
Event-Based Out-of-Place Debugging
Tom Lauwaerts
Universiteit Gent
Gent, Belgium

Tom.Lauwaerts@UGent.be

Carlos Rojas Castillo
Vrije Universiteit Brussel

Brussels, Belgium
crojcas@vub.be

Robbert Gurdeep Singh
Universiteit Gent
Gent, Belgium

Robbert.GurdeepSingh@UGent.be

Matteo Marra
Vrije Universiteit Brussel

Brussels, Belgium
mmarra@vub.be

Christophe Scholliers
Universiteit Gent
Gent, Belgium

Christophe.Scholliers@UGent.be

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Brussels, Belgium
egonzale@vub.be

ABSTRACT
Debugging IoT applications is challenging due to the hardware
constraints of IoT devices, making advanced techniques like record-
replay debugging impractical. As a result, programmers often rely
on manual resets or inefficient and time-consuming debugging tech-
niques such as printf. Although simulators can help in that regard,
their applicability is limited because they fall short of accurately
simulating and reproducing the runtime conditions where bugs
appear. In this work, we explore a novel debugging approach called
event-based out-of-place debugging in which developers can cap-
ture a remotely running program and debug it locally on a (more
powerful) machine. Our approach thus provides rich debugging
features (e.g., step-back) that normally would not run on the hard-
ware restricted devices. Two different strategies are offered to deal
with resources which cannot be easily transferred (e.g., sensors):
pull-based (akin to remote debugging), or push-based (where data
updates are pushed to developer’s machine during the debug ses-
sion). We present EDWARD, an event-based out-of-place debugger
prototype, implemented by extending the WARDuino WebAssem-
bly microcontroller Virtual Machine, that has been integrated into
Visual Studio Code. To validate our approach, we show how our
debugger helps uncover IoT bugs representative of real-world appli-
cations through several use-case applications. Initial benchmarks
show that event-based out-of-place debugging can drastically re-
duce debugging latency.

CCS CONCEPTS
• Computer systems organization→ Embedded software; • Soft-
ware and its engineering → Software testing and debugging;
Integrated and visual development environments.

KEYWORDS
Out-of-place debugging, Debugger, Internet-of-Things, WebAssem-
bly, WARDuino, Virtual Machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MPLR ’22, September 14–15, 2022, Brussels, Belgium
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9696-7/22/09. . . $15.00
https://doi.org/10.1145/3546918.3546920

ACM Reference Format:
TomLauwaerts, Carlos Rojas Castillo, Robbert Gurdeep Singh,MatteoMarra,
Christophe Scholliers, and Elisa Gonzalez Boix. 2022. Event-Based Out-of-
Place Debugging. In Proceedings of the 19th International Conference on
Managed Programming Languages and Runtimes (MPLR ’22), September
14–15, 2022, Brussels, Belgium. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3546918.3546920

1 INTRODUCTION
Despite hardware advances enabling computation and analytics on
IoT devices, debugging IoT applications is difficult due to the limited
memory and computational power of these devices. A 2021 survey
by Makhshari and Mesbah [17] of 194 IoT developers reported
that 63% attributed the challenges of developing IoT systems to
the resource constraints of the devices. The same study collected
5,565 bugs reports from 91 IoT projects and reported that the most
frequent types of bugs are related to software development (48%),
device issues (29%), and communication issues (19%).

Debugging IoT systems during development is often aided by
simulators. The differences between the simulator and the actual
hardware, however, makes finding device issues extremely difficult.
Moreover, due to the heterogeneity of IoT devices, it is impossible
to simulate all types of devices [17].

Another common debugging approach is to log the execution
on the real device. As the hardware is not simulated, this technique
can capture device-related issues [17]. Debugging tools help with
this task by enabling programmers to run and monitor the pro-
gram’s execution [21]. For example, record and replay debugging
automatically records events of a program’s execution in a log or
trace, which can later be used to replay the program. This facilitates
reproducing bugs since a recorded execution that activated a bug
can be deterministically replayed. On the other hand, back-in-time
debugging (aka reverse or omniscient debugging) records the ap-
plication state in a snapshot, enabling the backward inspection of
the program state by restoring a previously recorded snapshot [8].

These offline debugging techniques typically have a high mem-
ory and computational overhead [23], making them impractical for
use on IoT devices. As a result, developers turn to manual logging
solutions such as serial printf [17]. Despite its popularity, this solu-
tion relies on developers wisely choosing what to log: capturing
too little may not provide enough contextual information to find
the bug, while capturing too much adds unhelpful noise to the
analysis [24].

https://orcid.org/0000-0003-1262-8893
https://orcid.org/0000-0002-2952-855X
https://orcid.org/0000-0003-4394-0011
https://orcid.org/0000-0002-8037-0567
https://orcid.org/0000-0002-2837-4763
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1145/3546918.3546920

MPLR ’22, September 14–15, 2022, Brussels, Belgium T. Lauwaerts, C. Rojas Castillo, R. Gurdeep Singh, M. Marra, C. Scholliers, and E. Gonzalez Boix

Alternatively, online debuggers let the developers control pro-
gram execution, inspect and manipulate execution state without
resorting to logs [21]. Modern runtime environments for IoT de-
vices provide some limited remote online debugging support [9, 11].
Crucially, remote debuggers suffer from debugging latency. Each
debugging operation causes communication with the device, poten-
tially consuming essential resources [1]. To alleviate the debugging
latency problem, we proposed out-of-place debugging in previous
work [19]. With an out-of-place debugger, the application state is
captured when an exception or breakpoint is hit. The state is subse-
quently transferred to the developer’s machine, and restored into
a new debug session. Developers can now debug the application
locally, reducing the debugging latency and communication load.

In this work, we introduce a variant of out-of-place debugging for
IoT systems, where resource constrained devices run applications
driven by events (from sensors, button presses, network messages,
etc.). To this end, we propose event-based out-of-place debugging in
which developers can debug IoT applications externally. They may,
for example, use a more powerful desktop machine while still using
the actual hardware for obtaining sensor values and communicating
with other IoT devices.

We introduce three main innovations with respect to the original
out-of-place debugging specially designed for the IoT environment.
First, event-based out-of-place debugging offers developers fine-
grained access to non-transferable resources, i.e., resources that
cannot be easily transferred (e.g., sensors). During the local debug
session values of resources can either (1) be queried when needed,
leading to a pull-based access strategy akin to classic remote de-
bugging, or (2) be pushed to developer’s machine from the remote
device when there is an update, leading to what we call a push-
based access strategy. Second, event-based out-of-place debugging
permits advanced debugging features to be brought to IoT, such
as stepping back commands. Finally, event-based out-of-place de-
bugging allows a debug session to be started on-demand, where
previous implementations initiated a session only when an error
occurs.

We implement an event-based out-of-place prototype debugger
called EDWARD. The debugger backend has been implemented by
modifying an existing Virtual Machine (VM) meant for resource-
constrained devices. More concretely, we extend WARDuino [13],
a microcontroller VM for WebAssembly [14], with event-based out-
of-place debugging support. EDWARD’s frontend is integrated into
WARDuino’s Visual Studio Code (VSC) plugin [27].

To validate our approach, we perform a qualitative evaluation
that assesses the ability of our debugger to help solve the most
frequent types of bugs in IoT systems: device-related bugs and
software development issues [17]. We conduct a preliminary quan-
titative analysis of network latency, which shows that out-of-place
debugging can improve performance over remote debugging by
reducing network access.

The remainder of this paper is organized as follows: Section 2
introduces the challenges in debugging IoT applications. Section 3
details the main ingredients of event-based out-of-place debugging.
Then, Section 4 presents EDWARD, including both the changes to
WARDuino and the debugger frontend in VSC. In Section 5, we
qualitatively and quantitatively evaluate our debugging technique

1 import * as wd from warduino;

2

3 const SENSOR: u32 = 36;

4

5 function readTemperature(): f32 {

6 const adc_value: u32 = wd.analogRead(SENSOR);

7 const voltage: f32 = adc_value * (3.3 / 1024.0);

8 return voltage / 10;}

9

10 function readAndPrintTemperature() : void {

11 wd.println(`Temperature: ${readTemperature()} C.`);}
12

13 export function main() : void {

14 while(true) {

15 readAndPrintTemperature();

16 wd.delay(250);}}

Figure 1: LM35 temperature sensor example written in As-
semblyScript.

followed by a discussion of related work in Section 6. Section 7
concludes the paper.

