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ABSTRACT
Infrastructure as Code is the practice of automating the provision-
ing, configuration, and orchestration of network nodes using code
in which variable values such as configuration parameters, node
hostnames, etc. play a central role. Mistakes in these values are
an important cause of infrastructure defects and corresponding
outages. Ansible, a popular IaC language, nonetheless features se-
mantics which can cause confusion about the value of variables.

In this paper, we identify six novel code smells related to Ansi-
ble’s intricate variable precedence rules and lazy-evaluated template
expressions. Their detection requires an accurate representation of
control and data flow, for which we transpose the program depen-
dence graph to Ansible. We use the resulting detector to empirically
investigate the prevalence of these variable smells in 21,931 open-
source Ansible roles, uncovering 31,334 unique smell instances
across 4,260 roles. We observe an upward trend in the number of
variable smells over time, that it may take a long time before they
are fixed, and that code changes more often introduce new smells
than fix existing ones. Our results are a call to arms for more in-
depth quality checkers for IaC code, and highlight the importance
of transcending syntax in IaC research.
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1 INTRODUCTION
Manually provisioning, configuring, and managing machines in
computing infrastructure is laborious and error-prone. Infrastruc-
ture as Code (IaC) [21] tools enable automating the provisioning,
configuration, and management of computing infrastructure. As
infrastructure code is just source code, it can be versioned alongside
production code in repositories.

The correctness of infrastructure code is critical to the function-
ing of an application. Various recent outages can be traced back
to defects in the infrastructure code [9, 16]. Rahman et al. esti-
mate mistakes in configuration data as the most common defect
type [31]. Unfortunately, the lack of test and verification tools for
infrastructure code hampers ensuring its correctness [10].

Ansible is one of the most popular IaC tools today [10, 39]. It
employs variable and expression semantics that are unlike those
of many other languages. For instance, the precedence of variable
declarations in Ansible has already caused widespread confusion
among practitioners [3, 6]. We hypothesise that some develop-
ers may not be fully aware of some of Ansible’s intricacies and
may unwittingly introduce maintainability issues and defects into
their infrastructure code. For example, Ansible’s expression eval-
uation semantics have already caused defects in popular Ansible
projects [2].

In this paper, we propose an automated approach based on pro-
gram dependence graphs to detecting potential misunderstandings
of Ansible’s variable precedence and expression evaluation seman-
tics. Using a prototype implementation, we empirically investigate
their prevalence and lifetime in open-source Ansible roles, which
are reusable blueprints of infrastructure code. The results illus-
trate the negative impact of these semantic misunderstandings on
the quality of infrastructure code. This paper makes the following
contributions:
• We present a catalogue of 6 novel infrastructure code smells
related to Ansible’s variable precedence and lazily-evaluated
template expressions.
• We highlight the peculiarities of these semantics while transpos-
ing the concept of program dependence graphs from application
to infrastructure code.
• We use the resulting control and data flow representation to
implement a rule-based detector for the 6 variable smells.
• We empirically investigate the prevalence and the lifetime of
variable smells in 21,931 open-source Ansible roles and provide
the studied dataset in a replication package.
The proposed smells can be used by Ansible practitioners to

judge the quality of infrastructure code. Our empirical results show
that certain smells are widespread, suggesting the need for tool
support to detect and repair these flaws. They also point to likely
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1 # Contents of vars/main.yml
2 docker_network_name: "network-{{ 999 | random }}"
3
4 # Contents of tasks/main.yml
5 - name: Ensure network is created
6 docker_network:
7 name: "{{ docker_network_name }}"
8
9 - name: Define container name
10 set_fact:
11 container_name: "redis-{{ 999 | random }}"
12
13 - name: Ensure redis container is started
14 docker_container:
15 name: "{{ container_name }}"
16 image: redis
17 state: started
18 networks:
19 - name: "{{ docker_network_name }}"
20 vars:
21 container_name: "unused!" # Because of set_fact on line 11

Figure 1: Defective role managing a Docker container.

misunderstandings about Ansible’s semantics, which may aid lan-
guage designers in building safer IaC languages.

2 INTRODUCTION TO ANSIBLE
Ansible enables automating the provisioning, configuration, and
management of computing infrastructure. Practitioners create a
playbook consisting of a number of plays. A play targets a group
of nodes, which are configured according to the play’s tasks. A
task executes exactly one action which performs the necessary
changes on the node. Actions enable declaring what the machine’s
configuration should be without specifying how. Ansible ships
with several predefined actions, whose responsibilities range from
installing software through a package manager, over managing
firewall rules, to provisioning cloud servers. Plays can also include
reusable roles, which are collections of tasks intended for a specific
purpose, such as installing and configuring an HTTP server. The
Ansible Galaxy ecosystem1 curates open-source roles, which can
be considered the libraries of Ansible [27] and are the main subject
of this study.

2.1 Motivating Example
Figure 1 depicts an example role comprising three tasks (lines

5–7, 9–11, and 13–21, respectively). This role ensures that a Docker
container is started and associated with a certain Docker network (a
virtual network of Docker containers). The first task (lines 5–7) will
create this network if it does not exist, through the docker_network
action. This action takes the desired name of the network as an
argument. Subsequently, the second task (lines 9–11) will define
a variable containing the name of a Docker container. Finally, the
third task (lines 13–21) will ensure that the container is started, is
given the previously-defined name, and is assigned to the newly-
created network.

As illustrated, Ansible code is essentially a data structure writ-
ten in YAML. A task is a key-value mapping, the keys of which
determine its execution by Ansible. The example assigned each
task a diagnostic name through the key name. In general, a key that
1https://galaxy.ansible.com

does not correspond to a built-in is considered the task’s action
to execute. Inner keys can be used to shape the execution of an
action. Among others, the when key can be used to skip the action’s
execution under given conditions, and the loop key can be used to
execute the action for each item in a list.

The example shows the definition of a variable named
docker_network_name on line 2. The variable is initialised using
an expression that generates a random network name. It is then
used twice, in the expressions on lines 7 and 19, as the name of the
created network. Somewhat surprisingly, these two occurrences of
the variable will have different values thus rendering the role defec-
tive. In fact, this is a simplified version of a real-world mistake found
in the RedHatGov.openstack_instance role. To understand why,
we need to delve into the intricate details of Ansible semantics.

