in Listing 2
hooks into function applications is partially depicted for the fibonacci function in Listing 3. The
rewritten code shows how different operations of the target program are rewritten. The top-level

2.2. DYNAMIC ANALYSIS INSTRUMENTATION APPROACHES 11

1 global.invocations = {};

2 global.callResults = {};

3

4 global.ADVICE = {

5 apply: (f, t, xs, serial) => {

6 const result = Reflect.apply(f, t, xs);

7

8 const fn = f.name;

9 invocations[fn] = (invocations[fn] || 0) + 1;

10 const callMap = callResults[fn] || {};

11 callMap[xs] = new Set([...(callMap[xs] || []), result]);

12 callResults[fn] = callMap;

13 return result;

14 },

15 };

Listing 2: An example Aran-compatible analysis specification for profiling function invocations
and tracking caching opportunities.

1 Reflect.set(

2 ADVICE.builtins["global"],

3 "fibonacci",

4 function ($n) {

5 if ($n <= 1)

6 return 1;

7 else

8 return (

9 ADVICE.apply($fibonacci, void 0, [$n - 1], 12) +

10 ADVICE.apply($fibonacci, void 0, [$n - 2], 13)

11);

12 });

Listing 3: The transformed output for the fibonacci function in Listing 1 if it were instrumented
by source code instrumentation for the analysis in Listing 2.

call to Reflect.set performs the function definition in the global scope of the "fibonacci" function.
The notable change within the function body definition is its else-branch return statement, in
which the function applications fibonacci(n-1) and fibonacci(n-2) from Listing 1 are rewritten
call into the advice-specified apply trap.

The results retrieved from the analysis are reported in Listing 4, which aligns with the
aforementioned dynamic properties of the program. The invocations dictionary shows a particular
high count of seven million applications of the function fibonacci, and the callResults dictionary
shows that for these seven million calls to the fibonacci function the arguments were within
the range [0, 30] and would benefit highly from caching the intermediate results to improve the
program performance as the bound results per concrete argument did not comprise multiple
values.

The difference between source-code instrumentation with an interpreter- or AST-based instru-
mentation is twofold. On one hand, the inclusion of the instrumentation platform and analysis
with the input program requires a transformation step in which the input program is transformed
into a representation, e.g. AST-based representation, which is then augmented, resulting in a
program with both the analysis code and its original code. Note that this step thus can take
place ahead of time. This is different from interpreter-based instrumentation as interpreter-based
instrumentation performs its instrumentation during the execution of the statements, which does
not depend on a transformation step.

12 CHAPTER 2. STATE OF THE ART AND MOTIVATION

1 {

2 invocations: { parseInt: 1, fibonacci: 7049137, get: 2, log: 2, main: 1 },

3 callResults: {

4 parseInt: { '30': Set(1) { 30 } },

5 fibonacci: {

6 '0': Set(1) { 1 }, '1': Set(1) { 1 }, '2': Set(1) { 2 },

7 '3': Set(1) { 3 }, '4': Set(1) { 5 }, '5': Set(1) { 8 },

8 '6': Set(1) { 13 }, '7': Set(1) { 21 }, '8': Set(1) { 34 },

9 '9': Set(1) { 55 }, '10': Set(1) { 89 }, '11': Set(1) { 144 },

10 '12': Set(1) { 233 }, '13': Set(1) { 377 }, '14': Set(1) { 610 },

11 '15': Set(1) { 987 }, '16': Set(1) { 1597 }, '17': Set(1) { 2584 },

12 '18': Set(1) { 4181 }, '19': Set(1) { 6765 }, '20': Set(1) { 10946 },

13 '21': Set(1) { 17711 }, '22': Set(1) { 28657 }, '23': Set(1) { 46368 },

14 '24': Set(1) { 75025 }, '25': Set(1) { 121393 }, '26': Set(1) { 196418 },

15 '27': Set(1) { 317811 }, '28': Set(1) { 514229 }, '29': Set(1) { 832040 },

16 '30': Set(1) { 1346269 }

17 },

18 get: {

19 '[object console],log,[object console]': Set(1) { [Function: log] }

20 },

21 log: {

22 'Total = 3524576': Set(1) { undefined },

23 'Fib(5) = 8': Set(1) { undefined },

24 },

25 main: { '': Set(1) { undefined } },

26 },

27 }

Listing 4: The reported results from instrumenting the program in Listing 2 with the analysis
specification from Listing 1. The conclusion can be drawn that most function invocations happen
for the function fibonacci and the results from calling the function for different values give rise
to memoization.

2.3. INSTRUMENTATION TECHNIQUES − ONE SIZE DOES NOT FIT ALL 13

On the other hand, in source code instrumentation, the analysis and instrumentation platform
both execute in the same environment. This makes it difficult to keep analysis transparent, and
it thus may compromise security. This requires careful separation of these environments for
source code instrumentation, while interpreter-based instrumentation can reason in different
environment layers by design. This environment distinction becomes even more apparent if the
interpreter is designed in a different language.

2.2.4 Meta Circular Evaluation Instrumentation

A final technique we cover is meta-circular evaluation instrumentation, in which a JavaScript
interpreter developed in JavaScript is extended with means to instrument the input program.
Marchand de Kerchove et al. [7] developed such a meta-circular interpreter, Narcissus. It has
been used to provide a meta-circular instrumentation platform [40], which has then been adopted
for prototyping analyses such as Linvail [9] or Multiple Facets for Dynamic Information Flow [50].
Other such meta-circular interpreters are Js.js [51] which is the Firefox JavaScript interpreter
that has been compiled from C++ to JavaScript using the Emscriptem compiler and the Photon
prototype interpreter [8].

The advantage of this technique is that it enables full control of the runtime with the ease
of transparency while not requiring the alteration of the JavaScript engine. The disadvantage of
Meta Circular Evaluation Instrumentation is the high incurred performance overhead [8].

2.3 Instrumentation Techniques − One Size Does Not Fit
All

The goal of an instrumentation platform is to provide instrumentation means to an analysis
developer to enable the instrumentation of the input program. With the multitude of techniques,
however, the notion of the “best-suited technique” depends on different factors. In what follows
we identified four desired characteristics, which we cover as instrumentation platform properties,
to analyse current instrumentation platform techniques.

Transparency
By default, the input program should, during its execution, remain unaware of the fact
that it is being instrumented [52, 53]. In other words, this property requires that in the
case that the input values and timing of events for a JavaScript program execution were
constant, no execution differences should appear in the presence of the analysis injected by
the instrumentation platform.

The transparency property may directly affect the correctness of the conclusions drawn
from the analysis, as the input program might misbehave if the analysis unintentionally
changes the input program semantics, which in turn would affect the conclusions drawn by
the analysis. Such an example of an incorrect conclusion would be for a malicious input
program to prevent taking the malicious path in its code if it were to suspect that it is
instrumented, effectively rendering a security analysis incorrect. Another example would
be an analysis that attempts to report bugs in the program. If in some manner the input
program would behave differently at runtime, the bug report might report on false positives,
ie. reporting on bugs that would not be able to occur if the program were uninstrumented,
or false negatives, ie. the report would fail to uncover a bug as the instrumentation prevents
the bug from occurring. Such an instrumentation platform would harm the value of the

14 CHAPTER 2. STATE OF THE ART AND MOTIVATION

analysis for the developers that try to improve their program. This type of bug, in which the
act of inspecting a bug influences the occurrence of the bug is known as a Heisenbug [54].

Note, however, that an analysis may intentionally alter the execution of the input program.
For example, a taint analysis may halt program execution when there is an unauthorized
flow of information to a sink [3].

Performance
As mentioned before, dynamic analysis incurs performance overhead since execution is
being instrumented. The choice of the instrumentation platform implementation technique
will affect the overhead there is to pay for instrumenting the target program. Such overhead
should not impact the user experience for the instrumentation platform depending on the
setting in which the analysis takes place.

Given the fact that JavaScript often tends to impact the responsiveness of a front-end
user interface, or that its event-based execution model depends on the timing of events,
a slowdown of the input program may impact the behaviour of the program, potentially
causing the aforementioned heisenbugs. This in return could hamper the information that
the analysis strives to collect. For example, with JavaScript’s event-driven nature, a variety
of applications exist that rely on the timing of events, which has been shown to lead to
applications that contain race conditions [55]. Dynamic analyses for JavaScript may then
attempt to uncover the sequence of events that leads to this race condition which would
violate the domain constraints [35, 56, 57].

Note that in this work we only focus on the performance of the instrumentation platform
itself, not on the analysis built on top.

Portability
Given the diversity of JavaScript environments, it is important that analyses are portable
across concrete execution engine implementations. Examples of JavaScript environments
range from different browsers to mobile applications or server back-end infrastructure. For
cross-environment instrumentation needs, a technique that is tied to a single environment
is then less portable, making the technique less desirable.

Expressiveness
The set of operations that the instrumentation platform exposes to the analysis developer
impacts which kind of analysis one can write on it. Whereas the analysis is in control
of what information is collected at runtime, it is the instrumentation platform that is in
control of the kind of operations from the execution runtime that is exposed to the analysis
developer. Depending on the implementation technique by the instrumentation platform,
for example on the JavaScript source code layer or through an interface provided by the
JavaScript runtime host, the information on the runtime behaviour offered to the analysis
developer will vary.

2.4 Comparing Different Instrumentation Techniques

In this section, we compare state of the art in instrumentation platforms with respect to the
different properties discussed in Section 2.3 qualitatively per property.

2.4. COMPARING DIFFERENT INSTRUMENTATION TECHNIQUES 15

1 const dynamic = prompt(); // non-deterministic string input

2 const object = {

3 [dynamic]: () => {"function body";},

4 };

5 assert(object[dynamic].toString() === '() => {"function body";}');

6 assert(object[dynamic].name === dynamic);

Listing 5: A JavaScript program where the assertions rely on a dynamically bound function
name and the function source code.

2.4.1 Transparency

Transparency is most easily achieved through techniques that perform their instrumentation on
a level of abstraction lower than the source code that is instrumented. For example, source-
to-source code transformation requires more in-depth engineering to ensure the presence of the
instrumentation and analysis remain hidden whenever the input program performs reflective
operations.

Let us show this through a concrete JavaScript program using 2 reflective operations shown
in Listing 5. The method Function.prototype.toString ensures that all user-defined functions in-
herit this method which yields its caller a textual representation of the bound function. The
property Function.prototype.name yields the function name, a property that can be assigned dy-
namically to the function object.

Overall, the program in Listing 5 retrieves a string from a non-deterministic source on line
1, after which it creates an object literal in which it binds the retrieved string dynamically to
an anonymous function on line 2. The next two assertions on lines 5 and 6 take place, one in
which a call to the anonymous function method toString should yield the string how it has been
defined, the other on that its property name should yield the dynamically bound name.

For the function properties asserted by Listing 5 and other cases, Christophe et al. [9] explain
why these assertions would be violated for their source code transformation instrumentation plat-
form Aran [12]. For the method Function.toString the function body is further transformed
by the instrumentation platform to include hooks that call the traps defined in the analysis
advice. This source code transformation results in the input program being able to expose the
function body with a single Function.toString call. For the Function.prototype.name prop-
erty Christophe et al. [9] describe that for Aran [12] this property is determined by a static
analysis, thus being unable to precompute this value statically before the program is running.
Furthermore, Sun et al. [11] continue on these limitations stating that for source code instru-
mentation an additional transparency-breaking concern is that the stack layout, accessible within
JavaScript through arguments.callee.name, is polluted with advice code.

Transparency can be achieved for the other instrumentation techniques as they operate on a
lower level of abstraction. For AST interpretation it relies on the parsed program tree, for (meta-
circular) interpreter-based instrumentation the platforms rely on the (virtualised) interpreter.
These differences allow these other techniques to more easily avoid detection in terms of the
input program and its reflective capabilities.

2.4.2 Performance

The performance of an instrumentation platform is directly related to the opportunity for op-
timization by the host execution environment, as the operations defined by the input program
should now be augmented with operations that enable the runtime analysis to monitor the execu-
tion of those operations. The instrumentation platform decides where and how these monitoring

16 CHAPTER 2. STATE OF THE ART AND MOTIVATION

operations are added, which in turn affects the performance penalty to pay.

For source code instrumentation, the performance penalty comes from the additional opera-
tions that are added during the translation phase that communicate with the analysis through
the use of callbacks. By the design of the source code transformation approach, the instrumen-
tation platform adds the analysis on the level of source code and hooks into the traps through
callbacks weaved in the input program. The performance penalty for this technique comes not
only from the additional function calls, but in turn, it results in the loss of potential optimiza-
tions performed by the JavaScript execution engine. The opportunity for the JIT-compiled code
to remain efficient may further break as the additional instrumentation operations may obstruct
constructs that give rise to efficient IR code. For example, taking back the example shown
in Listing 1, the “+” operator in the fibonacci function defined in might be optimized to directly
execute an assembly ADD instruction on two numbers as its operands. If the analysis decides to
instruct the instrumentation platform to instrument binary operations such as the use of the “+”
operator, as shown in Listing 3, it could further hinder the opportunity to inline the addition as
an assembly ADD instruction due to the pollution of binary instrumentation hooks. In addition to
the performance penalty of the additional operations, for source code transformation it is so that
the instrumentation code remains present during the whole lifetime of the JavaScript program.
Analyses implemented on top of source code instrumentation platforms for JavaScript such as
Aran and Linvail have reported slowdown factors up to three orders of magnitude [9, 36].

For the AST instrumentation, these JavaScript optimizations can remain largely in place as
the bulk of the instrumentation platform operates within the host environment. In the case of
NodeProf, it is possible to gain performance thanks to the underlying GraalVM [11]. In addition
to this, the NodeProf authors enable the analysis developer to maintain their analysis developed
in Java, which allows for further optimizations. Sun et al. [11] elaborate on NodeProf performing
2–3 orders of magnitude better than source code instrumentation platforms for JavaScript-based
analyses and another order of magnitude faster for Java-based analyses, both monitored after a
warmup period in which they let their engine reach a steady state.

For meta-circular instrumentation Marchand de Kerchove et al. [40] show that the Js.js in-
terpreter reports slowdown factors up to 4 orders of magnitude.

2.4.3 Portability

The portability property, which concerns how easily the instrumented application can adapt to
a variety of host execution environments, is determined by the nature of the instrumentation
platform host language.

As mentioned before, JavaScript input programs tend to run in different environments, which
makes it a desirable property for its instrumented counterpart to be able to run in the same
environments too. The instrumentation technique, however, comes with its own environment
requirements. For example, with interpreter-based instrumentation, the necessary adjustments
must be made to the JavaScript execution engine to make the technique possible, the same goes
for abstract syntax tree instrumentation. This would require modifications in the web browser,
possibly through a modular component system or by shipping the instrumentation platform
directly with the browser.

For the source code and meta-circular instrumentation techniques, however, it holds that
they, by their design, expect the host environment to be a JavaScript execution engine. These
approaches make it so that these techniques are by design portable.

2.4. COMPARING DIFFERENT INSTRUMENTATION TECHNIQUES 17

Meta-circular Source-code AST Interpreter
Transparency ✓ ✗ ✓ ✓

Performance slower slow fast faster
Portability ✓ ✓ ✗ ✗

Expressiveness ✓ ✗ ✓ ✓

Related work Narcissus [7], Photon [8] Aran [9], Jalangi [10] NodeProf [11] Analysis specific [41, 42]

Table 2.1: A comparison table for the different instrumentation platform properties, per row,
for different instrumentation platform techniques, per column.

2.4.4 Expressiveness

The expressiveness property quantifies the ability of the analysis developer to implement their
analysis by relying on what the instrumentation platform exposes through its API. The choice
for the instrumentation platform in what it exposes through its API is limited by the extent to
which it has access to collect the program runtime information which is inherently tied to the
level of abstraction on which the instrumentation platform is implemented.

For example, source code instrumentation platforms are required to provide solutions to pro-
gram properties that are not accessible by the default JavaScript runtime. For Aran and Jalangi
either the analysis author or the instrumentation platform is required to virtualise program prop-
erties such as the environments for shadow execution or localising analysis state per statement
through additional runtime dictionaries [9, 11]. On the contrary, NodeProf showcases they can
more easily localise analysis state at certain program points of interest [11] for the additional
analysis developer convenience. Interpreter-based instrumentation and AST instrumentation
can provide more access to all runtime information, including access to built-in operations of the
interpreter [3].

Conclusion

Table 2.1 summarizes the instrumentation platform properties with their benefits and disad-
vantages that we covered in Section 2.4. Given this table, we observe that it seems that all
instrumentation techniques fall short on one or more of these properties and that there is no
“one size fits all” approach. On one hand, AST and interpreter instrumentation impose little
overhead, are well-suited for transparency and yield high expressiveness, but they suffer from
their lack of portability making them less appealing for instrumentation that should cover a
variety of platforms. On the other, Source-code instrumentation excels in its portability, but this
seems to come mostly at the cost of suffering in all other aspects. Meta-circular instrumentation
successfully combines portability with transparency and expressiveness, but it severely suffers
from performance.

In this work, we investigate a novel instrumentation platform that aims to combine these
properties. The most challenging tradeoff between the platforms is between performance and
portability. Given the nature and uses of JavaScript, however, these are both essential for
JavaScript programs. Its interpreted nature allows for the language to remain platform agnostic,
requiring its tools that should run across different devices to adopt this flexible nature too.
As explained in Section 2.3, changes in the execution performance can impact the semantical
execution of the programs, up to the point where it can affect the responsiveness of applications
for JavaScript programs that are responsible for rendering a user interface, as such, performance

18 CHAPTER 2. STATE OF THE ART AND MOTIVATION

is also critical.

Chapter 3

BoaSpect: A portable
interpreter-based instrumentation
platform for JavaScript

This chapter introduces the reader to our approach with which we aim to implement an instru-
mentation platform that offers portability, performance, transparency and expressiveness. We
motivate our approach in Section 3.1. In Section 3.2 we discuss the architecture overview of
our implementation while explaining how an analysis developer would use our instrumentation
platform to implement an analysis. In Section 3.3 we further motivate our research design consid-
erations and our implementation design choices. Section 3.4 elaborates on the research questions
we aim to answer in the rest of this work.

