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Abstract12

The popular isolation level Multiversion Read Committed (RC) trades some of the strong guarantees13

of serializability for increased transaction throughput. Sometimes, transaction workloads can be14

safely executed under RC obtaining serializability at the lower cost of RC. Such workloads are said15

to be robust against RC. Previous work has yielded a tractable procedure for deciding robustness16

against RC for workloads generated by transaction programs modeled as transaction templates. An17

important insight of that work is that, by more accurately modeling transaction programs, we are18

able to recognize larger sets of workloads as robust. In this work, we increase the modeling power of19

transaction templates by extending them with functional constraints, which are useful for capturing20

data dependencies like foreign keys. We show that the incorporation of functional constraints can21

identify more workloads as robust that otherwise would not be. Even though we establish that the22

robustness problem becomes undecidable in its most general form, we show that various restrictions23

on functional constraints lead to decidable and even tractable fragments that can be used to model24

and test for robustness against RC for realistic scenarios.25
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1 Introduction29

Many database systems implement several isolation levels, allowing users to trade isolation30

guarantees for improved performance. The highest, serializability, projects the appearance31

of a complete absence of concurrency, and thus perfect isolation. Executing transactions32

concurrently under weaker isolation levels can introduce certain anomalies. Sometimes, a33

transactional workload can be executed at an isolation level lower than serializability without34

introducing any anomalies. This is a desirable scenario: a lower isolation level, usually35

implementable with a cheaper concurrency control algorithm, yields the stronger isolation36

guarantees of serializability for free. This formal property is called robustness [12, 7]: a set37

of transactions T is called robust against a given isolation level if every possible interleaving38

of the transactions in T that is allowed under the specified isolation level is serializable.39

Robustness received quite a bit of attention in the literature. Most existing work focuses40

on Snapshot Isolation (SI) [2, 4, 12, 13] or higher isolation levels [5, 7, 8, 10]. It is particularly41

interesting to consider robustness against lower level isolation levels like multi-version Read42

Committed (referred to as RC from now on). Indeed, RC is widely available, often the default43
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in database systems (see, e.g., [4]), and is generally expected to have better throughput than44

stronger isolation levels.45

In previous work [18], we provided a tractable decision procedure for robustness against46

RC for workloads generated by transaction programs modeled as transaction templates. The47

approach is centered on a novel characterization of robustness against RC in the spirit of48

[12, 14] that improves over the sufficient condition presented in [3], and on a formalization49

of transaction programs, called transaction templates, facilitating fine-grained reasoning50

for robustness against RC. Conceptually, transaction templates as introduced in [18] are51

functions with parameters, and can, for instance, be derived from stored procedures inside a52

database system (c.f. Figure 1 for an example). The abstraction generalizes transactions as53

usually studied in concurrency control research – sequences of read and write operations – by54

making the objects worked on variable, determined by input parameters. Such parameters55

are typed to add additional power to the analysis. They support atomic updates (that is,56

a read followed by a write of the same database object, to make a relative change to its57

value). Furthermore, database objects read and written are considered at the granularity of58

fields, rather than just entire tuples, decoupling conflicts further and allowing to recognize59

additional cases that would not be recognizable as robust on the tuple level.60

An important insight obtained from [18] is that more accurate modeling of the workload61

allows to recognize larger sets of transaction programs as robust. Processing workloads62

under RC increases the throughput of the transactional database system compared to63

when executing the workload under SI or serializable SI, so larger robust sets mean better64

performance of the database system. In this work, we increase the modeling power of65

transaction templates by extending them with functional constraints, which are useful for66

capturing data dependencies like foreign keys (inclusion dependencies). This appears to be67

a sweet spot for strengthening modelling power – as we show in this paper, it allows us to68

remain with abstractions that have been well established within database theory, without69

having to move to general program analysis, and it pushes the robustness frontier on popular70

transaction processing benchmarks. Generally speaking, workloads can profit more from71

richer modelling the larger and more complex they get, so the fact that adding functional72

constraints yields larger robust sets already on these simple benchmarks suggests that these73

techniques are practically useful. Our contributions can be summarized as follows:74

We argue in Section 2 through the SmallBank and TPC-C benchmarks that the incor-75

poration of functional constraints can identify more workloads as robust that otherwise76

would not be, and that they reduce the extent to which changes need to be made to77

workloads to make them robust against RC.78

In Section 4, we establish that robustness in its most general form becomes undecidable.79

The proof is a reduction from PCP and relies on cyclic dependencies between functions80

allowing to connect data values through an unbounded application of functions.81

We consider a fragment in Section 5 that only allows a very limited form of cyclic82

dependencies between functions and assumes additional constraints on templates that,83

together, imply that functions behave as bijections. Robustness against RC can be decided84

in nlogspace and this fragment is general enough to model the SmallBank benchmark.85

In Section 6, we obtain an expspace decision procedure when the schema graph is acyclic86

(so, no cyclic dependencies between functions). Even for small input sizes, such a result87

is not practical. We provide various restrictions that lower the complexity to pspace and88

exptime, and which allow to model the TPC-C benchmark as discussed. Notice that, for89

robustness testing, an exponential time decision procedure is considered to be practical as90

the size of the input is small and robustness is a static property that can be tested offline.91
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GoPremium:
U[X : Account{N, C}{I}]
R[Y : Savings{C, I}]
U[Y : Savings{C}{I}]
Y = fA→S(X), X = fS→A(Y)

Figure 1 Transaction template.

T1
T2
T3
T4

b1 a1

b2a2

a3b3
a4b4

Figure 2 Multiversion split schedule.

