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Abstract Reactive programming is a popular paradigm to program event-driven applications, and it is often
proposed as a paradigm to write distributed applications. One such type of application is prosumer applications,
which are distributed applications that both produce and consume many events.

We analyse the problems that occur when using a reactive programming language or framework to
implement prosumer applications. We find that the assumption of an open network, which means prosumers
of various types spontaneously join and leave the network, can cause a lot of code complexity or run-time
inefficiency. At the basis of these issues lies acquaintance management: the ability to discover prosumers as
they join and leave the network, and correctly maintaining this state throughout the reactive program. Most
existing reactive programming languages and frameworks have limited support for managing acquaintances,
resulting in accidental complexity of the code or inefficient computations.

In this paper we present acquaintance management for reactive programs. First, we design an acquaintance
discovery mechanism to create a flock that automatically discovers prosumers on the network. An important
aspect of flocks is their integration with reactive programs, such that a reactive program can correctly and
efficiently maintain its state. To this end we design an acquaintance maintenance mechanism: a new type of
operator for functional reactive programming languages that we call “deploy-*”. The deploy-* operator enables
correct and efficient reactions to time-varying collections of discovered prosumers.

The proposed mechanisms are implemented in a reactive programming language called Stella, which
serves as a linguistic vehicle to demonstrate the ideas of our approach. Our implementation of acquaintance
management results in computationally efficient and idiomatic reactive code.

We evaluate our approach quantitatively via benchmarks that show that our implementation is efficient:
computations will efficiently update whenever a new prosumer is discovered, or a connected prosumer is
dropped. To evaluate the distributed capabilities of our prototype implementation, we implement a use-case
that simulates the bike-sharing infrastructure of Brussels, and we run it on a Raspberry Pi cluster computer.

We consider our work to be an important step to use functional reactive programming to build distributed
systems for open networks, in other words, distributed reactive programs that involve many prosumer devices
and sensors that spontaneously join and leave the network.
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Topology-Level Reactivity in Distributed Reactive Programs

1 Introduction

The advent of the Internet of Things has brought us the prosumer [20, 34]. In software,
a prosumer is a software component that both produces and consumes data, e.g.,
by producing and consuming distributed data streams. An example of a prosumer
device is a modern smartwatch, which continuously consumes data (e.g., notifications,
weather forecast) and is packed full of sensors that produce data (GPS, gyroscope,
heart rate sensor, blood oxygen sensor, …).

Programmers face various demands when developing prosumer applications, which
we characterise as reactive, distributed, and open. First, they are inherently reactive
due to their highly interactive (event-driven) nature. Users expect them to update in
real-time. Second, data may be produced and consumed by many distributed devices
and sensors that are connected via a network (e.g., Bluetooth). Finally, we say that
they are connected to open networks, meaning that devices and sensors continuously
and spontaneously join and leave the application.

Reactive programming (RP) is an emerging approach to build reactive (prosumer)
applications because it offers a solution to the problems of callback hell and inversion
of control that arise when programming event-driven applications [2, 10]. Frameworks
based on “reactive streams” such as ReactiveX [31] and Akka Streams [35] have been
adopted into mainstream development, and functional RP is regularly proposed for
building distributed systems [7, 24, 26, 27, 28, 33, 40].
In this paper we analyse the problems that occur when using an RP language or

framework to build prosumer applications, i.e., distributed reactive applications for
open networks. We identify two key areas where existing literature can cause issues.
First, a strong acquaintance discovery mechanism is essential to discover prosumers
as they join and leave the application. Such a suitable mechanism is rarely present
in existing RP languages and frameworks. Second, as prosumer applications process
events from many devices, an acquaintance maintenance mechanism in the underlying
reactive program is essential. We found that existing RP languages and frameworks
either exhibit a lot of accidental complexity, or are inefficient.
This paper is structured as follows. In Section 2 we analyse the problems that

occur in state of the art RP languages and frameworks when implementing reactive
prosumer applications. Due to their open nature, two different kinds of reactivity
will be identified: application-level reactivity and topology-level reactivity. The running
example throughout the rest of the paper is an app that counts bikes that roam around
a city (Section 3). In Section 4 we introduce Stella, a reactive language whose actors
and reactors form the basic building blocks of prosumer applications. In Section 5 we
introduce flocks, a novel acquaintance discovery mechanism that supports the open
nature of prosumer applications and that epitomises the aforementioned topology-level
reactivity. In Section 6 we define a new distributed RP primitive called deploy-* that
correctly and efficiently maintains the topology of a prosumer application based on sets
of discovered prosumers. Finally, in Sections 7 and 8 we evaluate deploy-* qualitatively
and via benchmarks, and in Section 9 we evaluate the distributed capabilities of flocks
by running a bicycle simulation on a Raspberry Pi cluster.
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2 State of the Art and Problem Statement

When using RP to implement prosumer applications (e.g., using ReactiveX [31], Akka
Streams [35], REScala [37], …), every prosumer in the network represents (part of)
a reactive program. Prosumers interact with each other via streams, which are flows
of events such as sensor measurements.
One of the main challenges we faced when implementing prosumer applications

using RP is caused by the open network assumption. At every point in time, a prosumer
application must know its set of acquaintances that can be reached over the network.
These acquaintances vary throughout the lifetime of the application as prosumers
join and become unreachable. Hence, a central aspect is acquaintance management: a
mechanism to discover acquaintances, subscribe to their streams in order to react as
they appear, and gracefully close the streams as they disappear.

In this section we explore acquaintance management for reactive programs, and we
will show that existing RP languages and frameworks are either inefficient, or require
a complex and error-prone mix of code when implementing prosumer applications.

2.1 Acquaintance Discovery: Extensional vs. Intensional

Since prosumers are not necessarily producers of services, we have replaced the
traditional term “service discovery” by a more general term “acquaintance discovery”
which comprises one prosumer discovering the existence of another prosumer. We
classify acquaintance discovery mechanisms as either extensional or intensional. We
use these terms in the traditional mathematical sense, namely that an extensional
definition of a concept formulates its meaning by explicitly specifying every object that
falls under the definition, and an intensional definition gives meaning to a concept by
specifying the rules or conditions that objects have meet to be part of the definition.
Applying these terms to acquaintance discovery:
Extensional acquaintance discovery means that the developer explicitly designates the

acquaintances on the network. This is demonstrated by the following example in
RxJS, a JavaScript implementation of ReactiveX [31, 36], which explicitly names
the URL to a WebSocket echo server and binds the resulting stream to echoStream.

const echoStream = rxjs.webSocket.webSocket("wss://echo.websocket.org");

Intensional acquaintance discovery means that the developer writes a prescription of
the acquaintances that can found on the network. An example can be found
in the AmbientTalk/R reactive programming language [7], where the authors
build a mobile peer-to-peer ticket trading application. The following snippet of
their application discovers all tickets offered by ticket vendors on same (wireless)
network. The expression ambientBehavior: creates a set of all objects on the network
with the TicketOfferT type tag. Its result is a so-called signal (a reactive value) that
automatically updates whenever the underlying collection updates.

def allNearbyOffers := ambientBehavior: TicketOfferT @All;
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Figure 1 Illustration of the 2 different levels of reactivity.

When dealing with open networks, an intensional discovery mechanism is essential:
extensionally enumerating all possible acquaintances is by definition impossible.
Moreover, because prosumers spontaneously come and go, the mechanism itself must
also be reactive. However, existing RP languages and frameworks such as Flapjax [25],
REScala [37], FS2 [14], Project Reactor [29], ReactiveX [31], and Streamz [41] support
only extensional acquaintance discovery. The lack of built-in intensional acquaintance
discovery mechanism leaves them in an unfavourable position. This is because each
application needs to implement its own ad-hoc solution for intensional acquaintance
discovery and to maintain its state as acquaintances appear and disappear, which
leads to complex and error-prone code.