2.2 Template Expressions
Ansible programs can feature Jinja2 template expressions demar-
cated by double braces. Each template expression within a string
will be evaluated and will be substituted by its result into the string.
Expressions can manipulate data through filters (denoted by the |
character), tests, “lookup” calls, etc. Importantly, Ansible features a
form of lazy evaluation for template expressions. An expression is
not evaluated until its value is needed. Thus, a variable is bound to
an expression rather than to its value. The expression is evaluated
to a value when the variable is looked up and consumed. Note that
the resulting evaluation value is not cached. Instead, the expression
bound to a variable is re-evaluated for each of its occurrences.2

This reliance on referential transparency to evaluate variable
references requires that initialisers are pure and do not affect or rely
on any form of state. Nonetheless, it is easy to construct Ansible
variable initialisers that lack purity by using expressions that use
randomness, read data from files, perform network operations, or
execute arbitrary shell commands. Consider the expression on line
2 of Figure 1 again. Ansible will apply the random filter to the
number 999, which will produce a random number between 0–999.
However, this filter is impure, and a second evaluation will give
a different result. The variable is first used on line 7, where the
expression may produce a value such as “network-529”, which will
be used to create a Docker network. However, on the second use
of the variable (line 19), the expression may produce a different
value (e.g., “network-11”). The role is thus defective, as the Docker
container would be assigned to an entirely different network. It is
a prime example of the kind of defects developers unfamiliar with
Ansible’s intricacies might unwittingly introduce, and serves to
motivate our detection approach.

To prevent impure expressions from causing such issues, Ansible
supports twomeans for binding a variable to a constant value rather
than an expression. First, the built-in set_fact action (exemplified
on lines 9–11) can be used to eagerly evaluate an expression and
bind a variable to its value, thereby preventing impure expressions
from being re-evaluated. Second, the register key can be used
within tasks to bind a variable to a data structure that represents
the task’s result. Variables defined in either way will always resolve

2There is one exception where Ansible does apply caching under very strict circum-
stances. However, it is undocumented and should not be relied upon.

https://galaxy.ansible.com
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Play vars
Host facts

Included vars
Non-persistent facts

Role defaults
Role vars

Role params
Block vars
Task vars

vars key on play (7)

Host information (OS etc.) discovered by Ansible (8)

Dynamically defined by include vars action (3)

Dynamically defined by set fact or register (2)

Variables in role’s defaults/main.yml file (9)

Variables in role’s vars/main.yml file (6)

Arguments given when including a role (1)

vars key on block of tasks (5)

vars key on single task (4)

Precedence chain (higher to lower)

Figure 2: Variable scoping and precedence rules summarised.

to the same value, unless they are redefined. Therefore, in the ex-
ample, since the container_name variable is defined by set_fact,
multiple uses of this variable will still lead to the same value, even
though randomness is used.

2.3 Variable Scoping and Precedence
In traditional languages, variables are scoped lexically and during
lookup a definition from the closest encompassing scope takes
precedence. Ansible variable precedence, in contrast, is governed
by 22 precedence rules3, the order of which does not follow the
nesting of scopes. Figure 2 summarises Ansible’s variable scoping
and precedence rules. Nine scopes in which variables can be defined
have been depicted. The top four are global to a play, and their
definitions are visible in each task executed by the play, including
role tasks. The scopes for role defaults and role variables are loaded
automatically when a role is included, and the variables defined
within these scopes are visible to all tasks in that role. Similarly,
block variables are visible throughout all tasks in a block, and task
variables are only visible to a single task. In Figure 1, the variable
docker_network_name (line 2) is a role variable and is visible to all
tasks in the role. The container_name variable defined on line 11 is
a non-persistent fact, and is therefore visible to all tasks, including
tasks in the play that includes the role, or even tasks in other roles.
On the other hand, the container_name variable defined on line
21 is a task variable, and is only visible to that single task.

Naturally, variables defined in a block can reference variables
from outer blocks in their initialisation expression. For example,
a task variable can use a role variable. However, lazily-evaluated
template expressions do not close over their lexical scope (i.e., the
scope in which they are bound to a variable). Variable references
within a template expression are instead resolved according to the
scope in which the expression is evaluated (i.e., every scope in
which the variable they are bound to occurs).

Figure 2 uses arrows to depict the precedence rules according
to which variables are looked up. In contrast to other languages,
variable precedence does not strictly follow the nesting of scopes.
It is possible for variable definitions in certain outer scopes to take
precedence over variable definitions in the local scope. Variables
defined by the set_fact action (i.e., non-persistent facts) or those
included via the include_vars action are globally visible, yet take
3https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#
understanding-variable-precedence
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{{ docker network name }}

DEF

{{ docker network name }}

DEF

docker network name (d0, v0)

USE

docker network name (d0, v1)

USE

$0

DEF

$2

DEF

network-{{ 999 | random }}

DEF DEF

Action Expression Named value Unnamed value Literal Control flow Data flow

Figure 3: PDG for the defective Ansible role of Figure 1.

precedence over variable definitions in local blocks or tasks. In fact,
the container_name variable defined on line 21 of Figure 1 can
never be used, because the non-persistent fact of the same name
defined on line 11 will take precedence. This is another example of
a potential pitfall caused by Ansible’s intricacies.

In summary, Ansible’s semantics encumbers tracing variable
usages to definitions. Initialising expressions for variables can re-
fer to variables, yet do not close over their lexical scope. They
are evaluated lazily for every occurrence of the variable they are
bound to, and may even introduce higher-precedence definitions
for existing variables. The entire play must therefore be considered,
when analysing Ansible variable usages and definitions, rendering
it challenging for humans and machines alike.

3 ANSIBLE PROGRAM DEPENDENCE GRAPHS
We introduce a Program Dependence Graph (PDG) for Ansible roles
that accurately and succinctly represents their control and data
flow. This representation accounts for the intricacies of the variable
precedence and lazily-evaluated template expression semantics laid
out in Section 2. Importantly, as variable initialisers are re-evaluated
on demand, variable occurrences may have multiple values and
thus multiple PDG nodes.

3.1 Program Dependence Graph Structure
The nodes of our PDGs can be categorised into control and data
nodes. The former represent control flow structures, whereas the
latter represent data. These nodes are interconnected using edges
representing control flow and data flow. Figure 3 depicts the PDG
for the Ansible code in Figure 1.

3.1.1 Control Nodes and Control Flow Edges. Action control nodes
represent the action executed by each task. Conditional and Loop

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence
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control nodes (not depicted) represent branching and looping. Or-
der control flow edges connect these control nodes, representing
possible execution paths.

