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Abstract. Smart agriculture applications are a promising path to the
future of modern farming. Building smart agriculture applications is a
complex undertaking that requires considering different factors, such as
the technology that can be used to implement the applications. These
factors require advanced skills in software construction, such as han-
dling the distributed setting for smart agriculture applications. As such,
implementing smart agriculture applications requires engaging experi-
enced developers with the skills to tackle the issues mentioned above.
Low code development tools have risen that domain experts (e.g., agri-
cultural extension workers that give advice to farmers) outside software
engineering can use to construct software applications. The tools provide
visual programming environments that developers can use intuitively to
construct applications. However, the existing low code development tools
do not offer support for low infrastructure networking that sensors can
use to communicate directly to mobile devices (e.g., smartphones and
tablets), computation at the edge, and offline accessibility capabilities at
the edge that are crucial for smart agriculture applications. In this paper,
we present DisCoPar-K, a low code development tool that supports the
properties mentioned above for implementing smart agriculture applica-
tions. We show how DisCoPar-K can improve the development of smart
agriculture applications by implementing smart agriculture use cases on
it.

Keywords: mobile applications · visual programming · smart agricul-
ture · Internet of Things · cloud computing · edge computing · low code
development

1 Introduction

Smart agriculture (SA) is a modern farming approach that is increasingly be-
ing exploited to improve processes, such as monitoring environmental conditions
[5]. As a discipline, SA encompasses a set of technologies such as the Internet of
Things, cloud computing, and mobile applications that are integrated into smart
agriculture applications (SAAs). Collectively, the SAAs can be applied to sensing
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environmental conditions, such as soil moisture and temperature [30]. The soil
moisture and temperature conditions are critical in the growth and development
of crops right from the seeding and sprouting stage to maturity [35]. In fact, the
sprouting of seeds determines the population of crops that reach maturity and,
hence, the overall yield. As such, for agricultural extension workers and farm-
ers to achieve optimal yields, it is important to keep track of the soil moisture
and temperature conditions at the seeding and sprouting stage. By definition,
agricultural extension workers advise and assist farmers to implement creative
technologies geared toward improving yields [20]. As mentioned before, keeping
track of soil moisture and temperature conditions can be done using sensors and
SAAs. In this case, the sensors can be programmed to collect data and send it
to the farmer’s mobile phone in a timely fashion for decision-making. However,
farm restrictions such as the physical space that must be covered to track the
soil moisture and temperature conditions impose a constraint that forces the
SAAs to be designed and implemented in a distributed setting. Designing and
implementing SAAs in a distributed setting requires technological factors to be
considered such as handling distribution and micro-controller programming. The
technological factors require a combination of skills to implement the different
parts of SAAs, e.g., distributed programming skills are required to handle the
communication between the different components [6]. The SAAs rely on com-
munication networks for the different parts to communicate with each other,
something that can fail to happen when the networks become unavailable [19].
In such cases, data coming from the sensors can be lost, and this needs to be
handled in the implementation. Lastly, micro-controller programming skills are
required to specify how the application can receive data from sensors or pro-
cess data near the source using sensors. This means that implementing all the
different parts of SAAs can take considerable time.

Low code development tools (LCDTs) have risen as an alternative that do-
main experts outside software engineering (such as agricultural extension work-
ers) can use to implement software applications [6, 22]. By definition, LCDTs are
visual programming environments (VPEs) in which applications are constructed
by dragging, dropping, and connecting visual components that represent differ-
ent tasks in the application [22, 29]. The LCDTs provide pre-built components
that domain experts in agriculture can use to construct software. Using the
pre-built components can make software construction more intuitive for domain
experts. To explain it in context, let’s consider constructing DiscoSense, a sens-
ing application for soil moisture and temperature conditions using LCDTs. The
DiscoSense application requires connecting a soil moisture sensing component,
a temperature sensing component, and a component to receive and display the
data on the mobile phone. In addition, DiscoSense requires components that
can process the data on the sensor (edge) and only send the aggregate values to
the mobile phone. To avoid losing data when the network becomes unavailable,
the application requires storing data on the sensor. The unavailable network can
also affect the communication between the application and the server. As such,
DiscoSense requires that the sensors collecting soil moisture and temperature
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data communicate directly to the mobile phone without going through a cen-
tralised server. The existing LCDTs partially support the above issues, such as
environment sensing capabilities. In addition, the existing LCDTs are provided
on the cloud through Platform-as-a-Service [22]. This can hinder the functioning
of SAAs in areas that experience poor network coverage. However, to the best
of our knowledge, none of the existing LCDTs offers support for: 1) low infras-
tructure networking for sensors to communicate directly to SAAs running on
mobile devices, 2) components to support computation at the edge to process
data near the source, and 3) components to support offline accessibility at the
edge to store data on sensors when the network connection becomes unavailable.
As such, none of the existing LCDTs can be used to implement DiscoSense or
similar SAAs. For instance, DisCoPar [31–33], the LCDT that we consider in this
work lacks components that can execute at the edge and directly communicate
with applications running on smartphones or tablets without going through a
centralised server.