2 DEBUGGING IOT APPLICATIONS
In this section, we start by giving a motivating example to frame
the kind of applications we are targeting and motivate why it is
difficult to debug such applications using current state-of-the-art
debuggers. Subsequently, we identify problems with the current
debugging tool support, which forms the motivation for this work.

2.1 Motivating Example
Consider a simple smart monitoring system using an IoT device
that reads a temperature sensor. The device reads out a voltage from
the temperature sensor, which is then converted into a numeric
value shown to the user.

We assume that IoT applications are written in a high-level lan-
guage that compiles to WebAssembly (e.g., Swift, Rust, Assem-
blyScript, etc.). Figure 1 shows an implementation of this pro-
gram written in AssemblyScript. Line 1 imports the warduino library
(bound to wd) to be able to access the peripherals of the IoT de-
vice. Line 3 defines a constant SENSOR to indicate from which pin
the voltage should be read. Subsequently, the program consists of
three functions: main, readTemperature, and readAnd-PrintTemperature.
The main function serves as the entry point of the application, and
starts an infinite loop that repeatedly reads and prints the tempera-
ture approximately every 250 milliseconds. To this end, it calls the
readAndPrintTemperature helper function that reads the temperature
and prints it to the console. Finally, the readTemperature function uses
the wd module to read the voltage level of the pin and subsequently
converts the voltage into a temperature value.

2.2 Debugging the Motivating Example
During the development of this simple application, developers can
be confronted with bugs of the two most frequent categories [17]:
device-related issues (e.g., a pin not working correctly) or software
development-related issues (e.g., the wrong pin is read, the calcu-
lation to convert the voltage to a temperature could be wrongly
implemented, etc.). Consider a running IoT application displaying

Event-Based Out-of-Place Debugging MPLR ’22, September 14–15, 2022, Brussels, Belgium

the values read from a temperature sensor. Sometimes, the dis-
played values are wrong, e.g., not-a-number is displayed. We now
describe the current state-of-the-art techniques for debugging such
an issue, and we will identify their shortcomings.

Testing and Simulation. IoT developers could use testing frame-
works and simulation solutions to identify bugs [6, 15]. These tools
are very important to reduce the cost of developing the application
because testing on hardware is typically orders of magnitude slower
than testing on the local machine. It is only after the developer is
sufficiently confident that their code is correct, that they will test
the application on the actual hardware.

In our example scenario, consider that there exists a simulator
tool with a hardware profile for the IoT device where we deploy
the application, i.e., an ESP32 microcontroller. Even if the unit-
testing and simulations of the code show that the code is working
as expected, the temperature values could still be wrongly displayed
when running the application on the actual device. To investigate
that mismatch, developers would then turn to a debugger.

Debugging. Modern runtime environments for IoT devices, such
as WARDuino [13], Espruino [9], provide online debugging support
allowing developers to execute the program in debug mode on their
machine. This boils down to some form of remote debugging, which
allows developers to perform step-wise execution of the program
running on the IoT device from their machine. Every debugging
operation results in network communication to the IoT device (e.g.,
for stepping commands, state inspection, etc).

Whenever the program needs to access a physical resource (e.g.,
a temperature sensor), the debugger requests these values from
the device. In our example, whenever the analogRead function is
called the debugger queries the microcontroller to read out the
latest sensor value. When debugging the program with the remote
debugger, it becomes clear that the analog pin values fluctuate
heavily as if the pin is not connected. Inspection of the circuit
shows that the SENSOR pin value of the board is different from the
one used for simulation. This is a simple example of a device-related
issue that can only be found by debugging live on the device.

Limitations. In this simple application, it was enough to query
the device through the debugger whenever a certain sensor value
is required. However, remote debugging may not be suitable when
network usage must remain limited. Moreover, such a pull-based
strategy to access sensor data does not capture all use cases for
debugging IoT devices. Many of the peripheral devices attached to
a microcontroller use an interrupt-driven interface instead. Such
interrupts are generated when certain external events happen, for
example when an input-pin changes from low to high.

As a concrete example, consider we modify code in fig. 1 to
use an interrupt to measure the temperature whenever a button is
pressed. Figure 2 shows such an event-driven implementation. In
this case, the developer needs a debugger that is able to intercept
the interactions with the IoT device when a new event is generated
(in this case a new temperature value is produced by pushing the
button), not by querying the sensor value. Unfortunately, such an
push-based strategy to access sensor data is not provided by debug-
gers for IoT devices. With current remote debugging techniques,

1 export function main() : void {

2 wd.interruptOn(BUTTON, wd.FALLING,

3 readAndPrintTemperature);

4 }

Figure 2: Event-driven implementation for reading tempera-
ture sensor in AssemblyScript.

developers can not see an event being queued in the runtime or
control the timing of those events.

Alternatively, developers could use offline debugging techniques
like time-travelling and record and reply debugging [2, 4, 5, 8] to
investigate the events that lead to the occurrence of a bug. Time-
travelling debugging allows restoring a program execution to an
earlier point in time. Record and replay, on the other hand, helps
deal with the non-reproducibility of bugs due to nondeterminis-
tic interrupts and signals. This technique records relevant events
that happen during a program’s execution in a trace to replay the
execution later. Once a program execution manifesting the bug
is recorded, it can be reliably reproduced until the root cause is
identified. While offline debugging techniques such as record and
replay have become mature for modern commodity hardware [5],
they have only been explored limitedly in IoT (e.g., [12]) because
of the resource constraints of these devices. Improved support is
thus needed to enable such advanced debugging techniques which
would help developers deal with the nondeterminism inherent of
IoT applications.

2.3 Problem Statement
From the analysis of the motivating example, we want to highlight
the following problems which motivate the proposition of our novel
debugging approach:

(1) Unit testing and simulation frameworks are not always suf-
ficient to debug IoT applications

(2) Traditional remote debugging is often slow due to network
latency and only offers a pull-based strategy to access device
resources (e.g., sensors)

(3) No remote debugging approach provides mechanisms to
control the timing and order of events (i.e., sensor updates,
incoming MQTT [3] network messages, etc.) so characteris-
tic of IoT applications

(4) Offline debugging techniques are too heavy-weighted for
IoT devices.

3 EVENT-BASED OUT-OF-PLACE DEBUGGING
In this section we introduce our novel debugging technique for
IoT applications inspired by the ideas of out-of-place debugging
proposed in prior work [18, 19]. Out-of-place debugging is an online
remote debugging approach that aims to mitigate network latency
issues by making debugging a local activity. When a breakpoint is
hit, or an exception occurs in an application, the execution context
of the program is extracted, and transferred to a different machine
where a debug session is created with a copy of the application.
Debugging then becomes an in-place activity with reduced latency
since any debug action is performed on the local application and
thus no longer requires network communication. When accessing

MPLR ’22, September 14–15, 2022, Brussels, Belgium T. Lauwaerts, C. Rojas Castillo, R. Gurdeep Singh, M. Marra, C. Scholliers, and E. Gonzalez Boix

resources that cannot be transferred (e.g. files, sensors, etc.), an out-
of-place debugger behaves as a classic remote debugger querying
the value of the non-transferable resource over the network.