Due to space constraints, proofs as well as a more complete description of the SmallBank92

and TPC-C benchmarks are moved to the appendix.93

2 Application94

We present a small extension of the SmallBank benchmark [2] to exemplify the modeling95

power of transaction templates and discuss how the addition of functional constraints can96

detect larger sets of transaction templates to be robust. Finally, we discuss in the context of97

the TPC-C benchmark how the incorporation of functional constraints requires less changes98

to templates in making them robust. A full description of these benchmarks is in Appendix D.99

The SmallBank schema consists of three tables: Account(Name, CustomerID, IsPremium),100

Savings(CustomerID, Balance, InterestRate), and Checking(CustomerID, Balance). Under-101

lined attributes are primary keys. The Account table associates customer names with IDs102

and keeps track of the premium status (Boolean); CustomerID is a UNIQUE attribute. The103

other tables contain the balance (numeric value) of the savings and checking accounts of104

customers identified by their ID. Account (CustomerID) is a foreign key referencing both the105

columns Savings (CustomerID) and Checking (CustomerID). The interest rate on a savings106

account is based on a number of parameters, including the account status (premium or not).107

The application code can interact with the database through a fixed number of transaction108

programs presented in Appendix D.1: Balance, TransactSavings, Amalgamate, WriteCheck,109

DepositChecking, and GoPremium. We only discuss GoPremium(N), given in Figure 1,110

which converts the account of the customer with name N to a premium account and updates111

the interest rate of the corresponding savings account.112

In short, a transaction template is a sequence of read (R), write (W) and update (U)113

statements over typed variables (X, Y, . . . ) with additional equality and disequality constraints.114

For instance, R[Y : Savings{C, I}}] indicates that a read operation is performed to a tuple in115

relation Savings on the attributes CustomerID and InterestRate. We abbreviate the names of116

attributes by their first letter to save space. The set {C, I} is the read set. Write operations117

have an associated write set while update operations contain a read set followed by a write118

set: e.g., U[Z : Account{N, C}{I}}] first reads the Name and CustomerID of tuple X and then119

writes to the attribute InterestRate. To capture the dependencies between tuples induced120

by the foreign keys, we use two unary functions: fA→S maps a tuple of type Account to a121

tuple of type Savings, while fA→C maps a tuple of type Account to a tuple of type Checking.122

As Account(CustomerID) is UNIQUE, every savings and checking accounts is associated to123

a unique Account tuple. This is modelled through the functions fC→A and fS→A with an124

analogous interpretation. Notice that the equality constraints for GoPremium imply that125

these functions are bijections and each others inverses.126

A transaction T over a database D is an instantiation of a transaction template τ if127

there is a variable mapping µ from the variables in τ to tuples in D that satisfies all the128

constraints in τ such that with µ(τ) = T . For instance, consider a database D with tuples129

a1, a2, . . . of type Account, s1, s2, . . . of type Savings, and c1, c2, . . . of type Checking with130

CVIT 2016
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Delivery:

U[S : Order{W, D, O}{Sta}]
U[V1 : OrderLine{W, D, O, OL, Del}{Del}]
U[V2 : OrderLine{W, D, O, OL, Del}{Del}]
U[Z : Customer{W, D, C, Bal}{Bal}]
Z = fO→C(S), S = fL→O(V1), S = fL→O(V2)

OrderStatus:

R[Z : Customer{W, D, C, Inf, Bal}]
R[S : Order{W, D, O, C, Sta}]
R[V1 : OrderLine{W, D, O, OL, I, Del, Qua}]
R[V2 : OrderLine{W, D, O, OL, I, Del, Qua}]
Z = fO→C(S), S = fL→O(V1), S = fL→O(V2)

Figure 3 Transaction templates Delivery and OrderStatus of the TPC-C benchmark.

fD
A→S(ai) = si, fD

A→C(ai) = ci, fD
S→A(si) = ai, fD

C→A(ci) = ai for each i. Then, for131

µ1 = {X → a1, Y → s1}, µ1(GoPremium) = U[a1]R[s1]U[c1] is an instantiation of GoPremium132

whereas µ2(GoPremium) with µ2 = {X → a1, Y → s2} is not as the functional constraint133

Y = fA→S(X) is not satisfied. Indeed, µ2(Y) = s2 ̸= s1 = fD
A→S(a1) = fD

A→S(µ2(X)). We then134

say that a set of transactions is consistent with a set of templates if every transaction is an135

instantiation of a transaction template.136

Our previous work [18], which did not consider functional constraints, has shown that137

{Am,DC,TS}, {Bal,DC}, and {Bal,TS} are maximal robust sets of transaction templates.138

This means that for any database, for any set of transactions T that is consistent with139

one of the three mentioned sets, any possible interleaving of the transactions in T that is140

allowed under RC is always serializable! Using the results from Section 5, it follows that141

when functional constraints are taken into account GoPremium can be added to each of142

these sets as well: {Am,DC,GP,TS}, {Bal,DC,GP}, {Bal,TS,GP} are maximal robust sets.143

We argue that incorporating functional constraints is crucial. Indeed, without functional
constraints its easy to show that even the set {GoPremium} is not robust. Consider the
schedule over two instantiations T1 and T2 of GoPremium, where we use the mappings µ1
and µ2 as defined above for respectively T1 and T2 (we show the read and write sets to
facilitate the discussion):

T1 : U1[a1{N,C}{I}] R1[s1{C,I}] U1[s1{C}{I}] C1
T2 : U2[a2{N,C}{I}] R2[s1{C,I}] U2[s1{C}{I}] C2

The above schedule is allowed under RC as there is no dirty write, but it is not conflict144

serializable. Indeed, there is a rw-conflict between R1[s1{C,I}] and U2[s1{C}{I}] as the former145

reads the attribute I that is written to by the latter, which implies that T1 should occur before146

T2 in an equivalent serial schedule. But, there is a ww-conflict between U2[s1{C}{I}] and147

U1[s1{C}{I}] as both write to the common attribute I implying that T2 should occur before148

T1 in an equivalent serial schedule. Consequently, the schedule is not serializable. However,149

taking functional constraints into account, {T1, T2} is not consistent with {GoPremium}150

as µ2(Y) = s1 ̸= s2 = fA→S(a2) = fA→S(µ2(X)) implying that the above schedule is not a151

counter example for robustness.152

Incorporating functional constraints for TPC-C can not identify larger sets of templates
to be robust. However, when a set of transaction templates P is not robust against RC,
an equivalent set of templates P ′ can be constructed from P by promoting certain R-
operations to U-operations [18]. By incorporating functional constraints it can be shown
that fewer R-operations need to be promoted leading to an increase in throughput as R-
operations do not take locks whereas U-operations do. Consider for example the subset
P = {Delivery, OrderStatus} of the TPC-C benchmark, given in Figure 3, where functional
constraints are added to express the fact that a tuple of type OrderLine implies the tuple
of type Order, which in turn implies the tuple of type Customer. This set P is not robust
against RC, but robustness can be achieved by promoting the R-operation over Customer in
OrderStatus to a U-operation. However, without functional constraints, this single promoted
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operation no longer guarantees robustness, as witnessed by the following schedule:

T1(Orderstatus) : U1[c] R1[a] R1[b1] R1[b2] C1
T2(Delivery) : U2[a] U2[b1] U2[b2] U2[c′] C2

Notice in particular how this schedule implicitly assumes in T2 that Order a belongs to153

Customer c′ instead of Customer c to avoid a dirty write on c. Without functional constraints,154

P is only robust against RC if all R-operations in OrderStatus are promoted to U-operations.155

3 Definitions156

We recall the necessary definitions from [18] and extend them with functional constraints.157

3.1 Databases158

A relational schema is a pair (Rels, Funcs) where Rels is a set of relation names and Funcs is a159

set of function names. A finite set of attribute names Attr(R) is associated to every relation160

R ∈ Rels. Relations will be instantiated by abstract objects that serve as an abstraction of161

relational tuples. To this end, for every relation R ∈ Rels, we fix an infinite set of tuples162

TuplesR. Furthermore, we assume that TuplesR ∩ TuplesS = ∅ for all R, S ∈ Rels with163

R ̸= S. We then denote by Tuples the set
⋃

R∈Rels TuplesR of all possible tuples. Notice164

that, by definition, for every t ∈ Tuples there is a unique relation R ∈ Rels such that165

t ∈ TuplesR. In that case, we say that t is of type R and denote the latter by type(t) = R.166

Each function name f ∈ Funcs has a domain dom(f) ∈ Rels and a range range(f) ∈ Rels.167

Functions are used to encode relationships between tuples like for instance those implied by168

foreign-keys constraints. For instance, in the SmallBank example Funcs = {fA→S , fA→C},169

dom(fA→S) = dom(fA→C) = A, range(fA→S) = S, and range(fA→C) = C. A database D170

over schema (Rels, Funcs) assigns to every relation name R ∈ Rels a finite set RD ⊂ TuplesR171

and to every function name f ∈ Funcs a function fD from dom(f)D to range(f)D.172

3.2 Transactions and Schedules173

For a tuple t ∈ Tuples, we distinguish three operations R[t], W[t], and U[t] on t, denoting174

that tuple t is read, written, or updated, respectively. We say that the operation is on the175

tuple t. The operation U[t] is an atomic update and should be viewed as an atomic sequence176

of a read of t followed by a write to t. We will use the following terminology: a read operation177

is an R[t] or a U[t], and a write operation is a W[t] or a U[t]. Furthermore, an R-operation is178

an R[t], a W-operation is a W[t], and a U-operation is a U[t]. We also assume a special commit179

operation denoted C. To every operation o on a tuple of type R, we associate the set of180

attributes ReadSet(o) ⊆ Attr(R) and WriteSet(o) ⊆ Attr(R) containing, respectively, the set181

of attributes that o reads from and writes to. When o is a R-operation then WriteSet(o) = ∅.182

Similarly, when o is a W-operation then ReadSet(o) = ∅.183

A transaction T is a sequence of read and write operations followed by a commit. We184

assume that a transactions starts when its first operation is executed, but no earlier. Formally,185

we model a transaction as a linear order (T, ≤T), where T is the set of (read, write and commit)186

operations occurring in the transaction and ≤T encodes the ordering of the operations. As187

usual, we use <T to denote the strict ordering.188

When considering a set T of transactions, we assume that every transaction in the set has189

a unique id i and write Ti to make this id explicit. Similarly, to distinguish the operations190

of different transactions, we add this id as a subscript to the operation. That is, we write191

CVIT 2016
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Wi[t], Ri[t], and Ui[t] to denote a W[t], R[t], and U[t] occurring in transaction Ti; similarly192

Ci denotes the commit operation in transaction Ti. This convention is consistent with the193

literature (see, e.g. [6, 12]). To avoid ambiguity of notation, we assume that a transaction194

performs at most one write, one read, and one update per tuple. The latter is a common195

assumption (see, e.g. [12]). All our results carry over to the more general setting in which196

multiple writes and reads per tuple are allowed.197

A (multiversion) schedule s over a set T of transactions is a tuple (Os, ≤s, ≪s,vs) where198

Os is the set containing all operations of transactions in T as well as a special operation op0199

conceptually writing the initial versions of all existing tuples, ≤s encodes the ordering of200

these operations, ≪s is a version order providing for each tuple t a total order over all write201

operations on t occurring in s, and vs is a version function mapping each read operation a202

in s to either op0 or to a write1 operation different from a in s. We require that op0 ≤s a203

for every operation a ∈ Os, op0 ≪s a for every write operation a ∈ Os, and that a <T b204

implies a <s b for every T ∈ T and every a, b ∈ T. We furthermore require that for every205

read operation a, vs(a) <s a and, if vs(a) ̸= op0, then the operation vs(a) is on the same206

tuple as a. Intuitively, op0 indicates the start of the schedule, the order of operations in s is207

consistent with the order of operations in every transaction T ∈ T , and the version function208

maps each read operation a to the operation that wrote the version observed by a. If vs(a)209

is op0, then a observes the initial version of this tuple. The version order ≪s represents the210

order in which different versions of a tuple are installed in the database. For a pair of write211

operations on the same tuple, this version order does not necessarily coincide with ≤s. For212

example, under RC the version order is based on the commit order instead.213

We say that a schedule s is a single version schedule if ≪s coincides with ≤s and every214

read operation always reads the last written version of the tuple. Formally, for each pair of215

write operations a and b on the same tuple, a ≪s b iff a <s b, and for every read operation216

a there is no write operation c on the same tuple as a with vs(a) <s c <s a. A single217

version schedule over a set of transactions T is single version serial if its transactions are218

not interleaved with operations from other transactions. That is, for every a, b, c ∈ Os with219

a <s b <s c and a, c ∈ T implies b ∈ T for every T ∈ T .220

The absence of aborts in our definition of schedule is consistent with the common221

assumption [12, 7] that an underlying recovery mechanism will rollback aborted transactions.222