In this paper, we extend DisCoPar [31–33] with an additional execution point
to host components that can run on the edge. We implement components for
environment sensing and performing computations at the edge that are domi-
ciled in the new scope. We further advance the policies for offline accessibility
on mobile devices to limit connecting a chain of successive offline accessibility
components. In addition, we implement components for offline accessibility at
the edge. In our implementations, we ensure that the components executing at
the edge can communicate directly to those on mobile devices without going
through a centralised server. This results in DisCoPar-Kilimo (DisCoPar-K), a
low code development tool that we present in this paper. For validation, we show
how DisCoPar-K can improve the development of SAAs by implementing smart
agriculture use cases on it. From a theoretical perspective, we identify different
properties that LCDTs should have to support implementing SAAs. We use the
identified properties to compare different LCDTs that exist in the literature and
motivate our work. To the best of our knowledge, our contribution is unique
in the context of LCDTs. The rest of the paper is organised as follows. Sec-
tion 2 presents the motivation and background. Section 3 describes DisCoPa-K
together with the extensions added to support implementing SAAs. Section 4
describes the validation and discussions of the implemented use cases. Lastly,
Section 5 presents the conclusions and gives directions for future work.

2 Motivation and Background

To motivate our approach, consider the scenario of corn seeding and sprouting,
where the farmer’s goal is to obtain the maximum yield from seeds planted.
This is a representative scenario for SAAs derived from El-Sanatawy et al. [11],
Sudozai et al. [26], and our interactions with extension workers and farmers in
Kenya. To achieve the maximum yield goal, the crop must develop ‘well’ during
all the ‘cultivation’ phases, i.e., planting, sprouting, developing, and maturity.
Specifically, during the stage that encompasses seeding and sprouting of corn,
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maximum yield is ensured whenever ‘optimal’ sprouting is achieved. Optimal
sprouting means that from the number of seeds planted, there is a threshold on
the number of plants which does not affect the expected yield. To achieve such
a threshold, farmers have to keep track of vital environmental conditions such
as soil moisture and temperature that influence the sprouting of corn seeds [35].
The soil moisture gives an indication of the available water content to support
the sprouting of corn seeds, i.e., inadequate soil moisture and extremely low or
high temperatures negatively affect seed sprouting. As such, these conditions
cannot be monitored in isolation.

Researchers have invented metrics that can give a general overview, such as
the soil heat capacity metric [35]. The metric is important in explaining the in-
teraction between soil moisture and temperature. As such, this metric can help
farmers to react and take appropriate actions to ensure the optimal sprouting of
corn seeds. Currently, the metric is measured using field observation approaches,
such as calorimetric and force-restore methods [13]. The current practices can be
improved by implementing the corn seeding and sprouting scenario as a smart
agriculture application using LCDTs, since extension workers do not have a
strong background in software programming. However, implementing the sce-
nario requires LCDTs to support the following properties.

Environment sensing. The property is important to help in monitoring the
prevailing soil moisture and temperature conditions. In the context of LCDTs,
this property refers to whether LCDTs have in-built environment sensing ca-
pabilities for soil moisture and temperature conditions. In our scenario, the
soil moisture and temperature conditions that are vital for corn seeding and
sprouting cannot be read in isolation.

Computation at the edge. Edge computation is necessary to transform the
data collected near the source into meaningful information. In our scenario,
the computation that combines the soil moisture and temperature into the
soil heat capacity metric can be performed at the edge. To minimise the
number of requests sent to the server over communication networks, other
computations, such as the average soil moisture and temperature, can be
done at the edge before the aggregate values are sent to the mobile device.

Offline accessibility at the edge. In our scenario, we assume that the ap-
plication for sensing the soil moisture and temperature conditions is pro-
grammed by the domain expert (agricultural extension worker) and used
by the farmer. As mentioned before, the network connection may become
unavailable and this can make the different parts of SAAs not communicate
with each other. The ‘availability’ of the soil moisture and temperature data
is key to making correct decisions about corn seeding and sprouting. There-
fore, the microcontroller that is hosting sensors must be capable of keeping
all the data that the sensors generate whenever the network becomes un-
available. It is assumed that farmers that are using the sensing application
visit the farm at least once every day.

Low infrastructure networking. The low infrastructure networking property
refers to whether different parts of a smart agriculture application con-
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structed using LCDTs can communicate with each other without going through
a centralised server as illustrated in Figure 1. Relying on centralised cloud-
hosted servers can be a challenge in remote farms that experience unreliable
internet connections [19].