In this work we propose event-based out-of-place debugging,
which rethinks the concepts of out-of-place debugging to deal with
the unique characteristics of IoT systems. Our technique differs
from existing out-of-place debuggers [18, 19, 26] in three important
aspects. First, creating a local debug session is now initiated by a
user request rather than being triggered by an exception on the
remote device. Such an on-demand debugging strategy is crucial
to decrease the load on the remote devices. Secondly, and most
importantly, the debugger offers both a pull-based and push-based
strategy for accessing non-transferable resources. As argued in the
previous section, both strategies are needed due to the event-driven
nature of IoT applications. Finally, since the debug session happens
locally, on a more powerful machine, advanced debugging features
from online debugging that are too heavy-weighted for the IoT
devices can now be offered. Developers can debug programs step-
wise backwards by restoring previous states of the program (stored
at each debug step).

While event-driven out-of-place debugging is a general tech-
nique that can be implemented for compiled languages, in this work,
we implement it by extending a VM targeting microcontrollers. In
what follows we give an overview of the VM requirements and
the debugging architecture. We will then discuss each step in the
debugging cycle chronologically, and present how the VM supports
each step.

3.1 Virtual Machine Requirements
In order to implement event-based out-of-place debugging, any
candidate VM must support the following:

(1) Halt and step through the execution of a program.
(2) Capture and serialize the state of the running program.
(3) Recreate and execute a captured state in another VM instance

where the program can be debugged.
(4) Query the state of peripherals.
(5) Capture asynchronous events.
(6) Receive and process simulated events.

Halting and stepping through a program are the most elementary
operations offered by classic online debuggers. Likewise, these two
operations should be supported for the most minimal out-of-place
debugger. To initiate a debug session that runs the target program
on a different machine, a VM should support to capturing and se-
rializing a running program’s execution. Based on the serialized
representation, the VM must be able to recreate the captured state
and continue executing the program. In the IoT context, the VM
must be able to query the state of the peripherals on a remote device.
More generally, the debugger must be able to query non-transfer-
able resources, which are only available on the other instance of
the VM. The VM must be able to capture asynchronous events.
In the context of IoT these will often be hardware interrupts, but
other kinds of asynchronous events such as receiving a message
over MQTT must be captured too. Finally, the VM must be able to
receive notifications of such events and process simulated versions
of them.

3.2 Debugging Architecture
We explain the main architecture of event-based out-of-place de-
bugging through a high-level overview of the steps involved in a
debugging cycle. Debugging with our approach consists of four
major stages: deployment, remote debugging, capturing an out-of-
place debug session, and local debugging. Within these stages, all
steps will be performed by three major components, the debugger
frontend, the proxy debugger and the debugger backend (detailed
below).

Deployment. To debug an IoT application, the debugger frontend
first deploys the application onto the target device. The debugger
frontend is a process running on the developer’s machine. It offers
dedicated views to developers to debug an application. Additionally,
it hosts a debugger manager, which interacts with the VM instance
running on the IoT device. After deployment, the device acts as the
debugger backend. More concretely, the debugger frontend estab-
lishes a communication channel (e.g., serial, Wi-Fi, etc.) with the
debug monitor that is used for any interaction between frontend,
and the VM instance at the remote device.

Remote Debugging. Once deployed, the developer can use the
debugger as a traditional remote debugger where debugging op-
erations (e.g., step, add breakpoint, etc.) are sent to the debugger
backend running on the device. To reduce the network latency
and benefit from advanced debugging features (e.g., control over
events, stepping backwards, etc.), the developer can switch to out-
of-place debugging by requesting the capture of a debug session
via a dedicated view. These first two stages are discussed further in
section 3.3.

Capturing an Out-of-Place Debug Session. When the debugger
backend handles a request to capture an out-of-place debug session,
it will pause the target program’s execution and create a session by
snapshotting the application. More concretely, the debug session
contains all the state (as detailed in section 3.4) that is needed to
make local debugging possible at another device. The debug session
is then transferred to the developer’s machine, and the debugger
frontend starts a new debugger backend locally by restoring the cap-
tured debug session. Subsequently, the debugger frontend switches
communication to the newly created backend, and the remote de-
vice will relinquish its role as backend and instead become a proxy
debugger.

Local Debugging. After capturing, all debugging operations (e.g.,
step, add breakpoint, etc.) are sent to the local backend, but the
VM on the remote device is kept active to provide access to non-
transferable resources (e.g., sensors, network messages from neigh-
boring devices, etc.). When the debugger backend executes code of
the target application which accesses non-transferable resources,
developers can choose between two strategies: (1) a pull-based ac-
cess strategy will request the proxy debugger to send the latest
state of the resource (e.g., temperature sensor), and (2) a push-based
access strategy will request the proxy debugger to store all events
produced by the resource (e.g., new temperature value) in an event
queue and also notify the frontend of each received event. Details
on this stage and these two strategies are discussed in section 3.5.

Event-Based Out-of-Place Debugging MPLR ’22, September 14–15, 2022, Brussels, Belgium

Developer’s Machine Remote Device

Debug
Monitor

Out-of-place
VM

Event Queue

Debugger Backend

Application

Debugger Frontend
Source Code

Debug
Manager

Debug
Views

Bytecode
B

C

A

Figure 3: Stage 1 and 2: Deployment and Remote Debugging.
The debugger frontend flashes a program (A) on the VM
instance on the device (B) to enable remote debugging (C).

The latency of local debugging operations is much lower com-
pared to remote debugging operations. Furthermore, local debug-
ging enables the implementation of advanced debugging features
since the local device has far less hardware restrictions than IoT de-
vices. In this work, we provide developers with step back operations
during an out-of-place debug session. More details are provided in
section 3.6.

In what follows we detail the main features of event-based out-
of-place debugging according to each stage.

3.3 Deployment and Remote Debugging
Figure 3 shows the interactions between the debugger frontend and
backend in the first two stages, i.e., deployment and remote debug-
ging. The diagram shows the developer’s machine, and the remote
device at the left and right-hand side, respectively. During the first
two stages, the developer’s machine hosts only the debugger fron-
tend representing the integrated development environment (IDE).
This is where the source code of the application is compiled to byte-
code (shown as a in fig. 3). Once the byte code is generated, the
application can be uploaded to a remote device running the event-
based out-of-place VM b . The remote VM executes the application,
but it also contains a debug monitor, which listens for instructions
from the frontend’s debug manager. At the developer’s device, the
debug manager is a piece of software, typically embedded in an
IDE, which handles all the debugging operations requested by de-
velopers. Typically, IDEs offer developers several debug views to
debug applications. When a developer requests the program to be
paused, the debug manager sends the correct interrupt message
to the remote debug monitor c . The debugger will then change
the state of the VM accordingly, and also sends back information
about the current state of the program. The debug manager can
then update the debug views to display relevant information, such
as the current line, breakpoints, local variables, etc.

3.4 Capturing a Debug Session
An essential aspect of our approach is capturing an out-of-place
debug session of a running application at the remote device. A
debug session contains all the state (i.e., application and execution

Developer’s Machine Remote Device

Debug
Proxy

Out-of-place
VM

Event Queue

Proxy Debugger

Application

Debugger Backend

WARDuino
VM

Debug
Monitor

Application

Event Queue

Debugger Frontend
Source Code

Debug
Manager

Debug
Views

Bytecode

A

BC

Figure 4: Stage 3: Capturing an out-of-place debug session.
A snapshot of the currently executing program is created at
the device and recreated at the developer’s machine.

state) of a target application, which makes local debugging possible.
The idea is to transfer the captured remote state to a local debugger
backend, on the developer’s machine, to run the target application
locally.

State of the Session. What information constitutes an out-of-place
debug session varies per VM and programming model [19]. As an
example, the following state is captured for a WebAssembly-based
VM we used to implement our approach (section 4.1):

• Program counter
• Call stack i.e., the trace of functions called to the point where
the session got captured.

• Breakpoints that were set during remote debugging.
• the stack of values populated during program execution (e.g.,
function argument, function call results, etc.).

• Global and local variables
• State regarding WebAssembly tables: the initial size, maxi-
mum size, and table entries.

• Branching table needed by WebAssembly to branch to differ-
ent blocks.

• State regardingmemory pages: maximum pages, initial pages,
and the pages content.

• The events that were not yet processed by the remote device
when capturing the session.

• The callback mapping: a mapping defining which functions
should process what events.