2.2 Acquaintance Maintenance in Reactive Programs

An overarching strategy is needed to correctly and efficiently maintain the state of
the reactive program as acquaintances appear and disappear. For example, consider a
reactive program that computes the average temperature of all thermometers that are
connected to a network, and an acquaintance discovery mechanism that is capable
of discovering them. Speaking in terms of streams, the average computation must
appropriately react to streams appearing, disappearing, and updating with new values.
In Figure 1 we illustrate these interactions between prosumers and their streams.
Each of the rounded rectangles represents one prosumer, whose reactive program is
represented by a Directed Acyclic Graph (DAG) that shows how data flows through
the program [2]. At the top, Figure 1 depicts N (possibly different) producers of data,
e.g., thermometers. At the bottom, a sole consumer reacts to prosumers and their
data. We discriminate 2 levels of reactivity.

Application-level reactivity: Whenever an input node of a DAG changes (at the top
of the DAG), the reactive language or framework automatically recomputes the
dependent parts of the program that are affected by the change. We illustrate
one such propagation path in red. We call this application-level reactivity, which
equates to the “normal” propagation of values in existing work, e.g., temperature
measurements that flow through the program.
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Listing 1 Topology-level reactivity in RxJS, calculating an average of all sensors.
1 const average$ = sensorDiscoveryService.sensors$.pipe(
2 zipWithIndex,
3 rxjs.flatMap(([sensor$, id]) => sensor$.pipe(
4 rxjs.map((tempr) => [id, tempr]),
5 rxjs.endWith([id, null]),
6 rxjs.catchError(_ => rxjs.of([id, null])))),
7 rxjs.scan((tracker, [id, tempr]) =>
8 tempr === null ? tracker.remove(id) : tracker.update(id, tempr),
9 new AverageTracker()),
10 rxjs.map(tracker => tracker.getAverage()));

Topology-level reactivity: A different kind of reactivity that we call topology-level re-
activity occurs in consumers whose computations depend on an open number
of producers, e.g., the average calculation. The topology of the DAG needs to be
continuously reconfigured to accommodate the appearing or disappearing streams.
This is illustrated in Figure 1 in blue, denoting the appearing and disappearing of a
stream (and its dependencies) in the DAG of the consumer.

Application-level reactivity is well understood from languages and frameworks
such as Fran [11], FrTime [9], REScala [37], ReactiveX [31] and Akka Streams [35]. In
the remainder of this section we analyse how topology-level reactivity is handled by
existing work on reactive programming. Here, there are two main approaches based
on discrete and continuous representations of reactive values based on event streams
and behaviours respectively [2]. Since they lead to a different programming style, we
will discuss them separately in Sections 2.2.1 and 2.2.2.

2.2.1 Acquaintance Maintenance Using Event Streams
The mainstream approach to writing reactive programs is based on discrete reactive
values, where the basic unit of change are events. Many RP languages and frame-
works offer abstractions that represent event streams [9, 11, 25, 37], and frameworks
based on reactive streams (i.e., event streams) are often used in mainstream software
development [31][35].
The main ideas can be explained via an average computation that computes the

average value of all thermometers connected to a network, which we implemented in
RxJS [36], a state-of-the-art JavaScript streaming framework. Listing 1 implements
this computation via an RxJS stream called average$ ($ is a naming convention for
streams). To communicate the continuously appearing and disappearing sensors to the
reactive program we used a stream called sensorDiscoveryService.sensors$ (not defined
here) from which average$ is derived. This stream propagates a new sensor$ stream
(containing temperature measurements) every time a sensor appears. In RxJS, the
average$ stream is defined by “piping” the values from sensors$ through a sequence
of RxJS stream operators. The operators in the example work as follows:

Line 2, zipWithIndex: Adds an identifier to each value of the sensors$ stream, yielding
[sensor$, id] pairs where sensor$ is the aforementioned sensor’s stream.
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Line 3, flatMap: The lambda given as argument to flatMap is invoked for every [sensor$,
id] pair and generates a new stream. flatMap remembers all streams it has generated
and echoes their values on a first-in first-out basis. We use it to transform a stream
of sensors to a stream of tuples [id, tempr] where id is the same as before, and tempr
is its latest temperature measurement. Whenever the sensor$ stream is updated by
said sensor, a new [id, tempr] pair is propagated by flatMap. Lines 5 and 6 handle
the removing of a thermometer’s stream (gracefully or via an error). They ensure
that an [id, null] pair is propagated to “clean up” the thermometer downstream.

Line 7, scan: Most of the application logic is tackled by scan, that essentially imple-
ments a fold operation for streams where the accumulator is emitted for every
input value. The accumulator is a purely functional AverageTracker (implemented
elsewhere) that tracks the latest temperatures of each sensor. The subsequent map
(line 10) extracts the current average.

The main problem with this approach is its accidental complexity, and we find
that the code is also error-prone. In our experience this problem translates to other
frameworks like Akka Streams as well, which operate in a very similar manner.
Besides the essential complexity of the application logic (averaging temperatures), the
operations needed to handle topology-level reactivity and to manage acquaintances
(thermometers) are accidental complexity. In our experience finding the correct
combination of operators is also difficult. The code snippet of Listing 1 was actually
written by an anonymous reviewer of an earlier version of this paper. The original code
snippet written by us contained a semantic bug, because we thought of the solution
in a different way (more similar to the solution in Section 2.2.2). This code can still be
found in Appendix A where we discuss the bug.

2.2.2 Acquaintance Maintenance Using Behaviours
Besides event streams, many RP languages and frameworks also feature continuous
behaviours. Those that support both styles (e.g., Fran [11], FrTime [9], Flapjax [25]
and REScala [37]) also include operations to convert one to the other, and either
one can be used to implement the other [8, section 2.10]. Whereas event streams
use operations such as map and filter, behaviours are programmed by lifting regular
functions, leading to code that is typically more declarative and compact.
Listing 2 implements the same average calculation from the previous section in

REScala [26, 37], a functional RP library in Scala. Line 1 declares a behaviour (called a
signal in REScala) that holds values of type Set[Sensor]. Line 2 derives a new signal that
computes their average value. The implementation is standard Scala: line 3 computes
the sum total of all sensor values via a standard Scala foldLeft, and line 4 divides the
total by the number of sensors. Note that each .value access automatically creates a
dependency on a signal. In contrast to the RxJS code in Listing 1, the topology of the
DAG that arises from this computation is automatically maintained by REScala.
Behaviour-based code is usually inefficient because of the propagation of (in this

case) sets. Every time a change occurs at the topology-level or the application-level, a
completely new set is automatically propagated through the reactive program, and
all derived computations such as foldLeft are recomputed from scratch. Techniques
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Listing 2 Topology-level reactivity in REScala.
1 val sensors: Signal[Set[Sensor]] = ... // implementation omitted for brevity
2 val average: Signal[Int] = Signal.dynamic {
3 val total = sensors.value.foldLeft(0) { (accum, sensor) => accum + sensor.measurement.value }
4 total / sensors.value.size }

such as incremental data structures [23] and incremental behaviours [32] have been
proposed to speed up application-level reactivity. However, so far these techniques
have not been integrated to speed up topology-level reactivity.

2.3 Summary and Problem Statement

To summarise the problems that we found in state of the art RP languages and
frameworks for dealing with topology-level reactivity:
Event streams result in code that reacts efficiently on both the application-level and

the topology-level. However, event streams seem to engender larger and more
complex code that is more difficult to write.

Behaviours result in code that is more idiomatic and seems to be easier to write and
understand [39], but is usually inefficient for both levels of reactivity.

In this paper we use a language-based approach to achieve code that is idiomatic
(like behaviours) but also efficient. We present our solution using a programming
language called Stella [43], which allows us to demonstrate and communicate, in
our opinion, idiomatic code. Besides the code style, Stella implements a functional
reactive programming model based on deployments of reactive code that will be an
important part of the overall solution.
Intensional acquaintance discovery will be conceived via so-called flocks, a new

abstraction to automatically discover prosumers such that both levels of reactivity
can be correctly and efficiently implemented. A flock offers a stream to the reactive
program that propagates a prosumer set, but instead of continuously propagating new
sets, it will propagate patches that are akin to “join” and “leave” events. To correctly
and efficiently maintain the state of the reactive program, we leverage these so-called
incremental sets to implement a topology-reactive operator called deploy-*. The key
feature of deploy-* is that it incrementally changes the topology of the DAG based on
patches, and it meticulously patches its output collection whenever reactions occur
on either the topology-level or the application-level.