3.1 Approach

In this work, we explore a novel approach to implementing an instrumentation platform for
JavaScript that is interpreter-based but overcomes the portability issues discussed in the previous
chapter by leveraging on WebAssembly [13].

WebAssembly is a binary instruction format designed for predictable and high-performing
code used as a compilation target by languages such as Rust, C and C++. By targeting
WebAssembly, we aim for a more portable approach compared to interpreter or AST instru-
mentation, which are the most suitable approaches in terms of performance, transparency and
expressiveness.

Central to our approach is the choice of a suitable JavaScript interpreter and the means of
extending this interpreter with support for instrumentation. A JavaScript interpreter developed
in JavaScript is unsuitable as its performance would be equivalent to the meta-circular instru-
mentation approach, which is known to suffer from its performance overhead. Departuring from
an AST-based interpreter approach like NodeProf is also not possible as their infrastructure is
built on top of the GraalVM which currently does not support JavaScript or WebAssembly as
its runtime environment. Table 3.1 provides an overview of existing JavaScript engines that can
compile to WebAssembly1. From this table, we build our work on the JavaScript engine Boa

1Part of the list presented in Table 3.1 comes from https://wapm.io, which is a WebAssembly package manager
for standalone programs and libraries.

19

https://wapm.io

20 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

JavaScript Engine Most relevant setting Host language

SpiderMonkey Firefox Web Browser C++

JavaScriptCore Safari Web Browser C++

QuickJS Embedding JavaScript C

Duktape Embedding JavaScript C

Boa Embedding JavaScript Rust

Table 3.1: A listing of known JavaScript engines with support to compile to WebAssembly.

because it has the potential of being performant and compiles to WebAssembly which we further
motivate in Section 3.3. We name our instrumentation platform for developing dynamic analyses
built on Boa, BoaSpect. For our approach, it is crucial that the modifications we perform do
not introduce any cross-platform-breaking changes to the project. This restriction allows one
to run the instrumentation platform within any host environment where WebAssembly can be
executed. The presence of a WebAssembly execution engine technically does not restrict our
approach exclusively to JavaScript environments, as long as the host environment contains a
WebAssembly execution engine.

This approach differs from existing meta-circular instrumentation platforms as in our ap-
proach the interpretation will not take place within the JavaScript execution engine but on
the WebAssembly execution engine. In contrast to existing AST - and interpreter -based instru-
mentation platforms, our approach maximizes portability by leveraging on WebAssembly as a
supported runtime environment for the interpreter. Furthermore, this approach differs from
source-code instrumentation in that this approach does not compile the input program into an
instrumented variant which can further add to the performance overhead, rather it performs its
instrumentation during the evaluation of the program which takes place in a host JavaScript
environment.

3.2 BoaSpect’s Architecture

The platform architecture of our approach is depicted in Figure 3.1. This figure shows the
different components that enable dynamic analysis.

BoaSpect takes as input the JavaScript program to analyse and the analysis source code is
also written in JavaScript. More concretely, the analysis is written using the Aran API, namely
an advice specification on a number of hooks the analysis requires to function.

BoaSpect, the instrumentation platform is the compilation result of the modified Boa engine.
The compilation of the instrumentation platform can target either WebAssembly to further
enhance the portability or it may target a system-level executable to execute directly on the
CPU.

Next, we further explain the technical details of our instrumentation approach, from the
perspective of how an analysis developer would interact with BoaSpect and describe the funda-
mental aspects of its API. In Chapter 4 we describe the most relevant details of BoaSpect from
the perspective of implementing the instrumentation platform.

3.2.1 Analysis API Design

BoaSpect allows the implementation of analyses at the language operation level, similar to other
dynamic analysis tools such as Jalangi and Aran. It offers analysis developers a set of trap
functions that allow them to control the execution of the input program. The behaviour of

3.2. BOASPECT’S ARCHITECTURE 21

Boa
JavaScript Interpreter

 + Instrumentation support

BoaSpect
Instrumentation platform

JavaScript analysis
advice specification

source code

JavaScript input program
source code

or

Compiles to

011000100110100
101101100001111
101011011000011
001010110111011
000100101100110
001010011011010
111110100010111

Figure 3.1: A high-level overview of the architecture of our approach in which we extend the
JavaScript engine Boa to account for support of instrumentation. The platform accepts two
JavaScript programs. One is the JavaScript input program which is the application which is
subject to a dynamic analysis. The other input program is an analysis advice specification which
is compatible with the Aran API implementing the hooks to which the interpreter will call back
to complete the instrumentation.

22 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

the dynamic analysis is expressed by overriding those functions. The collection of all these
trap functions is combined as a set of methods of an object which makes up a single advice
specification for the instrumentation platform.

We illustrate how developers can use the platform by means of a concrete analysis example
displayed in Figure 3.2. The goal of the analysis in Figure 3.2 can be considered as the basis
for a memory profiling analysis, by modelling the program call stack. To this end, we need to
intercept all function calls that take place in the input program. The analysis implementation
handles a JavaScript Array callstack as a stack data structure to push a call frame at the end of
callstack when the input program performs a function call and pops this call frame off callstack

when the input program returns from a function call. For this simplified example, we model the
information per call frame to track the function itself.

The implementation of such an analysis for BoaSpect would be implemented as shown in Fig-
ure 3.2 in the file “advice.js”. This file allows BoaSpect, upon calling the top-level anonymous
function, to retrieve an advice object which comprises the aforementioned advice specification.
An analysis developer familiar with the API of BoaSpect would be aware that only the imple-
mentation of the trap apply suffices for implementing the aforementioned analysis goal. The API
of the trap apply is that the caller will be the instrumentation platform whenever a function call
takes place for the input program. The arguments provided to this trap function are the called
function, the this context bound to the function call and the arguments passed at call-time. The
return value of the trap apply determines what value the intercepted call will evaluate to.

In the implementation of the trap apply in “advice.js” (lines 6–11), we can see that a func-
tion preApply is called (line 7), afterwards the outcome result of the intercepted function call is
computed (line 8), next the function postApply is called (line 9) and the result is returned to the
instrumentation platform. The definitions of preApply and postApply (lines 3–4) respectively grow
and shrink the modeled callstack (line 2).

The input program “input.js” defines a recursive function fibonacci (input.js, lines 1–7)
which calls itself twice inside the body. The final statement of the input program is a call to the
fibonacci function (input.js, line 9).

The figure further illustrates, with arrows, the jumps from the program under analysis to
the advice specification and back to the input program. This emph jumps that perform the
context switches are how the instrumentation platform inserts the traps. As it is important that
the instrumentation platform correctly performs the context switch from the input program to
the advice, it is equally important that the instrumentation platform correctly returns from the
advice to the input program, ie. to respect the continuation. These are generally possible in two
manners. The first is the use of reflective means to continue the evaluation of the input program
such as the implementation of Reflect.apply for apply traps. The second manner to yield control
to the instrumentation platform is to terminate the evaluation of the trap function through the
use of a return statement or the end of the function body.

With this example, we now understand how the implementation of only the apply trap suffices
to implement our analysis. More generally, with this example, we touched upon some core
concepts which we now cover in more detail.

The design of BoaSpect’s advice API enables the analysis developer to take control over
the operation within the body of the trap function. During the evaluation, upon reaching an
operation of interest the instrumentation platform now hooks into the corresponding trap. As
the evaluation now takes place within the body of the trap function, it is up until the point
where the body terminates that control flow is yielded back to the interpreter to continue with
the evaluation of the input program. Within the body of such a trap function, the analysis can
perform both introspection and intercession on the input program.

The act of introspection entails the ability to “look inside” the program. This is possible

https://tc39.es/ecma262/#sec-reflect.apply

3.2. BOASPECT’S ARCHITECTURE 23

advice.js
 01 () => {

02 let callstack = [];
03 function preApply(f) { callstack.push(f) }
04 function postApply() { callstack.pop() }
05 return ({
06 apply: (f, t, xs) => {
07 preApply(f);
08 let res = Reflect.apply(f, t, xs);
09 postApply();
10 return res;
11 },
12 });
13 }

input.js
 01 function fibonacci(n) {

02 if(n <= 1) {
03 return 1;
04 } else {
05 return fib(n-1) + fib(n-2);
06 }
07 }
08
09 fib(10);
10
11
12
13

08
09

Key

xyz.js

1 console.log("foo");
2 bar = 42;
3 globalThis.bazz();

JavaScript programContext switch from
advice to input

Context switch from
input to advice

Figure 3.2: An example input program “input.js” is subject to a dynamic analysis specified by
the “advice.js” file. The blue dashed arrows show the control flow jumps the instrumentation
platform needs to perform from the input program to the advice. The purple dotted arrows show
the control flow jumps the instrumentation platform needs to perform from the advice to the
input program.

24 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

through the ability to read from the values passed on to the trap function. For the example
analysis implementation in Figure 3.2 this concerns the passed arguments to the call trap which
can be kept in the analysis for further inspection.

The act of intercession entails the ability to alter the behaviour of the program. This is
achieved through the design of the API, in which the return values of the trap function are often
used as the result of the operation that is replaced with a call to the trap. Other possibilities
are for the analysis to write additional properties to the values passed to the trap functions
through call-by-reference, such as an object which can then be augmented with additional analysis
properties. Not only are the trap functions capable of computing the expected outcome for the
operations that are instrumented, the functions are required to perform these operations, as the
control in this manner is passed from the interpreter to the analysis.

To enable a transparent analysis, the semantics of the input program should remain unaltered,
making it a requirement to be able to compute the correct return value. Computing the correct
return value requires a reflective framework or reflective means by the language that enable
the analysis to “return back” to the level of the input program. For the example analysis
implementation in Figure 3.2 the act of intercession by the analysis is possible through modifying
the passed arguments to the call trap or returning values different from the excepted function call
result. Transparency for the example analysis implementation in Figure 3.2 is achieved through
returning the expected value through a call to Reflect.apply.

It is by wrapping the computation of these reflective operations with additional before or
after qualifiers that the analysis can further introduce aspects such as preconditions or postcon-
ditions, depending on the requirements of the analysis. These preconditions and postconditions
would represent requirements that must hold whenever the operations of the input program are
performed.

As we aim for BoaSpect to be compatible with the API as specified by Aran, we thus more
specifically mean to accept advice objects as analysis specifications. These advice objects can
then be interpreted by BoaSpect to know which operations are of interest for the analysis. This
compatibility requires BoaSpect to conform with both the naming convention decided by Aran
and the signature of the corresponding trap functions. However, as the advice API of Aran
as of July 2022 specifies a set of 26 trap functions the analysis developer can implement, we
target a subset of those that serve as an entry point for defining a set of analyses to further
evaluate BoaSpect as an instrumentation platform for this work. The subset of Aran-compatible
trap functions that BoaSpect supports is summarized in Table 3.2 and further elaborated upon
below. All traps enable intercession both by providing the values directly from the input program
and returning them directly to the input program. The details of each trap function are further
elaborated upon below.

call: The call trap defines the operations that should take place whenever a function is called
at the level of the input program. The signature of this function follows the ECMAScript
specification of the Reflect.apply method, which accepts three arguments. The actual pa-
rameters passed to the trap function are, from left to right, the function itself, the this
value which refers to the context bound to the function, and an array containing the ar-
guments passed to the called function. As this trap function should return the result of
the input program call itself, an analysis which does not alter the return values from the
function call could rely on the implementation of Reflect.apply to correctly yield expected
value.

get: The get trap is invoked whenever a property of an object at the level of the input pro-
gram is being accessed. The signature of the function consists of the object as the first
argument and the property as the second. The type of the second argument would be

https://tc39.es/ecma262/#sec-reflect.apply
https://tc39.es/ecma262/#sec-reflect.apply

3.2. BOASPECT’S ARCHITECTURE 25

Trap name Trap signature JavaScript example Instrumentation

call (function, this, arguments) fibonacci(1) call(fibonacci, this, [1])

get (object, key) human.name get(human, "name")

set (object, key, value) human.name = "John" set(human, "name", "John")

write (value, variable) name = "John"; write("John", "name")

read (value, variable) name; read("John", "name")

binary (operator, left, right) 1 + 2; binary("+", 1, 2)

unary (operator, operand) !true; unary("!", true)

primitive (value) 1; primitive(1)

toPrimitive (value, hint) -human; toPrimitive(human, "number")

Table 3.2: An overview of the trap functions supported by BoaSpect which can be defined by the
analysis developer. The instrumentation column showcases the semantics of the call performed
by the instrumentation platform applied to the sample statement in the JavaScript example
column. The bottom row states the trap function toPrimitive which is not supported by Aran.

either a string for static property access using the dot notation or the dynamic value that
is passed for dynamic property access using dynamic property access. In a transparent
analysis implementation, the return value of this trap function will result in the value read
by the accessing operation, thus the analysis programmer should rely on the use of the
implementation of Reflect.get to correctly yield expected value.

set: Similarly to the setup for the get trap, the set trap is called whenever the input program
modifies the value of an object property. The signature consists, next to the object and
the property also of the value being set to the property. The analysis should include a call
to the implementation of Reflect.get for correctly falling back to interpretation at the level
of the input program.

write: The write trap is called whenever the input program writes a value to a variable. The
signature consists of the value being set and the variable being written to, as a string. The
return value of the trap function decides what value is assigned to the variable.

read: The read trap is invoked when the input program reads a variable. Similar to the write

trap, the signature of the read trap consists of the value being read and the corresponding
variable represented as a string. The return value of the trap function decides what value
is read as a result of the read statement.

binary: The binary trap is called whenever the input program performs a binary operation on
two operands. The set of JavaScript binary operators includes, but is not limited to,
“+”, “-”, “/”, “*”, “%”, “**”, “&”, “|”, “^”, “<<”, “>>”, “>>>”, “==”, “!=”, “===”,
“!==”, “>”, “>=”, “<”, “<=”, “in”, and “instanceof”. Since the operators are no first-
class values in JavaScript, the signature consists of a string representation of the operator
and the operands. As no reflective operation exists within JavaScript to perform binary
operations, the platform addresses these shortcomings by providing means to perform the
input program level binary operation. Concretely, this entails that the platform provides an
interface for the analysis developer to hook into for computing the result of the operation
that is intercepted at the level of the input program. The design of the interaction between
the advice and the instrumentation platform with this trap enables the analysis developer to
perform intercession as they are in control of the resulting value from the binary operation
through the return value of the trap function.

https://tc39.es/ecma262/#sec-reflect.get
https://tc39.es/ecma262/#sec-reflect.get

26 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

unary: Similar to the binary trap, the unary trap is called whenever the input program performs a
unary operator on an operand. The signature consists of the string representation of the
operator and the operand. Similar to the requirements of trapping the binary operations,
the platform hosts the means of performing the unary operation at the level of the input
program.

primitive: The primitive trap is called whenever the input program creates a primitive value. This is
one of the following values: undefined, null, true, false, NaN, a number, positive or negative
infinity or a literal such as a string or a BigInt. The signature consists of the value being
created. The return value of the trap enables the analysis to wrap the creation of primitive
values before they are available to the input program.

toPrimitive: The toPrimitive trap is called whenever the input program tries to convert an object to
a primitive value through the ECMAScript operation ToPrimitive. This operation is a
JavaScript abstract operation, which is an operation happening at the level of the inter-
preter. The signature of this operation is based on the signature of the operation ToPrim-
itive. The first argument is the value that is being converted to a primitive value, and the
second is a hint at the prefered type of the conversion, being one of “string”, “number”
or “default”. The return value of the trap function will determine the evaluation of the
ToPrimitive operation.

3.2.2 Supporting the Trap toPrimitive

We also included a novel trap function toPrimitive that BoaSpect supports which is not supported
by Aran. In this section we further explain by means of a use case how the trap function
toPrimitive can be useful.

The trap function is called whenever the execution of the input program triggers the EC-
MAScript operation ToPrimitive. This operation is one of ECMAScript’s abstract operations,
therefore, it cannot be invoked at the level of source code but are exclusive for use within the
interpreter.

The abstract operation toPrimitive is called by the interpreter when it needs to convert a
value to a primitive value. The signature of the abstract operation, and our corresponding trap
function, consists of two arguments. The first is the value that is being converted, the second is
a hint to which primtive type the first argument should be converted, which is either "string",
"number" or "default".

For example the JavaScript code “42 - "0"” will call ToPrimitive with the value "0" and the
hint "number" in an attempt to convert "0" to a number to proceed with the subtraction.

Despite that only the interpreter can call the abstract operation ToPrimitive, JavaScript de-
velopers can assign a function to the property Symbol.toPrimitive for an object, which ToPrimitive
will call to convert that object to a primitive value. The bound function should then follow the
same signature as the abstract operation ToPrimitive and the return value should either be a
primitive value, enabling developers to override this conversion with a custom implementation.

We argue that the overriding implementation of ToPrimitive should not perform any side
effects. Not only does the default behaviour of ToPrimitive not perform any side effects, but
overall the input program developer cannot tell when calls to ToPrimitive. Calls to ToPrimitive
can be performed also by the host environment, such as web browsers that attempt to display a
value on the screen will call ToPrimitive with the hint "string".

Implementing Symbol.toPrimitive as a function with side effects, however, might indicate a
bad coding practice or a malicious program. To this end, Brown et al. [58] demonstrate how an

https://tc39.es/ecma262/#sec-toprimitive
https://tc39.es/ecma262/#sec-toprimitive
https://tc39.es/ecma262/#sec-toprimitive
https://tc39.es/ecma262/#sec-toprimitive

3.2. BOASPECT’S ARCHITECTURE 27

1 /* File: node/lib/buffer.js */

2 function fill(val, start, end) {

3 // ...

4 // bound checks

5 if (start < 0 || end > this.length)

6 throw new RangeError("Out of range index");

7 if (end <= start)

8 return this;

9 // calls binding code

10 binding.fill(this, val, start)

11 }

Listing 6: The JavaScript implementation of the Buffer library of Node version 6.5.

1 /* File: node/src/node_buffer.cc */

2 void Fill(const FunctionCallbackInfo<Value>& args) {

3 size_t start = args[2]->Uint32Value();

4 size_t end = args[3]->Uint32Value();

5 size_t fill_length = end - start;

6 // ...