Recreating the Session. Figure 4 shows the main steps involved
in the capture stage. When the debugger backend shown in fig. 3
receives the request for capturing a debug session, it pauses the

MPLR ’22, September 14–15, 2022, Brussels, Belgium T. Lauwaerts, C. Rojas Castillo, R. Gurdeep Singh, M. Marra, C. Scholliers, and E. Gonzalez Boix

target program execution and serializes a debug session. From that
moment on, the debugger backend becomes a proxy debugger as
shown in fig. 4. This means that it will not provide step-wise control
of the execution of the target application anymore (it is paused),
and it transfers the serialized session to the debugger frontend
(depicted in the figure as a). The debugger frontend receiving
this serialized state, will start a new debugger backend on the
developer’s machine. Once the backend is ready to communicate,
the frontend sends the received captured session to it along with
the byte code of the application b . The local debugger backend can
then load the application and restore it to the captured state. As
such, developers are shown a debug view in which the application
is paused at the point where the debug session was captured. From
that moment on, developers can begin debugging locally which
results in exchanges of messages between the debugger frontend
and the new debugger backend c .

3.5 Accessing Non-transferable Resources
Once a developer is presented with an out-of-place debug session
at their machine, most debugging operations (e.g., stepping) will be
performed locally. While state inspection is typically also a local
feature in online debuggers, an event-based out-of-place debugger
distinguishes between access to non-transferable resources and
location-independent accesses (which can be performed locally).
When the program accesses state corresponding to non-transfer-
able resources our event-based out-of-place debugging approach
provides a mechanism to fetch them from the remote device based
on two strategies: (1) pull-based access (that directly requests the
value to the remote device) and (2) event-based access (that requests
the VM to be notified on value changes when they happen at the
remote device). In what follows, we employ fig. 5 to detail the key
ideas of each strategy. The figure depicts the interactions between
the different debugger’s components for accessing non-transferable
resources during the local debugging stage.

3.5.1 Pull-based Non-transferable Resources. To support pull-based
access to non-transferable resources, we use proxy calls, i.e., func-
tion calls on a foreign VM. Recall that operations performed by the
developer during local debugging result in calls to the debugger
manager from the debug views. Those calls in turn result in debug
messages sent to the debugger backend which controls the target
application a . Whenever the debugger backend encounters the
call of a function marked as a non-transferable resource, the local
VM will resolve the call through a proxy call. A proxy call is re-
quested by sending a debug message to the proxy debugger at the
device with the arguments and the identity of the function to call
b . When the debug proxy receives the request, the out-of-place
VM will execute the function using the received arguments. After
the function is performed, the debug proxy sends back the return
values of the function (if any) or an exception (if the function fails)
to the debug monitor.

When the local VM receives the return values of the proxy device,
it will place the values on the stack. This way the remote invocation
behaves exactly like a normal primitive call to the rest of the VM.
This also means that the debugger frontend will not be aware that a
proxy call was executed, except for the higher latency of this access
compared to a location-independent access.

Developer’s Machine Remote Device

Debug
Proxy

Out-of-place
VM

Event Queue

Proxy Debugger

Application

Debugger Backend

WARDuino
VM

Debug
Monitor

Application

Event Queue

Debugger Frontend
Source Code

Debug
Manager

Debug
Views

Bytecode

A B C

D

Figure 5: Stage 4: Local debugging. The debugger instructs
the locally executing debugger backend while receiving and
querying the proxy debugger. The proxy debugger sends any
asynchronous events from its event queue to the backend.

3.5.2 Push-based Non-transferable Resources. In order to support
push-based access to non-transferable resources, we extended the
VM with the concept of an event queue. This queue stores asyn-
chronous events received on the device, which model new sensor
updates, MQTT messages, etc. When an event is added into the
event queue, the debug proxy forwards it to the local debugger
backend (depicted in fig. 5 c) at the developer’s machine. The back-
end stores the forwarded events in a local event queue, mirroring
the event queue at the proxy debugger d . Events received by the
debugger backend will not be automatically handled. Instead, they
are forwarded to the frontend, to be shown in a dedicated view.
Events will be manually resolved upon the developer’s request.
When the VM receives such a request from the frontend, it will
only process the event at the head of the queue. This way, the de-
veloper can choose at what point in the code an event should be
handled, enabling the reproduction of multiple situations.

3.6 Local Debugging Support
By moving the debug session to the developer’s machine, event-
based out-of-place debugging can exploit the hardware of the pro-
grammer’s machine to provide more advance debugging techniques
that are too heavy-weighted for IoT devices. In this work, we do a
first exploration of applying offline techniques to the local debug
session by providing support for time-traveling debugging. This
allows developers to debug the target application backwards, re-
verting the execution to an earlier state. To this end, the debug
monitor keeps track of the generated state at each execution step
within a local debug session. When an application is paused (due

Event-Based Out-of-Place Debugging MPLR ’22, September 14–15, 2022, Brussels, Belgium

Figure 6: Overview of the extended WARDuino architecture.

to a breakpoint, or a pause debug command), developers can re-
store each previously stored state by issuing step-back commands.
This can potentially shorten the debugging time since it allows
developers to identify the root cause of the bug by going back to
previous states, instead of having to rerun the application from the
beginning to reproduce a bug.

4 EDWARD: AN EVENT-BASED OUT-OF-
PLACE DEBUGGER FORWARDUINO

We implemented a prototype event-based out-of-place debugger
on top of a microcontroller VM for WebAssembly (Wasm) called
WARDuino [13]. The prototype provides the features described in
the previous section for IoT applications that compile to Wasm.
The frontend of EDWARD is implemented as a Visual Studio Code
(VSC) [22] plugin. In this section, we will first discuss the extensions
to the WARDuino VM for supporting event-based out-of-place
debugging, and subsequently present EDWARD’s frontend.

4.1 Virtual Machine Extensions
In this section, we describe the extensions to WARDuino which
turn it into an event-based out-of-place VM. Figure 6 gives a high-
level overview of the extended WARDuino virtual machine. IoT
applications are written in a high-level language that compiles to
WebAssembly (e.g., AssemblyScript) and to use language-specific
libraries to interoperate with the low-level interfaces of our We-
bAssembly primitives.

To run an application on WARDuino, it must first be compiled
to WebAssembly a . The resulting WebAssembly program is then
instantiated in the VM b . The program can import WARDuino
primitives to access the hardware peripherals of the device c . These
primitives are are black-boxes written in C, which are exposed
to WebAssembly programs through the env module. This way, all
access to external hardware is encapsulated and accessed uniformly.
This facilitates the implementation of pull-based access to non-
transferable resources as we detail later.

The original WARDuino VM allows programs to be updated
and debugged by developers remotely. The VM features a debug
monitor that can receive updates and debug messages over different
channels f , such as Wi-Fi or the serial port. Debug messages can
instruct the VM to pause, step or resume execution g . We extended
the existing debug monitor to handle the new debug messages for
event-based out-of-place debugging (e.g., message for capturing
out-of-place debug sessions). Moreover, we introduced a novel
callback handling system to handle asynchronous events. It uses
a FIFO queue to aggregate all asynchronous events generated by
the environment. The handler will dispatch entries from this event
queue to registered callback functions. Callbacks and events are
associated through a topic string. The MQTT module, for instance,
can register a Wasm function from the instantiated program as
a callback for a specific topic d . Whenever events for that topic
occur, our callback handler invokes the registered function and
passes the event to it e .

We now highlight the most important implementation details
for the different stages in our approach (cf. section 3).

Capturing a Debug Session. To capture and reconstruct a de-
bug session, we extended WARDuino with three debug messages:
captureSession, recvSession, and monitorProxies. The captureSession
message is issued by EDWARD’s frontend to fetch the current state
of a program run on the remote device. When the debug monitor re-
ceives the captureSession message, it stops the program and creates
a debug session including the information described in section 3.4.
The recvSession message is used to send the captured debug session
back to EDWARD’s frontend. EDWARD’s frontend will then create
a new VM instance locally and forward the recvSession message
to it. The newly created VM instance uses the captured state as
its own new state. Finally, EDWARD’s frontend sends the moni-
torProxies message to the local debug monitor, containing the IP
address of the proxy debugger on the remote device such that ED-
WARD’s backend can query or receive updates on non-transferable
resources.