3 Running Example: Whereabikes

Many cities around the world have infrastructure for shared bicycles or electric steps,
which are increasingly network-enabled to track their location, battery level, distance
travelled, etc [21]. The running example used in this paper is a reactive bike counter
called “Whereabikes” that counts all bikes within a user-designated area. A screenshot
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Figure 2 Screenshot of the Whereabikes application (using mock bicycle data).

of Whereabikes is given in Figure 2, where a user placed a “counting marker” to count
all bikes within a radius of 750 meters of our university campus. In the absence of
real-world data, this implementation is completely user-controlled. I.e., a user mocks
data via the GUI by manually adding, removing, and moving (via drag & drop) bikes
and counting markers.

The example is conceptually simple, but challenging to implement. The programmer
must ensure that bike counters correctly update in the following circumstances:
1. Bikes constantly move in and out of the designated area highlighted in blue.
2. Bikes spontaneously appear and disappear depending on network conditions, which

is mocked by the user via GUI interactions.
3. A user may move the counting marker (drag & drop).
4. A user may change the radius wherein bikes are counted via a slider in the pop-up.
To give the reader a notion of scale, in 2019 Villo!, the public bike sharing program of
Brussels, stationed 5000 bikes in the city dispersed over a total of 352 bike stations [30].
Consequently, the programmer must ensure that the computation is efficient.

4 A Brief Introduction to Stella

We use the reactive programming language called Stella [43] as a linguistic vehicle
to express the core ideas of this paper.1 It is conceived as a continuation-passing
style interpreter in TypeScript with trampolines and (green) threads [13, chapter 5].
Distributed peer-to-peer communication is supported via WebRTC [6].

Throughout this section we will explain code snippets that implement parts of the
running example, and we detail the new concept of reactor deployments which we
consider to be an important part of our solution. Throughout all Stella code snippets

1 Some keywords were renamed since the version of Stella presented in [43], but the language
semantics remain the same. E.g., actor was renamed to def-actor, reactor to def-reactor,
and expressions with side-effects end with a “!”.
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Listing 3 Examples of basic expressions in Stella
1 (def a 1) // (def <identifier> <expression>)
2 (set! a 2) // (set! <identifier> <expression>)
3 (if (equal? a 1) (println! "y") (println! "n")) // (if <condition> <consequent> <alternative>)
4 (def p (new LngLat 'at 4.39513130 50.8220238)) // (new <class> <constructor name> <...args>)

Listing 4 A “Hello World!” program in Stella.
1 (def-actor Main
2 (def-constructor (start env)
3 (println! "Hello World!")))

we highlight keywords in blue, strings are green and are surrounded by double quotes,
and symbols start with a single quote and are highlighted in red.

4.1 Base Language and “Hello World!”

Stella is a dynamically typed language where all run-time values are objects. The
language can be thought of as having two layers: a sequential object-oriented base
language, and the concurrent level of actors and reactors. The sequential base language
contains objects such as numbers, strings (e.g., ”hello”) and symbols (e.g., ’hello), as
well as method invocations on objects and a number of special forms (e.g., to spawn
actors and reactors).

Stella uses S-expression syntax, with operators in prefix notation. Dynamic method
lookup in Stella’s object-oriented model is single dispatch. The expression (println!
”Hello World!”) looks up the println! method on the class String of the receiver object
”Hello World!”. Similarly, the expression (+ 1 2) invokes + from the Number class on the
receiver object, number 1, passing the number 2 as the argument. Some other examples
from the base language are shown in Listing 3. Local variables are introduced via def,
assignments use set!, conditionals use if, and classes are instantiated to objects via
new (e.g., LngLat represents a GPS coordinate and has a constructor called at).

A program contains 4 types of top-level definitions: classes, actor behaviours (“the
class of an actor”), reactor behaviours (“the class of a reactor”, i.e., a reactive program),
and flocks. The interaction between those last three concepts form the core of this
paper. Starting a program is exemplified by the “Hello World!” program in Listing 4. A
developer must define a Main actor behaviour that defines a constructor named start
with 1 formal parameter (that contains environment variables). The body of its start
constructor contains base language expressions, in this case a single println!.

4.2 Actors and Streams

An actor is a process that has a single behaviour and amailbox [22]. The actor behaviour
describes the internal state and interface of an actor. There is no shared state between
actors (and reactors), and all messages between them are passed via deep copy. An
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Listing 5 A simple “digital twin” for a bicycle in Whereabikes
1 (def-actor Bike
2 (def-stream location)
3 (def-constructor (init initial-location) (emit! location initial-location))
4 (def-method (update-location! new-location) (emit! location new-location)))

atypical feature of actors in Stella is that they can export streams to which they emit
values. These serve as the basis for flocks in Section 5.

Consider the code in Listing 5, which implements a part of Whereabikes. We
use a Bike actor behaviour to create a “digital twin” for every bicycle. While these
actors are conceptually running on the physical bikes that move around a city, in
our implementation they are spawned locally in response to GUI events. There are 3
declarations in its body. Line 2 declares a stream called location, which means that
every actor with the Bike behaviour exports a stream called “location”. Line 3 declares
a constructor called init (there can be multiple), and line 4 declares a method called
update-location!. Both have 1 formal parameter and an emit! statement in their body
that emits a location (a GPS coordinate object) to the location stream of the current
actor. Emitting to streams of other actors (and reactors) is not possible.
A stream can be seen as an event source, and an emission is an event publication.

Emitting a value sends an asynchronous message to all actors (and reactors) that
are subscribed to the stream. A reference to a specific actor’s stream is obtained via
a qualification expression using dot-notation. For instance, given an actor bike, the
expression bike.location evaluates to an object of type Stream, namely the location
stream of bike. Note that dot-notation is exclusively used to address streams, and not
fields, methods, etc.
Actors can be spawned via spawn-actor! in the base language (e.g., in the Main

actor). As shown below, it accepts at least 2 arguments: the name of an actor behaviour
(e.g., Bike) and a symbol denoting the name of its constructor (e.g., init). Any other
arguments are passed to the constructor, in this case a LngLat object. An ActorReference
object is returned that is used to send asynchronous messages to the actor.

(def bike (spawn-actor! Bike 'init (new LngLat 'at 4.39513130 50.8220238)))

4.3 Monitoring Streams

Actors can monitor streams for emissions using monitor!, as demonstrated in Listing 6,
where the Main actor spawns a new Bike and monitors its location stream (line 4).
Every time the location stream emits a new value, the Main actor will receive a log!
message in its mailbox. When this message is eventually dequeued and processed, the
Main actor invokes the corresponding log! method with the emitted value as argument.
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Listing 6 Monitoring a bike’s location with an actor.
1 (def-actor Main
2 (def-constructor (start env)
3 (def bike (spawn-actor! Bike 'init (new LngLat 'at 4.39513130 50.8220238)))
4 (monitor! bike.location 'log!))
5 (def-method (log! lnglat) (println! "bike pos: " lnglat)))

4.4 Functional Reactive Programming With Reactors

Besides actors, Stella features reactors. A reactor is a process that encapsulates a
functional reactive program [2]. In general, the fundamental mechanism of functional
reactive programming can be easily explained using the programming model of
spreadsheets. When a cell C1 contains the expression A1 + B1, then the value of C1 is
automatically recomputed every time the contents of cell A1 or B1 changes. Behaviour-
based RP languages (see Section 2.2.2) operate on the same principle, but elevated
to the level of programming languages. By encapsulating imperative code in actors
and reactive code in reactors, Stella avoids the issues that arise when combining
imperative and reactive programming. Stella’s object model ensures that reactors are
purely functional, and that their computations always terminate [43].