7 CHECK(fill_length + start <= ts_obj_length);

8 if (Buffer::HasInstance(args[1])) {

9 SPREAD_ARG(args[1], fill_obj);

10 str_length = fill_obj_length;

11 memcpy(ts_obj_data + start, fill_obj_data,

12 MIN(str_length, fill_length));

13 // ...

14 }

15 }

Listing 7: The C++ implementation of the Buffer library of Node version 6.5.

attacker implements Symbol.toPrimitive to exploit a vulnerability present in the program listen
in Listing 6.

The program in Listing 6 shows the JavaScript code of the Buffer library that is shipped with
NodeJS 6.5.0 (released in August of 2016). The Buffer library in JavaScript enables handling
allocated buffers in memory and Listing 6 lists the implementation of the method fill. This
method enables to copy the contents of the first argument to the buffer, starting at the index
start until the index of end. The code performs bound checks on the indices (lines 5 and 7) and
then calls the bound fill method on the host to proceed with the memory copy operation (line
10).

The C++ implementation to perform the memory copy in the host is presented in Listing 7.
This Fill function retrieves the indices and converts them to unsigned integers which will call
ToPrimitive (lines 3–4). The implementation then computes the length of when will be copied
(line 5), checks the write is within the allocated size (line 7) and then proceeds with the memory
copy (lines 8–13).

An example malicious input program is presented in Listing 8. Here, after buffer allocation
(line 1) a call to fill takes place with a "payload", the start-index and the end index 1. The
call to fill (Listing 8, line 12) will first perform the JavaScript bound checks in Listing 7. The
bound checks will call ToPrimitive to convert the start-value to a number, which ends up calling
the user-defined behaviour of ToPrimitive implemented in Listing 8. The first bound check will
update a local counter and yield a benign value of 0 (Listing 8 lines 6–7). The second bound
check and successive calls to ToPrimitive for the start value will yield -1. Within the host, the

28 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

1 /* File: attack.js */

2 const buf = Buffer.alloc(1);

3 let ctr = 0;

4 const start = {

5 [Symbol.toPrimitive]: (_hint) => {

6 if (ctr == 0) // evade the check in lib/buffer.js

7 return ctr++;

8 else // perform attack

9 return -1;

10 }

11 };

12 buf.fill("payload", start, 1);

Listing 8: The malicious input program that bypasses both JavaScript bound-checks in Listing 6
and the host bound-checks in Listing 7.

negative value for an unsigned integer results in a very large value for start. This addition with
the fill_length will become less than the ts_obj_length which makes the check pass, resulting in
the malicious program deciding with the negative value where in memory will be written [58].

To prevent such ill-formed behaviour, we developed a dynamic analysis in which we mon-
itor the program behaviour with respect to calls to ToPrimitive and attempt to prevent such
behaviour. The analysis is shown in Listing 9. The analysis validates two conditions whenever
ToPrimitive is called.

First, it validates that the layout of the object at hand does not change during the call to
ToPrimitive. We do this by comparing the hash of the object before and after the computation
of the intercepted ToPrimitive (lines 13–16).

Second, we validate that the combination of the same hint and the same object hash yields
the same result. For the first occurrence per combination, we just store and then return the
result, as we have no prior results to compare this occurrence to (lines 19–24). For hint-hash
combinations that have occurred before, we compare if the current outcome matches prior ones
(lines 26–28). If it does not, we yield the expected prior outcome and output a warning (lines
29–30).

This analysis successfully prevents the attack of the input program in Listing 8 as the second
validation returns the result of the first computation, which initially was 1.

3.3 Research Design Considerations

We now discuss design choices and considerations of our approach.
Overall, we designed BoaSpect such that it allows the analysis developer to specify an analysis

compatible with the Aran API. The choice for compatibility with the Aran API is twofold. First,
this API has proven to serve as a sufficient basis in terms of expressiveness for implementing a
variety of analyses, thus allowing developed analyses on Aran to run on our approach with little
to no required modification. Second, this allows us to port existing analyses from Aran which
we then use for further testing and benchmarking to validate and evaluate our approach.

Our choice for selecting Boa to build our work on is threefold. First, the implementation
language of Boa is Rust. Rust servers as a systems programming language executing at high speed
with a minimal runtime, yet offering a high-level language design that aims to be memory safe
and guarantees thread safety. Second, Boa is actively maintained by a community of developers
that from the start aim to make Boa WebAssembly compatible, serving as a decent entry-level
interpreter to extend with the support of instrumentation. Efforts are put in place to make the

3.3. RESEARCH DESIGN CONSIDERATIONS 29

1 (BoaHooks) => {

2 // value -> hint -> hash -> result

3 // Map<object, Map<string, <Map<string, primitive>>>>

4 let primitive_states = new Map();

5 let hash = JSON.stringify /* better would be deep-conversion */ ;

6 return {

7 toPrimitive: ($value, $hint) => {

8 console.log($hint);

9 if (typeof $value !== "object")

10 return BoaHooks.toPrimitive($value, $hint);

11

12 // 1. verify against side-effects on object properties before and after the call

13 const object_hash = hash($value);

14 const res = BoaHooks.toPrimitive($value, $hint);

15 if (object_hash !== hash($value))

16 console.warn(`ANOMALY DETECTED - case 1`);

17

18 // 2. verify behaviour of call to to_primitive remains constant given object properties

19 if (!primitive_states.has($value) ||

20 !primitive_states.get($value).has($hint) ||

21 !primitive_states.get($value).get($hint).has(object_hash)) {

22 // ... code to install first time result for object layout left out ...

23 return res;

24 }

25

26 const previousResult = primitive_states.get($value).get($hint).get(object_hash);

27 if (previousResult === res)

28 return res;

29 console.warn(`ANOMALY DETECTED - case 2`);

30 return previousResult;

31 },

32 }

33 }

Listing 9: The analysis implementation using the toPrimitive trap to uncover unconventional or
malicious use of overriding the behaviour of the abstract operation ToPrimitive.

30 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

engine fully ECMAScript compatible. To serve as an indication of the ECMAScript conformance,
the latest Boa version as of August 2022, version 0.15, has conformance of 62.26% with the
Test262 test suite. In comparison, both V8 and Spidermonkey achieve 100% conformance2. The
Test262 test suite serves as a conformance test suite with the ECMAScript standards. Third,
we chose Boa as the engine aims to tackle the ’real-world’ approach of including optimization
components such as a JIT-compiler to appeal as a choice of an interpreter in terms of execution
performance. This makes the engine a suitable approach to gaining insights in terms of how
optimizations could further coexist with instrumentation.

For our approach, we stand by the design choice of keeping the language of the input pro-
gram and the analysis the same, facilitating the need for investigating the program behaviour
of a JavaScript program through instrumenting it with platform support that understands a
JavaScript analysis. Not only does this enable the analysis developer to more easily understand
the analysis if they were familiar with the input programs under analysis, but it also enables the
programmer to reason within the same programming paradigm the base-level language provides.
This prevents overcomplication as the meta-properties of the interpreter are not required to be
known by the analysis developer before a single safe analysis can be developed. This approach
forces the burden on the instrumentation platform developer of providing clear interfaces to the
analysis developer for meta-operations at the interpreter level within the same language abstrac-
tion as the input program. This is more desirable than forcing the burden onto the analysis
developer of becoming familiar with the internals of the interpreter design that is typically hid-
den from JavaScript, or the language enforcements at the abstraction level of the interpreter.
This approach is inspired by the work on reflective language design in Smalltalk and Lisp.

As explained before in Section 2.2.2, NodeProf extends the GraalJS JavaScript execution
engine that is built using the truffle language framework to run on top of the GraalVM. To this
end, we investigated if it was possible to make NodeProf portable to determine if GraalVM can
run within a JavaScript environment. From our findings we could not find an approach in time
to make this possible, thus we decided to look for an alternative approach. While technically it
should be possible to compile the GraalVM project using the GraalVM native image component
as a standalone binary, its compilation pipeline does not yet target WebAssembly.

3.3.1 Safety

From the perspective of the instrumentation platform designer, its implementation could affect
the security of the platform in which the interpreter is hosted if it were improperly implemented.
With our approach the improvements regarding safety are twofold.

First, the WebAssembly runtime environment serves as an isolated sandboxing environment.
An approach to implement an interpreter -based instrumentation platform could have been to
further modify an existing JavaScript interpreter such as V8 or SpiderMonkey aimed at running
it on top of the CPU directly. The V8 engine contains over 1.35 million lines of code as of
version 10.6.95, which should give a rough estimation of the size and related complexity of these
execution engines that serve the dominating web browsers. The required modifications, more so
for a developer unfamiliar with one of the projects, could introduce severe bugs or insecurities that
could serve as entry points for exploitation if these engines were run in a sensitive environment.
For extensions, to V8 or SpiderMonkey an additional attack surface would be the potential
vulnerabilities the instrumentation platform might introduce, for Boa running in WebAssembly
however, an additional layer of security is achieved by the safety guarantees of the WebAssembly
runtime.

2http://kangax.github.io/compat-table/esintl/

http://kangax.github.io/compat-table/esintl/

3.4. RESEARCH QUESTIONS 31

Second, the host language serves as an additional guarantee for a specific set of vulnerabilities,
and memory leaks. Current engines such as V8 and SpiderMonkey are implemented in C++, a
language which requires manual memory management. While this may increase the performance,
it comes at the cost of often being the source of bugs and vulnerabilities. Boa its implementation
language is Rust, which enforces memory safety through a verification step by the borrow checker
during compilation, further minimizing the attack vector.

3.4 Research Questions

To the best of our knowledge, we are the first to provide an interpreter -level instrumentation
platform for JavaScript. In implementing this architecture, there are a number of challenges that
need to be solved which we formulate in a set of research questions.

RQ1. How can one extend a JavaScript interpreter to provide an instrumentation interface on
which others can build an analysis?
This research question aims to explore whether it is feasible to take an existing JavaScript
interpreter and identify the appropriate places where to control the execution of the appli-
cation and call the trap functions defined for the Aran instrumentation interface.

RQ2. What is the execution overhead for interpreter-based instrumentation using the Boa inter-
preter for JavaScript?
Since the instrumentation adds overhead to the runtime execution, we aim to quantify how
much is this for analyses ranging from an empty analysis that does not instrument the
application to analyses that trace every supported trap function. The quantification of the
overhead of the instrumentation platform is investigated by this research question.

RQ3. Does the overhead of portable interpreter-based instrumentation outweigh the overhead of
source-code instrumentation?
Not only it is important to determine the overhead of the platform, but also how it com-
pares with respect to related work. In this case, we aim to compare to a source code
instrumentation because it offers a portable instrumentation approach that BoaSpect aims
to offer too. We formulate this research question to address this matter.

RQ4. What benefits arise from interpreter-based instrumentation in terms of expressiveness com-
pared to a source code-based solution?
In this work, we start by providing an API to analysis developers compatible with the API
of the Aran platform. This research question aims to investigate if an interpreter-based
instrumentation backend can not only support the same analysis as an existing source-
code-based one but enable new ones. Thus we aim to study the impact and consequences
in terms of expressiveness most notably compared to Aran.

Conclusion

This chapter introduced our approach to implement an instrumentation platform that combines
portability with performance, transparency and expressiveness. To this end, we implement our
instrumentation platform at the level of the interpreter while providing the option to compile our
implementation to WebAssembly. We further motivated how our extension to the instrumen-
tation interface with the toPrimitive allows for implementing analyses that uncover potentially
ill-formed applications.

32 CHAPTER 3. PORTABLE INTERPRETER-BASED INSTRUMENTATION

Chapter 4

BoaSpect’s implementation

This chapter covers the implementation of BoaSpect to include instrumentation support at the
level of the interpreter as described in Section 3.1. We start by giving an architectural overview
of Boa in Section 4.1 to give some insights into its components. Afterwards, we cover the changes
applied to Boa’s execution engine to implement BoaSpect in Section 4.2.

4.1 Architectural Overview of Boa

Boa is an open-source implementation of a JavaScript execution engine [1]. The project is devel-
oped as a Rust library for embedding the JavaScript engine in Rust applications. Additionally,
the authors of Boa provide a command-line interface (CLI) for users to interact with Boa as a
standalone JavaScript interpreter accessible from a command line.

Figure 4.1 presents Boa’s high-level pipeline for evaluating a JavaScript program, together
with an example input program and how it changes throughout the pipeline. The pipeline follows
the common interpreter design which approximately consists of a lexer, parser, bytecode compiler
and bytecode interpreter [59]. The lexer tokenizes the JavaScript source code into a sequence
of tokens. For the example program “foo("bar"); 1+2;” listed in Figure 4.1 it is shown that
this is tokenized into a sequence of 9 tokens. The parser parses the produced tokens into an
abstract syntax tree. The example shows the output abstract syntax tree of 9 nodes, of which
the root “program” represents the entry point of the program. The bytecode compiler compiles
the abstract syntax tree into Boa-specific bytecode. The resulting bytecode is finally passed onto
the bytecode interpreter which interprets it until the interpreter either terminates execution and
returns the result of the computation or prematurely throws a JavaScript exception.

4.1.1 Running JavaScript Programs Using Boa

To evaluate a JavaScript program when including Boa as a library, the developer must firstly
instantiate a Rust Context, which is Boa’s implementation of the ECMAScript Execution Con-
text. By relying on the default function implemented for the Context type as it implements the
Default trait1, one can instantiate a new context which will initialise among other aspects the
global environment. Then, the developer can call the eval function on this Context to evaluate a
JavaScript program.

A simplified implementation of the eval function is presented in Listing 10, which is the
implementation of the pipeline shown in Figure 4.1. The code distinctly lists the different pipeline

1https://doc.rust-lang.org/std/default/trait.Default.html

33

https://tc39.es/ecma262/#running-execution-context
https://tc39.es/ecma262/#running-execution-context
https://doc.rust-lang.org/std/default/trait.Default.html

34 CHAPTER 4. BOASPECT’S IMPLEMENTATION

 foo("bar"); 1 + 2;

GetName
PushUndefined
Swap
PushLiteral
Call
Pop
PushOne
PushInt8
Add

'foo'

"bar"
1

2

JavaScript
Source Code

Lexer

Tokens

Parser

Abstract
Syntax Tree

Boa Bytecode
 Compiler

Boa Bytecode

Boa Bytecode
Interpreter

Source-code instrumentation AST instrumentation Interpreter-based
instrumentation

Boa component

Code representation

Resulting
JsValue

1 + 2 ;foo ("bar") ;

3

program

call

expression arguments

binary +

constant 1 constant 2

identifier foo string "bar"

Figure 4.1: The Boa interpreter pipeline [1]. The pipeline showcases the process from input
JavaScript source code to an output JavaScript value which is the result of its evaluation. The
grey highlighted areas further showcase the possible points of introducing the additional opera-
tions to make instrumentation possible.

1 impl Context {

2 pub fn eval<S>(&mut self, src: S) -> JsResult<JsValue>

3 where

4 S: AsRef<[u8]>,

5 {

6 let parsing_result = Parser::new(src.as_ref())

7 .parse_all(self)

8 .map_err(|e| e.to_string());

9

10 let statement_list = match parsing_result {

11 Ok(statement_list) => statement_list,

12 Err(e) => return self.throw_syntax_error(e),

13 };

14

15 let code_block = self.compile(&statement_list)?;

16 let result = self.execute(code_block);

17

18 result

19 }

20 }

Listing 10: The function eval which corresponds with the evaluation pipeline laid out in Figure 4.1
which interprets the JavaScript source code as a string reference and yields the evaluation result
as a Rust JsValue.

4.1. ARCHITECTURAL OVERVIEW OF BOA 35

stages earlier discussed as one procedure. The JavaScript source code for execution is passed
to eval as a string reference on lines 2–3 which is parsed into an abstract syntax tree on lines
6–8. For an unsuccessful tree-parse, the engine will throw a syntax error on lines 10–13. For
a successful tree-parse, the output tree is compiled into the bytecode representation on line 15.
This bytecode is then interpreted on line 16, after which the result is returned to the caller of
eval.

4.1.2 Boa’s Bytecode Interpreter

Because our approach primarily relies on changes to the bytecode interpreter, it is important to
cover how the bytecode interpreter works. The interpreter executes on the bytecode as a stack-
based virtual machine [60]. This entails that the interpretation pushes intermediate results of
the computation on a stack while executing the bytecode. The values handled by this stack are
an instance of the Rust JsValue type. This JsValue type corresponds with a JavaScript runtime
value which is an instance of Null, Undefined, Boolean, String, Rational, Integer, BigInt, Object, or
Symbol.