3.1.2 Data Nodes. Template expressions are represented as expres-
sion nodes. Furthermore, we distinguish between three types of
abstract data values in the PDG. Literal value nodes correspond to
literals in the role. Unnamed value nodes represent abstract values
produced by an expression. These can either be used directly by
a control node, or they may be bound to a variable in a definition.
Named value nodes represent a unique abstract value produced
whenever a variable is looked up and its initialiser expression is
evaluated. These nodes carry the name of the variable, as well
as a lexical definition version (𝑑𝑖 ) and a value version (𝑣𝑖 ) for that
variable. Figure 3 shows two named value nodes for the variable
docker_network_namewith the same lexical definition version (𝑑0)
but differing value versions (𝑣0 and 𝑣1). This indicates that both
values originate from the same lexical definition, but that this def-
inition may produce different values, in this case because of the
impure initialiser. The lexical definition version changes when a
new definition for the variable is introduced. Value versions change
when the lexical definition remains the same, but the unnamed
value defining the named value has changed. This can happen ei-
ther because the expression producing the unnamed value is not
pure, or because that expression references a variable whose value
has changed.

3.1.3 Data Flow Edges. Data nodes are connected through data
flow edges whose labels indicate the type of data flow that occurs.
Def edges represent definitions, such as from an expression to an
unnamed value, from an unnamed value to a named value, or from
a loop control node to the iteration variable. Use edges represent
usages, such as from a named value to an expression, or from an
unnamed value to a conditional or loop control node. Arg edges
connect a value to an action node, whose label contains the name
of the task argument that uses the value. Defined-if edges link
a condition to a value, indicating that the value is only defined
conditionally, and may not exist when the condition is not met.

In the example in Figure 3, we can see that the expression
network-{{ 999 | random }} produces two separate unnamed
values ($0 and $2) because it is not pure. Each of these unnamed
values then defines a named value docker_network_name, which
differ in their value versions. Each of these named values is subse-
quently used in another expression. Note that these expressions are
represented by separate nodes, as their input values differ. If these
expressions used the same input values, our PDG would reuse the
same expression node, regardless of the fact that both expressions
lexically appear in different places in the program. This careful
reuse of nodes enables distinguishing between the cases of im-
pure expressions, variable redefinitions, etc., only by looking at the
structure of the PDG.

3.2 Computing Data Dependences
The PDG builder maintains a collection of scopes during its role
analysis. This collection starts with an empty scope for each global
precedence level (e.g., non-persistent facts, host variables, etc.,
cf. Section 2.3). Whenever the builder enters a lexical module (e.g.,

Algorithm 1 Expression resolution
1: function Resolve-Expression(𝑒 ,𝐶𝑆)
2: input: expression 𝑒 , scopes collection𝐶𝑆
3: output: EVal record 𝑟𝑒
4: 𝑑 ← ∅ ⊲ Set of data dependences
5: for 𝑛 ∈ Get-Var-References(𝑒) do ⊲ Resolve all variables
6: 𝑑 ← 𝑑 ∪ Resolve-Variable(𝑛,𝐶𝑆)
7: if Is-Pure-Expr(e) then
8: 𝑟𝑒 ← Create-EVal-Record(𝑒 , 𝑑 , 0)
9: else ⊲ Distinguish with value version
10: 𝑣 ← Get-Next-Value-Version(𝑒 , 𝑑)
11: 𝑟𝑒 ← Create-EVal-Record(𝑒 , 𝑑 , 𝑣)
12: return 𝑟𝑒

13: function Resolve-Variable(𝑛,𝐶𝑆)
14: input: variable name 𝑛, scopes collection𝐶𝑆
15: output: VVal record 𝑟𝑣
16: 𝑟𝑑 ← Find-VDef-Record(𝐶𝑆 , 𝑛)
17: if Initialiser-Is-Expression(𝑟𝑑 ) then
18: 𝑒 ← Get-Expression(𝑟𝑑 )
19: 𝑟𝑒 ← Resolve-Expression(𝑒 ,𝐶𝑆)
20: 𝑟𝑣 ← Create-VVal-Record(𝑟𝑑 , 𝑟𝑒 )
21: else ⊲ Constant initialiser, e.g. set_fact
22: 𝑟𝑣 ← Create-Constant-VVal-Record(𝑟𝑑 )
23: return 𝑟𝑣

a block or task), a new scope for this module is added, and subse-
quently removed when the builder exits the module. The lexical
nesting order traverses the collection in the order in which these
scopes were added, while the precedence order traverses from higher
to lower precedence and is used during variable lookups. Data de-
pendences are computed from three types of records:
• Variable definition (VDef) records represent variable definitions
with their initialisers. These are stored within the aforementioned
scope collection.
• Expression value (EVal) records uniquely represent abstract val-
ues produced by an expression, and contain the expression’s
data dependences and a version number to distinguish between
values produced by impure expressions. These records map to
an expression node and the unnamed value node it defines.
• Variable value (VVal) records uniquely represent abstract variable
values and combine a VDef and an EVal record. These map to
the named value nodes in the graph.
Since expressions are lazy, the PDG builder does not add value

nodes to the graph at definition time. Instead, it defines a variable by
inserting a new VDef record into the appropriate scope depending
on the definition’s precedence. The value nodes are only created
once an expression is used in a task argument. Algorithm 1 de-
scribes how these expressions are resolved to values. Note that the
algorithm does not evaluate an expression to its concrete run-time
value, but statically analyses the records in the scope collection to
compute a unique abstract data value representing the expression’s
possible run-time values.

At a high level, Algorithm 1 uses two mutually-recursive func-
tions, Resolve-Expression and Resolve-Variable. The former
function resolves all variable values referenced by an expression
using the latter function (lines 5–6), and produces an EVal record.
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Conversely, the latter function produces a VVal record by looking
up a VDef record in precedence order (line 16) and resolving its
initialiser through Resolve-Expression. If the variable definition
has no initialiser (e.g., for set_fact or registered variables), it
returns a constant VVal record instead (line 22).

The records returned by these functions uniquely identify ab-
stract values used in the role. If two subsequent applications of
Resolve-Expression produce identical EVal records, it is guaran-
teed that the concrete values during role execution will be identical.
This enables the PDG builder to represent fine-grained data de-
pendences, since each EVal and VVal record uniquely maps to an
unnamed or named value node in the PDG respectively.

However, care must be taken with impure expressions, as their
value may change arbitrarily. The algorithm uses the value version
stored in the EVal record to distinguish the different values produced
by an impure expression (lines 10–11). In such cases, the PDG
builder will reuse only the expression node, since data dependences
remained the same, but will create new unnamed value nodes to
represent the changed values produced by the expression. This
can be seen in Figure 3, where the top expression defines two
separate unnamed value nodes. The change in the produced values
caused the VVal records for the docker_network_name variable to
be different, which in turn led to a change in data dependences
for the expressions referencing this value, thereby leading to the
creation of new nodes.