We only consider isolation levels that only read committed versions. Therefore there will223

never be cascading aborts.224

3.3 Conflict Serializability225

Let aj and bi be two operations on the same tuple from different transactions Tj and Ti in a226

set of transactions T . We then say that aj is conflicting with bi if:227

(ww-conflict) WriteSet(aj) ∩ WriteSet(bi) ̸= ∅; or,228

(wr-conflict) WriteSet(aj) ∩ ReadSet(bi) ̸= ∅; or,229

(rw-conflict) ReadSet(aj) ∩ WriteSet(bi) ̸= ∅.230

In this case, we also say that aj and bi are conflicting operations. Furthermore, commit231

operations and the special operation op0 never conflict with any other operation. When aj232

and bi are conflicting operations in T , we say that aj depends on bi in a schedule s over T ,233

denoted bi →s aj if:2234

1 Recall that a write operation is either a W[x] or a U[x].
2 Throughout the paper, we adopt the following convention: a b operation can be understood as a ‘before’
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(ww-dependency) bi is ww-conflicting with aj and bi ≪s aj ; or,235

(wr-dependency) bi is wr-conflicting with aj and bi = vs(aj) or bi ≪s vs(aj); or,236

(rw-antidependency) bi is rw-conflicting with aj and vs(bi) ≪s aj .237

Intuitively, a ww-dependency from bi to aj implies that aj writes a version of a tuple238

that is installed after the version written by bi. A wr-dependency from bi to aj implies that239

bi either writes the version observed by aj , or it writes a version that is installed before the240

version observed by aj . A rw-antidependency from bi to aj implies that bi observes a version241

installed before the version written by aj .242

Two schedules s and s′ are conflict equivalent if they are over the same set T of transactions243

and for every pair of conflicting operations aj and bi, bi →s aj iff bi →s′ aj .244

▶ Definition 1. A schedule s is conflict serializable if it is conflict equivalent to a single245

version serial schedule.246

A conflict graph CG(s) for schedule s over a set of transactions T is the graph whose247

nodes are the transactions in T and where there is an edge from Ti to Tj if Ti has an248

operation bi that conflicts with an operation aj in Tj and bi →s aj .249

▶ Theorem 2 ([15]). A schedule s is conflict serializable iff the conflict graph for s is acyclic.250

3.4 Multiversion Read Committed251

Let s be a schedule for a set T of transactions. Then, s exhibits a dirty write iff there are252

two ww-conflicting operations aj and bi in s on the same tuple t with aj ∈ Tj , bi ∈ Ti and253

Tj ̸= Ti such that bi <s aj <s Ci. That is, transaction Tj writes to an attribute of a tuple254

that has been modified earlier by Ti, but Ti has not yet issued a commit.255

For a schedule s, the version order ≪s corresponds to the commit order in s if for every256

pair of write operations aj ∈ Tj and bi ∈ Ti, bi ≪s aj iff Ci <s aj . We say that a schedule257

s is read-last-committed (RLC) if ≪s corresponds to the commit order and for every read258

operation aj in s on some tuple t the following holds:259

vs(aj) = op0 or Ci <s aj with vs(aj) ∈ Ti; and260

there is no write3 operation ck ∈ Tk on t with Ck <s aj and vs(aj)≪sck.261

So, aj observes the most recent version of t (according to the order of commits) that is262

committed before aj . Note in particular that a schedule cannot exhibit dirty reads, defined263

in the traditional way [6], if it is read-last-committed.264

▶ Definition 3. A schedule is allowed under isolation level read committed (RC) if it is265

read-last-committed and does not exhibit dirty writes.266

3.5 Transaction Templates267

Transaction templates are transactions where operations are defined over typed variables268

together with functional constraints on these variables. Types of variables are relation names269

in Rels and indicate that variables can only be instantiated by tuples from the respective270

type. We fix an infinite set of variables Var that is disjoint from Tuples. Every variable271

X ∈ Var has an associated relation name in Rels as type that we denote by type(X). For an272

operation oi in a template, var(oi) denotes the variable in oi. An equality constraint is an273

while an a can be interpreted as an ‘after’.
3 Recall that a write operation is either a W or a U-operation.

CVIT 2016
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expression of the form X = f(Y) where X, Y ∈ Var, dom(f) = type(Y) and range(f) = type(X).274

A disequality constraint is an expression of the form X ̸= Y where type(X) = type(Y).275

▶ Definition 4. A transaction template is a transaction τ over Var together with a set Γ(τ)276

of equality and disequality constraints. In addition, for every operation o in τ over a variable277

X, ReadSet(o) ⊆ Attr(type(X)) and WriteSet(o) ⊆ Attr(type(X)).278

Recall that we denote variables by capital letters X, Y, Z and tuples by small letters t, v.279

A variable assignment µ is a mapping from Var to Tuples such that µ(X) ∈ Tuplestype(X).280

Furthermore, µ satisfies a constraint X = f(Y) (resp., X ̸= Y) over a database D when281

µ(X) = fD(µ(Y)) (resp., µ(X) ̸= µ(Y)). A variable assignment µ for a transaction template282

τ is admissible for D if it satisfies all constraints in Γ(τ) over D. By µ(τ), we denote the283

transaction obtained by replacing each variable X in τ with µ(X).284

A set of transactions T is consistent with a set of transaction templates P and database285

D, if for every transaction T in T there is a transaction template τ ∈ P and a variable286

mapping µT that is admissible for D such that µT(τ) = T.287

3.6 Robustness288

We define the robustness property [7] (also called acceptability in [12, 13]), which guarantees289

serializability for all schedules of a given set of transactions for a given isolation level.290