Sensor 2

Edge device with different sensors attached

Mobile applicationSensor 1 Sensor n…

Mobile device

Fig. 1: Edge device featuring sensors communicating to mobile application with-
out a centralised cloud-hosted server.

In the next section, we use the above properties to perform a state-of-the-art
(SOTA) analysis for LCDTs.

2.1 SOTA of LCDTs for Building SAAs

Table 1 shows a summary of the SOTA for different LCDTs. The LCDTs that
were included in this summary were based on support for a web-based VPE.
Secondly, we included LCDTs that are targeted for environmental sensing. All
surveyed LCDTs provide support for web-based VPEs and environment sensing
capabilities. However, in some tools like Node-RED, the sensing capability needs
to be constructed into the application. DisCoPar supports offline accessibility on
mobile devices using in-database storage. None of the surveyed LCDTs supports
low infrastructure networking, computation at the edge, and offline accessibility
at the edge.

Table 1: Comparing different low code development tools.
Tool We-based VPE Sensing capabilities Offline accessibility Edge computation Low infrastructure networking

Mendix [15, 17] 3 3 7 7 7

Blynk [12] 3 3 7 7 7

AtmosphericIoT [3] 3 3 7 7 7

Zenodys [34] 3 3 7 7 7

Axonize [4] 3 3 7 7 7

FRED [9] 3 3 7 7 7

Node-RED [1] 3 3 7 7 7

Simplifier [25] 3 3 7 7 7

Salesforce [10, 23] 3 3 7 7 7

D-NR [8] 3 3 7 7 7

uFlow [27] 3 3 7 7 7

DDFlow [18] 3 3 7 7 7

WotKit Processor [7] 3 3 7 7 7

glue.things [16] 3 3 7 7 7

DisCoPar [31–33] 3 3 3 7 7

From the LCDTs presented in Table 1, in DisCoPar: 1) computation tasks in
applications are highly conceptualised into visual components for novice devel-
opers, and 2) the tool supports implementing web and mobile applications using
drag-and-drop and point-and-click graphical user interface techniques. These
techniques can be intuitive and useful to domain experts for constructing SAAs.
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Therefore, in this paper, we consider DisCoPar and extend it with components
to support the properties that we previously identified for developing SAAs.

2.2 DisCoPar

DisCoPar embraces a data-flow and flow-based programming approach in which
an application is built out of different visual components, each representing a
computation task [31–33]. The application is represented as a directed acyclic
graph of n connected components. The example in Figure 2 shows an application
composed of three connected components (C1, C2, and C3) in one linear graph.
Components execute on receiving data from external sources or upstream com-
ponents. The computation results are sent out on the output ports (e.g., C1(out)
and C2(out) in Figure 2) to the downstream components. Upstream components
precede the reference component backwards, while downstream components suc-
ceed the reference component forward. In Figure 2, C1 is an upstream component
to C2, while C3 is a downstream component to C2. Components can have zero
or multiple input and output ports. In Figure 2, components C1 and C2 have
one output port each; C2 and C3 have one input port each. In terms of the
task performed, the components in Figure 2 can be classified into either source
components (e.g., C1), processor components (e.g., C2) or sink (e.g., C3) com-
ponents. As the name suggests, the source components generate data, while the
processor components perform some processing and transformation of data flow-
ing through the application graph. Some of the sink components can be used
as viewing monitors to display data flowing through the application and build
graphical user interfaces for applications.

Fig. 2: Application flow graph featuring component ports and links.

Components are linked together via connections or arcs. DisCoPar’s VPE
only allows end-users to perform correct connections among data types on dif-
ferent components. In this regard, the composition mechanism is based on the
supported data type, denoted by a distinct port colour. Therefore, given two com-
ponents A and B, we can define Pinput(B) and Poutput(A) as the sets of input
and output ports on components B and A, respectively. Outport j ∈ Poutput(A)
and input port k ∈ Pinput(B) are compatible if they support the same data type
such that they have the same port colour e.g., c1(out) and c2(in) in Figure 2 or
at least k ∈ Pinput(B) is coloured black e.g., c3(in) in Figure 2, to accept any
data. This implies that components A and B are compatible if ∃j ∈ Poutput(A)
and ∃k ∈ Pinput(B) such that j and k are compatible. Component links have
a colour coding that is inherited from the colour coding in the output port of
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the source component. In Figure 2, link(c1(out), c2(in)) inherits the colour cod-
ing for port c1(out) in C1. Application designers can create connections between
components in different scopes the same way they create connections between
components in the same scope. Connections made between components residing
in different devices are automatically handled by DisCoPar. For communication
between components and graphs in different devices, DisCoPar uses web sockets
(Socket.IO3) and RxJs4.