A reactor contains one ormore reactor deployments, which are “instances” of a reactor
behaviour, each with their own run-time state. Reactor behaviours, deployments, and
reactors themselves are explained in the remainder of this section.

4.4.1 Reactor Behaviour
Just like an actor is spawned from an actor behaviour, every reactor is spawned from
a reactor behaviour. A reactor behaviour has a name, at least one source (its “input”),
at least one sink (its “output”), and any number of expressions that describe the
computations between the sources and sinks. For example, the reactor behaviour
called DegreesToRadians in Figure 3a converts a mathematical angle in degrees to
radians. Its single source is called degrees, and its single sink is denoted by out (the
result of a multiplication). When DegreesToRadians is spawned (creating a reactor), the
value of its sink will be automatically recomputed (just like a spreadsheet) whenever
the value of degrees changes via incoming messages.

It is common to draw a reactive program as a Directed Acyclic Graph (DAG) which
may aid the understanding of how data flows through the program [3, 38]. The
corresponding DAG representation of DegreesToRadians is given in Figure 3b. Constant
expressions such as the division are computed at compile-time and are collapsed into
one DAG node. We often think about reactive programs as the propagation of values
through the DAG from top to bottom, recomputing the expressions in the nodes along
the way.

4.4.2 Reactor Deployments
A reactor deployment is an “instance” of a reactor behaviour, of which there can be
many within the same reactor. Each deployment can have different input values,
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1 (def-reactor (DegreesToRadians degrees)
2 (out (* degrees (/ #Pi 180))))

(a) DegreesToRadians implementation.

Data flow

Sources
degrees

(/ #Pi 180)

Sinks sink #1
*

(b) DegreesToRadians DAG representation.

Figure 3 Implementation and DAG of the DegreesToRadians reactor behaviour.

Listing 7 Deploying additional reactor behaviours.
1 (def-reactor (DistanceBetween point1 point2)
2 (def lat1 (get-lat point1))
3 (def lon1 (get-lng point1))
4 (def lat2 (get-lat point2))
5 (def lon2 (get-lng point2))
6
7 (def dlat (deploy DegreesToRadians (- lat2 lat1)))
8 (def dlon (deploy DegreesToRadians (- lon2 lon1)))
9 (def a (+ (expt (sin (/ dlat 2)) 2) (* (cos (deploy DegreesToRadians lat1)) (cos (deploy

,→ DegreesToRadians lat2)) (expt (sin (/ dlon 2)) 2))))
10 (def c (* 2 (atan2 (sqrt a) (sqrt (- 1 a)))))
11 (out (* 6367 c)))

output values, and run-time state. Deployments will serve as the basis for efficient
application-level and topology-level reactivity.
Consider the DistanceBetween reactor behaviour in Listing 7 that calculates the

great-circle distance between two points using the Haversine Formula [12]. Most
expressions in its body are variable definitions and method invocations on objects.
Since the formula requires some angles to be specified in radians, DistanceBetween
makes use of the aforementioned DegreesToRadians behaviour by deploying instances
of it. Responsible for this is the deploy expression, for example on lines 7 and 8.
The deploy operator can be seen as a function application for reactor behaviours,

but instead of applying a function once, it deploys a reactor behaviour that stays
active (continuously “waiting” for new source values to react to). Whenever the value
of one of the input arguments changes, then this new value will also propagate
through the corresponding deployment of DegreesToRadians. Similarly, the value of
DegreesToRadians’s sink is used by the deployment of DistanceBetween, and will cause
any dependent expressions to change as well.

Qualification Continuing the analogy that a deployment is like a function applica-
tion (but for reactor behaviours), a crucial difference is that value of the sinks of a
deployment can change even when its given input arguments did not change. This is
because deployments may create additional dependencies on streams exported by
(re)actors that are propagated through the deployment. Consider IsBikeWithinRadius
reactor behaviour in Listing 8 that checks whether one bicycle is within a certain
distance of a given point, i.e., within the blue circle of Figure 2. Its inputs are a point
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Listing 8 Creating dependencies to streams within reactors.
1 (def-reactor (IsBikeWithinRadius point radius-meters bike)
2 (def distance-km (deploy DistanceBetween point bike.location))
3 (out (if (< (* distance-km 1000) radius-meters)
4 bike)))

Listing 9 Supplying input values to a reactor.
1 (def-actor Main
2 (def-constructor (start env)
3 (def deg2rads (spawn-reactor! DegreesToRadians))
4 (react-to! deg2rads 4.39513130)
5 (monitor! deg2rads.out 'log!))
6 (def-method (log! rad) (println! "radians: " rad)))

(GPS coordinate), a radius in meters, and one bicycle (a reference to a Bike actor).
The body calculates the distance between the point and the current location of the
bike, and outputs the bike if the distance is smaller than the given radius.

Recall from Section 4.2 that the location of a bike was conceived as a location stream
exported by a Bike actor. To calculate the distance to a bike, IsBikeWithinRadius creates
a dependency on this stream via the bike.location qualification expression on line 2.
Whenever such a qualification is used in a reactor, a subscription to the stream is
established automatically, and the reactive program automatically updates whenever
the bike’s location changes.

4.4.3 Reactors
A reactor is a process with a mailbox and a set of reactor deployments. The first
deployment, which we call the root deployment, is created when a reactor is spawned
via a spawn-reactor! statement in the base language. A reactor continuously dequeues
messages from its mailbox and propagates them through the corresponding deploy-
ment. After a full propagation turn, the values of the root deployment’s sinks are
emitted to the out stream exported by the reactor.

The philosophy of reactors is different from actors, because reactors themselves do
not independently perform actions, and instead they can only react to input values.
Whenever a reactor is spawned, it indefinitely waits for new values on its sources. For
example, the Main actor in Listing 9 spawns a DegreesToRadians reactor from Figure 3a.
Then, the actor usually “kick-starts” the reactor by changing the value of its sources
using react-to! (communicated via an asynchronous message). For example, since
DegreesToRadians has 1 source, line 4 instructs this source to change to the number
4.39513130. The actor may subsequently monitor the reactor’s out stream to receive
the corresponding value in radians.
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4.5 Technicalities

When implementing reactors using a conventional DAG propagation algorithm using
a priority queue, there can be glitches between deployments, which are temporary
inconsistencies in the computations of a DAG. In Appendix B we explain how to
prevent such glitches.

5 Intensional Acquaintance Discovery With Flocks

In this section we propose the key idea developed in the paper, namely an acquaintance
discovery abstraction called a flock. A flock is a special type of actor that facilitates
acquaintance discovery. In essence, a flock describes a collection of (re)actor references
that are automatically shared over the network with other flocks that have the same
name. Our definition of flocks was inspired by volatile sets [16] and flocks for ambient-
oriented programming [5]. Both offer intensional acquaintance discovery in the same
spirit as our flocks, but they have not been adapted to reactive programming.

Flocks are defined in top-level scope with a unique name. For example, the following
code snippet defines a flock called Bikes.

(def-flock Bikes)

5.1 Publishing and Unpublishing Actors and Reactors

Local (re)actor references can be published to the network by adding them to a flock
via publish!. For example, the devices that are running Bike actors from Listing 5
(Section 4.2) may (un)publish these actors via the following expressions:

1 (def bike (spawn-actor! Bike 'init (new LngLat 'at 4.39513130 50.8220238)))
2 (publish! Bikes bike) // publish bike actor to the Bikes flock
3 (unpublish! Bikes bike) // remove bike actor from the Bikes flock

5.2 Reading the Contents of a Flock

Every flock has a stream called contents, which is the primary means to access its con-
tinuously evolving acquaintances. Thus, the Stella expression Bikes.contents denotes
a reference to this stream (see Section 4.2). The first value emitted by the flock to its
contents stream is always a snapshot, and all subsequent values are a patch. We use
these terms to more easily describe the use of a special IncrementalBag in combination
with streams (inspired by [23, 32]).

Snapshot: The snapshot of a flock is an immutable IncrementalBag data structure (a
set that may contain duplicate values) that records the contents of a flock at a
specific moment in time.