▶ Definition 5 (Transaction Robustness). A set T of transactions is robust against RC if291

every schedule for T that is allowed under RC is conflict serializable.292

In the next definition, we represent conflicting operations from transactions in a set T as293

quadruples (Ti, bi, aj , Tj) with bi and aj conflicting operations, and Ti and Tj their respective294

transactions in T . We call these quadruples conflicting quadruples for T . Further, for an295

operation b ∈ T, we denote by prefixb(T) the restriction of T to all operations that are before296

or equal to b according to ≤T . Similarly, we denote by postfixb(T) the restriction of T to all297

operations that are strictly after b according to ≤T . Throughout the paper, we interchangeably298

consider transactions both as linear orders as well as sequences. Therefore, T is then equal299

to the sequence prefixb(T) followed by postfixb(T) which we denote by prefixb(T) · postfixb(T)300

for every b ∈ T .301

▶ Definition 6 (Multiversion split schedule). Let T be a set of transactions and C =
(T1, b1, a2, T2), (T2, b2, a3, T3), . . . , (Tm, bm, a1, T1) a sequence of conflicting quadruples for
T such that each transaction in T occurs in at most two different quadruples. A multiversion
split schedule for T based on C is a multiversion schedule that has the following form:

prefixb1(T1) · T2 · . . . · Tm · postfixb1(T1) · Tm+1 · . . . · Tn,

where302

1. there is no write operation in prefixb1(T1) ww-conflicting with a write operation in any of303

the transactions T2, . . . , Tm;304

2. b1 <T1 a1 or bm is rw-conflicting with a1; and,305

3. b1 is rw-conflicting with a2.306

Furthermore, Tm+1, . . . , Tn are the remaining transactions in T (those not mentioned in C)307

in an arbitrary order.308

Figure 2 depicts a schematic multiversion split schedule. The name stems from the fact309

that the schedule is obtained by splitting one transaction in two (T1 at operation b1 in310
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Figure 2) and placing all other transactions in C in between. The figure does not display the311

trailing transactions Tm+1, Tm+2, . . . and assumes b1 <T1 a1.312

The following theorem characterizes non-robustness in terms of the existence of a mul-313

tiversion split schedule.314

▶ Theorem 7 ([18]). For a set of transactions T , the following are equivalent:315

1. T is not robust against RC;316

2. there is a multiversion split schedule s for T based on some C.317

Let P be a set of transaction templates and D be a database. Then, P is robust against318

RC over D if for every set of transactions T that is consistent with P and D, it holds that319

T is robust against RC.320

▶ Definition 8 (Template Robustness). A set of transaction templates P is robust against321

RC if P is robust against RC for every database D.322

We say that a transaction template (τ, Γ) is a variable transaction template when Γ = ∅323

and an equality transaction template when all constraints in Γ are equalities. We denote324

these sets by VarTemp and EqTemp, respectively. For an isolation level I and a class325

of transaction templates C, t-robustness(C,I) is the problem to decide if a given set of326

transaction templates P ∈ C is robust against I. When C is the class of all transaction327

templates, we simply write t-robustness(I).328

▶ Theorem 9 ([18]). t-robustness(VarTemp,RC) is decidable in ptime.329

4 Robustness for Templates330

We start out with a negative result and show that the robustness problem in its most general331

form is undecidable (even when disequalities are not allowed). The proof is a reduction332

from Post’s Correspondence Problem (PCP) [16] and relies on cyclic dependencies between333

functional constraints. The proof can be found in Appendix A and is quite elaborate but the334

basic intuition is simple: the counterexample split schedule will build up the two strings that335

need to be generated by the PCP instance by repeated application of functional constraints.336

▶ Theorem 10. t-robustness(EqTemp,RC) is undecidable.337

It might be tempting to relate the above result to the undecidability of the implication338

problem for functional and inclusion dependencies [11]. Functional constraints indeed allow339

to define inclusion dependencies (as in the SmallBank example) but they always relate340

complete tuples and are not suited to define functional dependencies. Furthermore, the proof341

of Theorem 10 makes use of only unary relations, for which the implication problem for342

functional dependencies and inclusion dependencies is known to be decidable.343

To obtain decidable fragments, we introduce restrictions on the structure of functional344

constraints. The schema graph SG(Rels, Funcs) of a schema (Rels, Funcs) is a directed345

multigraph having the relations in Rels as nodes, and in which there are as many edges from346

a node R ∈ Rels to node S ∈ Rels as there are functions f ∈ Funcs with dom(f) = R and347

range(f) = S. We say that a schema (Rels, Funcs) is acyclic if the multigraph SG(Rels, Funcs)348

is acyclic and that it is a multi-tree if there is at most one directed path between any two349

nodes in SG(Rels, Funcs).350

▶ Example 11. Consider the schema ({P, Q, R, S}, {fP,R, fQ,R, fR,S}) with dom(fi,j) = i351

and range(fi,j) = j for each function fi,j . The corresponding schema graph with solid lines is352
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P Q

R

S

fP,R

fQ,R

fR,S

fQ,S

Figure 4 Acyclic schema graph for schema
({P, Q, R, S}, {fP,R, fQ,R, fR,S , fQ,S}). If we
remove function name fQ,S (dashed edge),
the resulting schema graph is a multi-tree.

AccountSavings Checking

fA→S

fS→A

fA→C

fC→A

Figure 5 Schema graph for the SmallBank
benchmark. The dashed edges correspond to the
multi-tree schema graph for the schema restricted
to fA→S and fA→C .

given in Figure 4. This schema is a multi-tree, as there is at most one path between any pair353

of nodes. Notice that the definition of a multi-tree is more general than a forest, as a node354

can still have multiple parents (e.g., node R in our example). Adding the function name fQ,S355

with dom(fQ,S) = Q and range(fQ,S) = S results in the schema graph given in Figure 4 that356

is still acyclic, but no longer a multi-tree as there are now two paths from Q to S. 2357

The schema graph constructed in the proof of Theorem 10 contains several cycles (cf.,358

Figure 6 in Appendix A). We consider in Section 5 robustness for a fragment where a359

restricted form of cycles in the schema graph is allowed but where additional constraints on360

the templates are assumed. We consider robustness for acyclic schema graphs in Section 6.361

5 Robustness for Templates admitting Multi-Tree Bijectivity362

We say that a set of transaction templates P over a schema (Rels, Funcs) admits multi-tree363

bijectivity if a disjoint partitioning of Funcs in pairs (f1, g1), (f2, g2), . . . , (fn, gn) exists such364

that dom(fi) = range(gi) and dom(gi) = range(fi) for every pair of function names (fi, gi);365

every schema graph SG(Rels, {h1, h2, . . . , hn}) over the schema restricted to function names366