The bytecode interpreter receives its bytecode from the bytecode compiler as a CodeBlock. A
CodeBlock is essentially a continuous buffer filled with opcodes and operands. As Figure 4.1 il-
lustrates for the example program “foo("bar"); 1 + 2”, its output is compiled into a CodeBlock

consisting of 9 opcodes, four of which have an operand. The order of execution of the bytecode
for the example program is the following:

Stack state Opcode Instruction behavior

[] Getname 'foo'
Lookup the value bound to ’foo’ in the
current environment, push result on stack

[foo] PushUndefined
Push undefined as a placeholder
for if the callee yields no return value

[foo, undefined] Swap
Swap top of stack and second element on
stack such that caller is on top of stack

[undefined, foo] PushLiteral "bar"
Push "bar" on stack as an
argument in preparation for function call

[undefined, foo, "bar"] Call 1

Perform function call for “1” argument,
this will pop the arguments and callee,
perform function call and push result on stack

[undefined, "bazz"] Pop Discard result of function call as it is unused
[undefined] PushOne Push the JavaScript value 1 on the stack
[undefined, 1] PushInt8 2 Push the JavaScript value 2 on the stack
[undefined, 1, 2] Add Add two top-most arguments of the stack, push result
[undefined, 3] end of CodeBlock, return to caller

Listing 11 shows the implementatio of execute_instruction, which executes individual opcodes.
This function reads the current opcode by dereferencing its current program counter on the
current call frame on lines 4–6. After the current opcode has been read, execute_instruction

increments the program counter by one in preparation for executing the next opcode. The next
opcode is executed after handling the current instruction, which is performed by repeatedly
calling execute_instruction until the program counter reaches the end of the code block. The
function execute_instruction further matches the read opcode against the known enumeration of
opcodes on lines 11–20. As shown in the example program in Figure 4.1 the JavaScript “+”
compiles to the Opcode::Add opcode. The implementation to execute Opcode::Add is visible on lines
14–17. This implementation pops both the left and right operand from the stack on lines 14–15.
Next, the Rust add function is called for the left operand, passing both a reference to the right
operand and the current context on line 16. The result of the call to add is pushed on the stack

36 CHAPTER 4. BOASPECT’S IMPLEMENTATION

1 impl Context {

2 fn execute_instruction(&mut self) -> JsResult<ShouldExit> {

3 let opcode: Opcode = {

4 let opcode = self.vm.frame().code.code[self.vm.frame().pc]

5 .try_into()

6 .expect("could not convert code at PC to opcode");

7 self.vm.frame_mut().pc += 1;

8 opcode

9 };

10

11 match opcode {

12 // ... other opcodes

13 Opcode::Add => {

14 let rhs = self.vm.pop();

15 let lhs = self.vm.pop();

16 let value = lhs.add(&rhs, self)?;

17 self.vm.push(value)

18 };

19 // ... other opcodes

20 }

21

22 Ok(ShouldExit::False)

23 }

24 }

Listing 11: A portion of the Rust source code is responsible for interpreting the opcodes that are
a result of the Boa bytecode compiler. The code illustrates how the opcode Opcode::Add further
instructs the VM to pop the operands and call the function add on the operands, which will
further call the abstract operation ApplyStringOrNumericBinaryOperator as defined by the
ECMAScript standard.

4.2. MODIFYING BOA TO INCLUDE BOASPECT 37

on line 17.
Note that the rust call to the JsValue::add function further implements the Rust implemen-

tation of appropriately adding both values. This JsValue::add function implements the abstract
operation ApplyStringOrNumericBinaryOperator as it is defined in the semantics of the EC-
MAScript standard [27]. This abstract operation further implements the polymorphic behaviour
of JavaScript’s “+” operator. This implementation is a recurring pattern, in which the bytecode
interpretation eventually performs computations on JavaScript values as they are defined by the
ECMAScript.

4.2 Modifying Boa to Include BoaSpect

In the previous section, we described step-by-step how Boa’s bytecode interpreter works. This
section describes the modifications and extensions we made to Boa, such as modifying the byte-
code interpreter in order to support the implementation of dynamic analyses. In addition to
the aforementioned features an instrumentation platform should have, portability with perfor-
mance, transparency and expressiveness, there are some requirements that need to be addressed
to make BoaSpect usable.

We will thus explain the faced challenges to enabling interpreter-based instrumentation and
our solutions to those challenges to implement BoaSpect with the desired platform properties.

The implementation of Boa’s engine component spans 325 rust files accumulating to a total
of 105 thousand lines of code, excluding the CLI- or WebAssembly-interface, but including the
scanner, lexer and the bytecode interpreter. To give the reader a sense of the required changes
to enable the instrumentation platform within Boa, the implementation of BoaSpect changed
14 of the 325 files, accumulating to a change of over 1.2 thousand lines of code (adding new or
modifying existing lines). These changes do not include code to test or benchmark BoaSpect.

The changes performed in Boa restrict themselves to the bytecode interpreter, meaning we
did not change or extend in any form the code in the lexer, parser or the bytecode compiler. This
implies that BoaSpect does not rewrite JavaScript source code, the parsed abstract syntax tree
or the generated bytecode, rather it changes the manner in which the bytecode is interpreted by
the bytecode compiler.

The rest of this section discusses the requirements of the instrumentation platform following
the motivation discussed in Section 3.1. Each of the following requirements is further discussed
in the subsections below from the perspective of the modifications and extensions applied to the
engine.

� The platform has to provide means to accept an analysis advice separate from the input
program.

� Once the instrumentation platform received the advice, it should be aware of the imple-
mented trap functions which it should correctly hook into the respective operation. We
further refer to these “points of interest” as joinpoints, a term we borrow from the do-
main of aspect-oriented programming. The current implementation of BoaSpect considers
the presence of a trap function as the advice targetting all operations corresponding to
this trap. We leave the means to define fine grain pointcuts future work, which is not a
limitation to our approach but an extension we currently did not implement.

� The instrumentation platform should correctly separate the two contexts, input program
and analysis, such that no analysis code would be instrumented. We further refer to these
contexts as the base context for the input program and the meta context for the analysis.

https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator

38 CHAPTER 4. BOASPECT’S IMPLEMENTATION

� The analysis advice itself may further rely on reflective tools provided by the platform
enabling the analysis to correctly fall back to the level of the input program.

The rest of this section covers the requirements and implementation aspects of BoaSpect.
We cover the advice initialization in Section 4.2.1, ensuring a correct context separation between
the input program and analysis in Section 4.2.2, ensuring the hooks to the trap functions are
inserted during evaluation in Section 4.2.3 and providing the analysis with the required reflective
operations in Section 4.2.4.

4.2.1 Accepting and Installing an Advice

As mentioned in Section 3.2, the first step in instrumenting the input program is to determine the
joinpoints for the analysis. It is the first requirement for BoaSpect, similar to other JavaScript
instrumentation platforms such as Aran and NodeProf, to provide an interface to accept an
advice separate from the input program.

As mentioned in Section 4.1, the Context is the entry point to instantiate the execution engine
and execute JavaScript programs. We extend the Context type with the function install_advice,
such that it can be called to install the advice in BoaSpect before the evaluation of the input
program takes place, as is motivated in Section 3.2. In doing so we allow the analysis to hook into
the fresh environment to change the environment at their will. This enables the analysis, among
other things, to set up a certain set of environment properties or modify pre-existing prototypes
provided by the default runtime. To elaborate, we cover the changes made to the Boa CLI to
account for an advice specification.

The CLI is extended to accept an optional --advice flag followed by an argument to indicate
the program should run under the presence of an analysis. The value of the argument specifies the
file path to the advice itself. The extension of the CLI is listed in Listing 12, it first instantiates
a new Context (line 5) after which the optional advice is installed (lines 8–11). Eventually, the
rest of the input program evaluation takes place (line 16). The evaluation of the input program
for this listing is left out for the sake of brevity, however, its statements are to read the input
program file contents and call the eval function presented in Listing 10 for this program. This
example showcases the required changes needed in order to extend Boa with BoaSpect. The
changes required are a single call to context.install_advice with a reference to the advice.

The implementation of context.install_advice, however, require some more detail. To install
the advice, the interpreter firstly evaluates the analysis specification (line 26), ensuring it is
callable (lines 27–29) after which it retrieves the traps (line 32) which are then installed together
with the advice itself in the Context structure (lines 33–35). By encapsulating analysis state in
the scope of the immediately invoked function as a closure, the analysis developer can further
ensure the analysis transparency.

As demonstrated in Listing 12, it is the execution Context value that holds a reference to
the advice throughout the evaluation. We chose to expand this value with a reference to the
advice as this value remains accessible throughout the entire evaluation code base, thus making
it accessible whenever hooking into the traps is required.

4.2.2 Distinguishing the Execution Context

One key distinction to be made throughout the evaluation is the execution of the input program
from the execution of the analysis program. Whenever the interpreter evaluates an operation
where instrumentation is applicable, it should jump into the defined trap function, evaluate
its body with the instrumented information and afterwards return to the continuation of the
operation. If the interpreter fails to distinguish the evaluation of analysis code from the input

4.2. MODIFYING BOA TO INCLUDE BOASPECT 39

1 // # File: CLI.rs

2 pub fn main() -> Result<(), std::io::Error> {

3 let args = Opt::parse();

4

5 let mut context = Context::default();

6

7 if let Some(path) = &args.advice {

8 let advice_buffer = read(path)?;

9 context.install_advice(advice_buffer);

10 };

11

12 /* ... rest of interpreter ... */

13

14 Ok(())

15 }

16

17 // # File: Context.rs

18 impl Context {

19 /* ... more implementations for the Context type ... */

20

21 pub fn install_advice<S>(&mut self, advice_buff: S) -> Result<(), JsValue>

22 where

23 S: AsRef<[u8]>,

24 {

25 self.instrumentation_conf.set_mode_meta();

26 let advice_callback = self.eval(advice_buff)?;

27 let advice_callback = advice_callback

28 .as_callable()

29 .ok_or(self.construct_error("Advice not callable"))?;

30 let meta_hooks = Hooks::default(self);

31 let advice = advice_callback.call(&JsValue::Null, &[meta_hooks], self)?;

32 let traps = Traps::from(&advice, self);

33 self.instrumentation_conf.install_traps(traps);

34 self.instrumentation_conf.install_advice(advice);

35 self.instrumentation_conf.set_mode_base();

36 Ok(())

37 }

38

39 /* ... more implementations for the Context type ... */

40 }

Listing 12: Parts of the Boa interpreter command line interface that were extended for instru-
mentation support. The highlighted lines show the inclusion of BoaSpect for installing an advice.
The main function illustrates the additional support for reading an analysis specifications. The
install_advice function for a Context illustrates the evaluation of the advice specification after
which the traps are extracted and references to both are kept in the Context.

40 CHAPTER 4. BOASPECT’S IMPLEMENTATION

code it would be the case that the instrumentation platform starts instrumenting the analysis
itself. Doing so, unintentionally according to the analysis, would yield incorrect and nonsensical
results. Furthermore instrumenting the analysis itself within the same context would lead to
unbound recursion if one of the operations that the advice targets is used in the advice itself.
Andreasen et al. [3] note to be cautious for unbound recursion similarly but for source code
instrumentation:

“ One of the key challenges in source code instrumentation is that the injected code
could use a library that is itself instrumented by the instrumentor. This could lead
to unbounded recursive function calls when the instrumented program is executed. ”

Doing so for Jalangi, Sen et al. [10] state that libraries used by the analysis should be loaded
in a private namespace accessible exclusively to the analysis to prevent this unbound recursion
from occurring.

For BoaSpect, so far this distinction has not yet been clarified from a technical point of view.
Our approach requires the analysis developer to provide a set of traps as JavaScript functions,
bound to the advice as is a JavaScript object. During the execution of the input program, the
instrumentation platform calls into the trap function whenever the respective operation would
be evaluated at the level of the input program. Thus, it is the function call to a trap function
that could – and should – inform the interpreter about a change in context from base to meta
or vice versa while the interpreter “walks” through the evaluation of both the input program
and the advice. For the function call to be able to inform the interpreter if the call changes the
context, it requires the function that is being called to store some form of information about
the context of the function body. This is to say, the execution of the trap functions their body
should not be instrumented. BoaSpect names this function property that is stored within a
function its “evaluation mode”, which is either EvaluationMode::Base reflecting the level of the
input program or EvaluationMode::Meta reflecting the level of the advice. Thus, during function
creation, a function should alongside its lexical scope and body also store the evaluation mode.
In turn, this requires the function to be informed in which context it is created, being either
EvaluationMode::Base or EvaluationMode::Meta. This information is passed on from the interpreter
depending on the current evaluation mode of the interpreter itself, meaning that functions that
are created within the Meta context are informed to evaluate in Meta context too and functions
created in the Base context should evaluate their body in Base context too. Indeed, from the point
of the analysis, this corresponds with the requirement that the analysis code is not subject to
being analysed itself by the same analysis.

Note the back-and-forth communication required between the interpreter and first-class func-
tion values: the interpreter informs a function at creation time in which context it is created,
and the function informs the interpreter at call time in which context it should continue its
evaluation of the body. Thus we came up with the proposed solution, throughout the evaluation
of the program the interpreter is required to keep a certain flag that tracks its execution state
which is either for the analysis or the base. This flag is stored in the creation of functions and
allows for the interpreter to decide whether or not to change its flag to analysis or base upon
calling such a function.

To elaborate further on this, Listing 13 shows the Boa implementation for JavaScript func-
tion creations and JavaScript function invocations. The listing highlights the required modifica-
tions to ensure the interpreter can distinguish both layers of its execution. The Rust function
create_function_object (line 1) partially shows how the code of the function and the environment
are stored in a Rust structure that represents a runtime function object. The modifications
on this function show how an additional evaluation_mode value is stored in the Rust structure,
which is retrieved from the interpreter at the time of creating the function through the context

4.2. MODIFYING BOA TO INCLUDE BOASPECT 41

its instrumentation configuration (line 9). The Rust function call (line 16) is called whenever
JavaScript objects are used as a call target. This function illustrates how the evaluation_mode

is retrieved from the function (lines 27, 31) which then determines the interpreter state upon
entering the body of the function (lines 43–44) which is restored after the call of the function
(line 49).

The curious reader might remark that one crucial aspect of this approach of distinguishing
the contexts has not been covered: if the interpreter informs the function at creation time of the
context to store and the function informs the interpreter at call-time of the context to restore,
where does it start? The answer to this lies in the entry point of both programs. As the interpreter
starts with the evaluation of the analysis as presented in Listing 12, it sets its evaluation mode
to Meta (line 25) before evaluating the advice such that the outer function that yields the advice
object is informed about the Meta mode and all subsequent function values that originate from
it are within this mode too. After the evaluation of the advice, the instrumentation platform
restores its evaluation mode to Base (line 35) after which regular evaluation proceeds.

Note that this approach does not prevent the analysis author from leaking values from the
analysis into the input program. It does, however, ensure that values that do leak the analysis
layer will not be instrumented as they have reached the input program layer, which is beneficial
for analyses that might want to wrap values used by the input program with values that include
analysis code which should still not be instrumented.

4.2.3 Hooking in the Operations

In addition to being capable of distinguishing the two contexts, the interpreter is still required
to decide when to hook into the operations and call one of the corresponding trap functions This
requires BoaSpect to alter the interpretation of the program to make an additional call.

In the implementation of execute_instruction, partially shown in Listing 11, we implemented
the required changes to call the binary trap instead of evaluating the base program binary expres-
sion. Rather than matching for the opcode (line 12) which will match with the included matching
arm (line 14), we want to preliminary test if the execution engine is in the EvaluationMode::Base

state (ie. at the evaluation level of the input program) and verify if the opcode matches one of
the opcodes of interest. If the bytecode interpreter would then match its current instruction with
the Opcode::Add opcode, it would decide to alter its default evaluation. The evaluation would
now perform a set of different steps of which the order is important, a recurring pattern we found
for the implementation of hooking into operations.

1. Set the evaluation mode to EvaluationMode::Meta as the operations that follow could – but
should not – trigger additional instrumentation operations.

2. Gather all required information which will be provided to the trap function, reifying the
values that are accessible to the interpreter but not available at the level of JavaScript.

3. Call into the trap function, awaiting the result. The subsequent interpretation might further
trigger compilation and opcode interpretation, but the interpreter state at the level of
EvaluationMode::Meta will prevent the advice code from being instrumented.

4. Upon receiving a result, terminate the advice-level interpretation by restoring the inter-
preter evaluation mode to EvaluationMode::Base.

5. Yield the result to the operation that was instrumented and prevent the default interpre-
tation of this operation to take place, ensuring further interpretation of the input program
can take place successfully.

42 CHAPTER 4. BOASPECT’S IMPLEMENTATION

1 pub(crate) fn create_function_object(

2 code: Gc<CodeBlock>,

3 context: &mut Context,

4) -> JsObject {

5 /* ... function object creation preparation (prototype, signature) ... */

6 let function = Function::Ordinary {

7 code,

8 environments: context.realm.environments.clone(),

9 evaluation_mode: context.instrumentation_conf.mode(),

10 };

11 /* ... function additional properties (eg. constructor) ... */

12 function

13 }

14

15 impl JsObject {

16 pub(crate) fn call(

17 &self,

18 this: &JsValue,

19 args: &[JsValue],

20 context: &mut Context,

21) -> JsResult<JsValue> {

22 let body = match self {

23 /* other function types left out: eg. built-ins */

24 Function::Ordinary {

25 code,

26 environments,

27 evaluation_mode,

28 } => FunctionBody::Ordinary {

29 code: code.clone(),

30 environments: environments.clone(),

31 evaluation_mode: evaluation_mode.clone(),

32 }

33 };

34

35 match body {

36 /* other function types left out: eg. built-ins */

37 FunctionBody::Ordinary {

38 code,

39 mut environments,

40 evaluation_mode,

41 } => {

42 /* ... call preparation (pushing function, call frame and args on the stack) ... */

43 let outer_evaluation_mode = context.instrumentation_conf.mode();

44 context.instrumentation_conf.set_mode(evaluation_mode);

45

46 let result = context.run();

47 context.vm.pop_frame().expect("must have frame");

48

49 context.instrumentation_conf.set_mode(outer_evaluation_mode);

50

51 context.realm.environments.pop();

52 Ok(result)

53 }

54 }

55 }

56 }

Listing 13: Parts of the Boa interpreter for the creation and usage of function objects. The
highlighted lines illustrate the storage and retrieval of the interpreter state which enables the
interpreter to determine at call-time for a function if it should be instrumented or not.

4.2. MODIFYING BOA TO INCLUDE BOASPECT 43

In the case of binary instrumentation, this would require us to (1) set the evaluation mode
to Meta, (2) pop the right operand rhs and the left operand lhs of the VM stack, (3) call into
the binary trap function after which we can (4) set the evaluation mode back to Base and finaly
(5) push the result on the stack rather than pushing the result of “lhs.add(&rhs, self)?” on the
stack as is the case in Listing 11 (lines 17–18).

Listing 14 shows the modifications made to the bytecode interpreter for supporting the instru-
mentation of primitive values. This shows the preconditions that take place for instrumenting
the primitive values (lines 5–17) after which the (1) evaluation mode is updated (line 18), (2)
the value is retrieved that would be pushed on the stack but (lines 19–21), (3) the call into the
primitive trap function takes place (line 22) after which (4) the evaluation mode is restored (line
26) and finaly (5) the result is pushed on the stack rather as the outcome of this operation (line
27).