Accessing Pull-based Resources. We now detail how we imple-
mented proxy calls to enable pull-based access to non-transferable
resources. Identifying what function calls need to be invoked re-
motely is often a difficult task. In WARDuino, however, this is easier
as all pull-based non-transferable resources are accessed through
our primitives. We thus only need to remotely invoke those primi-
tives from the env module. To enable this, we extended WARDuino
with the proxyCall debug message, containing a function index
and a list of function arguments. Whenever EDWARD’s backend
encounters a primitive call, it sends the proxyCall message to the
proxy debugger with the correct index of the primitive and its ar-
guments. When a proxyCall message is received, the debug proxy
on the remote device executes the requested primitive (h in fig. 6).
The result (or exception) is then sent to the debug monitor at ED-
WARD’s backend.

Accessing Push-based Resources. Asynchronous events are push-
based non-transferable resources and cannot be proxied in the way
that primitives are. As mentioned before we introduced a callback
handling system in WARDuino. This means that the VM acts as
the event dispatching authority. In the callback handling system,

MPLR ’22, September 14–15, 2022, Brussels, Belgium T. Lauwaerts, C. Rojas Castillo, R. Gurdeep Singh, M. Marra, C. Scholliers, and E. Gonzalez Boix

Figure 7: The standard components of the debugger sidebar
in VSC for online debugging.

executing callbacks can be done locally aside from primitive calls,
which are proxied. In other words, the VM captures all asynchro-
nous events in a single event queue. This allows the VM on the
remote device to redirect every generated event from its event
queue to EDWARD’s backend. To this end, we added a new debug
message called pushEvent. When EDWARD’s backend receives this
message along with a serialized event, it adds the new event to its
own event queue (j in fig. 6). We also added two debug messages
that are issued from EDWARD’s frontend when developers want
to view and control the event queue: dumpEvents gets all events,
and popEvent processes the event at head of the queue.

4.2 EDWARD’s Frontend in Visual Studio Code
EDWARD’s frontend has been implemented in the Visual Studio
Code IDE (VSC) [22]. More concretely, we built a plugin on top of
VSC’s own debugger extension API. Thanks to this API, we may
leverage the standard VSC debugger user interface to offer views
of both local and global variables, the callstack, and breakpoints.

Since WARDuino is a WebAssembly runtime, the VM and the
debugger execute WebAssembly bytecode. By using WABT [29],
we also provide support for debugging a textual representation of
WebAssembly. While tool support for high-level languages com-
piled to WebAssembly varies, most provide some form of source
code mapping such as DWARF. In future work, we will use these
source-code mappings to support textual debugging of high-level
code in the plugin.

Standard Online Debugging Views. Figure 7 shows the standard
online debugging views containing local and global variables, break-
points and the callstack. In fig. 7, EDWARD is paused due to a
breakpoint, the variables view shows the state of the variables in
scope. Next to inspecting the current value of the variables, the
user can also change their value. Changing the value of a variable
also changes the value in EDWARD’s backend. The global variables
are always displayed in the plugin, even when the program is not
paused. Local variables, on the other hand, are only shown when
the program is paused.

Figure 8: Pulling a debug session via the command palette.

Below the variables view, the plugin displays a list of all the
current breakpoints (which can be enabled and disabled) and their
line number in the source code. Finally, the callstack view shows a
list of frames representing function activations, with the currently
executing function at the top and the program entry at the bottom.
Each frame also contains the line in source code as well as the
filename. For the top frame, this line corresponds with the current
position.

Figure 7 also shows, marked with a dashed gray line, the stan-
dard operations that are offered during remote debugging mode
including pause, step, stop and resume execution. In what follows,
we describe the special debug views and commands for event-based
out-of-place debugging in EDWARD’s frontend.

Capturing an Out-of-place Debug Session. To request the creation
of an out-of-place debug session, developers can use a dedicated
command available at the VSC command palette. More concretely,
the Pull debug session commandwas added to the palette as shown in
fig. 8. When executed during remote debugging, this command will
capture the current session and switch to event-based out-of-place
debugging by executing all the operations detailed in section 3.4.
This operation happens transparently to the user, who is notified in
the status bar of the operation’s progress. As soon as a debug session
is successfully recreated at the developer’s machine, EDWARD
enables two additional views specific to event-based out-of-place
debugging presented in fig. 9 and further detailed in what follows.

Accessing Remote Resources. The proxies view, in the bottom part
of fig. 9, shows an overview of the functions that are currently being
proxied to the remote device. In the current implementation, when
developers disable one of the proxies a random value is returned
(as a mocked value) instead of performing the proxy call. In future
work, we plan to explore others strategies to handle push-based
access to non-transferable resources that are not being proxied.

Event-based Debugging. The events view, displayed above the
proxies view in fig. 9, shows the queue of events captured by the
debugger. Events consist of a topic and payload. Events are dis-
played by their topic, e.g., MQTT topic or the pin number for a
hardware interrupts. An event can be expanded to show its content
if a payload is available. This is the case for an MQTT event but
for many events such as hardware interrupts this payload will be
empty.

During event-based out-of-place debugging the timing of events
can be controlled by the user. To enable this in EDWARD, develop-
ers can use the arrow in the top right corner of the events view to
debug the execution of the first event of the queue. In future work,
we plan to further explore debugging operations for events, e.g., let
developers reorder the events, choose which one to debug, etc.

Event-Based Out-of-Place Debugging MPLR ’22, September 14–15, 2022, Brussels, Belgium

Figure 9: The event-based out-of-place debugging specific
components of the VSC sidebar; contains the event queue and
the proxied calls for accessing non-transferable resources.

Back-in-time Debugging. Figure 7 also shows that EDWARD
offers developers stepping operations to debug programs backwards
(marked with a black line). These two operations are only available
during event-based out-of-place debugging, i.e., after capturing an
out-of-place debug session. EDWARD currently supports stepping
backwards via the button on the left. When that button is pressed,
the debugger updates the variables and calls stack views to show
the state at the previous execution step and updates the current
line in the source code window to reflect the step back.

5 EVALUATION
In this section, we evaluate our event-based out-of-place debug-
ging technique in two ways. First, we use EDWARD to detect and
fix common bugs in IoT applications. Second, we conduct a per-
formance assessment of event-based out-of-place debugging with
respect to remote debugging.

5.1 Debugging Common Bug Issues
As mentioned in the introduction, a 2021 study on 5,565 bugs in
91 IoT projects showed that the most frequent types of bugs are
related to software development and device issues [17]. In this
section, we show an example program illustrating how event-based
out-of-place debugging better accommodates finding and solving
device issues than regular remote debugging. Appendix A provides
a similar comparison but for a software development issue due to
concurrency.

The Bug. Many device issues are related to handling interrupts [17].
Figure 10 shows a simple AssemblyScript application that toggles
an LED when a button is pressed. The code listens for a hardware
interrupts triggered on the falling edge of the button pin (line 11).
Upon receiving an interrupt, the buttonPressed function is called,
which toggles the LED (line 7). While the code may not contain
errors, the hardware can cause bugs in it. Consider the following
bug scenario: when testing the application with a real button, the
LED sometimes does not change despite the button being pressed.

1 import * as wd from warduino;

2

3 const LED: u32 = 25;

4 const BUTTON: u32 = 26;

5

6 function buttonPressed(): void {

7 wd.digitalWrite(LED, !wd.digitalRead(LED));

8 }

9

10 export function main() : void {

11 wd.interruptOn(BUTTON, wd.FALLING, buttonPressed);

12 while(true);
13 }

Figure 10: A simple AssemblyScript program that toggles an
LED when a button is pressed.