{h1, h2, . . . , hn} (with hi = fi or hi = gi) is a multi-tree; and, for every pair of function367

names (fi, gi) and for every pair of variables X, Y occurring in a template τj ∈ P, we have368

fi(X) = Y ∈ Γj iff gi(Y) = X ∈ Γj . Intuitively, we can think of fi as a bijective function, with369

gi its inverse. We denote the class of all sets of templates admitting multi-tree bijectivity by370

MTBTemp. The SmallBank benchmark given in Figure 8 is in MTBTemp, witnessed by371

the partitioning {(fA→C , fC→A), (fA→S , fS→A)}. For example, the schema graph restricted372

to fA→C and fA→S is a tree and therefore also a multi-tree, as illustrated in Figure 5.373

The next theorem allows disequalities whereas Theorem 10 does not require them.374

▶ Theorem 12. t-robustness(MTBTemp,RC) is decidable in nlogspace.375

The approach followed in the proof of Theorem 12 is to repeatedly pick a transaction376

template while maintaining an overall consistent variable mapping in search for a counter-377

example multiversion split schedule that by Theorem 7 suffices to show that robustness378

does not hold. The main challenge is to show that a variable mapping consistent with all379

functional constraints can be maintained in logarithmic space and that all requirements for a380

multiversion split schedule can be verified in nlogspace.381

Central to our approach is a generalization of conflicting operations. Let P be a set of382

transaction templates. For τi and τj in P, we say that an operation oi ∈ τi is potentially383

conflicting with an operation oj ∈ τj if oi and oj are operations over a variable of the same384

type, and at least one of the following holds:385
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WriteSet(oi) ∩ WriteSet(oj) ̸= ∅ (potentially ww-conflicting);386

WriteSet(oi) ∩ ReadSet(oj) ̸= ∅ (potentially wr-conflicting); or387

ReadSet(oi) ∩ WriteSet(oj) ̸= ∅ (potentially rw-conflicting).388

Intuitively, potentially conflicting operations lead to conflicting operations when the variables389

of these operations are mapped to the same tuple by a variable assignment. In analogy to390

conflicting quadruples over a set of transactions as in Definition 6, we consider potentially391

conflicting quadruples (τi, oi, pj , τj) over P with τi, τj ∈ P, and oi ∈ τi an operation that is392

potentially conflicting with an operation pj ∈ τj . For a sequence of potentially conflicting393

quadruples D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) over P, we write Trans(D) to denote the394

set {τ1, . . . , τm} of transaction templates mentioned in D. For ease of exposition, we assume395

a variable renaming such that any pair of templates in Trans(D) uses a disjoint set of396

variables.4 The sequence D induces a sequence of conflicting quadruples C = (T1, b1, a2, T2),397

. . . , (Tm, bm, a1, T1) by applying a variable assignment µi to each τi in Trans(D). We call398

such a set of variable assignments simply a variable mapping for D, denoted µ̄, and write399

µ̄(D) = C. For a variable X occurring in a template τi, we write µ̄(X) as a shorthand notation400

for µi(X), with µi the variable assignment over τi in µ̄. This is well-defined as all templates401

in Trans(D) are variable-disjoint. Furthermore, µ̄(var(oi)) = µ̄(var(pj)) for each potentially402

conflicting quadruple (τi, oi, pj , τj) in D as otherwise the induced quadruple (Ti, bi, aj , Tj) is403

not a valid conflicting quadruple in C. We say that a variable mapping µ̄ is admissible for a404

database D if every variable assignment µi in µ̄ is admissible for D.405

A basic insight is that if there is a multiversion split schedule s for some C over a set of406

transactions T consistent with P and a database D, then there is a sequence of potentially407

conflicting quadruples D such that µ̄(D) = C for some µ̄. We will verify the existence of408

such a C, satisfying the properties of Definition 6, by nondeterministically constructing D409

on-the-fly together with a mapping µ̄. We show in Lemma 14 that when P ∈ MTBTemp,410

µ̄ is a collection of disjoint type mappings (that map variables of the same type to the same411

tuple) such that variables that are “connected” in D (in a way that we will make precise next)412

are mapped using the same type mapping. Lemma 15 then shows that already a constant413

number of those type mappings suffice.414

We introduce the necessary notions to capture when two variables are connected in D.415

We can think of equality constraints Y = f(X) in a template τ as constraints on the possible416

variable assignments µ for τ when a database D is given. Indeed, if we fix µ(X) to a tuple417

in D, then µ(Y) = fD(µ(X)) is immediately implied. These constraints can cause a chain418

reaction of implications. If for example Z = g(Y) is a constraint in τ as well, then µ(X)419

immediately implies µ(Z) = gD(fD(µ(X))). We formalize this notion of implication next.420

We use sequences of function names F = f1 · · · fn, denoting the empty sequence as ε and421

the concatenation of two sequences F and G by F · G. For two variables X, Y occurring in a422

template τ and a (possibly empty) sequence of function names F , we say that X implies Y by423

F in τ , denoted X F
⇝τ Y, if X = Y and F = ε or if there is a variable Z such that Y = f(Z)424

is a constraint in τ , X F ′

⇝τ Z and F = F ′ · f . We next extend the notions of implication to425

sequences of potentially conflicting quadruples. Let D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1)426

be a sequence of potentially conflicting quadruples, and let X and Y be two variables occurring427

in templates τi and τj in Trans(D), respectively. Then X implies Y by a sequence of function428

names F in D, denoted X F
⇝D Y if429

4 To be formally correct, the latter would require to add every such variable-renamed template to P
creating a larger set P ′. This does not influence the complexity of Theorem 12 as Trans(D) nor P ′ are
used in the algorithm. Their only purpose is to reason about properties of µ̄.
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i = j and X F
⇝τi Y (implication within the same template);430

F = ε and (τi, oi, pj , τj) or (τj , oj , pi, τi) is a potentially conflicting quadruple in D with431

oi (respectively pi) an operation over X and pj (respectively oj) an operation over Y432

(implication between templates, notice that X ε
⇝D Y iff Y ε

⇝D X); or433

there exists a variable Z such that X F1⇝D Z and Z F2⇝D Y with F = F1 · F2.434

Two variables X and Y occurring in Trans(D) are connected in D, denoted X eD Y, if435