Patch: A patch is emitted whenever the contents of a flock changes. A patch is an
insert, update or remove object that can be applied to a snapshot.
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Snapshots and patches are used to obtain efficient application-level and topology-level
reactivity. The semantics of snapshots and patches align with regular Stella semantics
for streams, where any (re)actor that subscribes to a stream immediately receives the
most recently published value. For flocks this is always an up-to-date snapshot, rather
than the latest patch.

5.3 Distributed Flocks

A defining property of flocks is that their contents are automatically shared over
the network with all other flocks of the same type. Any additions via publish! or
removals via unpublish! are automatically propagated to the other flock actors on the
network, who incorporate those changes into their own contents. References to local
(re)actors are automatically transformed to remote references when they are passed
over the network. In the event of a peer or network failure, each peer individually
determines the (re)actors that can no longer be reached, which are then automatically
removed from that peer’s flock. Whenever a disconnected peer rejoins the network,
the removed (re)actors are re-added to the flock. This process of synchronising state
and monitoring the network is always running in the background for every flock,
hence why they are explicitly conceived as an actor.
Our current implementation of Stella makes use of a discovery server to facilitate

the discovery of the Stella interpreters running on different peers in the network. A sig-
nalling (discovery) server is required by WebRTC to exchange initial peer information
without user interaction. Afterwards all communication is directly peer-to-peer [1].
The discovery server is also responsible for keeping a total overview of the complete
contents of a flock, i.e., all (re)actors that a peer should be able to reach via the
network. Every peer still independently determines the (re)actors that it can actually
reach. We implemented this via heartbeats between all peers that share a flock.
Currently, any other Stella program can publish (re)actors to a flock. From a

security point of view, we consider an authentication mechanism (e.g., to discover
only authorised (re)actors) to be an orthogonal concern. Such mechanisms can be
implemented on the meta-level (e.g., on the level of socket connections), via a type
system, etc. At the time a (re)actor is included in a flock, we already assume that the
other parties are trusted.

6 Efficient Application-Level and Topology-Level Reactivity

We show how reactors are used in combination with reactor deployments (cf. Sec-
tion 4.4.2) and flocks (cf. Section 5) to support efficient application-level and topology-
level reactivity. We introduce an efficient topology-reactive operator for reactors called
deploy-*, and we demonstrate its semantics by implementing the bike counters from
the running example.
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Listing 10 Counting all bikes within a radius.
1 (def-reactor (CountingMarker id location radius)
2 (def all-bikes Bikes.contents)
3 (def bikes-nearby (deploy-* (bind IsBikeWithinRadius location radius) all-bikes))
4 (out id (size bikes-nearby)))

Sources
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Figure 4 CountingMarker DAG representation (Listing 10).

6.1 Topology-Level Reactivity: “deploy-*”

Listing 10 implements a reactor behaviour called CountingMarker that counts all bikes
within an area. It has 3 sources: id is a unique identifier for the marker, location is
the centre of the circular area wherein bikes are counted, and radius determines
the radius (in meters) of the area. Its body is structured as follows. Line 2 defines a
variable all-bikes that refers to the Bikes.contents stream, which emits all bikes that
can be discovered on the network (a snapshot followed by patches). Line 3 defines
bikes-nearby as the result of a deploy-* operation, which conceptually transforms a
snapshot of all bikes to a snapshot that contains only the bikes that fall within the
given radius. Line 4 declares 2 sinks, namely the id of the marker and the size of the
bikes-nearby collection. These 2 values are published together on the out stream of
the reactor whenever either of them changes.

The deploy-* operator can be thought of as a regular “map” operation for lists, but
instead of mapping a function over a list, deploy-* deploys (“instantiates”) a new
reactor behaviour for every element in the given collection. Its first argument is the
reactor behaviour to “map” over the collection, in this case given by a bind expression.
The bind operator implements partial application for reactor behaviours (not to be
confused with monadic bind). The first two sources of IsBikeWithinRadius (cf. Listing 8)
will depend on location and radius, and its third source remains “unconnected”. The
second argument of deploy-* is a collection given by all-bikes. At run-time, a new
deployment of IsBikeWithinRadius is created for each bike in the collection (in no
particular order), and the corresponding bike is propagated via the sole unconnected
source of the deployment. The result of deploy-* is a collection that contains the result
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of each created deployment, i.e., the value of their sinks (of which there must be
exactly 1 for each deployment).

The creation of deployments is visualised in Figure 4, which depicts the DAG repre-
sentation of CountingMarker. Here, the blue deploy-* node has created one deployment
of IsBikeWithinRadius whose sources are connected to the corresponding nodes in the
CountingMarker deployment. The sink node of IsBikeWithinRadius is connected to the
bikes-nearby implicit source. It is called “implicit” because it is generated by the DAG
compiler to receive values from outside the current deployment, and in the case of
deploy-*, it also constructs the correct output.
Technically, deploy-* offers “filter-map” semantics where values that signify “no

value” (e.g., #undefined) are excluded from the result. This is the case in our example,
since the implementation of IsBikeWithinRadius (Listing 8) did not provide an alter-
native branch for the if-test. When this is not desirable, deploy-* accepts an optional
third argument (not used here) to replace those empty values with a default.

6.2 Incremental Updates

Efficient application-level and topology-level reactivity is achieved by meticulously
propagating snapshots and patches whenever a change occurs. For example:
Topology-level patching: Whenever the Bikes flock emits an insert patch that adds a

bike, then deploy-* also propagates an insert patch with the output of the newly
created IsBikeWithinRadius deployment.

Application-level patching: Whenever a bike is within the counting radius and suddenly
its location updates to being outside the counting radius, then deploy-* propagates
a remove patch that removes the bike from the output.
We have devised a set of rules that show how deploy-* transforms its input to

output, i.e., which snapshots or patches are propagated as output in response to a
particular change in the input. As reactive programs are conventionally drawn as a
DAG, we visualise these rules as a diagram that corresponds to a part of the DAG.
Their structure can be explained using Figure 5a:

Arrows denote the direction in which data flows, i.e., from left to right.
Ellipses correspond to nodes in the DAG. The left ellipse corresponds to the main
deploy-* node (the blue node in Figure 4), and the right ellipse corresponds to its
implicit source node (called bikes-nearby in Figure 4).
The input value of deploy-* is shown in the top left, and its output in the top right.
All values v within snapshots and patches are associated with a deployment key
d, denoted as d −→ v. A deployment key is a unique identifier generated by the
implementation of a snapshot (an IncrementalBag) when a value is inserted.
Reactor deployments are drawn as rectangles and labelled with a deployment key
that identifies the deployment.
The run-time state of deploy-* is a snapshot. In the bottom left we show the pre-
snapshot, i.e., the snapshot before the new input value has propagated through
the DAG. The post-snapshot is given in the bottom right, i.e., deploy-*’s new state
after propagating the input value.
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Figure 5 Topology-level reactivity rules.

6.2.1 Efficient Topology-Level Reactivity
Snapshot (Figure 5a): The first value propagated by flocks is always a snapshot. This

propagation is depicted in Figure 5a where the pre-snapshot is empty. A new
deployment di is created for each deployment key d1 . . . di in the input snapshot,
and the corresponding value v1 . . . vi is propagated through the corresponding
deployment. The outputs oi are collected into a new snapshot with the same
deployment key. Since deployments can produce “no value” (e.g., #undefined),
those values ; are omitted from the output and post-snapshot.

Snapshot replace (Figure 5b): While the situation does not arise when using flocks, in
general the input of deploy-* can be replaced with an entirely new snapshot. In
this case all existing deployments di from the pre-snapshot are replaced with new
deployments d j. The output is a new snapshot containing the outputs of the new
deployments o j, and the post-snapshot is adjusted accordingly.

Patch insert (Figure 5c): An insert patch adds a new deployment key d1 with value v1.
A new deployment d1 is created (highlighted in blue) with the new value v1 as
input. We omit the generated output and post-snapshot, denoted by the dashed
cloud, as these follow the same rules as application-level reactivity (Section 6.2.2).