Component categories: DisCoPar applications run on mobile phones and
communicate to a server backend or a web-based dashboard on the server. De-
pending on where the execution happens, components can be classified into three
categories/scopes: mobile, server, and web components. The mobile scope con-
tains components that execute on mobile devices (e.g., smartphones and tablets).
The server scope contains components that execute on the server side for data
processing. Lastly, the web scope contains components for web-based analysis
and visualisation. Such components are used to build the dashboard for the server
side. Some components can span multiple scopes, e.g., mobile and web scopes.
Each scope houses respective components on the component menu represented
as component categories, i.e., mobile, server, and dashboard.

3 DisCoPar-K

DisCoPar-K is an extension of DisCoPar to support environment sensing capa-
bilities, computation at the edge, offline accessibility at the edge, and low in-
frastructure networking for SAAs. In this section, we describe the architectural
overview and components that comprise DisCoPar-K.

Architectural overview: Figure 3 shows the architecture of DisCoPar-K.
The architecture consists of four different parts labelled 1, 2, 3, and 4 in Figure 3,
i.e., sensors at the edge, a mobile application, a server with a database, and a
web dashboard for visualisation.

Mobile scope

ProcessingSensing Edge processing

Temporary storage

Intermittent 

connection

Edge scope Server

Storage

Analysis and 
visualisation

Web client

Processing

Data collection

1
2

3

4

Intermittent 

connection

Temporary storage

Sensor

Microcontroller

Fig. 3: Architectural overview of DisCoPar-K.

The work presented in this paper focuses on the parts labelled 1 (the edge
scope) and 2 (the mobile scope) in Figure 3. The edge scope hosts components
that can execute on microcontrollers that have sensors attached to them. The
3 https://socket.io/
4 https://rxjs.dev/
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sensors are used to gather data such as soil moisture and air temperature. The
data collected is initially processed at the edge before being sent directly to
mobile devices for further processing. The lightning strikes in Figure 3 indicate
intermittent network connections. When the network becomes unavailable, the
collected data can be stored temporarily at the edge for transmission to mobile
devices when the network becomes available. From mobile devices, the data can
be sent to the server for storage and visualisation on a web dashboard. On mobile
devices, the data can also be stored when the network becomes unavailable for
transmission to the server when the network becomes available.

DisCoPar-K extensions: The extensions that comprise DisCoPar-K fall into
the categories described below.

Visual programming environment: Components from the mobile, server
and web scopes could not fully support implementing SAAs. As such, we ex-
tended DisCoPar with the edge scope as shown in the component menu in
Figure 4 (highlighted in yellow colour) to house components that support: 1)
environment sensing, 2) computation at the edge and 3) offline accesibility at
the edge. On the VPE, these components are distinguished by the blue colour.
For example, in Figure 4, the ReadSoilMoisture component is coloured blue and
executes at the edge (i.e., sensors), while the UnWrap component is coloured
black and executes on the mobile phone. Figure 4 shows the visual programming
environment for DisCoPar-K with the added edge scope components.

Fig. 4: DisCoPar-K’s VPE showing the component menu.

On top of the existing components in DisCoPar, we added more components
to meet different application requirements (goals) in the context of SA. Some of
the components that we added include:

– Keeping track on the number of connected devices:- To accomplish this goal,
we added the ConnectedDevices and DataArrayToTable components that
function as follows. The ConnectedDevices component subscribes to an event
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to receive messages that contain the identity of each connected device. The
received message is processed to remove duplicate entries, leaving only unique
connections using the DataArrayToTable component. The processed message
is then converted into a dataset for display as a list using the DisplayAsList
component. Each unique connection is counted to determine the number
of connected devices that are displayed on the screen using the DisplayOn-
Screen component. In the DataArrayToTable component, each received mes-
sage is stored in an array, and the array is then converted into a set to remove
duplicates and return a new array with unique entries. Each element in the
new array is converted into observation to meet the design requirements of
DisCoPar-K. Each observation is then added to a global counter that keeps
the total number of connected devices.

– Accumulating data from different devices:- To accomplish this goal, we added
the DeviceAccumulator component that can accumulate data from several
sensor devices. The component receives input data and stores it on a map
using the device identifier as the key and the payload as the value. As a
configuration setting, the component takes the number of connected devices
from which to accumulate data. On its output port, the component sends
only the values of data stored on the map and immediately resets the map
to start accumulating new data.

– Filtering data coming from sensors:- We added the UnWrap and UnWrap-
ForSpecificDevice components to accomplish this goal. The UnWrap com-
ponent filters the payload from sensor data, while UnWrapForSpecificDevice
component filters the payload for specific sensor devices. The UnWrapFor-
SpecificDevice component takes as a configuration setting the identifier of
the device to filter data for.