X F
⇝D Y or Y F

⇝D X, or if there is a variable Z with X eD Z and either Z F
⇝D Y or Y F

⇝D Z for436

some sequence F . Furthermore, two variables X and Y occurring in a template τ are connected437

in τ , denoted X eτ Y, if X F
⇝τ Y or Y F

⇝τ X, or if there is a variable Z with X eτ Z and either438

Z F
⇝τ Y or Y F

⇝τ Z for some sequence F . These definitions of connectedness can be trivially439

extended to operations over variables: two operations in D (respectively τ) are connected in440

D (respectively τ) if they are over variables that are connected in D (respectively τ). When441

F is not important we drop it from the notation. For instance, we denote by X ⇝D Y that442

there is an F with X F
⇝D Y.443

▶ Lemma 13. Let D be a sequence of potentially conflicting quadruples over P ∈ MTBTemp.444

Then X eD Y implies X ⇝D Y and Y ⇝D X. Furthermore, if type(X) = type(Y) then µ̄(X) = µ̄(Y)445

for every variable mapping µ̄ for D that is admissible for some database D.446

It follows from Lemma 13 that, if we group connected variables, then the same tuple is447

assigned to all variables of the same type in this group. We encode this choice of tuples for448

variables through (total) functions c : Rels → Tuples that we call type mappings and which449

map a relation onto a particular tuple of that relation’s type. For instance, in SmallBank,450

a type mapping c is determined by an Account tuple a, a Savings tuple s, and a Checking451

tuple c. The following lemma makes explicit how µ̄ can be decomposed into type mappings452

such that connected variables use the same type mapping and disequalities enforce the use of453

different type mappings.454

▶ Lemma 14. For a multiversion split schedule s based on a sequence of conflicting quadruples455

C over a set of transactions T consistent with a P ∈ MTBTemp and a database D, let µ̄456

be the variable mapping for a sequence of potentially conflicting quadruples D over P with457

µ̄(D) = C. Then, a set S of type mappings over disjoint ranges and a function φS : Var → S458

exist with:459

µ̄(X) = c(type(X)) for every variable X, with c = φS(X);460

φS(X) = φS(Y) whenever X eD Y; and,461

φS(X) ̸= φS(Y) for every constraint X ̸= Y occurring in a template τ ∈ Trans(D).462

From D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) and φS as in Lemma 14 we can derive a463

sequence of quintuples E = (τ1, o1, co1 , p1, cp1), . . . , (τm, om, com , pm, cpm) such that coi =464

φS(var(oi)) and cpi
= φS(var(pi)) for i ∈ [1, m]. Intuitively, this sequence of quintuples can465

be used to reconstruct the original multiversion split schedule s. The next lemma shows that466

we can decide robustness against RC over a set of transaction templates admitting multi-tree467

bijectivity by searching for a specific sequence of quintuples over at most four type mappings.468

▶ Lemma 15. Let P ∈ MTBTemp and let S = {c1, c2, c3, c4} be a set consisting of four469

type mappings with disjoint ranges. Then, P is not robust against RC iff there is a sequence470

of quintuples E = (τ1, o1, co1 , p1, cp1), . . . , (τm, om, com
, pm, cpm

) with m ≥ 2 such that for471

each quintuple (τi, oi, coi
, pi, cpi

) in E:472

1. oi and pi are operations in τi, and coi
, cpi

∈ S;473

2. Xi e̸τi Yi for each constraint Xi ̸= Yi in τi;474

3. coi
= cpi

if oi eτi
pi;475
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4. coi
̸= cpi

if there is a constraint Xi ̸= Yi in τi with Xi eτi
var(oi) and Yi eτi

var(pi);476

5. if i ̸= 1 and cqi
= cq1 for some qi ∈ {oi, pi} and q1 ∈ {o1, p1}, then there is no operation o′

i477

in τi potentially ww-conflicting with an operation o′
1 in prefixo1(τ1) with var(o′

i) eτi
var(qi)478

and var(o′
1) eτ1 var(q1).479

Furthermore, for each pair of adjacent quintuples (τi, oi, coi
, pi, cpi

) and (τj , oj , coj
, pj , cpj

) in480

E with j = i + 1, or i = m and j = 1:481

6. oi is potentially conflicting with pj and coi
= cpj

;482

7. if i = 1 and j = 2, then o1 is potentially rw-conflicting with p2; and483

8. if i = m and j = 1, then o1 <τ1 p1 or om is potentially rw-conflicting with p1.484

The items have the following meaning: (2) τi is satisfiable; (3) connected operations are485

assigned the same type mapping; (4) variables connected through an inequality are assigned486

a different type mapping; (5) φS only assigns the same type mapping to o1 or p1 in τ1 and oi487

or pi in τi if it does not introduce a dirty write in the resulting multiversion split schedule (cf.488

Condition (1) in Definition 6); (6) each pair of variables in operations used for conflicts are489

assigned the same type mapping; (7, 8) the operations used for conflicts between τ1, τ2 and490

τm are restricted to satisfy respectively Condition (3) and (2) in Definition 6 in the resulting491

multiversion split schedule.492

The characterization for t-robustness(MTBTemp,RC) in Lemma 15 implies an nlog-493

space algorithm guessing the counterexample sequence E, thereby proving Theorem 12.494

Indeed, the algorithm guesses the sequence of quintuples E, verifying all conditions for each495

newly guessed quintuple while only requiring logarithmic space. Notice in particular that496

we only need to keep track of two other quintuples when verifying all conditions for the497

newly guessed quintuple, namely the first quintuple over τ1 and the quintuple immediately498

preceding the newly guessed one. As usual, we can think of the encoding of templates and499

operations mentioned in each quintuple as pointers referring to the corresponding templates500

and operations on the input tape. Furthermore, we do not encode the four type mappings501

explicitly as such a representation of a mapping might require polynomial space. Since we502

are only interested in (dis)equality between type mappings, an encoding where these four503

type mappings are represented by four arbitrary strings of constant size suffices. More details504

can be found in Appendix B.4.505

6 Robustness for Templates over Acyclic Schemas506

We denote by AcycTemp the class of all sets of transaction templates over acyclic schemas.507