To determine expression purity, our algorithm consults a set of
built-in filters, tests, and “lookup” call names which are known to
be pure. We distilled this set from the Ansible documentation, its
source code, and experience. For example, the first filter, which
returns the first element of a sequence, is contained within this
set. However, filters such as random or tests such as exists (which
checks whether a given path exists on the file system) are not in
this set, as they are not pure because of their reliance on internal
or external state. We consider a template expression to be pure if
each filter, test, and “lookup” call it uses is within this set, which
necessarily under-approximates the pure expressions in an Ansible
program. Therefore, this straightforward approach can never mark
an expression as pure while it is not, but can suffer from false nega-
tives when user-defined filters or tests are used within a template
expression.

3.3 Building Program Dependence Graphs
Our PDG builder traverses an Ansible role module by module, and
populates the graph with nodes and edges determined by the type
of module encountered. For instance, the builder first enters the
scope of the default and role variables and registers each of them.
Subsequently, it traverses each of the role’s tasks and connects the
resulting action nodes via order edges.

For generic tasks, the builder enters a new task scope and reg-
isters the task-local variables. It then builds the looping and con-
ditional control structures, if present. Afterwards, it inserts the
action node for the task into the PDG, and computes the task’s
data dependences (cf. Section 3.2). The builder uses the EVal and
VVal records produced by Resolve-Expression from Algorithm 1
to insert expression, named value, and unnamed value nodes into
the PDG if necessary, and connects them to one another and to the

action node using the appropriate data flow edges. Finally, if the
task has a register key, a named value node is created for the task
result and a constant variable is registered in the scope collection.

Some actions are handled as special cases. For instance,
set_fact and include_vars dynamically define variables at high
precedences (cf. Section 2). As the former eagerly evaluate their vari-
able initialisers, the builder resolves their initialisers and registers
the new variables with constant initialisers. The latter dynamically
define variables from an external file, which is handled by attempt-
ing to determine the file that would be loaded, and registering its
variables. However, the file name provided to include_vars may
itself be an expression, in which case the builder does not attempt
to resolve the expression and simply ignores this action. Both of
these actions may also be conditionally executed. If this is the case,
the builder adds the defined-if edges to all registered variables. The
import_tasks and include_tasks actions, for which control flow
jumps to external files, are treated similarly.

4 PDG-BASED VARIABLE SMELL DETECTION
We describe 6 novel code smells, structured into 3 categories, con-
cerning the usage and declaration of variables in Ansible roles. Due
to Ansible’s unique variable precedence and template expression
evaluation semantics, their presence may cause confusion among
IaC practitioners and lead to unexpected consequences and poten-
tial bugs when the role is included in an Ansible play. For each
smell, Table 1 presents a detection rule which identifies the smell’s
fingerprint in the program dependence graph.

The first variable smell category, unsafe reuse, concerns the reuse
of a variable whose value may have changed in between two usages.
This can be due to an impure initialiser of the variable declaration
(UR1), or due to the data dependences of the initialiser having
changed (UR2) which occurs when an upstream variable has been
redefined. These smells are derived from potential pitfalls caused by
Ansible’s unique expression evaluation semantics. When present,
these smells may be indicative of a bug in case developers expected
different occurrences of the same variable to evaluate to the same
value, as is the case in the example of Figure 1. The detection rules
for the smells consider each pair of named value nodes that origi-
nate from the same lexical definition (𝑣𝑑 ) but have different value
versions (𝑣𝑣 ), and compare the data dependences of the initialiser
expressions for the variables that define the named values. For
example, the rule for UR1matches the example depicted in Figure 3.

The unintentional override category groups smells related to An-
sible’s variable precedence intricacies. We discern two smells in this
category, namely unconditional and unused overrides. The former
occurs when a new definition overrides a previous definition at
a higher precedence without taking the previous definition into
account. It is inspired by “suspicious variable shadowing” smells for
general-purpose languages. Its detection rule considers an override
to be unconditional if the previous definition is not used in the
new initialiser, and when there are no common data dependences
in the conditions under which the two definitions exist. Line 9
of Figure 4 exemplifies this smell, where the inclusion of a vari-
able will unconditionally override an existing definition implicitly
loaded as a role variable, defined on line 2. The latter code smell
manifests itself as a variable definition while a previous definition
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Table 1: Summary of proposed code smells. In the presented rules, we assume 𝑛, 𝑛1, and 𝑛2 are named value nodes, and that 𝑛1
and 𝑛2 share the same name. 𝑑𝑖 and 𝑣𝑖 refer to the lexical definition version and value version of 𝑛𝑖 , respectively.

Category Code Smell name Detection rule

Unsafe reuse UR1 Impure initialiser 𝑑1 = 𝑑2 ∧ 𝑣1 < 𝑣2 ∧ 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐸𝑥𝑝𝑟 (𝑛1 ) ) = 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐸𝑥𝑝𝑟 (𝑛2 ) )
UR2 Changed data dependence 𝑑1 = 𝑑2 ∧ 𝑣1 < 𝑣2 ∧ 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐸𝑥𝑝𝑟 (𝑛1 ) ) ≠ 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐸𝑥𝑝𝑟 (𝑛2 ) )

Unintentional override UO1 Unconditional override
𝑑1 < 𝑑2 ∧ 𝑔𝑒𝑡𝑃𝑟𝑒𝑐 (𝑛1 ) ≤ 𝑔𝑒𝑡𝑃𝑟𝑒𝑐 (𝑛2 ) ∧ 𝑛1 ∉ 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐸𝑥𝑝𝑟 (𝑛2 ) )
∧ 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐶𝑜𝑛𝑑 (𝑛1 ) ) ∩ 𝑔𝑒𝑡𝐷𝑒𝑝𝑠 (𝑔𝑒𝑡𝐶𝑜𝑛𝑑 (𝑛2 ) ) = ∅

UO2 Unused override 𝑑1 < 𝑑2 ∧ 𝑔𝑒𝑡𝑃𝑟𝑒𝑐 (𝑛1 ) > 𝑔𝑒𝑡𝑃𝑟𝑒𝑐 (𝑛2 )

Too high precedence HP1 Unnecessary set_fact 𝑖𝑠𝑆𝑒𝑡𝐹𝑎𝑐𝑡 (𝑛) ∧ 𝑖𝑠𝑃𝑢𝑟𝑒 (𝑔𝑒𝑡𝐸𝑥𝑝𝑟 (𝑛) ) ∧ 𝑖𝑠𝑃𝑢𝑟𝑒 (𝑔𝑒𝑡𝐶𝑜𝑛𝑑 (𝑛) )
HP2 Unnecessary include_vars 𝑖𝑠𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑉𝑎𝑟𝑠 (𝑛) ∧ 𝑔𝑒𝑡𝐶𝑜𝑛𝑑 (𝑛) = ∅

1 # Contents of vars/main.yml
2 foo: 1
3
4 # Contents of vars/other.yml
5 foo: 2
6
7 # Contents of tasks/main.yml
8 - name: include variables
9 include_vars: vars/other.yml
10 # ^ HP2: Unconditional include_vars
11 # ^ UO1: Unconditionally overrides foo on line 2
12
13 - name: print foo
14 debug:
15 msg: "foo is {{ foo }}"
16 vars:
17 foo: 3
18 # ^ UO2: Shadowed by included variable on line 9

Figure 4: Role exhibiting UO1, UO2, and HP2 smells.

already exists at a higher precedence. Such variable definitions have
no effect and can never be used since the old definition will take
precedence. This smell is derived from “unused variable” smells for
general-purpose languages in combination with Ansible’s compli-
cated variable precedence system. Line 17 of Figure 4 depicts an
example in which the task-local variable can never be used, since
the variable included on line 9 will take precedence.