Patch update (Figure 5d): An update patch for a deployment key d1 replaces its old
value v1 with a new value v2. The new value v2 is propagated through the existing
deployment d1. The generated output and post-snapshot follow the same rules as
application-level reactivity (Section 6.2.2).

Patch remove (Figure 5e): To remove a value v1, the corresponding deployment d1 is
removed. Since the pre-snapshot denotes that deployment d1 previously contributed
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Figure 6 Application-level reactivity patch rules.

a value o1 to the output, the new output is a remove patch with deployment key d1

and value o1.
Patch remove* (Figure 5f): A corner case of a remove patch is when the deployment d1

did not contribute a value to the pre-snapshot. In this case no new remove patch is
propagated as output (i.e., the old result remains valid).

6.2.2 Efficient Application-Level Reactivity
The set of rules in Figure 6 show the output that is generated after a reactor deployment
produces a new value. Each diagram omits the left part (denoted by a dashed cloud).

Production (Figure 6a): A deployment d1 propagates a new value o2, and d1 is already
associated with the output o1 in the pre-snapshot. In this case, propagate an update
patch that replaces value o1 with o2 and update the post-snapshot.

Sudden production (Figure 6b): After a period of producing no value ;, a deployment
d1 suddenly propagates a new value o1. In this case, propagate an insert patch
for o1, and add this value to the post-snapshot. This situation arises, for example,
when o1 is the first value propagated by the deployment d1 after its creation.

Remove production (Figure 6c): After a period of producing values, a deployment d1

suddenly produces “no value” (e.g. #undefined). In this case, propagate a remove
patch that contains o1 and remove o1 from the post-snapshot.

Equal production (Figure 6d): Since reactive programs are purely functional, typically
only distinct values are propagated. Thus, if a deployment d1 produces the same
value o1 included in the pre-snapshot, then no patch is propagated.

No production (Figure 6e): When a deployment d1 produces “no value”, and d1 is not
included in the pre-snapshot, then propagate nothing.

6.3 Discussion

There are a number of concerns and drawbacks related to our approach that should
be taken into account.
Method calls: When propagating patches, all operations that are executed on snapshots

are automatically “patch-aware”. For example, the invocation of size on bikes-nearby
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Listing 11 The AddAll behaviour accumulates all values in an IncrementalBag.
1 (def-reactor (AddAll snapshot-of-numbers)
2 (out (fold snapshot-of-numbers 0 '+ '-)))

(Listing 10 line 4) automatically takes into account patches, such that previously
computed results can be incrementally adapted. Some methods, such as a fold,
require information about the values that were removed and replaced, hence why
these values are included in update and remove patches.

Supported data structures: In principle any iterable collection can be provided as input
to deploy-*, but not all types are equally suitable. Stella currently supports a Bag
and IncrementalBag. Particularly an IncrementalBag lends itself to an O(1) implemen-
tation of deploy-* for every insert, update, or remove patch. Other data structures
such as lists and vectors are likely to introduce extra algorithmic complexity and
computational overhead to the implementation of deploy-*, specifically because
extra work is required to create and maintain order in the output collection [23],
e.g., making sure indices in a vector are sequential and without gaps.

Developer convenience: Unfortunately snapshots and patches are not entirely trans-
parent, and programmers have to be aware of them. For example, consider the
AddAll reactor behaviour in Listing 11 that sums all numbers in a snapshot. The
fold method in the interface of IncrementalBag efficiently aggregates its values.
However, its expected arguments differ from a conventional fold: besides an initial
accumulator and the + method name to add values to the accumulator, developers
must also provide an operation to “reverse” the accumulator, in this case - (minus)
for numbers. Otherwise it is not possible to efficiently update the accumulator after
an update or remove patch.

7 Qualitative Evaluation: Comparison to State of the Art

In Section 2.2 we implemented an average computation that calculates the average
temperature of a set of thermometers in two styles using reactive streams (in RxJS) and
functional RP (in REScala). We argued the RxJS code exhibits accidental complexity,
whereas the REScala code is more idiomatic, but inefficient. Our goal with Stella was
to implement the example using idiomatic code like functional RP (Section 2.2.2),
but also efficient. In this section we show an implementation of the same example in
Stella. In Section 8 we will evaluate deploy-*’s performance.
Listing 12 implements the aforementioned average computation. It consists of a

Thermometers flock (line 1), a SensorValue reactor behaviour (line 2), and the main
logic which is implemented by the Average reactor behaviour (line 3). In a nutshell,
deploy-* is used to transform a snapshot of thermometers to a snapshot of their latest
measurements, which are subsequently averaged using the fold operation discussed
in Section 6.3. Stella’s programming style is more similar to the behaviour-based
REScala code.
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Listing 12 Averaging the temperature of a set of thermometers in Stella.
1 (def-flock Thermometers)
2 (def-reactor (SensorValue sensor) (out sensor.value))
3 (def-reactor (Average)
4 (def measurements (deploy-* SensorValue Thermometers.contents))
5 (def sum (fold measurements 0 '+ '-))
6 (out (/ sum (size measurements))))

Compared to RxJS, deploy-* seems to be more restricted in use than RxJS’ flatMap
(used in Listing 1) and its siblings (e.g., switchMap). But these restrictions are no
accident: the features and restrictions of deploy-* are due to it being tailored specifically
for handling topology-level reactivity, whereas flatMap and its siblings operate at a
broader level of abstraction. Hence, it is more difficult to use them for topology-
level reactivity, e.g., when dealing with disappearing information (e.g., disconnecting
thermometers).
The main difference between Stella’s code and the REScala code from Listing 2 is

that topology-level reactivity is explicitly managed via deploy-*, whereas in REScala it
is implicitly managed as a consequence of using REScala in combination with Scala’s
fold. Using Stella’s approach, efficient topology-level reactivity is achieved at the cost
of one single line of code.

8 Evaluation: Algorithmic Complexity

We provide experimental evidence that our approach leads to efficient application-
level and topology-level reactivity. Since raw (real-time) performance is not a goal of
Stella, it is difficult to compare raw performance to existing systems (e.g., REScala).
Therefore the benchmarks compare the algorithmic complexity of our approach and
of the typical approach taken by state of the art RP languages such as REScala, but
implemented using Stella.

8.1 System and Benchmarking Specifications

Experiments were run on Ubuntu 20.04.2 LTS and Node.js v14.16.0, with the command-
line options –trace-gc –max-old-space-size=65536. While Stella is single-threaded, exper-
iments were run on an AMD Ryzen™ Threadripper™ 3990X with 128GB of DDR4-3200
RAM, of which 64GB were available to Node.js (abundant for our application). We
used Node.js’ “performance measurement API”, which implements the W3C recom-
mendation for high resolution time with sub-millisecond precision [15].

8.2 Benchmarking Application-Level Reactivity

We measure the time it takes (on average) for a value to propagate through a Count-
ingMarker reactor from Listing 10. To this end, we ran two sets of experiments to
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Figure 7 Application-level reactivity (propagating one location update). Error bars = 99%
confidence interval (drawn, but barely visible due to their small size).

propagate a varying number of bikes (from 1 to 1000) using an IncrementalBag and a
(non-incremental) Bag. The Bag experiments replicate the algorithmic complexity of
the same program implemented in an existing behaviour-based RP language such as
REScala. Then, we measure the time it takes for the CountingMarker reactor to process
1 location update from a bike. To obtain statistically reliable results and to exceed any
internal VM thresholds for optimisation [4], we measured 100,000 updates evenly
spread over all bikes in the experiment. Total benchmark run-time ranged between 22
seconds (1 bike) and 6 minutes (1000 bikes).

If our performance claims hold and if our proposed mechanisms are correct, then
the measured execution time will grow with the number of bikes when using a Bag,
but will remain constant when using an IncrementalBag.