This pattern of changing the interpretation context, calling into the trap and returning to
the continuation generalizes for all the trap functions instrumented by BoaSpect for Boa. The
differences between the traps mostly are with the manner in which the information available for
the interpreter but relevant for the trap function is reified to make it available for the advice. The
most notable alternative implementation is that for trapping function applications, as motivated
by our approach outlined in Section 4.2.2. The implementation of hooking into the abstract op-
eration ToPrimitive operation is similarly implemented by including the aforementioned pattern
in the Rust counterpart implementation of JsValue::to_primitive.

4.2.4 Interpreter Operation Reification

After discussing the implementation details for the instrumentation platform to accept an advice
specification, we covered how the instrumentation platform distinguishes the two contexts and
how the interpreter jumps from the base context to the meta context through calls to the trap
functions. A crucial implementation aspect, however, is to allow the analysis developer to make
the context leap from the analysis back to the input program. This is to say, implicitly the
analysis can return to the context of the input program with a return statement.

However, by the design of the API, the analysis is required to yield the result of the com-
putation it intercepts from the input program. Through the computation, the analysis must
communicate back to the interpreter that the computation thereof requires further instrumen-
tation. By the approach of BoaSpect, function bodies defined by the input program are in-
strumented as they are evaluated, thus a call to Reflect.apply will inform the interpreter of the
context switch. However, a problem arises for certain operations, such as binary or unary op-
erations when the result must be computed at the level of the base context. The signature of
binary trap functions consists of the operator, left operand and right operand: (op, l, r). If the
binary trap function receives the following bound arguments ("+", 1, 2), it might implement the
computation of the result as a switch-statement based on the operator and compute the result
as such “case "+": return l + r;”. While the result of the computation will remain correct, the
conclusion of the analysis might be incomplete, we explain now why.

The trap functions supported by BoaSpect include the trap function toPrimitive. Recall
from Section 3.2.2 that this trap supports instrumentation of the abstract operation ToPrimitive
used by the interpreter to convert values to primitives.

As such, the operation “l + r” may trigger the invocation of the toPrimitive function defined
in Boa aligning with the ECMAScript specification is one of both operands requires conversion
to a primitive JavaScript value. The issue now makes clear what happens at the level of the
interpreter when the advice would rely on its self-defined computation “case "+": return l + r;”.
As the interpreter evaluates the advice, it would encounter the Add opcode in the advice code.

https://tc39.es/ecma262/#sec-toprimitive
https://tc39.es/ecma262/#sec-toprimitive

44 CHAPTER 4. BOASPECT’S IMPLEMENTATION

1 fn execute_instruction(&mut self) -> JsResult<ShouldExit> {

2 let opcode: Opcode =

3 self.vm.frame().code.code[self.vm.frame().pc];

4

5 if let EvaluationMode::BaseEvaluation = self.instrumentation_conf.mode() {

6 match opcode {

7 // Primitive instrumentation

8 Opcode::PushUndefined

9 | Opcode::PushNull | Opcode::PushTrue | Opcode::PushFalse

10 | Opcode::PushZero | Opcode::PushOne | Opcode::PushInt8

11 | Opcode::PushInt16| Opcode::PushInt32 | Opcode::PushRational

12 | Opcode::PushNaN | Opcode::PushPositiveInfinity

13 | Opcode::PushNegativeInfinity | Opcode::PushLiteral => {

14 if let Some(traps) = &mut self.instrumentation_conf.traps {

15 let traps = traps.clone();

16 if let Some(ref trap) = traps.primitive_trap {

17 if let Some(advice) = self.instrumentation_conf.advice() {

18 self.instrumentation_conf.set_mode_meta();

19 self.vm.frame_mut().pc -= 1;

20 let _ = self.execute_instruction();

21 let value = self.vm.pop();

22 let result = self.call(trap, &advice, &[value]);

23

24 match result {

25 Ok(result) => {

26 self.instrumentation_conf.set_mode_base();

27 self.vm.push(result);

28 return Ok(ShouldExit::False);

29 }

30 Err(v) => {

31 panic!("Instrumentation: Uncaught {}", v.display());

32 }

33 }

34 }

35 }

36 }

37 }

38 /* ... match against other opcodes for instrumentation ... */

39 }

40 }

41

42 match opcode {

43 /* ... match against opcodes for regular execution ... */

44 }

45 }

Listing 14: A portion of the code present in the virtual machine component of Boa that interprets
the compiled bytecode. The highlighted lines show the inclusion of BoaSpect for instrumenting
primitive expressions. This code intercepts regular execution to collect the primitive value which
it passes to the trap function for further analysis. After the result is returned from the trap
function the result is pushed on the stack, replacing the primitive expression.

4.3. TARGETTING WEBASSEMBLY 45

This opcode would result in the interpreter performing a Rust call into the abstract operation
ApplyStringOrNumericBinaryOperator. By the definition of the standard, the abstract opera-
tion ApplyStringOrNumericBinaryOperator will in turn call the abstract operation ToPrimitive
on its operands. As these Rust calls all take place within the Meta evaluation mode, the abstract
operation ToPrimitive will not be instrumented. However, semantically, this operation should
have been instrumented as the call to ToPrimitive is unavoidable by the input program perform-
ing the binary add-operation.

This issue illustrates the need for the advice to be capable of informing the instrumentation
platform to perform the operations at the level of the input program. We provide the analysis
access to an object containing hooks into the operations that were instrumented. By calling these
hooks, the interpreter is informed to change its evaluation mode to the level of the input program,
compute the result of the operation that was intercepted, change the evaluation mode back to
the level of the analysis and proceed with the continuation of the analysis. This object with the
hooks into the interpreter is provided to the top-level anonymous function that upon evaluation
yields the advice object. For example, the “advice.js” definition would accept an additional
BoaHooks argument on line 1 in Figure 3.2. This is also visible in the function install_advice

shown in Listing 12. After evaluating the analysis function that yields the advice (lines 26–29),
the object with hooks is constructed (line 30) after which it is passed on to the analysis function
(line31).

4.3 Targetting WebAssembly

To compile BoaSpect to WebAssembly, we rely on the Wasm-pack toolchain, which is devel-
oped to compile Rust codebases to WebAssembly [61]. This toolchain enables us to write a
new Rust library in which we include BoaSpect as our sole dependency, write a single Rust
evaluate_with_advice function that accepts both an input program and input analysis as a string
and returns the evaluation result.

We then instruct Wasm-pack to export the evaluate_with_advice function from the compiled
WebAssembly module. Doing so, the output WebAssembly module for BoaSpect resulted in a 3-
megabyte file accompanied by the JavaScript bindings that support initializing the WebAssembly
module memory and passing the input programs as JavaScript strings. This WebAssembly mod-
ule can now be used within a WebAssembly-supported environment to execute and instrument
JavaScript programs.

Conclusion

This chapter discussed the implementation of Boa and the changes and extensions applied to
implement BoaSpect. The changes that enable BoaSpect to serve as an instrumentation platform
were covered next. This ranged from extending the interpreter to accept an analysis specification,
to appropriately hooking into the trap functions. Furthermore, we covered how we ensure that the
analysis does not instrument itself, and we explained the requirement that enables the analysis
to compute the expected result from the operation that was intercepted.

https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator
https://tc39.es/ecma262/#sec-applystringornumericbinaryoperator
https://tc39.es/ecma262/#sec-toprimitive
https://tc39.es/ecma262/#sec-toprimitive
https://tc39.es/ecma262/#sec-toprimitive

46 CHAPTER 4. BOASPECT’S IMPLEMENTATION

Chapter 5

Evaluation

In this chapter, our goal is to evaluate BoaSpect. We elaborate on our experimental setup in Sec-
tion 5.1. In Section 5.2 we evaluate how our modifications to Boa comply with the compatibility
with ECMAScript. Recall from Chapter 2 that one can evaluate an instrumentation platform
with respect to four different properties, which we do so in subsequent sections: transparency
in Section 5.3, performance in Section 5.4, portability in Section 5.5, and expressiveness in Sec-
tion 5.6. In Section 5.7 we answer the research questions constructed in Section 3.4 with the
conclusions drawn during the evaluation of BoaSpect.

5.1 Experimental Setup

We performed our evaluation on a server hosting 256GB of ram and an Intel® Xeon® E5-2637
v3 CPU @ 3.50GHz. The software available on the server during our evaluation was Ubuntu
20.04.4 as the operating system with Node v15.14.0. The utilised version of Boa, both with and
without modifications to implement BoaSpect, was at version 0.15.

We cover the different sets of input programs and input analyses used to perform experiments
for the rest of the evaluation next.

5.1.1 Input Programs

We first cover the different sets of input programs.

Aran/test
We use the test suite developed by the authors of Aran1 to test for the correctness of
JavaScript operations as they are being instrumented. The test suite consists of a total of
62 input programs. Each input program is built as a unit test, asserting the correctness
of a specific JavaScript operation in isolation. For example, an input program may test
if the outcome of a binary operation matches the expected result. As a whole, this set
of programs is meant to ensure that Aran does not violate the input program semantics,
rather than asserting that the analysis works as intended.

V8/webkit
We use the test suite V8/webkit2 to assess the compatibility of Boa and BoaSpect with

1https://github.com/lachrist/aran/
2https://github.com/v8/v8/

47

https://github.com/lachrist/aran/tree/master/test/target/atom
https://github.com/v8/v8/tree/main/test/webkit

48 CHAPTER 5. EVALUATION

respect to the ECMAScript semantics as means of regression tests. The test suite consists
of a total of 384 input programs in which each program tests a JavaScript feature as a unit,
accumulating to a total of 3.410 assertion statements. These test files aim to assert that the
semantics of the interpreter is correct from the point of view of the input program instead
of the interpreter state. We firstly investigated the option to make use of the test suite
test262, a test suite consisting of over 58 thousand tests covering the whole ECMAScript
specification3. However, we noticed this test suite not only ensures the evaluation of the
input program is correct but further asserts properties on the interpreter state, such as
how many objects are allocated at a program point. Because of the changes BoaSpect adds
to Boa, the interpreter state is different upon including support for instrumentation as we
alter properties of the interpreter, such that tests would fail. The V8/webkit suite follows
a more permissive approach in asserting only the outcome and behaviour of the input
program, which is in our case more adequate for evaluating BoaSpect.

Sunspider suite (version 1.0.2)
We use the Sunspider suite4 as a benchmark suite to assess the performance of our solu-
tion. The suite is designed to assess the performance and optimization capabilities of a
JavaScript interpreter. This benchmark suite originated in 2007 and has been kept up to
date over different iterations until 2011 to version 1.0.2. It consists of a total of 26 input
programs, benchmarking a variety of JavaScript features such as manipulating Dates, Strings
to performing compute-intensive arithmetic operations for the evaluation of functional or
object-oriented programs.

We investigated the use of other existing JavaScript benchmark suites such as Kraken5

(developed by Mozilla), Octane6 (developed by Google) and JetStream7 (developed by
Webkit). However, those benchmark suites are either specialized for a certain interpreter
or proved lower compatibility with Boa compared to the Sunspider suite. Furthermore, the
setup requirements of the alternative benchmark suites were unsupported out-of-the-box,
while the Sunspider suite mostly works from the start.

5.1.2 Input Analyses

We use a set of input analyses for the evaluation of BoaSpect. The analyses are the subset
of analyses used to evaluate Aran [9] which are compatible with the limited number of trap
fucntions BoaSpect currently supports. The input analyses are the following.

“empty.js”
This analysis implementation yields an advice in which no trap function is specified. Its
definition is “(_BoaHooks) => ({})”. In terms of runtime behaviour, it serves as an indication
of the performance overhead added by the instrumentation platform to the interpreter when
the instrumentation platform does not trap any operation.

“forward.js”
This analysis implementation yields an advice in which every trap function is defined to
return the computation of the expected result of the instrumented operation. In terms of
runtime behaviour, it serves as an indication of the overhead of an analysis which traps all
operations of a target program but it does not add additional analysis code.

3https://github.com/tc39/test262
4https://github.com/WebKit/WebKit
5https://wiki.mozilla.org/Kraken
6https://developers.google.com/octane/
7https://www.browserbench.org/JetStream/

https://github.com/tc39/test262
https://github.com/WebKit/WebKit/tree/main/PerformanceTests/SunSpider/tests/sunspider-1.0.2
https://wiki.mozilla.org/Kraken
https://developers.google.com/octane/
https://www.browserbench.org/JetStream/

5.2. COMPATIBILITY 49

Uninstrumented input program
Input program suite Total Success Crash Timeout
Sunspider suite (v1.0.2) 26 20 2 4
Aran/test 62 52 10 0
V8/webkit 384 335 42 7

Combined 472 407 54 11

Table 5.1: The considered input program suites to validate Boa’s compatibility with the EC-
MAScript language. Total indicates the number of input programs per suite, Success the number
of programs that Boa can execute successfully, Crash the number of programs which Boa does
not support and Timeout for the number of programs that did not terminate within our devoted
time budget per program.

For example, the definition of the apply trap function for this analysis implementation is
“apply: (f, t, args) => Reflect.apply(f, t, args)”. This will result in maximum instrumen-
tation effort as the platform will instrument every available operation that is targeted by
the advice which for this example is every available trap function aside from toPrimitive.
The instrumentation of toPrimitive-operations is left out as it would result in an unfair
comparison with the Aran platform as it is not available for Aran. We perform a separate
evaluation for this trap with the analysis implementation in “toPrimUncover.js”, explained
below.

“logging.js”
This analysis is similar to the “forward.js” analysis in that it implements every trap func-
tion, but in addition outputs to a buffer what operation took place.

For example, the definition of the apply trap function in this analysis then is
“apply: (f, t, args) => { buffer.write("apply"); return Reflect.apply(f, t, args) }”.

“profiling.js”
This analysis intercepts all the function applications and models the depth of the call stack.

“toPrimUncover.js”
This analysis implementation yields an advice in which exclusively the trap function
toPrimitive is specified. The analysis traces all ToPrimitive operations, such that objects
that are converted to a primitive value do not change their internal structure before and
after the operation. The implementation of this analysis and its motivation are discussed
in Section 3.2.2.

5.2 Compatibility

An essential part of our instrumentation platform is compatibility with the ECMAScript lan-
guage. If our instrumentation platform does not properly support a certain language feature, it
would not be possible to perform dynamic analysis on programs that use said feature. As such,
it is our goal that the extensions to Boa should comply with the ECMAScript specification as
long as the analysis is transparent.

From the perspective of the implementation, we aim to comply with the ECMAScript speci-
fication to remain transparent as long as the analysis remains transparent. How we achieve this
in the implementation is threefold. First, we achieve this through the careful insertion of the
intercepting operations. We ensure that whenever a trap function is called, the default behaviour

50 CHAPTER 5. EVALUATION

is prevented and the result from the trap function is returned while respecting the expectations
of the continuation for the interpreter. These expectations include for example the stack layout
according to the calling convention or the register state for the virtual machine interpreting the
opcodes. Second, we achieve correctness by ensuring that the provided hooks from the platform
to the analysis to compute the intercepted operation outcome are correct by providing the iden-
tical ECMAScript implementation of what is intercepted. Third, we report that the set of 991
unit tests that come with the Boa codebase all pass after the extension of BoaSpect.

Next, we cover compatibility from the perspective of the execution of input programs. The
input programs used are the combination of the programs from Aran/test, V8/webkit, and Sun-
spider suite (version 1.0.2). To evaluate per input program if BoaSpect remains compatible,
we first validate whether Boa in the first place is compatible. To this end, we verify per input
program if the program terminates under 20 minutes on Boa, the execution engine without any
instrumentation. If the test input program crashes (ie. one of the program assertions fails or
execution fails), we label it Crash. If its time budget to execute exceeds 20 minutes we label
it Timeout, otherwise we label the program Success. For Boa, from the 472 input programs
combined from the suites 407 are labelled Success. A total of 54 programs reported a Crash and
11 programs reported Timeout. Table 5.1 elaborates on the test results for Boa per input suite.

Given these input programs, we further validate that the instrumentation plat-
form BoaSpect remains compatible with ECMAScript. To this end, we conduct an experiment in
which we compare the outcome of the uninstrumented input programs with the output of their
instrumented versions after applying the set of transparent analyses {“empty.js”, “forward.js”,
“toPrimUncover.js”}. Our criteria for an “equal outcome” is determined at the level of the
interpreter. This entails that we assert the final value for all evaluations of an input program
(instrumented and uninstrumented) is the same according to the ECMAScript abstract oper-
ation IsStrictlyEqual . This abstract operation corresponds with the equality operator “===”.
Furthermore, if it were the case that intermediate values were not equal, its incorrectness would
propagate to the program end the considered input programs are augmented with assertions that
would early throw a program error for unexpected intermediate program values.

We report that for a combined total of 407 input programs for which the uninstrumented eval-
uation was executed successfully (ie. Boa reporting the label Success), all instrumented variants
report an equal program outcome except for one. The sole failed input program is “test-Literal.js”
from the Aran/test suite, which fails due to the final statement outcome being the regular ex-
pression literal “/abc/g”. Two evaluations of the literal “/abc/g” can not be equal according to
the definition of the IsStrictlyEqual operation. This is thus a false positive and we can conclude
that for the set of considered input programs our platform preserves the input program semantics
under transparent analysis.

Note that the programs that reported Crash or Timeout for Boa were not further evaluated
against BoaSpect’s ECMAScript compatibility since the applied instrumentation would not help
to fix these tests or improve the execution speed.

5.3 Evaluating Transparency

Recall from Section 2.3 that transparency is how easily the platform presence can be uncovered by
the input program. From our assertions that BoaSpect does respects the ECMAScript semantics
in Section 5.2 no test suite reports unexpected behaviour which would point out BoaSpect leaks
presence information.

We will discuss two examples in which source code instrumentation leaks information
but BoaSpect does not because it uses an interpreter-based instrumentation approach. Source-

https://tc39.es/ecma262/#sec-isstrictlyequal
https://tc39.es/ecma262/#sec-isstrictlyequal

5.3. EVALUATING TRANSPARENCY 51

1 function f (x) {

2 arguments[0] = "bar";

3 assert(x === "bar");

4 x = "qux";

5 assert(arguments[0] === "qux");

6 }

7 f("foo");

Listing 15: An example input program for which the assertions fail for the Aran instrumentation
platform but do not fail for the BoaSpect instrumentation platform.

code instrumentation techniques suffer from lack of transparency because of reflective JavaScript
operations such as Function.toString and Function.prototype.namemay uncover the source-
code transformed input program at runtime.