– Generating and showing notifications:- For this goal, we added the Set-
Threshold and GenerateAndShowAlert components. The SetThreshold com-
ponent is configurable and takes the threshold or limit as a setting parameter.
The set parameter is periodically sent out of the output port of the compo-
nent. The GenerateAndShowAlert is configurable to specify the notification
messages. For these two components to perform their tasks, we modified
the existing Compare component to receive two inputs (the threshold from
the SetThreshold component and some input data) and output a true/false
value that can trigger the GenerateAndShowAlert component to generate
and show notifications.

– Sensing capabilities:- To support sensing at the edge, we added the Read-
SoilMoisture, ReadTemperature, and ReadHumidity components to read soil
moisture, air temperature, and humidity, respectively. The three components
directly receive input from the sensors.

– Computing metrics at the edge:- For computation at the edge, we added
the following components: SetConstant, Addition, Subtraction, Multiplica-
tion, Exponentiation, and ComputeEdgeAverage components. The names of
these components are indicative of the tasks that they perform.
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Offline accessibility policies: We advance DisCoPar’s offline accessibility
both at the mobile and edge scope. DisCoPar-K implements policies to ensure
that the offline accessibility components that execute on the mobile whenever
used in an application graph can only be the last ones in the chain to connect
to the server side. This means that an offline accessibility component on the
mobile side cannot be connected to another mobile component or another offline
accessibility component in a chain of successive components. For instance, in
Figure 5, the InDatabaseBuffering component that supports offline accessibility
in the application can only be connected to the ObservationDatabase component
that runs on the server side. In a similar way, while implementing edge applica-
tions, the buffering component on the edge should be the last one to connect to
the mobile side downstream as shown in Figure 6.

Fig. 5: Application flow graph showing the BufferObservation connecting to Ob-
servationDatabase component on the server-side.

Computation and offline accessibility at the edge: In this work, we in-
troduce edge components to perform computation at the edge. The edge compo-
nents execute on the microcontroller on which sensors are attached. For instance,
the ReadSoilMoisture component in Figure 6 executes the ReadSoilMoisture()
function which reads soil moisture from sensors.

At the edge, we implement a BufferCache component for buffering data in
memory when the network becomes unavailable. The buffering in this component
is based on the number of records. The buffer size can be specified as a configu-
ration setting for the component. When the network becomes unavailable, sensor
readings are stored until the buffer size is full. At this point, the oldest record is
removed from memory to create room for new data. When the network becomes
available, additional metadata is appended to the buffered data and then sent to
the mobile application. The metadata contains the unique identifier for the sen-
sor and the identifier of the connection link between the BufferCache component
and the mobile component downstream, e.g., the link between the BufferCache
and UnWrap components in Figure 6.

Fig. 6: Application flow graph featuring the BufferCache component in use.

Low infrastructure networking: The notion of communicating directly to
a server is abstracted to allow sensors to communicate directly to applications
running on mobile devices, as illustrated in Figure 7. The sensing environment
runs the edge application created by the domain expert. The edge application
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runs on top of a lightweight JavaScript engine5 and Arduino6. We use web sockets
(Socket.IO7) to communicate events (observables) carrying an event name and a
payload to the mobile device. All clients that are subscribed to the event can then
receive the payload from that particular event. Data coming from the sensing
environment is packaged to carry a unique identifier for the sensor device, the
payload, and the identifier of the link (connection) for the last blue component
connecting to the black components. The link is exported as part of the graph
deployed to the edge from the main application graph.

Mobile device

C/C++/

Arduino

Lightweight 

JS Engine
JavaScript

Microcontroller environment

Data

Edge application

Fig. 7: Low infrastructure networking configuration.

Application design and deployment in DisCoPar-K: Figure 8 shows the
workflow for designing applications in DisCoPar-K. Designing and validating
the application is done on the VPE following the design choices for component
composition and association. The entire application flow graph is exported and
deployed to the mobile phone. For the edge, only the edge graph is exported and
deployed to the microcontroller with sensors attached.

Correct?
Design 

application

Validate 

application graph

Export application 

graph

Export edge 

graph

Package and 

deploy to sensor

Package & deploy 

to mobile phone

Yes

No

Fig. 8: Flow graph for application design and deployment in DisCoPar-K.