Results Based on a manual inspection of the data (via a scatterplot), between 50-500
updates are required by the JavaScript VM (V8) to warm up, so we removed the first
500 measurements for each experiment from the compiled results shown in Figure 7.
The graph shows that the run-time using a Bag grows linearly with the number of
bikes. This is expected, since every time the location of one bike is updated, deploy-*
constructs and propagates a new Bag (which is the case in existing behaviour-based
RP literature such as the fold in Listing 2). In contrast, when using an IncrementalBag,
run-times remain constant as the number of bikes increases because only a patch is
propagated. Note that we draw error bars denoting a 99% confidence interval, but
they are barely visible due to their small size.

8.3 Benchmarking Topology-Level Reactivity

We measure the time it takes (on average) to modify the topology of the DAG of the
CountingMarker reactor (Listing 10) when the number of bikes increases or decreases.
Similar to the application-level reactivity experiments, we ran two sets of experiments
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(a) Run-time cost of adding 1 bike. (b) Run-time cost of removing 1 bike.

Figure 8 Topology-level reactivity (adding or removing 1 bike): comparison of the Bag
and IncrementalBag experiments. Error bars = 99% confidence interval.

using an IncrementalBag and Bag with a varying number of bikes (from 1 to 1000).
The Bag experiments replicate existing behaviour-based RP implementations.

Each experiment starts from a (fixed) number of N bikes (between 1 and 1000). First
we propagate N-1 bikes through the CountingMarker reactor (not measured). Then,
we measure the time it takes for deploy-* to change the topology of the DAG when
adding or removing the Nth bike.
If our performance claims hold, then the experiments using a Bag exhibit longer

execution times, because modifying the topology of the DAG involves more work. At
the very least this requires a complete traversal over the Bag (i.e., O(n)).
To obtain statistically reliable results, we repeated each addition and removal of

the Nth bike 500 times, except for the Bag experiments where N = {400,600,800,1000},
which were repeated 100 times to reduce total run-time. Total run-time ranged
between 2 seconds (1 bike) and 4 hours (1000 bikes). Note that the run-time is high,
because there can be a lot of application-level reactivity work between consecutive
measurements. This is already an indication that inefficient topology-level reactivity
can have compounding consequences for total application run-time.

Results Based on a manual inspection of the data (via a scatterplot) we determined
that, depending on the experiment (Bag or IncrementalBag) and number of bikes,
between 25-100 updates are required by the JavaScript VM (V8) to warm up. We
removed the first 100 repetitions for all experiments with 500 runs, and the first 25
for the Bag experiments with 100 runs (with N = {400,600,800,1000}).
We compiled the measurements of adding 1 bike and removing 1 bike in separate

graphs, shown in Figures 8a and 8b respectively. Both show that the run-time of
deploy-* in the Bag experiments grows linearly with the number of bikes, whereas it
remains constant for IncrementalBag.
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Figure 9 Screenshot of the Villo! application. The popup reads “251 bikes available (24
stations) 2007 meters”.

9 Case Study: Villo!

To evaluate the viability of flocks in a real prosumer application, we implemented a
variation of Whereabikes (Section 3) based on real-world data from Villo!, the public
bike-sharing programme of Brussels, Belgium.2 The Villo! API only provides data about
its ∼352 stations where bikes are picked up and dropped off, rather than the bikes
themselves. Thus, we will count how many bikes are available for pickup at any given
time. A screenshot of the application running in a normal web browser is shown in
Figure 9, where each small blue marker represents a bike station.
Villo! bike stations are simulated. For each station, an actor replays the events

of bikes being taken and returned, which we recorded for an entire day. We evenly
distributed these actors over a computer cluster of 160 Raspberry Pis (version 3, model
B), a small single-board computer (a photo can be found in Appendix C Figure 11). At
the time of writing, 147 of Raspberry Pis are operational for our experiments, each of
which simulated 2 or 3 bike stations.

To simulate the application with a larger load, we also ran it on a real cluster that
consists of 10 computers with an Intel® Xeon® E3-1240 v5 CPU and 32GB of RAM. Here,
we simulated 3000 bike stations, which is approximately the largest bike sharing
program in the world (2965 stations in Hangzhou, China [45]). We reused Villo! data
by simulating the same stations multiple times but with random perturbations in the
data. At this point interaction with the web browser became very slow due to the
large number of stations (see Appendix D, Figure 12).

Lessons Learned We faced some practical network-related challenges when using
flocks on the clusters.
Simultaneous connections: Whenever a new peer joins the network, all other peers

with the same flocks simultaneously try to open a connection to the newly discovered
peer. To prevent overwhelming the new peer (causing it to crash), connections have
to be spread out over time, e.g., by introducing random delays.

2 Villo! — https://www.villo.be/en/home, accessed on 2022-01-11.
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Bidirectional discovery: When a new peer is discovered via a flock, situations can arise
where 2 peers simultaneously open a socket connection to each other. SinceWebRTC
sockets are bidirectional, a sufficient solution is to have the peers deterministically
decide on which of 2 sockets to use (e.g., using a peer’s id), and which to close.

10 Related Work

In Section 2 we demonstrated the problems that arise when performing acquaintance
maintenance and discovery by using RxJS [31, 36] to represent stream-based reactive
programming, and REScala [26, 37] to represent behaviour-based reactive program-
ming. While we consider them to be representative for the state of the art, we briefly
discuss other related work.

10.1 Acquaintance Maintenance

Besides RxJS, other stream-based reactive programming frameworks that we consid-
ered include Akka Streams [35], FS2 [14], Project Reactor [29], and Streamz [41]. We
found that there is a lot of “cross-pollination” between these frameworks, leading to
a similar set of built-in stream operators such as flatMap which we used in Section 2.
As such, the problems described using RxJS often translate to other frameworks. One
exception is Akka Streams, which also offers powerful operators such as StatefulMap-
Concat [19] and “dynamic hubs” [18]. However, the original problem remains that
they can be used to craft custom solutions for acquaintance maintenance, which is
difficult and error-prone.

Most behaviour-based reactive programming languages and libraries offer no mech-
anisms to perform acquaintance maintenance. Efficient acquaintance maintenance
is offered by Scala.React [23] and Hokko [32], but they do not support distributed
reactive programming. Support for inefficient acquaintance maintenance can also be
found in REScala [26, 37], ScalaLoci [44] and AmbientTalk/R [7].

10.2 Acquaintance Discovery

Some related work on reactive programming offers intensional acquaintance discovery.
AmbientTalk/R [7] offers ambient behaviours which we showed in Section 2, which

have the same purpose as flocks. The added value of flocks is their integration within
the reactive program via snapshots and patches.
ScalaLoci [44] is a multi-tier reactive programming language where the various

tiers in the distributed application are connected via ties. Using our terminology, one
acquaintance can be tied to multiple other acquaintances.
Potato [42] is a stream-based reactive programming library in Elixir for program-

ming Internet of Things devices, which supports intensional acquaintance discovery.
The library provides a global stream of acquaintance “join” and “leave” events, which
the programmer can use to manually maintain their own collections of acquaintances.
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Akka Streams can leverage the underlying Akka actor library to discover acquain-
tances. Akka’s Receptionist can be used to intensionally discover other actors on the
network [17], which can be retrieved as a collection of acquaintances.

Other mechanisms exist in non-reactive languages and frameworks, such as Ambi-
entTalk’s volatile sets [16] and flocks [5] for mobile ad-hoc networks. Interaction with
these abstractions is based on traditional callbacks, which reactive programming is
designed to avoid (due to callback hell and inversion of control [2, 10]).

11 Conclusion

In this paper we analysed the problems of acquaintance management that occur when
building reactive prosumer applications, due to 2 levels of reactivity that need to be
combined in a correct and efficient way: application-level and topology-level reactivity.
Whereas existing reactive programming languages and frameworks offer efficient
application-level reactivity, prosumer applications require both to be efficient.
Our solution to acquaintance discovery is the flock. The key to tying flocks and

functional reactive programming together is the mechanism of reactor deployments,
which we used as a foundation to build an efficient topology-reactive operation called
deploy-*. The combination of flocks and deploy-* resulted in computations that can
correctly and efficiently update for both application-level and topology-level reactivity.
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Listing 13 A buggy version of topology-level reactivity in RxJS, calculating an average of
all sensors.