The final category, too high precedence, groups bad practices with
regards to the scoping and precedence of variable definitions, taking
inspiration from “too broad scope” smells for general-purpose lan-
guages. In Section 2.3, we identified set_fact and include_vars
as task actions that dynamically define variables at a high prece-
dence. Both of these actions have valid use cases. The former can
be used to eagerly evaluate impure expressions, whereas the lat-
ter can be used to dynamically decide whether variables need to
be defined. Nonetheless, we argue that these means of defining
variables should be used sparingly in Ansible roles, as they will
break the role’s encapsulation and will be added to the global scope
of any play into which the role is included eventually. Detection
rule HP1 therefore emits a warning for every usage of set_fact of
which both the expression and all task conditions are strictly pure,
whereas rule HP2 emits a warning for every include_vars that
will be executed unconditionally. Line 9 of Figure 4 is an example
of the latter. The unconditionally included variable should instead
be defined in a different scope (e.g., as a role variable).

We have implemented the proposed rules in a prototype smell
detection tool, which operates in two phases. First, it builds a PDG

for each Ansible role given as input. Then, it traverses the PDG in
search of nodes that match the presented detection rules.

5 EMPIRICAL ANALYSIS
We now present our empirical study into the real-world prevalence
and lifetime of the 6 proposed variable smells.

5.1 Study Design
Our study analyses the open-source Ansible Galaxy role reposito-
ries contained in Opdebeeck et al.’s Andromeda dataset [26], and
aims to answer the following research questions:
• 𝑅𝑄1: How precise is our code smell detector?
• 𝑅𝑄2: How prevalent are the proposed code smells in Ansible
roles?
• 𝑅𝑄3: Do the proposed code smells co-occur in Ansible roles?
• 𝑅𝑄4: What is the lifetime of a code smell in an Ansible role?

After filtering out 231 repositories containing multiple roles and
3,438 forks from the Andromeda dataset, we are left with 21,931
repositories for analysis. For each commit, we ran our PDG builder
on the corresponding snapshot, producing a total of 629,073 graphs.
Table 2 depicts the distribution of variable precedences. 19,661 roles
(89.4%) have defined variables at least once in their history, and
19,393 still feature variables in their latest commit. Role defaults
are the most common, while block variables are rare.

Table 2: Variables extracted from all commits of 19,661 roles.

precedence # roles mean std median
block variables 89 4.2 5.1 2
include parameters 9,949 1.2 1.3 1
included variables 294 5.3 11.9 3
role defaults 17,229 13.5 26.2 6
role variables 4,780 5.2 8.3 3
non-persistent facts 8,638 4.1 7.9 2
task variables 1,157 2.7 4.3 1
All 19,661 15.8 29.5 8

We ran the variable smell detector on the produced PDGs. We
consider smells occurring across different commits to a role the
same if both are of the same type and are caused by the same lexical
definition of a variable. This enables computing the number of
unique variable smells, and when each smell was introduced and
fixed. The resulting smell instances form the dataset of our study.
This dataset, the extracted PDGs, and data analysis notebooks are
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Table 3: Validation results

Category Smell # TP

Unsafe reuse UR1 17
UR2 20

Unintentional override UO1 16
UO2 17

Too high precedence HP1 20
HP2 20

provided in a replication package at https://doi.org/10.6084/m9.
figshare.18819074.

5.2 Results
We now present the results of our empirical study.

𝑅𝑄1: How precise is our code smell detector? To validate our PDG
builder and smell detector, we randomly sampled and manually
validated 20 detected instances of each proposed variable smell (i.e.,
120 in total). We consider a smell instance to be a false positive if
the detection rule should not have matched, but do not take the role
developer’s intent into account to eliminate subjectivity from the
validation. For example, we consider unconditional override (UO1)
instances to be true positives even when it seems that the developer
intentionally overrides the variable, since the detector is intended
to produce objective warnings, not all of which may truly be bugs.
Table 3 summarises the results.

The detector achieves good precision for most smell types. More-
over, all of the encountered false positives stem from limitations
of the PDG builder. Specifically, the 3 false positives for the un-
safe reuse due to impure initialiser (UR1) smell are caused by over-
approximations of the PDG builder due to unrecognised filters in
expressions, and can be remedied easily in future work. Similarly,
the 4 false positives of UO1 instances are caused by a builder lim-
itation related to multi-level task conditionals. The 3 UO2 false
positives are caused by the builder not recognising certain dynamic
task inclusion actions, which caused it to assign the wrong prece-
dence to a small number of variable definitions. Finally, we find no
false positives for the unnecessary set_fact (HP1) smell.

Findings: From the manual validation of 20 random instances per
smell, the detector’s precision is sufficient for the rest of the study.

𝑅𝑄2: How prevalent are the proposed code smells in Ansible roles?
Overall, we found 31,334 unique smell instances, spread across
4,260 (19.4%) of the considered roles. Of these, 21,934 (70%) are still
present in the latest version of the roles. Smells of the same type
caused by the same variable definition across different commits are
only counted once. Table 4 summarises the results. Unnecessary
usages of set_fact (HP1) and unconditional overrides (UO1) are
by far the most prominent smells. Conversely, both types of unsafe
variable reuses occur rarely. This may suggest that UR1 and UR2
are more likely to result in defects, and are therefore fixed before
they are committed to the repository. It may also be the case that
most variables are only used once.