First, we investigate the behaviour of BoaSpect compared to Aran for the program presented
in Listing 5. This program asserts the expected output for a computed function name and the
function body. However, the implementation of Boa fails for both assertions as the computed
name of a function evaluates to undefined and the evaluation of Function.toString yields a
simplified string representation of the program rather than the full function body as a string.
From the design of BoaSpect, however, we know that the assertion for Function.toString would
not be violated as BoaSpect’s instrumentation technique does not perform any function body
rewrites. Similarly, we know that the assertion for Function.prototype.name does not require
any static analysis to determine the assigned function names which would fail for computed name
properties, which is the approach taken by Aran.

We now discuss a second input program example from Aran which we can run
on BoaSpect [12]. The input program is shown in Listing 15 and does asserts the reflective
arguments object in function bodies behaves as expected. This program defines the function f

in which the body modifies the arguments object, which is a reification of the sequence of actual
arguments passed to the function at call time. Ensuring transparency of the analysis means
that modifying the arguments object (line 2) should ensure argument access through reading the
argument value from the environment should yield the modified value (line 3) or, vice-versa, as-
signing a new value to an argument through an assignment operator such as “=” (line 4) should
be reflected in the arguments object (line 5).

When writing the analysis in a source-code instrumentation platform like Aran, this bidi-
rectional link between the call-time arguments and the arguments object is broken as the in-
strumentation platform transforms functions into parameterless versions for further use by the
platform. In our work, this link is preserved as we keep the representation of functions the
way they are initially defined. Furthermore BoaSpect implements the trap functions read and
write, which instrument reading or writing environment variables, to read from the available
environment from the interpreter. We ran the “forwards.js” analysis on the test input program
in Listing 15 both on Aran and on BoaSpect, and report the instrumentation for Aran fails while
the instrumentation for BoaSpect passes.

We believe we are not leaking information that could break transparency for BoaSpect. The
only feature which can compromise transparency would be through the Function.prototype.caller

property, which yields the function caller at the point in time for a given function call. This
would leak stack information, enabling the input program to further inspect the presence of
trap functions on the call stack. The use of this property, however, is deprecated in the current
ECMAScript version since this availability of operations makes it more difficult to optimize the
execution of the input program [62]. In addition to this, Boa does not include support for
Function.prototype.caller, thus we can safely assume this does not break the transparency.

52 CHAPTER 5. EVALUATION

ARAN

NodeJS (V8)BoaSpectBoa

WASM

Boa

NodeJS (V8) NodeJS (V8)NodeJS (V8)Boa

ARAN

BoaSpect

WASM

(a) (b) (c) (d) (e) (f) (g)

CPU

Figure 5.1: The different benchmark experiment setups in terms of the execution environment
for the input programs.

5.4 Evaluating Performance

We conduct a set of experiments to evaluate the overhead of BoaSpect and compare it to source
code-based instrumentation solutions. These experiments entail running a set of benchmarks
to assess the performance overhead of instrumentation applied to the Sunspider suite. The
considered analyses for the performance experiments are “empty.js”, “forward.js”, “logging.js”,
and ‘profiling.js”.

Figure 5.1 depicts the different execution configurations on which we performed the bench-
marks. To evaluate the overhead of BoaSpect, our experiment setups include the baseline ex-
ecution for Boa (a) and the execution of BoaSpect (b). To compare BoaSpect’s overhead in
comparison to a source-code-based instrumentation platform, we use Aran. For comparison to
Aran running on top of a real-world engine, we further include the baseline execution for Node
(c) and the instrumented version of Aran on top of Node (d). The V8 engine, however, has an
advantage in terms of performance compared to Boa, as its execution performance has been opti-
mized over the last decade. As such, comparing the slowdown of Aran on Node to BoaSpect may
be heavily influenced by the V8 structure. Thus, we also include a setup in which we run Aran on
top of Boa (e). As our approach offers portability through running BoaSpect on WebAssembly,
we also evaluate the execution of Boa on WASM running on Node (f) and as its instrumented
counterpart we include BoaSpect on WASM running on Node (g). This enables us to compute
the slowdown of BoaSpect when running it on WebAssembly.

Per experiment, we evaluate each input program of the benchmark suite for a total of 35
runs either once for regular evaluation or per analysis for instrumented evaluation. The first five
runs of the 35 are not taken into account for the rest of our evaluation, as we consider these the
warm-up runs to allow the execution engine to reach a steady state.

For further performance evaluation, we leave out input programs that either crash or do not
terminate within our time budget of 30 seconds. Of the 26 input programs that the Sunspider
suite offers, two crash on Boa, one crashes for Aran, one does not terminate for Boa or Aran
within our time budget and five do not terminate for BoaSpect within our time budget, leaving
a total of 17 input programs we keep for further performance evaluation. These results are
summarized in Table 5.2. We do note, however, that none of the programs left out reports a crash
for BoaSpect which does not crash for Boa, which otherwise would indicate our instrumentation
platform did not behave as expected.

In the bar charts plotted in subsequent subsections, each bar corresponds with the median
of the 30 runs of a given experiment. The y-axis is plotted on a logarithmic scale for the sake
of readability, the x-axis represents the different input programs from the Sunspider benchmark
suite.

5.4. EVALUATING PERFORMANCE 53

Input program left out Setup Reason
date-format-tofte.js Aran on Node Crash
3d-raytrace.js Aran on Node, Boa Timeout
crypto-aes.js Boa Crash
date-format-xparb.js Boa Crash
regexp-dna.js Boa Timeout
string-tagcloud.js Boa Timeout
access-nsieve.js Boa Timeout
bitops-nsieve-bits.js BoaSpect Timeout
string-unpack-code.js BoaSpect Timeout

Table 5.2: The set of files from the Sunspider benchmark suite that are left out from the
evaluation of BoaSpect, including the interpreter which does not support the file and the reason
why the file is not included.

5.4.1 Absolute Time to Execute: Node Against Boa

In this section, we assess the performance difference between Aran on Node and BoaSpect in
terms of time to execute the Sunspider suite for the “forward.js” analysis. Recall from Sec-
tion 5.1.2 that the “forward.js” analysis instruments every operation without performing analysis
code, making it suitable for comparing two instrumentation techniques. To this end, we employ
experiment setup (b) and (d). Figure 5.2 depicts the resuts of such experiment.

We observe a significant difference between the two: BoaSpect is always outperformed by
Aran on Node. The closest BoaSpect comes relative to the performance of Aran on Node is for
the input program “math-partial-sums”, for which Boa is about 11 times slower than Node. The
largest relative performance gap between the two is for the input program “3d-morph”, for which
Boa is about 867 times slower. The average relative slowdown for this figure is a factor of 150.

To assess the influence of the base execution engine on the performance of the instrumentation
platform, we conduct a second experiment comparing the performance of the execution engines
without instrumentation. Figure 5.3 shows similar significant performance differences compared
to Figure 5.2, but this case for uninstrumented execution. The smallest relative difference is for
the input program “math-partial-sums”, for which Boa is about 32 times slower than Node. The
largest relative difference is for the input program “3d-morph”, for which Boa is about 11301
times slower. The average relative slowdown for this figure is a factor of 1390.

Our observations indicate significant differences between the baseline performance of both
engines. This comes little as a surprise, given the maturity of both engines. Boa is a young
project from 2018 where most of the engineering effort goes to comply with the ECMAScript
standards. Node and the underlying V8 engine, however, are industrial products with large
teams of engineers working on optimisations. To be able to have a fair comparison with Aran,
we will conduct the rest of the experiments on the same execution engine.

5.4.2 Slowdown for Instrumentation with Boa as the Engine

In this section, we assess the performance of Aran and BoaSpect when they both run on Boa.
To this end, we compute the slowdown for an input program and an analysis where the baseline
is the uninstrumented version of the input program. In Figure 5.4 these are grouped per analysis
per program, and are from left to right the following: Aran on Boa (e) relative to Boa (a)
to compute the slowdown for Aran when executing on Boa, BoaSpect (b) relative to Boa (a)
to compute the slowdown of BoaSpect, and BoaSpect on WebAssembly (g) relative to Boa on

54 CHAPTER 5. EVALUATION

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

2

5

100
2

5

1000
2

5

10k
2

node + aran boaspectInstrumented - “forward.js”

Ti
m

e
to

 e
xe

cu
te

 (m
ill

is
ec

on
ds

)

Figure 5.2: A bar chart plotting the absolute time in milliseconds it takes to instrument
input programs of the Sunspider suite for the “forward.js” analysis specification. This chart
compares the experiment setups for running Aran on top of Node and our instrumentation
platform BoaSpect.

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

1

10

100

1000

10k

node boaUninstrumented

Ti
m

e
to

 e
xe

cu
te

 (m
ill

is
ec

on
ds

)

Figure 5.3: A bar chart plotting the absolute time in milliseconds it takes to execute input
programs of the Sunspider suite. This chart compares the experiment setups for the Node
execution engine and the Boa execution engine.

5.4. EVALUATING PERFORMANCE 55

WebAssembly (f) to compute the slowdown of the portable approach of BoaSpect8.
From the plots in Figure 5.4 we draw the following observations:

� Aran is outperformed by BoaSpect when ran on Boa
We observe that regardless of the input program or the analysis specification, BoaSpect out-
performs Aran. While BoaSpect highest slowdown report is 44.03 for the analysis “log-
ging.js” and the input program “bitops-bitwise-and.js”, Aran reports its highest slowdown
factor of 261.73 for the same analysis but for the input program “math-partial-sums.js”.
For the “empty.js” analysis Aran is on average 3.12 times slower than BoaSpect, for the
analysis “forward.js” Aran is on average 3.7 times slower, for the analysis “logging.js” this
factor is 3.06 and for “profiling.js” this is 5.85.

� BoaSpect’s slowdown remains similar when running on WebAssembly
As we motivate our implementation to be portable by running it on WebAssembly, ide-
ally the properties of our approach should remain unaffected for targetting WebAssem-
bly. We conclude from the slowdown reports that the slowdown difference between Aran
and BoaSpect are far more significant than the differences between running BoaSpect on
a CPU or on WebAssembly.

Interestingly, however, it is not the case that the slowdown factors are always lower for one
comparison or the other. Depending on the input program and the analysis specification,
there is some variation.

� The minimal overhead of BoaSpect’s presence is lower than that of Aran
The evaluation of BoaSpect with the “empty.js” analysis showcases that the presence of
the instrumentation platform has a larger impact on Aran than it has for BoaSpect. The
Sunspider benchmark suite is slowed down by a factor in the range [1, 1.54] for BoaSpect,
for Aran, this factor is in the range [1, 23.47].

� The minimal overhead of BoaSpect for instrumenting every supported trap is
lower than that of Aran
The evaluation of BoaSpect with the “forward.js” analysis showcases that the presence of
the instrumentation platform where every trap is instrumented has a larger impact for Aran
than it has for BoaSpect. These differences are, however, not near as explicit compared to
the differences for the “empty.js” analysis. The Sunspider benchmark suite is slowed down
by a factor in the range [1.13, 15.60], for Aran, this factor is in the range [1.21, 125.90].

� The type of analysis plays a key role in the performance overhead
Our results also confirm our hypothesis that the choice of dynamic analysis heavily influ-
ences the overall application slowdown. This is due to how one analysis might require the
use of all available traps and perform a set of heavy computations while another might
decide to implement a single trap followed by a lightweight computation. This difference
can be derived from Figure 5.4, by investigating the difference in general trend for the “log-
ging.js” analysis and the “profiling.js” analysis. The former reports slowdowns in the range
[1.34, 261.73] while the latter reports slowdowns in the range [1.03, 77.15]. Furthermore,
the performance overhead for the “profiling.js” analysis targets function applications. This
exclusive trap selection also affects which application suffers more from a slowdown, as
the slowdown trend between “forward.js” and “logging.js” is altogether different from the
slowdown trend between “forward.js” and “profiling.js”.

8Note that there are missing bars for the WebAssembly variant evaluation of BoaSpect for input program
“controlflow-recursive.js”. This is because BoaSpect crashed due to the stack exceeding the WebAssembly allowed
memory limit.

56 CHAPTER 5. EVALUATION

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

9
1

2

3
4
5
6
7
89

10

2

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

1

2

5

10

2

5

100

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

1

2

5

10

2

5

100

2

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

1

2

5

10

2

5

slowdown of [boa + aran] slowdown of [boaspect] slowdown of [node + wasm + boaspect]

empty

forward

logging

profiling

Sl
ow

do
w

n
fa

ct
or

 (t
im

es
 s

lo
w

er
 c

om
pa

re
d

to
 b

as
el

in
e)

Figure 5.4: A set of bar charts plotting the slowdown factors for executing input programs of
the Sunspider suite for different analyses. The charts compare the slowdown factors for running
Aran on Boa, running BoaSpect, and running BoaSpect on WebAssembly in Node.

5.5. EVALUATING PORTABILITY 57

3d-cube
3d-morph

access-binary-trees

access-fannkuch

access-nbody

bitops-3bit-bits-in-byte

bitops-bits-in-byte

bitops-bitwise-and

controlflow-recursive

crypto-md5

crypto-sha1

math-cordic

math-partial-sums

math-spectral-norm

string-base64

string-fasta

string-validate-input

5
6
7
8
9

10k

2

3

4
5
6
7

boa + aran node + wasm + boaspectInstrumented - “forward.js”

Ti
m

e
to

 e
xe

cu
te

 (m
ill

is
ec

on
ds

)

Figure 5.5: A bar chart plotting the absolute time in milliseconds it takes to execute input
programs of the Sunspider suite. This chart compares the experiment setups for running Aran
on top of Boa and running BoaSpect on WebAssembly on top of Node.

With these insights we conclude that the minimal overhead for instrumenting every supported
operation lies in the range of a slowdown factor of [1.13, 15.60], with the highest report for a
profiling analysis reaching 44.03.

Moreover, the slowdown of Aran (on Boa) compared to the slowdown of BoaSpect indicates
that implementing an instrumentation platform at the level of the interpreter proves to be more
beneficial in terms of performance overhead. Our results indicate the interpreter-level instru-
mentation approach may slow the application 3–5 times less down compared to source-code-level
instrumentation.

5.5 Evaluating Portability

As mentioned in Section 2.3, portability is concerned with how easily one can adapt the instru-
mentation to a variety of hosts. Section 5.4 discusses our benchmark setup to run the Sunspider
suite on BoaSpect, running on WebAssembly which confirms our implementation is portable and
accessible in other host environments.

In terms of portability, we aim to qualitatively assert how our portable approach compares
to the source code instrumentation which is portable by default. Specifically, we aim to an-
swer the question “Does BoaSpect outperform Aran if BoaSpect runs on WebAssembly?”. This
is to say if an analysis developer had to choose between the portable Aran approach or the
portable BoaSpect approach, in terms of time to execute. To investigate this, we plot the ab-
solute time it takes to execute the “forward.js” analysis for Aran on Boa (e) and BoaSpect on
WebAssembly on top of Node (g) in Figure 5.5.

Interestingly here the performance results are relatively close and there is no overall best per-
former. The better-performing instrumentation platform technique depends highly on the input
program. Thus, in terms of performance with respect to portability, we conclude BoaSpect’s
WebAssembly-compatible approach and Aran’s implementation are equally competing.

58 CHAPTER 5. EVALUATION

1 ToPrimitive (input [, preferredType])

2 1. If Type(input) is Object, then

3 a. Let exoticToPrim be ? GetMethod(input, Symbol.toPrimitive).

4 b. If exoticToPrim is not undefined, then

5 i. If preferredType is not present, let hint be "default".

6 ii. Else if preferredType is string, let hint be "string".

7 iii. Else,

8 1. Assert: preferredType is number.

9 2. Let hint be "number".

10 iv. Let result be ? Call(exoticToPrim, input, hint).

11 v. If Type(result) is not Object, return result.

12 vi. Throw a TypeError exception.

13 c. If preferredType is not present, let preferredType be number.

14 d. Return ? OrdinaryToPrimitive(input, preferredType).

15 2. Return input.

16

17 OrdinaryToPrimitive (O, hint)

18 1. If hint is string, then

19 a. Let methodNames be "toString", "valueOf".

20 2. Else,

21 a. Let methodNames be "valueOf", "toString".

22 3. For each element name of methodNames, do

23 a. Let method be ? Get(O, name).

24 b. If IsCallable(method) is true, then

25 i. Let result be ? Call(method, O).

26 ii. If Type(result) is not Object, return result.

27 4. Throw a TypeError exception.

Listing 16: The ECMAScript specifications of the abstract operations ToPrimitive and Ordi-
naryToPrimitive. The specifications define how a non-primitive JavaScript value is converted to
a primitive value at the level of interpretation. These operations are internally performed by an
interpreter and are not available at the level of the source language.

5.6 Evaluating Expressiveness

Recall from Section 2.3 that expressiveness is the property concerning the capability of the
platform to provide the analysis developer with means of instrumenting given program properties.

We mention in Section 2.4 that the expressiveness of an instrumentation platform is typically
higher at the interpreter-level than the source-code-level. As explained in Chapter 4, BoaSpect’s
offer to analsis developers in an API based on the one of Aran including an trap toPrimitive. In
what follows we discuss how developers need to work around the lack of this trap when using an
API like Aran.

The lack of an abstract operation ToPrimitive in an instrumentation platform means that
there is no trap to query whenever the act of converting non-primitive values to primitive values
through calls to ToPrimitive takes place. The lack of this trap forces developers to derive the
information directly in the analysis, implying that the analysis developer will have to model
ToPrimitive and its dependency OrdinaryToPrimitive themselves.

One could reify this information at the source code level. The reification of whenever the
abstract operation ToPrimitive is performed, would require us firstly to model the operation
ToPrimitive and its dependancy OrdinaryToPrimitive, another abstract operation, as JavaScript
functions. This reification is required as our goal is not only to intercept these operations but also
to provide the means to compute the expected outcome to ensure the instrumentation platform
can remain transparent with respect to the input program semantics. The definitions of both
abstract operations as they are defined by the ECMAScript standards are given in Listing 16.