1 const average$ = sensorDiscoveryService.sensors$.pipe(
2 switchMap((allSensors) =>
3 from(allSensors).pipe(
4 flatMap((sensor) => sensor.value$.pipe(map((val) => [sensor.id, val]))),
5 scan((avgTracker, [id, val]) => avgTracker.update(id, val), new AverageTracker()),
6 map((avgTracker) => avgTracker.getAverage()))));

A Topology-Level Reactivity in RxJS: A Semantic Bug

An earlier version of this paper presented a different solution to the problem of
averaging thermometer measurements used in Section 2. The solution contained a
semantic bug. We believe it is realistic that other developers will make same mistake
as well, possibly leading to a solution that contains such a bug. Arguably, we think
that the (at least) two different ways to think about the problem may actually be part
of the problem itself, i.e., part of the problem of accidental complexity when using
topology-level reactivity. In this section we explain our buggy implementation, and at
the end explain why it is buggy.

We explain the main idea using the same average computation from Section 2 that
computes the average value of all sensors (e.g. thermometers) connected to a network.
Listing 13 implements this computation via an RxJS stream called average$ ($ is a
naming convention for streams). To communicate the continuously appearing and
disappearing sensors to the reactive program we used a stream called sensorDiscov-
eryService.sensors$ (not defined here) from which average$ is derived. This stream
propagates an updated Set of all sensors every time a sensor appears or disappears.
In RxJS, the average$ stream is defined by “piping” the values from sensors$ through
a sequence of RxJS stream operators. The operators in the example work as follows:

Line 2, switchMap: The lambda given as its argument will generate a new stream
whenever a new set of sensors is propagated. The values produced by switchMap
will echo the values of the most recently generated stream, i.e., the average of
all sensor values. The body of the lambda generates a new stream via the from
operator (line 3) which takes a collection of sensors as input, and returns a stream
that emits the elements in the collection one by one.

Line 4, flatMap: The lambda given as argument to flatMap generates a stream. flatMap
remembers all streams it has generated and echoes their values on a first-in first-
out basis. We use it to transform a stream of sensors to a stream of tuples [id, val]
where id is the unique identifier of the sensor and val is its latest value. Whenever
the value$ stream of a sensor is updated by said sensor, a new [id, val] tuple is
propagated by flatMap.

Line 5, scan: Most of the actual application logic is tackled by the scan operator that
essentially implements a fold operation for streams where the accumulator is
emitted every time the input changes. The accumulator is a purely functional
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Figure 10 Side-by-side examples of node priorities that can cause glitches (left), and our
solution which does not (right).

AverageTracker (implemented elsewhere) that tracks the latest value produced by
each sensor. The subsequent map (line 6) extracts the current average.

This code incorrectly implements the desired computation. The bug is caused by
the propagation of a Set of sensors – a solution that is conceptually similar to the
solution in behaviour-based reactive programming languages (see Section 2.2.2). This
is because an entirely new Set of sensors is propagated every time a sensor is added
or removed by the discovery service, and the entire result is recomputed from scratch.
This means that, internally, all dependencies to the “old” sensors are removed, and new
dependencies are established to the “new” sensors (despite their overlap). Because the
sensors are connected via a network, this swapping of dependencies would currently
cause unnecessary network traffic and delays. Worse, every time the set of sensors
changes, the final output stream emits all intermediate values until all sensors are
known (again) to flatMap, which is semantically incorrect.

B Glitch Prevention for Deployments

Reactive programming languages usually use a smart propagation algorithm that
prevents glitches, which are temporary inconsistencies in the state of the reactive pro-
gram that result in incorrect and redundant computations [9]. Reactive programming
languages such as REScala [37] and Flapjax [25] use a propagation algorithm based
on FrTime [9], where glitches are avoided by assigning a height to every node in the
DAG and using those heights to schedule nodes for re-execution in a priority queue.
However, their propagation algorithms no longer prevent glitches in the context of
Stella with reusable reactor behaviours and deployments. While the implementation
of Stella is outside of the scope of this paper, we have discovered that a propagation
algorithm in the same style as FrTime that can still be used by changing the way node
priorities are calculated.
Consider the DAG of an arbitrary reactive program depicted in Figure 10a, where

every node is labelled with its statically computed height in the DAG of their reactor
behaviour (note that the dashed-line boxes are deployments of two different reactor
behaviours). The DAG of deployment A contains a deploy expression that results in
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Listing 14 TypeScript procedure to determine which priority list has the highest priority.
1 function hasHigherPriority(priorities1: number[], priorities2: number[]): boolean {
2 for (let i = 0; i < Math.min(priorities1.length, priorities2.length); i++) {
3 if (priorities1[i] < priorities2[i])
4 return true;
5 }
6 return priorities1.length < priorities2.length;
7 }

deployment B (the first “2” node on the blue path). Similar to a qualification and
deploy-*, a deploy expression is also split up into a node that manages the created
deployment, and an implicit source node that is responsible for receiving the values
from the created deployment. When nodes are scheduled according to the original
propagation algorithm, a glitch occurs in the node highlighted in red. Concretely,
its computation is executed two times instead of only once. The first computation
is redundant and should be avoided. As a visual aid, we highlighted the two paths
of execution in red and blue that both cause an update of the red node at different
moments in the propagation cycle.

Nodes with the same height (priority) may be executed in an arbitrary order, and a
lower number denotes a higher priority. The problem occurs when the source node
of deployment A has a new value, and gradually all dependents on the red and blue
paths are scheduled. Since the red node has a priority of 3, it is computed once after
all nodes of priority 2 have been computed. However, via the blue path it indirectly
depends on a sink node with the lower priority 4. Whenever this sink node changes,
it will schedule its dependents for recomputation, and eventually the red node is
recomputed once again.
Our solution is to ensure that there is a globally correct ordering between nodes

across the different deployments within the same reactor. Instead of using a single
number (height) to represent priority, priorities now consist of a list of heights which
includes the priority of the predecessing deployment(s). Consider the diagram in
Figure 10b, which is the same diagram as Figure 10a but using our system of assigning
priorities. If we assume deployment A is the root deployment of the reactor, then the
priorities of its nodes are now represented by singleton lists with the same heights
as Figure 10a. Whenever a new deployment is created, such as deployment B which
is created by the blue deploy node, then the priorities of all nodes in deployment B
receive a prefix which is equal to the priority of the node that caused the additional
deployment. In this case the prefix is the priority list (2), which is added in front of
the pre-computed heights of the nodes in deployment B.

To determine the position in the priority queue, values in the priority lists are com-
pared left-to-right according to the TypeScript procedure in Listing 14. The function
hasHigherPriority returns whether its first argument priorities1 has a higher priority
than its second argument priorities2, in which case it returns true. The values in both
priority lists are compared pairwise from left to right. Then, priorities1 has a higher
priority whenever one of its values is smaller. For example, (1 2) has a higher priority
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Figure 11 Photo of the Raspberry Pi cluster. The Raspberry Pis are encased in LEGO®.

than (2 2) because the first priority in the first priority list (1) is smaller than the first
priority in the second priority list (2). When the priorities are the same up until the
length of the shortest array, then the shortest priority list has the highest priority. For
instance, using the priorities from Figure 10b, (2) has priority over (2 1) to (2 4).

C Raspberry Pi Cluster (Generating New Acquaintances)

Experiments were run on a cluster of 160 Raspberry Pis (version 3, model B), a small
single-board computer. This cluster is usually used for research on distributed systems.
A photo can be found in Figure 11.

D Intel Xeon Cluster (Acquaintance Management)

Figure 12 presents a screenshot of the Villo! application with 3000 simulated stations.
Since we introduced perturbations in the data of the Villo! stations (including their
location), the city of Brussels is completely covered in station markers. Due to the
large number of map markers, the browser had difficulties both rendering the map
and running the Stella interpreter in the background.
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Figure 12 Screenshot of the Villo! application with 3000 simulated bike stations. The
pop-up reads “18398 bikes available (1609 stations) 5000 meters”.
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