Exporting and deploying the edge application: From an initial application
graph, we build and deploy the edge application to the microcontroller with sen-
sors attached. To build and export the edge application, we utilise the depth-first
search method [28]. Using this method, we start from a root node and traverse
the initial graph to generate the edge application. The root node is any blue
(edge) component in the initial graph that has no predecessor component. We
keep all root nodes in a list and process each item in the list. During processing,
each neighbour of the root node is determined and visited. The visited nodes
are kept in a list and their dependencies are determined. The dependencies are
considered children of the visited nodes, kept in an ordered list. Using this infor-
mation, we then build a segment of the initial application graph that is exported
5 https://duktape.org/
6 https://www.arduino.cc/en/software
7 https://socket.io/
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and deployed to the edge. For disjointed application graphs, we keep a list of
visited nodes and iterate through all the items in the list. For each node in the
list, we treat it as a root node and make a recursive call to all nodes that can
be visited. For components that have a state, we export the state and pass it
as an argument to the executed component function. On the microcontroller,
the exported application is executed on top of the lightweight JavaScript engine
(Figure 7).

Runtime environment at the edge: At the edge, we use Arduino8 and Duk-
tape9 to support edge applications. Duktape is a lightweight JavaScript engine
that can run on microcontrollers. The engine permits integrating JavaScript
programs with Arduino or C/C++ programs. This allows for deploying and ex-
ecuting JavaScript code on microcontrollers with sensors attached. We use the
lightweight engine to allow implementation of the entire DisCoPar-K applica-
tions using one base language.

4 Validation and Discussion

To validate this work, we adopt a scenario-based approach and seek to answer
the following questions: 1) How does DisCoPar-K fulfil the requirements and
properties of the implemented scenarios? and 2) How can DisCoPar-K as a low
code development tool be used to improve the development of SAAs? By defini-
tion, the scenario describes the set of interactions between different actors in a
system and can comprise a concrete sequence of interaction steps (i.e., instance
scenario) or a set of possible interaction steps (i.e., type scenario) [21]. More
concretely, the validation scenario is conceptualised as a flow of computation
tasks in the application [2]. In the scenario-based approach, the requirements
of the scenario are validated against the expected behaviour of the application
[2, 14, 21]. As such, we derived different scenarios that we use as case studies to
validate this work. In the subsequent sections, we present each of the derived
scenario and its implementation details.

4.1 Case study 1: monitoring soil moisture and temperature

This case study was derived from the running example in Section 2 on corn
seeding and sprouting. The goal of the use case is to ensure optimal sprouting
of corn by keeping optimal soil moisture and temperature conditions. As such,
this case study requires implementing the following requirements.

– Environment sensing to sense soil moisture and temperature.
– Computation at the edge to compute the averages of the data coming from

sensors and soil heat capacity at the edge.

8 https://www.arduino.cc/en/software
9 https://duktape.org/
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– Offline accessibility to buffer data at the edge when the network becomes
unavailable.

– The microcontroller hosting the soil moisture and temperature sensors needs
to send data directly to the mobile device (e.g., smartphone) without going
through a centralised server.

– Track the global view of all soil moisture and temperature sensors installed
on a farm. As such, the number of connected devices needs to be tracked.

– Accumulate soil moisture and temperature data from multiple sensors.
– Determine the maximum and minimum values for the accumulated soil mois-

ture and temperature data.
– Compute the average of the accumulated soil moisture and temperature data.
– Track data for specific soil moisture and temperature sensors.
– Generate notifications based on specified limits and visualise average soil

moisture over time.

The above requirements describe the expected behaviour of the implemented
application. We compute the soil heat capacity (Q) using Q = 4.2× 103 × V ×
(0.2 +W )×∆T , where V is the soil volume, W is the soil moisture, and ∆T is
the change in temperature [35].

Fulfilling key properties for the case study: In this section, we describe
how DisCoPar-K fulfils the requirements of case study 1.

1) Environment sensing: Figure 9 illustrates using the ReadSoilMoisture com-
ponent to read and send soil moisture data. The data is sent to the UnWrap
component that runs on the mobile device.

Fig. 9: Component for sensing soil moisture and sending data to mobile devices.

2) Computing average soil moisture at the edge: Figure 10 illustrates using
the ComputeEdgeAverage component to compute the running average for the soil
moisture at the edge. The running average for soil moisture is computed since
the data is sampled continuously as a stream. The UnWrap component unpacks
the average soil moisture as the payload and sends it to the next component
downstream.

Fig. 10: Flow graph featuring computing the average soil moisture at the edge.

3) Offline accessibility at the edge: Figure 11 illustrates using the Buffer-
Cache component for offline accessibility at the edge. The component supports
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Fig. 11: Flow graph featuring buffering data at the edge for offline accessibility.

in-memory data buffering based on the number of records. The buffer size defines
the maximum number of records stored.

4) Microcontrollers hosting sensors sending data directly to mobile devices:
In the applications presented in Figure 9, Figure 10, Figure 11 and Figure 12,
the blue (edge) components communicate directly with the black (mobile) com-
ponents without going through a centralised server.