Bugfixing with a Remote Debugger. With a regular remote debug-
ger, developers could start their diagnosis by adding a breakpoint
in the buttonPressed callback function triggered when pressing the
button. Note that in this simple example, there is only one single
callback function, but in more complex IoT applications develop-
ers may need to place breakpoints in many callback functions as
it is difficult to rule out which ones are not causing to the faulty
behavior.

Stepping through code with asynchronous callbacks is generally
not easy with current state of the art remote debuggers. Keeping
track of all the asynchronous callbacks increases the number of
times a developer needs to manually step through the application
before discovering the error, complicating debugging. Moreover,
stepping through the code is relatively slow, as the network latency
between the developer’s machine and the remote device slows down
the debug session. Finally, most applications will not feature a busy
loop as in our example, but the main thread runs concurrently with
the asynchronous invocations, making it harder to notice errors.

Once the developer has stepped through all the asynchronous
code letting the callbacks execute, the de developer might notice
that the buttonPressed callback is strangely invoked multiple times.
The reason is that a single button press can trigger multiple hard-
ware interrupts due to a common problem of physical buttons called
contact bouncing [20]. Contact bouncing happens when the voltage
of a mechanical switch pulses rapidly, instead of performing a clean
transition from high to low. In that case, the pin can register a
falling edge multiple times in a row. Subsequently, the buttonPressed

function is triggered multiple times for a single press. If contact
bouncing causes the function to be triggered an even number of
times, the state of the LED seems to remain the same, making the
developer believe the code does nothing. It is not trivial to deduce
the underlying contact bouncing problem by only stepping through
the program.

Bugfixing with EDWARD. Let us now revisit the scenario using
event-based out-of-place debugging. With EDWARD, developers
can pull an out-of-place debug session from the remote device, and
begin debugging locally at their machine. EDWARD provides the
developer with a dedicated view on the event queue with all asyn-
chronous events that happen at the remote device, and the ability to
choose when the next event happens. When the developer pushes

MPLR ’22, September 14–15, 2022, Brussels, Belgium T. Lauwaerts, C. Rojas Castillo, R. Gurdeep Singh, M. Marra, C. Scholliers, and E. Gonzalez Boix

Figure 11: The debugger frontend shows a list of identical
interrupts after a single button press.

#Instructions
Location independent 2092 99.15%
Non-transferable 18 0.85%
Total 2110 100%

Figure 12: Labeling of Wasm instructions for a smart lamp
application (fig. 14 in appendix A).

the physical button once during debugging, they will immediately
notice that EDWARD’s events view suddenly contains multiple
identical events for a single button press, as shown in fig. 11. This
information enables the developer to more easily detect the contact
bouncing issue.

If the developer has not yet deduced the root cause of the bug,
they could use stepping through the code in a similar way than
when using the remote debugger. However, this time, stepping
through the code is fast as debugging happens locally without in-
curring in network communication. Moreover, EDWARD allows
debugging the program backwards. This means that during debug-
ging when the LED does not turn on, the developer can step back
to the previous step to diagnose what exactly went wrong during
the execution. There is no need to restart the program and try to
guess what the right conditions for the bug were.

Conclusion. This example illustrates that using event-based out-
of-place debugging makes a difference when debugging device
issues compared to a remote debugger. Since EDWARD captures
all non-transferable resources and provides a view on the event
queue with all asynchronous events that happened at the remote
device, developers can more easily diagnose device issues. For those
cases where stepping is still needed, this happens with low latency.
EDWARD also allows developers to step backwards, potentially
reducing the debugging time as applications may not need to be
restarted to reproduce the conditions for the bug to appear.

5.2 Quantitative Evaluation
We now present some preliminary quantitative evaluation of ED-
WARD, to underscore the potential of our approach to reduce per-
formance impact while debugging IoT devices.

Code Analysis. To analyze the potential communication needed
between debugger and remote device, consider the smart lamp
application written in AssemblyScript allowing users to control the
brightness of an LED (cf. fig. 14 in appendix A).

While remote debugging requires network communication be-
tween debugger and the remote device for all debugging operations
and all types of instructions, event-based out-of-place debugging
only requires network communication for those instructions that
access non-transferable resources. In order to get an estimate of
the amount of instructions which are location dependent compared
to the non-transferable instruction we labeled each of the Wasm
instructions of the smart lamp application’s code as a location-
independent instruction, or an instruction that accesses a non-
transferable resource. The results shown in fig. 12 confirm our
suspicion that location-independent instructions outweigh instruc-
tions accessing non-transferable resources.

Network Overhead. In order to get an estimate of the difference
in network overhead between remote debugging and event-based
out-of-place debugging we benchmarked the (debugging) network
overhead of the smart lamp application. Our benchmarks were
performed on a M5StickC [16] connected to a MacBook Pro with
an Apple M1 Pro chip operating at 3.2 GHz CPU and 32GiB of RAM,
through a local network.

Figure 13 plots the network overhead of stepping through the
application with a remote debugging session. As we can see, there
are small step-wise fluctuations caused by the changing amount
of local variables in the program. The network overhead for each
debugging step is approximately 2.2 kB.

For event-based out-of-place debugging, we benchmarked the
network overhead of taking a full snapshot at each remote stepping
operation, i.e. the network overhead involved with starting an out-
of-place debugging session. Note that in practice the developer
needs to perform this operation only once. Figure 15 shows the
results of taking a snapshot at each stepping operation of the smart-
lamp application. As expected, the network overhead involved with
taking a full snapshot is much higher than a single debugging step,
each full snapshot takes approximately 130 kB.

The significant difference in network overhead between a remote
debugging step and a full snapshot is expected and is mostly because
the snapshot captures the stack and a full memory dump of the
running application.

Luckily, once a snapshot has been taken the debugging session
can be executed locally and the subsequent debugging session
will be much faster. Avoiding access to the remote device reduces
network overhead and lowers debugging latency. The network
overhead for proxied calls is much smaller than a normal debugging
step and takes at most 10 bytes per remote call with an additional 4
bytes per argument. More importantly the network overhead for
stepping through each of the location independent instructions is
zero.

Latency. Finally, we also benchmarked the difference in latency
between local debugging steps and remote debugging steps. When
stepping through the smart-lamp application with event-based
out-of-place debugging, we find that local steps take on average
approximately 5ms while a remote proxy call takes approximately
500ms.

In practice this means that the developer using event-based
out-of-place debugging will perceive almost instantaneously local
debugging steps interleaved with remote calls which are perceived
slower. As these non-transferable instructions make up less than

Event-Based Out-of-Place Debugging MPLR ’22, September 14–15, 2022, Brussels, Belgium

2.4k8

2.3k8

2.2k8

2.1k8

2.0kB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 13: Network communication overhead of 30 step oper-
ations using remote debugging. Note that the overhead axis
starts at 2kB.

1% of the code, most debugging steps will be able to be executed
fast.

6 RELATEDWORK
IoT systems are often built using low-level programming languages
(e.g., C/C++) which are known to cause memory errors that are
often hard to debug. As a result, several VMs specially tailored for
microcontrollers have been proposed to hide the complexities of
low-level programming. For instance, Espruino for Javascript [9],
MicroPython [11] for Python, and WARDuino & Wasm3 for any
language that compiles to WebAssembly [13, 28].

Those VMs incorporate some debugging support. In Espruino [9],
developers can remotely debug JavaScript programs and through
source-code modification log runtime information (e.g., stack traces,
etc.) that is either forwarded to the debugger client or saved on
the MCU while the debugger client is disconnected. In contrast,
MicroPython [11] does not provide a remote debugger, so program-
mers need to use printf statements. Wasm3 proposes a GDB source
code level remote debugger [7], but this work is at an early stage and
has been inactive for two years. Compared to those VMs, our work
not only provides a remote debugging experience, it also features
online debugging with minimal latency on demand. Furthermore,
to the best of our knowledge, no other approach allows developers
to access the generated events of the remote device and control its
processing.