We also investigated the evolution of the smell prevalence over
time, depicted in Figure 5. It is clear from the plot on the left that

Table 4: Smell instances during the lifetime of 4,260 roles.
The distribution refers to the number present in each project.

category name # roles (%) mean median

Too high precedence HP1 3,345 (78.5) 5.7 2.0
HP2 184 (4.3) 6.4 3

Unintended override UO1 2,124 (49.9) 5.1 2.0
UO2 14 (0.3) 2.0 1.5

Unsafe reuse UR1 37 (0.9) 1.8 1.0
UR2 30 (0.7) 2.2 2.0
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Figure 5: Cumulative number of smell instances over time.
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Figure 6: Cumulative number of new and fixed instances.

too high precedence and unsafe override smells continue to be intro-
duced. The plot on the right shows that the HP1 and UO1 smells
are the main reasons for the observed trends. Figure 6 compares
the cumulative evolution in the number of added and number of
fixed smells on a monthly basis. The rate at which new smells are
introduced, outpaces that of their fixes.

Findings: 19.4% of the roles are affected by the proposed variable
smells. Most smells concern definitions with too high a precedence,
followed by unintended overrides. Unsafe reuses occur rarely. New
smells are introduced more frequently than existing ones are fixed.

𝑅𝑄3: Do the proposed code smells co-occur in Ansible roles? Co-
occurrences of code smells in the same role snapshot may indicate
a causal link between the smells. As hypothesised in Section 4, vari-
ables defined with too high a precedence may lead to unintended
overrides. Among the 109,719 role snapshots with smells, we found
43,255 (39.4%) in which at least two smells from different categories
co-occurred, spread over 1,334 projects. Figure 7 shows the propor-
tion of repositories of roles that had smells co-occurring within the
same snapshot. Note that the totals do not sum to 100% since it is
possible for a role to have a co-occurrence in one version, but not
in another. For example, 60.3% of the roles have at least one version
in which only too high precedence smells occurred, while 30.8% of
roles have at least one version in which smells from both the too
high precedence and unsafe override categories occurred. A role can
thus be in both of these proportions. We observe that unintended
override smells co-occur with too high precedence smells more often

https://doi.org/10.6084/m9.figshare.18819074
https://doi.org/10.6084/m9.figshare.18819074
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Figure 8: Distribution of files in which smells (co-)occurred.

than they occur alone within the same role snapshot. This finding
confirms that variables defined with too high a precedence may
lead to problems, including other smells. Nonetheless, as shown by
the high proportion of roles in which smells occur alone, both can
occur independently.

Finally, we investigated whether variable smells co-occur within
the same files within an affected role snapshot. When a file exhibits
the same co-occurrences in different role snapshots, it is only con-
sidered in the first snapshot to avoid overestimating the file-level
co-occurrences for roles with many commits. Figure 8 shows the
proportional distribution of files in which smells (co-)occur in a
role snapshot. Smells from different categories frequently co-occur
within the same files. This is less the case for unsafe reuse smells.
The unsafe reuse smells occurred on their own in an average 28.3%
of files per role, while unintended override and too high precedence
occurred alone in 10.8% and 20% of files respectively.
Findings: Although only 39.4% of roles exhibit co-occurring code
smells, we find that unsafe reuse smells often co-occur with too
high precedence smells. We also find that code smells frequently
co-occur within the same file.

𝑅𝑄4: What is the lifetime of a code smell in an Ansible role? To
understand the lifespan of variable smells, we investigated when
they get introduced in a role and how long it takes for them to
be removed. Figure 9 shows the cumulative evolution of their first
appearance in function of the time elapsed since the affected role’s
initial commit. We observe that too high precedence smells are the
first to appear. It took 0.3, 0.96 and 4.05 months for 50% of too high
precedence, unintended override and unsafe reuse smells to appear,
respectively. The figure on the right shows that HP2 smells reached
50% before UO1 smells, even though the former are less frequent. It
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Figure 9: Cumulative proportion of code smells in function
of the time elapsed since the first commit.

Table 5: Statistics about newly added files with smells.

# files (%) # roles (%) # smells (%)
Too high precedence 3,138 (56.8) 2,112 (61.0) 8,667 (42.7)
Unintended override 1,568 (48.2) 1,126 (52.8) 3,333 (30.6)
Unsafe reuse 25 (29.4) 22 (35.5) 35 (26.7)
All 3,966 (55.3) 2,580 (60.6) 12,035 (38.4)

took 0.53 months and 0.96 months for 50% of the HP2 and the UO1
smells to appear respectively. Overall, 50% of all smells appeared
within 0.46 months since the role’s initial commit. Further analysis
shows that 16.8% of all smells were already present in the role’s
initial commit. This is the case for 1,359 roles or 31.9% of all roles
with smells. Of these roles, 82.3% contained too high precedence
smells, 38.5% contained unintended override smells, while only 0.66%
contained unsafe reuse smells.4

As many roles already contain smells from their first commit,
we investigated whether the same applies to the addition of new
code files. We found that only 7,171 out of the 58,881 code files
that were analysed (12.2%) contained smells. We then determined
the number of smells within those files at the commit in which the
file was added. Table 5 summarises the results. We observe that
55.3% of smelly files already had the smells when being added to the
corresponding role. Furthermore, 42.7% of too high precedence smells
are introduced together with their encompassing file. Similarly, for
35.5% roles that contain unsafe reuse smells, at least one of these
smells was introduced together with the file.

Finally, we investigated the amount of time required before a
smell is removed since its original introduction. Since the majority
of smells are still present in a role’s last snapshot and have therefore
not been fixed (cf.𝑅𝑄2), we used a survival analysis [18]5 to estimate
the probability over time for a smell to be removed, with respect
to the date of the first commit introducing the smell. Figure 10
shows the Kaplan-Meier survival curves for our smells. The curves
for unintended override and unsafe reuse overlap, which suggests
that there is no clear difference in terms of fixing time for smells
in these two categories. In contrast, the too high precedence curve
does not overlap with any other. It also takes longer before smells
of this category are fixed. It takes 17.6 and 12.8 months for 50% of
unintended override and unsafe reuse smells to be fixed, respectively,
while it takes 37.4 months for 50% of too high precedence smells to
be fixed. Log-rank tests confirmed statistical differences between

4A project might have code smells of different categories.
5Survival analysis creates a model estimating the survival rate of a population over
time until the occurrence of an event, considering the fact that some subjects may
leave the study, while for others the event of interest might not be observed.
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Figure 10: Probability for a code smell to fixed w.r.t. to the
first commit in which the smell appeared, grouped by smell
category and name. The shaded coloured areas represent the
confidence intervals (𝛼 = 0.05) of the survival curves.

the too high precedence category and the other two categories (𝑝 <

0.002 6). This difference is mainly due to HP1 smells (in the right
figure). Conversely, the tests did not confirm such a difference
between the unintended override and unsafe reuse categories (𝑝 =

0.016). Without categorizing smells, we found that it takes 26.7
months for half of all smells to be fixed.
Findings: Half of the discovered code smells appeared within the
first month of a role’s existence, with 16.8% already existing in the
first commit. Smells take much longer to be removed, still having
a survival probability of over 50% after more than 2 years.