5) Generating and showing notifications: In Figure 12, we use the SetThresh-
old component to specify the limit for generating notifications. The threshold
value is compared with the incoming average soil moisture data using the Com-
pare component. This component receives two inputs, i.e., the threshold and the
data value. The output from the component triggers generating and showing a
notification to the GenerateAndShowAlert component downstream.

Fig. 12: Flow graph featuring setting thresholds and generating notifications.

6) Tracking the global view and accumulating soil moisture and temperature
data from multiple devices: The application flow graph in Figure 13 uses the
ConnectedDevices component and the DataArrayToTable components to show
the number of connected devices. The DisplayOnScreen component shows the
number of connected devices on the screen, while the DisplayAsList shows the
list of the connected components on the screen.

Fig. 13: Flow graph featuring showing the number of connected devices.

Figure 14 shows how to accumulate the average soil moisture data using
the DeviceAccumulator component. The blue components run on the individual
sensor devices, while the DeviceAccumulator runs on the mobile phone. The
accumulated data is processed further to give more meaningful information, such
as the global average for soil moisture.
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Fig. 14: Flow graph featuring accumulating data from multiple sensor devices.

7) Tracking data for specific soil moisture and temperature sensors: Data
coming from multiple devices can be unpacked, such that data for specific devices
can be inspected. In Figure 15, we use the UnWrapForSpecificDevice component
to unpack soil moisture for a specific device.

Fig. 15: Flow graph featuring unwrapping data for specific devices.

8) Determining the maximum and minimum value for soil moisture accu-
mulated from several devices: In Figure 16, we use the ComputeMaximum and
ComputeMinimum components to determine the maximum and minimum values
for data received from multiple devices. The determined values are displayed on
the mobile screen using the DisplayOnScreen components.

Fig. 16: Determining the maximum and minimum for data from multiple devices.

9) Visualising average soil moisture over time: In Figure 17, we use the Plot-
SoilMoistureOverTime component to visualise the average soil moisture over
time. In addition to the average soil moisture, this component plots both the
maximum and minimum thresholds. The maximum and minimum thresholds
are set as constraints in the component configuration setting. The component
receives, as input, the average soil moisture computed using the ComputeAverage
component. The ComputeAverage component computes the average soil mois-
ture for data accumulated from multiple devices using the DeviceAccumulator
component.

Application flow graph and preview of the resulting application: Fig-
ure 18 shows the overall application flow graph for monitoring soil moisture and
temperature. The soil heat capacity is computed at the edge and the outcome is
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Fig. 17: Flow graph featuring plotting the average soil moisture on a line chart.

communicated to the mobile device. Parts 1 and 2 of Figure 18 present the pre-
view of the resulting application. The line chart shows the average soil moisture
over time and the notifications generated displayed as pop-up messages on the
mobile phone are generated at 57.5% soil moisture. Part 3 shows the deployed
soil moisture (circled red) and temperature (circled white) sensors.

4.2 Case study 2: monitoring humidity and data collection

This use case is adapted from Serikul et al. [24]. In this use case, the goal of the
farmer is to store paddy rice under optimal humidity conditions to maintain the
quality of the rice and attract good prices in the market. The rice is packaged in
paddy bags and stored in a warehouse after harvesting. At the warehouse, the
paddy bags are stacked on top of each other. Previously, the humidity of the
stored rice was randomly measured by inserting a digital humidity meter into
selected paddy bags. Since in the warehouse the paddy bags are stacked on top
of each other, it is difficult to measure the humidity in every bag. As such, this
use case requires installing humidity sensors in random rice bags (e.g., per stack)
as a representative of the entire warehouse. The humidity sensors collect data
and send it to the farmer’s mobile phone. The farmer uses the received humidity
data to develop rice storage management plans. As such, this case study requires
implementing the following requirements.

– Tracking average humidity data on a gauge chart.
– Tracking humidity data over time (e.g., on a line chart).
– Notifying the farmer when the humidity level goes beyond set limits.
– Collecting the humidity data into a database for storage and creating reports

as CSV (comma-separated values) files.

Application flow graph and preview of the resulting application: Fig-
ure 19 shows the preview of the application flow graph that meets the require-
ments of this use case. Tracking humidity is done using the ReadHumidity compo-
nent. The average humidity is computed at the edge using the ComputeAverage
component and its accumulation from different devices is done using the De-
viceAccumulator component. Tracking humidity for individual paddy rice bags
(i.e., individual humidity sensors) is done using the UnWrapForSpecificDevice
component. Before sending the data to the database, it is converted into obser-
vations by the DataToObservation component. To handle network outages, the
application utilises the InDatabaseBuffering component. Humidity data is col-
lected into a database using the ObservationDatabase component and exported
to CSV report via the DisplayAsTable component. The humidity data for each
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device is plotted on a gauge chart using the PlotGaugeChart component. The av-
erage humidity over time is plotted on a line chart via the PlotHumidityOverTime
component. Humidity thresholds are set using the SetThreshold component. The
Compare component performs the comparison of the set threshold and incom-
ing humidity data. Lastly, alerts are generated using the GenerateAndShowAlert
component.