With respect to prior work on out-of-place debugging [18, 19, 26],
our approach provides sessions on-demand, a push-based strategy
for accessing remote resources and reintroduces offline features
like step-backwards into the debug session. Rojas Castillo et al. [26]
did the first application of out-of-place debugging for IoT devices
as an extension to WARDuino instead of relying on a reflective
runtime. However, WOOD only offers pull-based accesses to non-
transferable resources, it does not feature time-travelling debugging,
nor a debugger frontend integrated into an IDE.

IoT debugging solutions based on logging events have also been
explored. In IoTReplay [10] a network gateway records external
events that are broadcasted on the network and replays them on
emulators or copy hardware. In contrast, our work captures all the
events (external & internal) directly on the VM at the IoT device,
giving control to the developer when to process them. Resense
[12] logs internal events such as sensor values, for later replaying
the logged values through sensor emulation. In contrast, our work
allows developers to access and debug both internal and external

events through a debugger. Moreover, Resense is applied to Rasp-
berry Pi devices which are much more powerful than the ones we
aim to debug (e.g., ESP32 devices with a few hundreds of kBs of
memory).

7 CONCLUSION
In this paper, we introduced event-based out-of-place debugging, a
novel debugging approach in which program execution is captured
on a remote IoT device and recreated in a debug session at a more
powerful machine. During debugging, the classic online debug-
ging operations such as stepping are complemented with features
specially targeted to the IoT environment. First, non-transferable re-
mote resources can be accessed in a pull-based way by proxy calls, or
in a push-based way by giving control over all asynchronous events
such as interrupts from buttons, sensor updates, network commu-
nication, etc. Second, event-based out-of-place debugging permits
reintroducing support for more advanced debugging features, like
time-traveling debugging, not available for resource-constrained
IoT devices.

We presented EDWARD, a prototype implementation of our ap-
proach for theWARDuino VM. EDWARD’s frontend has been imple-
mented as a VSC plugin, in which developers can perform classical
remote debugging but also pull debug sessions to debug locally,
manage the event queue, inspect proxied function calls, and step
backwards. We validate our solution through two application sce-
narios by showing applicability in detecting and solving the most
frequent types of bug in IoT devices, i.e., device issues like contact
bouncing and software development issues such as concurrency
problems. These examples showed how the debugging facilities
enabled by EDWARD ease the debugging process in comparison
to a remote debugger. Finally, initial benchmarks show that the
latency for local stepping is approximately 100 times less than when
using remote debugging.

ACKNOWLEDGMENTS
Tom Lauwaerts is funded by the Research Foundation Flanders
(FWO) with file number G030320N. Robbert Gurdeep Singh is
funded by a doctoral fellowship from the Special Research Fund
(BOF) of UGent (BOF18/DOC/327). We would also like to thank the
anonymous reviewers for their feedback.

A DEBUGGING CONCURRENCY ISSUES
Apart from the device related bugs discussed in section 5.1, software
development issues are common in IoT applications [17]. Within
this type, a common root cause is concurrency faults [17]. Figure 14
shows the implementation of a smart lamp application in Assem-
blyScript. The code allows users to control the brightness of an LED
with MQTT messages or two hardware buttons. The application
listens for messages on topics, increase and decrease (lines 58 - 61).
For each message, the code increases or decreases the brightness
of the LED by five percent, respectively. Instead of changing the
brightness abruptly, the code gradually changes the brightness. For
this reason, the callback function does not directly change the LED
brightness, but it changes the variable delta to record the requested
change. The function updateBrightness called in the main application
loop changes the actual brightness gradually. Every time it is called,

MPLR ’22, September 14–15, 2022, Brussels, Belgium T. Lauwaerts, C. Rojas Castillo, R. Gurdeep Singh, M. Marra, C. Scholliers, and E. Gonzalez Boix

1 import * as wd from "warduino";

2

3 const LED: i32 = 10;

4 const MAX_BRIGHTNESS: i32 = 255;

5 const UP_BUTTON: i32 = 37;

6 const DOWN_BUTTON: i32 = 39;

7 const CHANNEL: i32 = 0;

8 const SSID = "local-network";

9 const PASSWORD = "network-password";

10 const CLIENT_ID = "random-mqtt-client-id";

11

12 let brightness: i32 = 0;

13 let delta: i32 = 0;

14

15 function until_connected(connect: () => void,

16 connected: () => boolean): void {

17 while (!connected()) {

18 wd.delay(1000);

19 connect();}}

20

21 function check_connection(): void {

22 until_connected(

23 () => { wd.mqtt_connect(CLIENT_ID);

24 wd.mqtt_loop(); },

25 () => { return wd.mqtt_connected(); });}

26

27 function init(): void {

28 wd.analogSetup(CHANNEL, 5000, 12);

29 wd.analogAttach(LED, CHANNEL);

30

31 // Connect to Wi-Fi

32 until_connected(

33 () => { wd.wifi_connect(SSID, PASSWORD); },

34 ()=>{return wd.wifi_status() == wd.WL_CONNECTED;});

35 let message = "Connected to wifi network with ip: ";

36 wd.print(message.concat(wd.wifi_localip()));

37

38 // Connect to MQTT broker

39 wd.mqtt_init("192.168.0.24", 1883);

40 check_connection();}

41

42 function updateBrightness(): void {

43 brightness += delta;

44 if (brightness < 0) {

45 brightness = 0;

46 }

47 if (brightness > MAX_BRIGHTNESS) {

48 brightness = MAX_BRIGHTNESS;

49 }

50 wd.analogWrite(CHANNEL, brightness, MAX_BRIGHTNESS);

51 delta = 0;}

52

53

54 export function main(): void {

55 init();

56

57 // Subscribe to MQTT topics and turn on LED

58 wd.mqtt_subscribe("increase",

59 (topic: string, payload: string) => {delta = 5});

60 wd.mqtt_subscribe("decrease",

61 (topic: string, payload: string) => {delta = -5});

62 while (true) {

63 check_connection();

64 if (delta !== 0) updateBrightness();}}

Figure 14: The full code of the example application illustrat-
ing a concurrency problem in IoT

Figure 15: Network communication overhead for full snap-
shotting. Note that the y-axis starts at 129kB.

it changes the brightness by one percent in the direction dictated
by the sign of delta. After doing this, the absolute value of delta is
lowered by one. In this way, the application only needs to check
the value of the delta variable and change the brightness whenever
it does not equal zero (line 64).

The Bug. When testing this program with a real hardware setup,
the developer notices that the brightness changes irregularly. When
sending two messages to the increase topic, the LED increases
its intensity by only 5% instead of 10%. The reason is that the
second message overwrites the value of the delta variable before
the updateBrightness function updates the LED. Such concurrency
bugs are often time sensitive, and do not always manifest [21].
In our example the bug only manifests when sending two MQTT
messages rapidly. This made finding the exact conditions for the
bug very difficult. Moreover, the effects of the bug can happen
long after the root cause [25], i.e. when the main loop updates the
brightness.

Bugfixing with a Remote Debugger. As mentioned before, step-
ping through code with asynchronous callbacks using current state
of the art remote debuggers is very difficult. The developer has
no control over when the asynchronous callbacks are called. This
makes it difficult to reproduce the exact conditions in which the
bug manifest. In turn, this increases the times a developer needs
to manually step through the application before reproducing the
error, drastically complicating debugging. Moreover, the developer
needs to keep track of all the steps taken and remember these steps
carefully for when the bug manifest later, and a new debugging
session is needed. Finally, stepping through the code is relatively
slow due to network latency between the developer’s machine and
the remote device.

Bugfixing with EDWARD. EDWARD can help debugging these
concurrency bugs thanks to its event scheduling and time-traveling
debugging features. By using EDWARD, developers can inspect the
generated events and schedule their execution one after another (as
the developer suspects that this is when the bug manifests). When
they step through the code, they can visually inspect the brightness
of the LED and observe that the bug has indeed manifested. If the
root cause was not discovered during the initial debugging session
the developer can easily step back in time and go through the code
as many times as needed. During this time-traveling debugging
session they can then notice that when receiving two messages in a
row, the second may overwrite the delta parameter set by the first
message before it was processed by the main loop, revealing the

Event-Based Out-of-Place Debugging MPLR ’22, September 14–15, 2022, Brussels, Belgium

cause of the bug. Lines 59 and 61 should increase (and decrease)
the value of dela instead of overwriting it.