6 DISCUSSION
Assessing a role for the variable smells proposed in this paper can
warn practitioners about maintainability issues, and point them
towards potential defects. Almost a fifth of the roles in our dataset
is affected (𝑅𝑄2), and not seldom from their first commit onwards
(𝑅𝑄4). Next to a call to arms for better tool support and safer IaC
languages, this suggests that there are likely misunderstandings
about Ansible’s semantics among practitioners.

Practitioners’ perception of smells. Although we have not con-
sulted with practitioners for this study, we found various fixing
commits (cf. 𝑅𝑄4) suggesting that practitioners agree with these
smells. For instance, one developer fixed an unnecessary set_fact
usage to address an issue where built-in facts were overridden [8],
whereas another developer removed three such usages to improve
their role’s quality score [13], a metric computed by Ansible Galaxy
to rate roles based on syntactical linter warnings. Similarly, various
smells related to unsafe reuses of impure expressions correspond
to defects that were later addressed [2, 22]. This suggests that the
discovered smells could be used to warn developers about potential
defects and to suggest fixes. We leave this as future work.

Common pitfalls. During the validation of the smell detector
(𝑅𝑄1), we discovered certain patterns in the misunderstandings of
Ansible’s semantics. We discuss them as knowing which pitfalls
to avoid can be valuable for practitioners. For instance, many of
the unnecessary include_vars (HP2) instances were caused by
practitioners loading files defining their default and role variables
manually. Not only is this redundant since these files are loaded
implicitly, it also unconditionally overrides the already-defined

6The lower 𝑝−value is defined using a Bonferroni correction. We originally considered
a global confidence level of 95%, corresponding to a significance level of 𝛼 = 0.05, i.e.,
𝐻0 is rejected if 𝑝 < 0.05

𝑛
. In our case 𝑛 = 18, i.e., 𝑝 < 0.002.

1 # Contents of tasks/configure-preferences.yml
2 - include_tasks: types/pin.yml
3 vars:
4 apt__pin: ...
5
6 # Contents of tasks/types/pin.yml
7 - template: ...
8 vars:
9 apt__pin: ... # UO2: Shadowed by include param on line 5

Figure 11: UO2 smell in Turgon37.apt role, commit 948c785c.

1 # Contents of tasks/tasks_python_fallback.yml
2 - shell: yum -y install python3
3 register: result # Define `result`
4 until: result is not failed # Use `result` from line 6 locally
5 - shell: yum -y install python3-devel python3-setuptools
6 register: result # UO1: Unconditional redefinition of `result`
7 until: result is not failed # Use `result` from line 12 locally

Figure 12: UO1 smell in softasap.sa_docker role, commit
96548e70.

1 # Contents of tasks/configure-preferences.yml
2 - include_tasks: addkey.yml
3 loop: "{{ keys }}" # Defines `item`
4 vars: # These expressions should use `item` defined on line 3
5 ssh_config_dir: "{{ item.ssh_config_dir }}"
6 ssh_host_usewith: "{{ item.ssh_host_usewith }}"
7
8 # Contents of tasks/addkey.yml
9 - file:
10 path: "{{ ssh_config_dir }}" # OK: Uses `item` defined on line 3
11 - blockinfile:
12 path: "{{ ssh_config_dir }}" # UR2: `item` redefined on line 15
13 loop: "{{ ssh_host_usewith }}" # Redefines `item`

Figure 13: UR2 smell in dottgonzo.add_ssh_key role, commit
7140f935.

variables (leading to UO1 smells) and leads to unnecessarily high
precedence, which may make it impossible for a client play to
override these variable definitions to customise the role’s behaviour.
Moreover, many of the unused override (UO2) smells were caused
by the use of include parameters, which have the highest possible
precedence, exemplified in Figure 11.

Additional language features. We also found apparent
workarounds for a lack of language support for particular variable
use cases, which can serve as the motivation to introduce new
language features to address these use cases. A number of HP2
smells, although true positives, would be difficult to address since
the dynamically loaded variable files were used to modularise
variable definitions. Similarly, many unconditional overrides (UO1)
affected variables defined as task results through the register key.
Although these variables were only used locally, register defines
them globally, leading to conflicts as shown in Figure 12. Finally,
all of the sampled data dependence changes (UR2 smells) were
caused by a form of dependency injection, where the initialiser of
a global variable depended on a variable defined in the local scope
of a task. Although many of these redefinitions seemed intentional,
we classified them as true positives since the detector correctly
identified the change in variable values and this usage of variables
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may be confusing. Nonetheless, this smell uncovered another
instance of a real defect in an Ansible role, illustrated in Figure 13.

Additional tool support. Our results can also serve to motivate fu-
ture research on infrastructure as code maintainability. For instance,
unnecessary usages of set_fact (HP1) are the most common smell
we detected (cf. 𝑅𝑄2). Due to its imperative nature and high prece-
dence, we believe these to have a negative impact on the clarity and
maintainability of infrastructure code. Future work may investigate
its use cases, and possibly suggest safer alternatives. Similarly, the
results of 𝑅𝑄2 show that smells are introduced more often than
they get fixed, while 𝑅𝑄4 shows that it may take a long time for a
fix to arrive. Therefore, tool support for IaC practitioners to detect,
comprehend, and repair these smells may be beneficial.

7 THREATS TO VALIDITY
We present the threats to validity of this paper following the clas-
sification and recommendations of Wohlin et al. [43]. The main
threat to construct validity stems from the prototypes that we built
to detect the smells. Our PDG builder and smell detector suffer
from technical limitations, discussed in the next section. They may
have introduced false negatives and false positives in our results.
However, we have mitigated the threat of the latter by manually
validating the precision of our prototypes on a random sample
(cf. 𝑅𝑄1). Second, the removal of a smell does not necessarily imply
that it was fixed, as the containing code might have been deleted.
The survival probabilities shown in 𝑅𝑄4 thus form a lower bound.

Internal validity concerns choices and factors internal to the
study that could influence the observed results. We decided to only
study roles that are hosted on Ansible Galaxy, while there might
be other roles available in GitHub but not distributed via Ansible
Galaxy. However, since Ansible Galaxy is Ansible’s official hub for
sharing Ansible content, we think that the majority of roles are
hosted on it which means that our results are representative for the
majority of Ansible roles’ developers and users.