A B

C

D

Fig. 19: Flow graph and preview of the humidity monitoring and data collection
application.

Parts A and B of Figure 19 show the preview of the resulting mobile applica-
tion featuring the average humidity on a gauge chart and line chart. In addition,
part B shows the generated notification and the list of connected devices. The
list of connected devices is updated in real-time using the ConnectedDevices
component to allow tracking when devices go off. Parts C and D show the hu-
midity data displayed on a web dashboard. The data on the dashboard can be
exported as a CSV report for further analysis by clicking the “Download CSV
Report” button in part D. In comparison to the application presented in [24], our
implementation adds 1) offline availability using the InDatabaseBuffering com-
ponent to store humidity data when the network becomes unavailable, and 2)
setting thresholds and generating notifications when the humidity goes beyond
the required limit.
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4.3 Case study 3: tracking application data

From our interaction with farmers in developing regions, they often collect plant-
specific data to monitor growth and development. For instance, at the sprouting
stage, the farmers need to track the number of leaves per plant, the colour of
the leaves and plant height. As such, the goal of this use case is to collect and
track plant-specific data. Tracking the plant-specific data can be done using
quick response codes as plant labels. Once the labels are scanned, a data entry
survey is invoked that the farmers can use to directly input the data into the
application. The data is sent from the application to the server from where it can
be visualised on a dashboard. This use case requires implementing the following
requirements.

– Scanning (reading) plant labels and invoking a data collection survey.
– Sending the data input into the application to a database and displaying it

on a dashboard.
– Displaying collected data on a dashboard.
– Exporting the data stored in the database as a report in a CSV file for

further analysis.

Application flow graph and preview of the resulting application: The
application shown in Figure 20 fulfils the above requirements. Reading the plant
labels is done using the ReadQRCode component. The ObservationPopUpSurvey
component is used to generate the data collection survey. Part 1 of Figure 20
shows the preview of the data collection survey on a mobile phone. The data
collected is sent to the server for storage using the ObservationDatabase compo-
nent and displayed on a web dashboard using the DisplayAsTable component, as
shown in part 2 of Figure 20. From the web dashboard, the data can be exported
as a CSV file for further analysis.

4.4 Discussion

In this work, our validation sought to answer how DisCoPar-K fulfils the re-
quirements and properties of the implemented scenarios and how it can be used
to improve the development of SAAs.

Fulfilling the requirements and properties of the implemented scenarios: On
this issue, DisCoPar-K offers components for sensing and monitoring environ-
mental conditions (e.g., soil moisture, temperature and humidity). In addition,
DisCoPar-K offers components for performing computations at the edge, buffer-
ing data at the edge when the network becomes unavailable, and supporting mi-
crocontrollers to communicate with mobile devices without a centralised server.
Data received on the server side can be visualised on web dashboards.

Improving the development of SAAs: This issue is demonstrated in several
ways. First, the visual components, drag-and-drop, point-and-click utilities, pre-
built UI components, and binding to data sources that DisCoPar-K provides can
be used intuitively. Secondly, the pre-built components that DisCoPar-K provide
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1 2

Fig. 20: Preview for the data collection application with data on a dashboard.

hideaway issues like memory management and distribution, which can take con-
siderable time to configure manually. As such, DisCoPar-K can speed up the
application development process and make software programming more acces-
sible to domain experts outside software engineering. This means that LCDTs
in general can motivate small-scale and medium-scale farmers to adopt and use
mobile computing technologies in their farming activities. Lastly, although the
case studies presented in this work focus on sensing and data collection, the same
methodology can be applied to other types of SAAs and other domains.

5 Conclusion and Future Work

Low code development tools provide visual programming environments with
components that can be used to construct smart agriculture applications. The
components abstract and transparently provide a software infrastructure for con-
structing smart agriculture applications. We believe that the visual components
are easier to use and can improve building applications, especially for non-
experienced developers. However, to meet requirements for different domains,
the low code development tools need to have the necessary pre-requisite compo-
nents that can be used to implement different applications. These components
provide application properties and support computational tasks that are specific
and tailored to a specific domain. In a nutshell, this paper identifies properties in
low code development tools to support implementing smart agriculture applica-
tions and presents DisCoPar-K, a low code development tool that supports low
infrastructure networking, computation at the edge, and offline accessibility at
the edge. Domain experts with less programming experience can use this tool to
implement smart agriculture applications. For future work, we aim to perform
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a heuristic-based evaluation of smart agriculture applications constructed using
low code development tools.
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