REFERENCES
[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:

A Survey. Computer Networks 54, 15 (Oct. 2010), 2787–2805. https://doi.org/10.
1016/j.comnet.2010.05.010

[2] Dominik Aumayr, Stefan Marr, Clément Béra, Elisa Gonzalez Boix, and Hanspeter
Mössenböck. 2018. Efficient and deterministic record & replay for actor languages.
In Proceedings of the 15th International Conference on Managed Languages &
Runtimes - ManLang ’18. ACM Press. https://doi.org/10.1145/3237009.3237015

[3] Andrew Banks and Rahul Gupta. 2014. MQTT Version 3.1. 1. OASIS standard 29
(2014).

[4] Earl T. Barr and Mark Marron. 2014. Tardis: Affordable Time-Travel Debugging
in Managed Runtimes. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA ’14)
(Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery,
New York, NY, USA, 67–82. https://doi.org/10.1145/2660193.2660209

[5] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi Chen. 2015.
Deterministic Replay: A Survey. ACM Comput. Surv. 48, 2, Article 17 (Sept. 2015),
47 pages. https://doi.org/10.1145/2790077

[6] CodeMagic LTD. 2022. Welcome to Wokwi!
https://docs.wokwi.com/?utm_source=wokwi. Accessed: May 12, 2022.

[7] Wasm3 Debug. 2020. Espruino. https://github.com/wasm3/wasm-debug. Ac-
cessed: May 12, 2022.

[8] Jakob Engblom. 2012. A review of reverse debugging. In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference. 1–6.

[9] Espruino. 2021. Espruino. https://www.espruino.com/. Accessed: May 12, 2022.
[10] Kaiming Fang and Guanhua Yan. 2020. IoTReplay: Troubleshooting COTS IoT De-

vices with Record and Replay. In 2020 IEEE/ACM Symposium on Edge Computing
(SEC). 193–205. https://doi.org/10.1109/SEC50012.2020.00033

[11] Damien George. 2021. MicroPython. https://micropython.org/. Accessed: May
12, 2022.

[12] Dimitrios Giouroukis, Julius Hülsmann, Janis von Bleichert, Morgan Geldenhuys,
Tim Stullich, Felipe Oliveira Gutierrez, Jonas Traub, Kaustubh Beedkar, and
Volker Markl. 2019. Resense: Transparent Record and Replay of Sensor Data in
the Internet of Things. In 22nd International Conference on Extending Database
Technology (EDBT).

[13] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino: a dynamic
WebAssembly virtual machine for programming microcontrollers. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes - MPLR 2019. ACM Press, 27–36. https://doi.org/10.
1145/3357390.3361029

[14] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
Web up to Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
185–200. https://doi.org/10.1145/3062341.3062363

[15] Gabor Kecskemeti, Giuliano Casale, Devki Nandan Jha, Justin Lyon, and Rajiv
Ranjan. 2017. Modelling and Simulation Challenges in Internet of Things. IEEE
Cloud Computing 4, 1 (2017), 62–69. https://doi.org/10.1109/MCC.2017.18

[16] M5STACK. 2021. M5StickC. https://docs.m5stack.com/en/core/m5stickc/. Ac-
cessed: May 12, 2022.

[17] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
460–472. https://doi.org/10.1109/ICSE43902.2021.00051

[18] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2021. Practical Online
Debugging of Spark-like Applications. In 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security (QRS). 620–631. https://doi.org/10.
1109/QRS54544.2021.00072

[19] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2018. Out-Of-Place
debugging: a debugging architecture to reduce debugging interference. The Art,
Science, and Engineering of Programming 3, 2 (nov 2018). https://doi.org/10.22152/
programming-journal.org/2019/3/3

[20] J.W. McBride. 1989. Electrical contact bounce in medium-duty contacts. IEEE
Transactions on Components, Hybrids, and Manufacturing Technology 12, 1 (March
1989), 82–90. https://doi.org/10.1109/33.19016

[21] Charles E. McDowell and David P. Helmbold. 1989. Debugging Concurrent
Programs. Comput. Surveys 21, 4 (Dec. 1989), 593–622. https://doi.org/10.1145/
76894.76897

[22] Microsoft. 2022. Visual Studio Code: Extension API. https://code.visualstudio.
com/api. Accessed: May 12, 2022.

[23] ArmandoMiraglia, Dirk Vogt, Herbert Bos, Andy Tanenbaum, and Cristiano Giuf-
frida. 2016. Peeking into the Past: Efficient Checkpoint-Assisted Time-Traveling
Debugging. In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE). 455–466. https://doi.org/10.1109/ISSRE.2016.9

[24] David Pacheco. 2011. Postmortem Debugging in Dynamic Environments. Com-
mun. ACM 54, 12 (Dec. 2011), 44–51. https://doi.org/10.1145/2043174.2043189

[25] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld.
2016. Studying the advancement in debugging practice of professional software
developers. Software Quality Journal 25, 1 (2016), 83–110. http://dblp.uni-
trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17

[26] Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix. 2021.
WOOD: Extending a WebAssembly VM with Out-of-Place Debugging for IoT
applications. In Proceedings of the 13th ACM SIGPLAN International Workshop
on Virtual Machines and Intermediate Languages (Chicago IL, USA) (VMIL 2021).
pre-print http://soft.vub.ac.be/Publications/2021/vub-tr-soft-21-11.pdf.

[27] TOPLLab. 2021. WARDuino-VSCode. https://github.com/TOPLLab/WARDuino-
VSCode. Accessed: May 12, 2022.

[28] Wasm3. 2020. Wasm3. https://github.com/wasm3/wasm3. Accessed: May 12,
2022.

[29] WebAssembly. 2022. WABT: The WebAssembly Binary Toolkit.
https://github.com/WebAssembly/wabt. Accessed: May 12, 2022.

https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1145/3237009.3237015
https://doi.org/10.1145/2660193.2660209
https://doi.org/10.1145/2790077
https://github.com/wasm3/wasm-debug
https://www.espruino.com/
https://doi.org/10.1109/SEC50012.2020.00033
https://micropython.org/
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1109/MCC.2017.18
https://docs.m5stack.com/en/core/m5stickc/
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1109/QRS54544.2021.00072
https://doi.org/10.1109/QRS54544.2021.00072
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.1109/33.19016
https://doi.org/10.1145/76894.76897
https://doi.org/10.1145/76894.76897
https://code.visualstudio.com/api
https://code.visualstudio.com/api
https://doi.org/10.1109/ISSRE.2016.9
https://doi.org/10.1145/2043174.2043189
http://dblp.uni-trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17
http://dblp.uni-trier.de/db/journals/sqj/sqj25.html#PerscheidSTH17
http://soft.vub.ac.be/Publications/2021/vub-tr-soft-21-11.pdf
https://github.com/TOPLLab/WARDuino-VSCode
https://github.com/TOPLLab/WARDuino-VSCode
https://github.com/wasm3/wasm3

	Abstract
	1 Introduction
	2 Debugging IoT Applications
	2.1 Motivating Example
	2.2 Debugging the Motivating Example
	2.3 Problem Statement

	3 Event-based Out-of-Place Debugging
	3.1 Virtual Machine Requirements
	3.2 Debugging Architecture
	3.3 Deployment and Remote Debugging
	3.4 Capturing a Debug Session
	3.5 Accessing Non-transferable Resources
	3.6 Local Debugging Support

	4 EDWARD: an Event-based out-of-place Debugger for WARDuino
	4.1 Virtual Machine Extensions
	4.2 EDWARD's Frontend in Visual Studio Code

	5 Evaluation
	5.1 Debugging Common Bug Issues
	5.2 Quantitative Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Debugging Concurrency Issues
	References