Conclusion validity concerns the degree to which the conclu-
sions we derived from our data analysis are reasonable. Since our
conclusions are mostly based on empirical observations, our work
is unlikely to be affected by such threats. However, it is important
to mention that our conclusions concern Ansible role smells which
are not necessarily bugs, but are indicative of bad practices that
may lead to bugs when the role is included in a play.

As a threat to external validity, our findings cannot be generalised
beyond Ansible roles, i.e., to other Ansible components such as
playbooks, or to other infrastructure as code languages such as
Puppet and Chef. However, it is possible to replicate the design of
our study for the aforementioned IaC languages.

8 TECHNICAL LIMITATIONS
Our PDG builder only supports a subset of the Ansible language.
Most importantly, it currently does not consider handlers, which
are special types of tasks that are executed out-of-order. Moreover,
certain task keys are not inspected during the analysis. Therefore,
any usages of variables in such unsupported elements will not
be present in the graph and cannot be considered in the smell
detection. Nonetheless, the builder supports the most common and
most important components of the Ansible language, including

task actions, action arguments, conditionals, loops, and all forms
of variable definitions.

Secondly, certain operations are too dynamic for our PDG builder
to statically approximate. This includes dynamically including tasks
(include_tasks) or variables (include_vars) where the file name
of the included file is not a literal. We currently ignore such actions,
and any code smells occurring in tasks or variables that are included
in such manner may be missed. Similarly, although we indicate
when variables are conditionally defined, the PDG builder does
not consider the conditions under which variables may be defined
when resolving variable references. It may therefore use the wrong
variable definitions under certain circumstances. However, we did
not observe a large negative impact of this limitation during our
validation. We leave properly resolving conditional definitions as
future work.

Finally, the algorithm used to determine whether an expression is
pure is naive and can lead to an under-approximation. For instance,
it does not support user-defined filters and tests, and considers
them impure by default. We do not consider this to be an inher-
ent limitation of our approach, since the implementation of this
algorithm can be interchanged with an improved implementation
without substantial changes to Algorithm 1. However, an improved
implementation aiming to automatically determine purity of user-
defined filters and tests would need to perform complicated analysis
of non-Ansible code. Alternatively, if the current algorithm was to
be used in a practical tool implementation, it would be straightfor-
ward to allow a user to configure their own list of pure tests and
filters.

9 RELATEDWORK
Research on Infrastructure as Code (IaC) has been categorised into 4
categories [32], namely tools and frameworks, empirical studies, use
cases and experience reports, and testing. Identifying defects in IaC
projects can be challenging [10] and this has led many researchers
to study good and bad practices in IaC, to identify code smells
and accompanying detectors, or to propose and measure quality
metrics [5, 10, 19, 31, 33, 35, 37, 42]. Other researchers have instead
focused on verifying semantic properties of IaC scripts [14, 15, 36,
38] using specialised semantic models.

One such property is idempotence of script execution, which
ensures that running an IaC script on an already-configured in-
frastructure does not lead to unnecessary changes. Although such
idempotence issues can be caused by reuse of impure expressions,
they are separate issues. Therefore, while some overlap may exist
between problems detected by tools such as Rehearsal [36] and our
Unsafe reuse of impure expression (UR1) detection rule, the reported
problems are different. Primarily, lack of idempotence can be caused
by various other reasons, and it is also possible for execution to
still be idempotent while impure expressions are reused. Moreover,
idempotence is a property of whole-script execution, whereas our
UR1 smell concerns single expressions and is thusmore fine-grained.
Note also that Rehearsal targets Puppet code, and that no static
idempotence checker for Ansible code exists. Although Rehearsal’s
technique can possibly be replicated for Ansible code, Ansible’s
unique semantics may pose a significant challenge.
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Existing analysis tools for Ansible [4, 5, 27, 34] mostly remain at
the syntactical level and do not compute complex control nor data
flow. This may in part be due to the intricate variable precedence
rules and lazily-evaluated template expressions. However, the lack
of data flow information leads to tool limitations. For example,
Opdebeeck et al. [27] introduce a structural model that abstracts
over Ansible syntax and use it to distil change metrics between
Ansible role releases. As the change distiller cannot trace variables
to their definitions, it is limited in recognising variable renaming
changes and distils removal and addition changes instead. The
so-called SRT introduced by Dai et al. [4] is similar to Opdebeeck
et al.’s structural model, but alsomodels sequential ordering of tasks.
Control flow induced by loops and conditions is not supported. The
SRT is used to analyse the security of shell scripts executed by
Ansible tasks. To this end, template expressions are simplified by
substituting literal values for statically-known variables. However,
the tool does not fully account for the complex Ansible semantics.

We have proposed a Program Dependence Graph based rep-
resentation of Ansible roles that models their control and data
flow succinctly. PDG-based representations have already proven
themselves as enablers of advanced development tooling. Applica-
tions include optimisation [7, 29] and program slicing [28, 40, 41],
code clone detection [20], refactoring [12, 30], and static security
analysis [11, 17]. Moreover, derivatives of the PDG representation
have been paired with graph mining algorithms to recommend
code snippets [24], assess migration effort [25], mine code change
patterns [23], and detect defects in library usages [1].

This paper is the first to introduce a PDG-based representation
for Ansible code. We have demonstrated its applicability by detect-
ing variable-related code smells. To this end, the representation and
its builder accurately account for the Ansible’s variable precedence
rules and lazily-evaluated template expressions. It is the first repre-
sentation that captures this semantics in such detail, and we hope
that it will enable developers and researchers to build tooling for
and study software engineering problems of infrastructure code.

10 CONCLUSION
Mistakes in infrastructure configuration data are a major cause of
infrastructure defects. The intricate details of Ansible’s variable and
expression semantics may lead developers to unwittingly introduce
such defects into their infrastructure code. Moreover, this seman-
tics encumbers program comprehension and therefore introduces
maintenance difficulties. We have proposed a catalogue of 6 novel
code smells related to the usage of Ansible variables. The smells
indicate unsafe reuses of variables, unintended overrides of vari-
ables, and variables defined with unnecessarily high precedence.
To detect the proposed smells, we have transposed the concept
of program dependence graphs from application to infrastructure
code. Using the detector, we have conducted an empirical analysis
into the prevalence and lifetime of the smells in over 20,000 open-
source, reusable Ansible roles. The results show that these smells
are becoming increasingly common and may take a long time be-
fore they get fixed. Furthermore, the rate at which new smells are
introduced outpaces their fixes. Some smells often co-occur within
the same role, suggesting that one smell may cause another. We

have also found evidence in the form of fixing commits suggest-
ing that certain smells may be indicative of infrastructure defects.
The proposed smells and the accompanying detector can therefore
serve as a valuable asset for practitioners to spot maintainability
and reliability issues in their infrastructure code.
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