5.6. EVALUATING EXPRESSIVENESS 59

To correctly implement that the instrumentation platform intercepts whenever ToPrimitive is
called, we would need to also model the operations that rely on ToPrimitive and ensure these now
call our definition of ToPrimitive or the trap toPrimitive depending whether the operation at hand
is subject to instrumentation. According to the ECMAScript specification for both operations
shown in Listing 16, the abstract operation ToPrimitive is a dependency of 11 other operations9.
If these additional 11 operations were available to Aran to instrument, such as the “+” operator
currently is, it would be a matter of rewriting the corresponding operation to ensure they call
into our trap definition of ToPrimitive. However, this is not the case as the specification of the
JavaScript-level “+’ operator does not use ToPrimitive directly but makes use of the abstract
operation ApplyStringOrNumericBinaryOperator, which in turn makes use of ToPrimitive. This
implies that we are required to reimplement the “+” operator, and also the additional infras-
tructure of operations other than ToPrimitive on which the implementation of “+” depends to
correctly model and thus reify the “+” operator. Notice the dependency that grows both ways for
modelling the ToPrimitive for instrumentation, on one hand, we need to model “ApplyStringOr-
NumericBinaryOperator” and “+” to ensure they call into our ToPrimitive definition, but on the
other hand we need to provide the dependencies for “ApplyStringOrNumericBinaryOperator”
and “+” such that they can be correctly implemented.

Visually, the dependency graph and this growth are depicted in Figure 5.6. The operations
that rely on ToPrimitive need to be reified all the way “up” in the dependency chain until the
point where the source-level operation is available (highlighted in green), as this can then be
rewritten through source-code transformation. For this example this concerns the definitions of
ApplyStringOrNumericBinaryOperator and EvaluateStringOrNumericBinaryExpression. But in
the same way, we would need to reify the (abstract) operations “down” in the dependency chain
until the point where all required infrastructure is available for the abstract operations we aim
to intercept for instrumentation. For this example, this concerns the definition of OrdinaryTo-
Primitive, but also all other dependancies of OrdinaryToPrimitive, ApplyStringOrNumericBina-
ryOperator, and EvaluateStringOrNumericBinaryExpression.

The required efforts for supporting the trap toPrimitive only grow in size as soon as the aspect
of the host environment of the interpreter is included. The abstract operation ToPrimitive is one
on which the host environment may depend to turn JavaScript values into values of a type which
aligns with the format of the host. For example, a web browser that hosts a JavaScript engine
may require JavaScript values to be turned into values of type string such that it can display
the content of these values on a web page. For these use cases, the host may also rely on the
abstract operation ToPrimitive. Thus in the case of Aran, this would require the instrumentation
platform to intercept these operations with the host too. This is depicted in Figure 5.6 with the
additional host layer that calls into the ToPrimitive operation.

The growth of this example showcases how the inaccessibility of source-code instrumentation
is overcome through implementing parts of the interpreter at the source-code level. For the ever-
growing requirements of the analysis in terms of hooking into more operations, the source-code
level instrumentation platform will be required to reify more and more aspects of the interpreter.
We believe this growing reification of the interpreter aspects turns the source-code instrumenta-
tion platform partially into a meta-circular interpreter to overcome the limitations of information
otherwise only available to the interpreter, further driving the performance overhead of source-
code instrumentation towards the performance of a meta-circular instrumentation platform.

To overcome the aforementioned issues to reify primitives in a source-code-based platform, it
could be possible to inject proxies that specify a source-level ToPrimitive operation by overriding

9The ECMAScript operations that have ToPrimitive at least once as one of its dependancies are “ToNumeric”,
“ToNumber”, “ToBigInt”, “ToString”, “ToPropertyKey”, “IsLessThan”, “IsLooselyEqual”, “ApplyStringOrNu-
mericBinaryOperator”, “BigInt”, “Date”, and “Date.prototype.toJSON”.

60 CHAPTER 5. EVALUATION

Date
BigInt

Date.prototype.toJSON

Calls into

ToPrimitive

ToNumeric

Calls into

ToNumber
ToBigInt

Calls into

ToString
ToPropertyKey

IsLessThan
IsLooselyEqual

Calls into
Calls into

... more more ...

Calls into

EvaluateStringOrNumericBinaryExpression

Calls into

The Addition Operator (+)

Calls into

Calls into

Calls into

OrdinaryToPrimitive

... more ...

ApplyStringOrNumericBinaryOperator

... more ...

Calls into

Host

ECMAScript

Key

Definitions
environmentAbstract operationSource-level

available operation

Figure 5.6: A depiction of the abstract operations ToPrimitive and OrdinaryToPrimitive as
they are defined in the ECMAScript specification, including the operations that call into ToPrim-
itive and OrdinaryToPrimitive. The schematic also illustrates how additional operations of the
surrounding host may hook into the abstract operations such as ToPrimitive, bypassing the
source-level operations that may yield the same result.

5.7. EVALUATION W.R.T. THE RESEARCH QUESTIONS 61

the proxy’s toPrimitive property as explained in Section 3.2.2, which the interpreter will hook into
as specified by instruction (iv) in the definition of ToPrimitive in Listing 16. This alternative
approach, however, would provide a trap function for the abstract operation OrdinaryToPrimitive
rather than ToPrimitive as its call would be overlooked for non-primitive values. Furthermore,
this alternative approach would not scale for instrumenting other abstract operations for which
there is no source-code level mechanism to reimplement, such as the other illustrated abstract
operations in Figure 5.6 other than OrdinaryToPrimitive.

This concludes our discussion on how to add support for the trap toPrimitive to Aran. The
source-code instrumentation platform is required to, to some extent, simulate this information
at the source-code level, which introduces additional complexity and instrumentation code for
computing values that are readily available at the level of the interpreter. When we compare
this to the required efforts of adding support for the trap toPrimitive to BoaSpect, there is a
clear difference. As Section 4.2.3 explains, the majority of the efforts boil down to the reification
of the available information at the level of the interpreter. This allows for the interpreter-based
instrumentation platform to reuse the existing infrastructure of the interpreter, saving on required
engineering efforts, additional runtime computations at the level of source-code and memory use
compared to instrumentation at the source-code level.

These benefits further apply for introspection for additional available information to the
interpreter. For including intercession support, the required efforts, in general, become more
complex. For example, the reification of the environment to inspect the available variables when
calling a trap function would require reifying the ECMAScript Execution Context such that it
is available to the analysis. To enable intercession on this reified representation, it involves the
use of abstract operations such as PutValue that may further modify the environments in the
execution context.

5.7 Evaluation w.r.t. the Research Questions

In this section, we repeat each research question, followed by our answer.

RQ1. How can one extend a JavaScript interpreter to provide an instrumentation interface on
which others can build an analysis?
The answer to this research question is by construction in Chapter 4. Here, we showed
our approach extends the ECMAScript Execution Context with both a reference to the
evaluated advice, and a binary value capturing whether the interpreter is at the level of the
source code, Base, or the level of the analysis, Meta. Furthermore, during the evaluation
of corresponding interpreter implementations of ECMAScript operations of interest to the
analysis, our approach is to precede the default behaviour to check if the current interpreter
state is Base and if so, call into the corresponding trap function to proceed with the analysis.
We further noted that first-class functions should capture whether their body should be
evaluated as Base or Meta code as they enable the context switch.

RQ2. What is the execution overhead for interpreter-based instrumentation using the Boa inter-
preter for JavaScript?
In the performance evaluation we observed BoaSpect’s performance overhead to slow the
execution of the program under analysis down up to two orders of magnitude. Instrument-
ing every supported trap function for BoaSpect with no additional analysis code, evaluated
with the “empty.js” analysis, reports a slowdown factor in the range [1.13, 15.60]. The
overhead of BoaSpect for dynamic analyses that profile all operations and model the call
stack, we report slowdown factors in the range [1.03, 44.03].

https://tc39.es/ecma262/#sec-execution-contexts
https://tc39.es/ecma262/#sec-putvalue
https://tc39.es/ecma262/#running-execution-context

62 CHAPTER 5. EVALUATION

RQ3. Does the overhead of portable interpreter-based instrumentation outweigh the overhead of
source-code instrumentation?
To answer this question, we compared the performance of BoaSpect running on WebAssem-
bly with the performance of Aran. The results of this comparison, depicted in Figure 5.5,
show that both portable instrumentation platforms take similar amounts of time to execute
the input programs. However, when BoaSpect does not run on WebAssembly, we report
that on average its slowdown factor is 3–5 times faster than the slowdown factor of Aran.
This leads us to the conclusion that including the optional portability incurs an overhead
which makes the performance overhead similar to that of Aran.

RQ4. What benefits arise from interpreter-based instrumentation in terms of expressiveness com-
pared to a source code-based solution?
To evaluate the benefits of BoaSpect in terms of expressiveness, we firstly asserted it is
possible to port existing analyses from Aran on BoaSpect, “empty.js”, “forward.js”, “log-
ging.js”, and “profiling.js”. We also developed a new analysis that was not possible to
implement for Aran because it cannot access the abstract operation ToPrimitive at the
level of source code. This shows how instrumentation at the level of the interpreter can
access and provide the analysis with information that is unavailable at the source code
level.

Conclusion

We evaluated BoaSpect with respect to the properties for which one can compare different
instrumentation platforms: transparency, performance, portability, and expressiveness.

Regarding the property transparency, we showed that BoaSpect avoids transparency issues
that arise when one would rewrite the program under analysis as source-code instrumentation
does. At the level of source code instrumentation, this affects the result of calling reflective
JavaScript operations such as Function.toString, Function.prototype.name, or the arguments

object. Our approach hides away instrumentation information from the source code within
interpreter internals that is not accessible at the level of source code, thus maintaining a high
level of transparency.

Using the set of benchmarks from the Sunspider suite we evaluated BoaSpect in terms of
the property performance. First, we concluded that the V8 execution engine is several orders of
magnitude faster than Boa, which is why we restrict further performance evaluation to use Boa as
our baseline execution engine. Second, we concluded that Aran is always slower than BoaSpect.
For BoaSpect, one can expect the program under analysis to run up to 44.03 times slower. On
average BoaSpect’s slowdown reports are 3–5 times faster than the slowdown reports for Aran.

For the property portability, we successfully compiled BoaSpect to WebAssembly and eval-
uated how this affects the instrumentation platform performance overhead for the Sunspider
suite. Here, we report that the time to execute an input program under instrumentation
on BoaSpect running in WebAssembly runs at a similar performance to running Aran on Boa
running directly on our benchmark system. For this, we conclude that our approach leaves the
choice for an analysis developer to opt for BoaSpect as a portable approach with the additional
benefits from the other properties.

In terms of the property expressiveness, we concluded that information exclusively available
to the interpreter is either not possible to expose or requires a lot of additional operations to
make it available for a source code instrumentation approach. We concluded this by addressing
addressed the shortcomings of source code instrumentation while showing how issues reduce to
non-issues for BoaSpect.

https://tc39.es/ecma262/#sec-toprimitive

5.7. EVALUATION W.R.T. THE RESEARCH QUESTIONS 63

With our evaluation we conclude that instrumentation at the level of the interpreter is a
strong competitor compared to the other instrumentation techniques, providing portability as a
tradeoff for performance.

64 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

In this work, we explored a novel approach to implementing an instrumentation platform for
JavaScript. For JavaScript, static analysis tools quickly fail to approximate the runtime be-
haviour of a program as the dynamic features of JavaScript rapidly exceed the approximation
capabilities of static analysis. Dynamic analysis tools, however, execute alongside a concrete
program run to overcome the limitations of approximating program behaviour [3]. To this end,
research has focused on instrumentation platforms for JavaScript to facilitate the implementation
and inclusion of dynamic analyses for a given target program.

In Chapter 2, we discussed on the different properties for which one can compare different in-
strumentation platform implementation techniques: transparency, performance, portability, and
expressiveness.

As the target programs may operate in a variety of hosts such as client-side browsers or
NodeJS [26], and we need to minimize the impact of the analysis code to remain as true to
the target program execution as possible for correct analysis results, there is a demand for
an instrumentation platform offering all properties. The two most promising techniques so far,
source code level instrumentation and interpreter-based AST instrumentation, however, offer the
analysis developer a tradeoff between either the focus on portability or the focus on transparency,
transparency and expressiveness.

On the one hand, an instrumentation platform can be implemented at source code level
through source code transformation [9, 10]. This technique injects the analysis and instrumenta-
tion operations in the target program at the level of source code, by rewriting the target program
into a variant program in which operations of interest are transformed into function calls to the
dynamic analysis. This technique offers high portability as the instrumented application can run
on any JavaScript engine, but suffers from performance, transparency and expressiveness issues
as the instrumentation platform operates at the same level as the target application.

Alternatively, instrumentation platforms may be implemented in the interpreter. This tech-
nique modifies a JavaScript execution engine such that during the evaluation of operations of
interest in the target program, the analysis is informed about the operation at hand. A well-
known implementation is NodeProf [11], which wraps the parsed program abstract syntax tree
(AST) nodes with additional operations that are further executed by the interpreter. This tech-
nique offers high performance, transparency and expressiveness due to the instrumentation code
operating at a different level from the target program, but suffers from portability as the imple-
mentation of the JavaScript engine cannot easily be ported to run in other JavaScript engines.

With the aforementioned implementation techniques for instrumentation platforms for
JavaScript, analysis developers face the choice between either portability or performance, trans-

65

66 CHAPTER 6. CONCLUSION

parency and expressiveness. Preferably, one would have both portability to analyse code which
runs in browsers and servers while maintaining performance, transparency and expressiveness to
enable the analysis to trace an execution true to the intended target application behaviour.

6.1 Our Approach

We explore an instrumentation platform that offers portability to run analyses on different
JavaScript engines, while maintaining performance, transparency and expressiveness to enable
the analysis to trace an execution true to the intended target application behaviour. We cre-
ated BoaSpect which fulfils these ideas in the Boa interpreter.

As JavaScript engines typically compile their input programs at runtime to an intermediate
representation to then interpret this representation for faster execution, we target our instru-
mentation platform to operate at the level of this intermediate representation interpretation to
maintain high performance.

Furthermore, given that BoaSpect operates within the interpreter it is possible to more easily
remain transparent and provide a more expressive interface to the analysis developer.

To achieve portability, we chose Boa as our starting engine as it offers the means to compile to
WebAssembly [13], a compilation target that JavaScript environments can execute at high speed.
Our implementation of BoaSpect then offers the analysis developer the choice to instrument their
application running in any WebAssembly compatible JavaScript host.

Our implementation of BoaSpect offers an instrumentation interface for the analysis developer
based on the interface provided by source code instrumentation platforms, in particular the
interface of Aran. However, we augment our interface with support to trace the execution
of the abstract ECMAScript operation ToPrimitive, which cannot be provided by source code
instrumentation.

A dynamic analysis specifically is just a regular JavaScript program that evaluates to an
advice object, which implements the instrumentation-compatible trap functions that the instru-
mentation platform will call into. For example, if the advice implements the trap function apply,
the instrumentation platform will intercept all function applications and call the apply trap with
the available information of the intercepted operation.

6.1.1 Interpreter-Based Instrumentation

During our implementation discussion in Chapter 4, we faced several challenges to imple-
ment BoaSpect.

Ensuring transparency – To maintain transparency one must separate the advice from
the target program such that the target program cannot access it. To this end, we include
a second entry point for the advice specification as a separate input program and maintain
a reference to the advice from within the interpreter, inaccessible to the target program.

As the interpreter is both responsible for evaluating the target program and the analysis,
one is required to distinguish evaluating code of the target program from evaluating code
of the analysis to avoid running the risk of the analysis instrumenting itself which can
lead to unbound recursion. To this end, we augment first-class functions with a flag to
tell the interpreter whether their body should be evaluated as code that is subject to
instrumentation or not. Transitively, functions created in contexts that are subject to
instrumentation will carry the flag that they are subject to instrumentation too, and vice
versa functions created in the evaluation context of the analysis will carry the flag that
they should be evaluated as code not subject to instrumentation.

6.2. EVALUATION 67

Hooking into the operations – During the evaluation of the target program, the in-
strumentation platform must correctly hook into the operations of interest that take place
when evaluating the target program to call the respective trap function with the operation
information.

To this end, we identified a recurring pattern to implement the instrumentation code in
Boa, in which (1) the execution context is identified at operations of interest, (2) the
available information is reified and (3) the corresponding trap function is called.

We assessed how compatible our instrumentation platform with ECMAScript is by testing
407 unit tests from 3 different benchmark suites. Out of the 407 tests, all 407 passed.

6.2 Evaluation

In Chapter 5 we evaluated BoaSpect with respect to the four properties to compare instrumen-
tation platforms.

� Transparency
To evaluate the transparency of BoaSpect we evaluated how reflective JavaScript constructs
do not leak the presence of BoaSpect and we compare it to a source code instrumentation
platform, i.e. Aran.

In particular, we compare how reflective constructs like Function.toString, which evalu-
ates to the function body, are leaking for Aran the transformed function body while
for BoaSpect this is not the case as the instrumentation code is hidden from the source
code, preventing leakage of its presence.

� Performance
We evaluated the performance of BoaSpect with experiments that benchmark the slowdown
of the target application execution by the presence of instrumentation for the Sunspider
benchmark suite. To this end, we concluded that BoaSpect slows the target application
up to two orders of magnitude down. For source code instrumentation we identified with
Aran that for the same input programs and analyses the slowdown is higher at all times,
slowing down the target application up to three orders of magnitude.

� Portability
We evaluated the portability of BoaSpect by running its instrumentation within the NodeJS
JavaScript environment. Here, we identify that when running BoaSpect on WebAssembly
for increased portability the overall execution slows down such that its time to execute the
instrumented target application becomes similar to the time to execute the instrumented
target program running on Aran.

� Expressiveness
We evaluated the increased expressiveness by evaluating how BoaSpect compares to source
code instrumentation when building an analysis that requires trapping value conversion to
primitives.

To this end, we observed that BoaSpect much more easily exposes information available
to the interpreter which is either inaccessible for source code instrumentation or requires
much more engineering effort to simulate this information as it requires to mimic what the
JavaScript interpreter does.

68 CHAPTER 6. CONCLUSION

6.3 Contributions

In this work we make the following contributions:

1. We propose a novel interpreter-based instrumentation platform for JavaScript that operates
at the level of interpreting the JIT-compiled bytecode as abstract ECMAScript operations.
The novelty is the increased available interpreter information, which can be used for dy-
namic analyses whereas source code-based solutions require higher coding efforts from the
developer.

2. We provide an implementation of our approach, BoaSpect, which is implemented in the
JavaScript engine Boa. Moreover, our implementation can also be compiled to WebAssem-
bly, making the approach appeal as a portable instrumentation platform that can be
shipped as a whole to run within other JavaScript environments.

3. We propose a novel trap toPrimitive that instruments the abstract ECMAScript operation
ToPrimitive. On top of our trap specification, we showed a dynamic analysis specification
in Listing 9, which makes use of this trap to uncover ill-formed or potentially malicious
programs as we explain in Section 3.2.2.

6.4 Future Work

We see three avenues for future work for our approach and the development of BoaSpect.

Joinpoints and pointcuts
For BoaSpect, and for our evaluation with Aran, we derived the joinpoints by inspecting
the implemented trap functions of the advice, such as “instrument all function calls” or “in-
strument all binary operations”. However, we would like to explore support for targetting
a group of individual points of interest. Similar to aspect-oriented programming, we could
provide analysis developers with the ability to target individually pointcuts. This would
allow the advice specification to be informed about the specific location in the program
where a specific operation takes place.

We note that this extension is orthogonal to our instrumentation implementation. To
address this, a starting point would be to implement changes at the abstract syntax tree
to augment candidate tree nodes with information that is provided to the analysis at the
moment when the operation is instrumented, such as Aran supports serial numbers to
identify the instrumented nodes [12].

Portability with host-supporting operations
Currently, most of our evaluation limits interoperation between BoaSpect and its host.
After all, the JavaScript engine becomes more capable in terms of real-world applications
as soon as its execution interacts with the host such as affecting the content on a web
browser or interacting with a file system. To this end, Boa’s public API is being developed
to facilitate interactions with the host environment1. This could serve as an entry point
for developing an interface for BoaSpect to interact with a host environment such as a web
browser when porting BoaSpect to WebAssembly.

Enabling analysis development at the level of the interpreter
Another approach to enable the analysis developer to develop their analyses would expose

1https://github.com/boa-dev/boa/discussions/1531

https://github.com/boa-dev/boa/discussions/1531

6.4. FUTURE WORK 69

an API through which an analysis can directly communicate with the interpreter. This
would not be limited to the use of the Rust language in which Boa is implemented, nor
would it require recompilation for each reimplementation of an analysis if the analysis
API would be designed to make use of the proposed WebAssembly interface types. This
proposal for WebAssembly allows a WebAssembly module to interoperate with other APIs
at a raised level of abstraction which allows communication through richer data types
than exclusively numbers. This would allow one to, for example, implement their analysis
in C++ which would communicate with the Boa interpreter which is developed in Rust.

We deliberately opt for JavaScript as our implementation language, however, Sun et al.
[11] mention that one can benefit from a lower overhead by implementing the analysis closer
to the interpreter.

70 CHAPTER 6. CONCLUSION

Bibliography

[1] Boadev Group. Boa: An embeddable and experimental javascript engine written in rust.
https://github.com/boa-dev, August 2022. (Accessed on 08/20/2022).

[2] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Understanding asynchronous
interactions in full-stack javascript. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 1169–1180, 2016. doi: 10.1145/2884781.2884864.

[3] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic, Koushik
Sen, and Cristian-Alexandru Staicu. A survey of dynamic analysis and test generation for
javascript. ACM Comput. Surv., 50(5), September 2017. ISSN 0360-0300. doi: 10.1145/
3106739.

[4] Anders Møller and Michael I. Schwartzbach. Static program analysis, October 2018. De-
partment of Computer Science, Aarhus University, http://cs.au.dk/~amoeller/spa.

[5] Wögerer Wolfgang. A survey of static program analysis techniques. Technical report, Cite-
seer, 2005.

[6] Thomas Ball. The concept of dynamic analysis. In Oscar Nierstrasz and Michel Lemoine,
editors, Software Engineering — ESEC/FSE ’99, pages 216–234, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg. ISBN 978-3-540-48166-9.

[7] Florent Marchand de Kerchove, Jacques Noyé, and Mario Südholt. Open Scope: A Prag-
matic JavaScript Pattern for Modular Instrumentation. working paper or preprint, 2015.
URL https://hal.archives-ouvertes.fr/hal-01181143.

[8] Erick Lavoie, Bruno Dufour, and Marc Feeley. Portable and efficient run-time monitoring
of javascript applications using virtual machine layering. In Richard Jones, editor, ECOOP
2014 – Object-Oriented Programming, pages 541–566, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg. ISBN 978-3-662-44202-9.

[9] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and Coen De Roover. Lin-
vail: A general-purpose platform for shadow execution of javascript. In 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 260–270, 2016. doi: 10.1109/SANER.2016.91.

[10] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A selective
record-replay and dynamic analysis framework for javascript. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, page 488–498,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450322379.
doi: 10.1145/2491411.2491447.

71

https://github.com/boa-dev
https://hal.archives-ouvertes.fr/hal-01181143

72 BIBLIOGRAPHY

[11] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient dynamic
analysis for node.js. In Proceedings of the 27th International Conference on Compiler Con-
struction, CC 2018, page 196–206, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356442. doi: 10.1145/3178372.3179527.

[12] Laurent Christophe. Github - lachrist/aran: Javascript code instrumenter. https:

//github.com/lachrist/aran, May 2022. (Accessed on 05/15/2022).

[13] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
webassembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, page 185–200, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450349888. doi: 10.1145/3062341.
3062363.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation. Pearson/Addison Wesley, 3rd edition, 2006.

[15] Donald Bradley Roberts. Practical analysis for refactoring. University of Illinois at Urbana-
Champaign, 1999.

[16] Sebastian Proksch, Johannes Lerch, and Mira Mezini. Intelligent code completion with
bayesian networks. ACM Trans. Softw. Eng. Methodol., 25(1), December 2015. ISSN 1049-
331X. doi: 10.1145/2744200.

[17] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumentation for code coverage
testing. In Proceedings of the 2002 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA ’02, page 86–96, New York, NY, USA, 2002. Association for
Computing Machinery. ISBN 1581135629. doi: 10.1145/566172.566186.

[18] Tosapon Pankumhang and Matthew Rutherford. Iterative instrumentation for code coverage
in time-sensitive systems. In 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pages 1–10, 2015. doi: 10.1109/ICST.2015.7102594.

[19] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-
namic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, page 89–100, New
York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595936332. doi:
10.1145/1250734.1250746.

[20] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: exploiting ecc-memory for detect-
ing memory leaks and memory corruption during production runs. In 11th Interna-
tional Symposium on High-Performance Computer Architecture, pages 291–302, 2005. doi:
10.1109/HPCA.2005.29.

[21] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns. Precise
client-side protection against DOM-based Cross-Site scripting. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 655–670, San Diego, CA, 2014. USENIX Associ-
ation. ISBN 978-1-931971-15-7.

[22] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. Jsflow: Tracking infor-
mation flow in javascript and its apis. In Proceedings of the 29th Annual ACM Symposium
on Applied Computing, SAC ’14, page 1663–1671, New York, NY, USA, 2014. Association
for Computing Machinery. ISBN 9781450324694. doi: 10.1145/2554850.2554909.

https://github.com/lachrist/aran
https://github.com/lachrist/aran

BIBLIOGRAPHY 73

[23] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with gdb. Free Software
Foundation, 675, 1988.

[24] Mozilla. Firefox web browser. https://www.mozilla.org/en-US/firefox/, May 2022.
(Accessed on 05/15/2022).

[25] Google. Chrome web browser. https://www.google.com/chrome, May 2022. (Accessed on
05/15/2022).

[26] OpenJS Foundation. Node.js is a javascript runtime built on chrome’s v8 javascript engine.
https://nodejs.org/en/, May 2022. (Accessed on 05/15/2022).

[27] ECMA International. Ecma-262: Ecmascript 2021 language specification. https://www.

ecma-international.org/publications-and-standards/standards/ecma-262/, May
2022. (Accessed on 05/19/2022).

[28] Inc. Apple, Inc. Google, Inc. Mozille, and Inc. Microsoft. Web hypertext application tech-
nology working group: Standards. https://spec.whatwg.org/, May 2022. (Accessed on
05/19/2022).

[29] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic
behavior of javascript programs. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10, page 1–12, New York, NY,
USA, 2010. Association for Computing Machinery. ISBN 9781450300193. doi: 10.1145/
1806596.1806598.

[30] Laurence Tratt. Chapter 5 dynamically typed languages. volume 77 of Advances in Com-
puters, pages 149–184. Elsevier, 2009. doi: https://doi.org/10.1016/S0065-2458(09)01205-4.

[31] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men do.
In Mira Mezini, editor, ECOOP 2011 – Object-Oriented Programming, pages 52–78, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-22655-7.

[32] Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid security analysis of web javascript
code via dynamic partial evaluation. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014, page 49–59, New York, NY, USA, 2014. As-
sociation for Computing Machinery. ISBN 9781450326452. doi: 10.1145/2610384.2610385.

[33] Amin Milani Fard and Ali Mesbah. Jsnose: Detecting javascript code smells. In 2013
IEEE 13th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 116–125, 2013. doi: 10.1109/SCAM.2013.6648192.

[34] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. Dlint: Dynamically check-
ing bad coding practices in javascript. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, page 94–105, New York, NY, USA, 2015. As-
sociation for Computing Machinery. ISBN 9781450336208. doi: 10.1145/2771783.2771809.

[35] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race detection for web
applications. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’12, page 251–262, New York, NY, USA, 2012. As-
sociation for Computing Machinery. ISBN 9781450312059. doi: 10.1145/2254064.2254095.

https://www.mozilla.org/en-US/firefox/
https://www.google.com/chrome
https://nodejs.org/en/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://spec.whatwg.org/

74 BIBLIOGRAPHY

[36] Liang Gong, Michael Pradel, and Koushik Sen. Jitprof: Pinpointing jit-unfriendly javascript
code. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, page 357–368, New York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450336758. doi: 10.1145/2786805.2786831.

[37] Xiao Xiao, Shi Han, Charles Zhang, and Dongmei Zhang. Uncovering javascript perfor-
mance code smells relevant to type mutations. In Xinyu Feng and Sungwoo Park, editors,
Programming Languages and Systems, pages 335–355, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-26529-2.

[38] Vincent St-Amour and Shu yu Guo. Optimization Coaching for JavaScript. In John Tang
Boyland, editor, 29th European Conference on Object-Oriented Programming (ECOOP
2015), volume 37 of Leibniz International Proceedings in Informatics (LIPIcs), pages 271–
295, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN
978-3-939897-86-6. doi: 10.4230/LIPIcs.ECOOP.2015.271.

[39] Laurent Christophe, Coen De Roover, Elisa Gonzalez Boix, and Wolfgang De Meuter. Or-
chestrating dynamic analyses of distributed processes for full-stack javascript programs. In
Proceedings of the 17th ACM SIGPLAN International Conference on Generative Program-
ming: Concepts and Experiences, GPCE 2018, page 107–118, New York, NY, USA, 2018. As-
sociation for Computing Machinery. ISBN 9781450360456. doi: 10.1145/3278122.3278135.

[40] Florent Marchand de Kerchove, Jacques Noyé, and Mario Südholt. Towards modular in-
strumentation of interpreters in javascript. In Companion Proceedings of the 14th Inter-
national Conference on Modularity, MODULARITY Companion 2015, page 64–69, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450332835. doi:
10.1145/2735386.2736753.

[41] Jan Kasper Martinsen, H̊akan Grahn, and Anders Isberg. Combining thread-level spec-
ulation and just-in-time compilation in google’s v8 javascript engine. Concurrency and
computation: practice and experience, 29(1):e3826, 2017.

[42] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R.
Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman,
Edwin W. Smith, Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz.
Trace-based just-in-time type specialization for dynamic languages. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’09, page 465–478, New York, NY, USA, 2009. Association for Computing Machinery.
ISBN 9781605583921. doi: 10.1145/1542476.1542528.

[43] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler,
Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical partial eval-
uation for high-performance dynamic language runtimes. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
page 662–676, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450349888. doi: 10.1145/3062341.3062381.

[44] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One vm to rule
them all. In Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013, page 187–204, New
York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450324724. doi:
10.1145/2509578.2509581.

BIBLIOGRAPHY 75

[45] Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas Würthinger. One compiler:
Deoptimization to optimized code. In Proceedings of the 26th International Conference on
Compiler Construction, CC 2017, page 55–64, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450352338. doi: 10.1145/3033019.3033025.

[46] Koushik Sen, Manu Sridharan, and Esben Sparre Andreasen. Github - ksen007/jalangi2:
a framework for writing dynamic analyses for javascript. https://github.com/ksen007/

jalangi2, May 2022. (Accessed on 05/21/2022).

[47] Ariya Hidayat. Esprima: Ecmascript parsing infrastructure for multipurpose analysis.
https://esprima.org/, May 2022. (Accessed on 05/21/2022).

[48] Estools. Github - estools/escodegen: Ecmascript code generator. https://github.com/

estools/escodegen, May 2022. (Accessed on 05/21/2022).

[49] acornjs. Github - acornjs/acorn: A small, fast, javascript-based javascript parser. https:

//github.com/acornjs/acorn, May 2022. (Accessed on 05/21/2022).

[50] Thomas H. Austin and Cormac Flanagan. Multiple facets for dynamic information flow.
In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, page 165–178, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450310833. doi: 10.1145/2103656.2103677.

[51] Jeff Terrace, Stephen R. Beard, and Naga Praveen Kumar Katta. JavaScript in JavaScript
(js.js): Sandboxing Third-Party scripts. In 3rd USENIX Conference on Web Application
Development (WebApps 12), pages 95–100, Boston, MA, 2012. USENIX Association. ISBN
978-931971-94-2.

[52] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent dynamic instrumenta-
tion. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments, VEE ’12, page 133–144, New York, NY, USA, 2012. Association for Com-
puting Machinery. ISBN 9781450311762. doi: 10.1145/2151024.2151043.

[53] Kevin Leach, Chad Spensky, Westley Weimer, and Fengwei Zhang. Towards transparent
introspection. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 248–259, 2016. doi: 10.1109/SANER.2016.25.

[54] Michael Grottke and Kishor S Trivedi. A classification of software faults. Journal of Relia-
bility Engineering Association of Japan, 27(7):425–438, 2005.

[55] James Ide, Rastislav Bodik, and Doug Kimelman. Concurrency concerns in rich internet
applications. 2009.

[56] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race detection for event-
driven programs. SIGPLAN Not., 48(10):151–166, October 2013. ISSN 0362-1340. doi:
10.1145/2544173.2509538.

[57] Shin Hong, Yongbae Park, and Moonzoo Kim. Detecting concurrency errors in client-side
java script web applications. In 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation, pages 61–70, 2014. doi: 10.1109/ICST.2014.17.

[58] Fraser Brown, Shravan Narayan, Riad S. Wahby, Dawson Engler, Ranjit Jhala, and Deian
Stefan. Finding and preventing bugs in javascript bindings. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 559–578, 2017. doi: 10.1109/SP.2017.68.

https://github.com/ksen007/jalangi2
https://github.com/ksen007/jalangi2
https://esprima.org/
https://github.com/estools/escodegen
https://github.com/estools/escodegen
https://github.com/acornjs/acorn
https://github.com/acornjs/acorn

76 BIBLIOGRAPHY

[59] Mitchell Wand and Daniel P. Friedman. Essentials of programming languages ; Third edition.
MIT Press, 2008.

[60] Madhukar N. Kedlaya, Behnam Robatmili, Cundefinedlin Caşcaval, and Ben Hardekopf.
Deoptimization for dynamic language jits on typed, stack-based virtual machines. In Pro-
ceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE ’14, page 103–114, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450327640. doi: 10.1145/2576195.2576209.

[61] Rustwasm. Rust and webassembly documentation. https://rustwasm.github.io/docs/,
August 2022. (Accessed on 08/19/2022).

[62] Mozilla. Mdn web docs. https://developer.mozilla.org/en-US/, August 2022. (Ac-
cessed on 08/19/2022).

https://rustwasm.github.io/docs/
https://developer.mozilla.org/en-US/

	Introduction
	Problem Statement
	Developing a Portable Interpreter-Based Instrumentation Platform
	Roadmap

	State of the Art and Motivation
	Program Analysis
	Challenges for Dynamic Analyses of JavaScript

	Dynamic Analysis Instrumentation Approaches
	Interpreter-Based Instrumentation
	Abstract syntax Tree (AST) Instrumentation
	Source Code Instrumentation
	Meta Circular Evaluation Instrumentation

	Instrumentation Techniques - One Size Does Not Fit All
	Comparing Different Instrumentation Techniques
	Transparency
	Performance
	Portability
	Expressiveness

	Portable interpreter-based instrumentation
	Approach
	BoaSpect's Architecture
	Analysis API Design
	Supporting the Trap JavaScripttoPrimitive

	Research Design Considerations
	Safety

	Research Questions

	BoaSpect's implementation
	Architectural Overview of Boa
	Running JavaScript Programs Using Boa
	Boa's Bytecode Interpreter

	Modifying Boa to Include BoaSpect
	Accepting and Installing an Advice
	Distinguishing the Execution Context
	Hooking in the Operations
	Interpreter Operation Reification

	Targetting WebAssembly

	Evaluation
	Experimental Setup
	Input Programs
	Input Analyses

	Compatibility
	Evaluating Transparency
	Evaluating Performance
	Absolute Time to Execute: Node Against Boa
	Slowdown for Instrumentation with Boa as the Engine

	Evaluating Portability
	Evaluating Expressiveness
	Evaluation w.r.t. the Research Questions

	Conclusion
	Our Approach
	Interpreter-Based Instrumentation

	Evaluation
	Contributions
	Future Work