▶ Theorem 16. t-robustness(AcycTemp,RC) is decidable in expspace.508

We provide some intuition for the proof. For a given acyclic schema graph SG, R F
⇝SG S509

denotes the directed path from node R to node S in SG with F the sequence of edge labels510

on the path. The next lemma relates implication between variables to paths in SG.511

▶ Lemma 17. Let D be a sequence of potentially conflicting quadruples over a set of512

transaction templates P ∈ AcycTemp. For every pair of variables X, Y occurring in Trans(D),513

if X F
⇝D Y, then type(X) F

⇝SG type(Y), with SG the corresponding schema graph.514

Notice that an assignment of a tuple to a variable X determines the tuples assigned to515

all variables Y with X F
⇝D Y for some sequence of function names F . From Lemma 17 it516

follows that each such implied tuple is witnessed by a path in the corresponding schema517

graph SG. Therefore, the maximal number of different tuples implied by X corresponds to518

the number of paths in SG starting in type(X), which is finite when SG is acyclic. Because519
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there can be multiple paths between nodes in the schema graph, it is no longer the case as in520

the previous section that variables of the same type connected in D must be assigned the521

same value. So, instead of using type mappings, we introduce tuple-contexts to represent the522

sets of all tuples implied by the assignment of a given variable. Formally, a tuple-context523

for a type R ∈ Rels is a function from paths with source R in SG(Rels, Funcs) to tuples in524

Tuples of the appropriate type. That is, for each tuple-context c for type R and for each525

path R F
⇝SG S in SG, type(c(R F

⇝SG S)) = S.526

Similar to Lemma 14, we show that we can represent a counterexample schedule based527

on D by assigning a tuple-context to each variable in Trans(D), taking special care when528

assigning contexts to variables connected in D to make sure that they are properly related529

to each other. For this, we introduce a (partial) function φA : Var → A mapping (a subset530

of) variables in Trans(D) to tuple-contexts in A (for A a set of tuple-contexts)and refer to531

it as a (partial) context assignment for D over A. In a sequence of lemma’s, we show that532

φA can always be expanded into a total function and an approach based on enumeration of533

quintuples analogous to Lemma 15 suffices to decide robustness. A major difference with the534

previous section is that there is no longer a constant bound on the number of tuple-contexts535

that are needed and consistency between between tuple-contexts in connected variables needs536

to be maintained. A full proof can be found in Appendix C.537

Next, we consider restrictions that lower the complexity. To this end, we say that two538

variables X and Y occurring in a transaction template τ are equivalent in τ , denoted X ≡τ Y if539

X = Y;540

there exists a pair of variables Z and W in τ and a sequence of function names F with541

Z ≡τ W, Z F
⇝τ X and W F

⇝τ Y; or542

there exists a variable Z with X ≡τ Z and Y ≡τ Z.543

Then, a transaction template τ is restricted if for every combination of variables X, Y, W, Z in544

τ with X ⇝τ W and Y ⇝τ Z, either W ≡τ Z, W ⇝τ Z or Z ⇝τ W. We denote by AcycResTemp545

the class of all sets of restricted transaction templates over acyclic schemas.546

▶ Theorem 18. 1. t-robustness(AcycResTemp,RC) is decidable in exptime.547

2. t-robustness(AcycTemp,RC) is decidable in pspace when the number of paths between548

any two nodes in the schema graph is bounded by a constant k.549

Regarding (1), all templates in TPC-C with the exception of NewOrder are restricted.550

Regarding (2), when the schema graph is a multi-tree then k = 1 and for TPC-C k = 2 (recall551

that in general there can be an exponential number of paths), leading to a more practical552

algorithm for robustness in those cases.553

7 Related Work554

Transaction Programs. Previous work on static robustness testing [13, 3] for transaction555

programs is based on the following key insight: when a schedule is not serializable, then the556

dependency graph constructed from that schedule contains a cycle satisfying a condition557

specific to the isolation level at hand (dangerous structure for snapshot isolation and the558

presence of a counterflow edge for RC). That insight is extended to a workload of transaction559

programs through the construction of a so-called static dependency graph where each program560

is represented by a node, and there is a conflict edge from one program to another if there can561

be a schedule that gives rise to that conflict. The absence of a cycle satisfying the condition562

specific to that isolation level then guarantees robustness while the presence of a cycle does563

not necessarily imply non-robustness.564
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Other work studies robustness within a framework for uniformly specifying different565

isolation levels in a declarative way [8, 7, 9]. A key assumption here is atomic visibility566

requiring that either all or none of the updates of each transaction are visible to other567

transactions. These approaches aim at higher isolation levels and cannot be used for RC, as568

RC does not admit atomic visibility.569

Transaction Templates. The static robustness approach based on transaction tem-570

plates [18] differs in two ways. First, it makes more underlying assumptions explicit within571

the formalism of transaction templates (whereas previous work departs from the static572

dependency graph that should be constructed in some way by the dba). Second, it allows for573

a decision procedure that is sound and complete for robustness testing against RC, allowing574

to detect larger subsets of transactions to be robust [18].575

The formalisation of transactions and conflict serializability in [18] and this paper is based576

on [12], generalized to operations over attributes of tuples and extended with U-operations577

that combine R- and W-operations into one atomic operation. These definitions are closely578

related to the formalization presented by Adya et al. [1], but we assume a total rather than579

a partial order over the operations in a schedule. There are also a few restrictions to the580

model: there needs to be a fixed set of read-only attributes that cannot be updated and581

which are used to select tuples for update. The most typical example of this are primary582

key values passed to transaction templates as parameters. The inability to update primary583

keys is not an important restriction in many workloads, where keys, once assigned, never get584

changed, for regulatory or data integrity reasons.585

In [18], a ptime decision procedure is obtained for robustness against RC for templates586

without functional constraints and the present paper improves that result to nlogspace. In587

addition, an experimental study was performed showing how an approach based on robustness588

and making transactions robust through promotion can improve transaction throughput.589

Transactions. Fekete [12] is the first work that provides a necessary and sufficient condition590

for deciding robustness against snapshot isolation for a workload of concrete transactions591

(not transaction programs). That work provides a characterization for acceptable allocations592

when every transaction runs under either snapshot isolation or strict two-phase locking593

(S2PL). The allocation then is acceptable when every possible execution respecting the alloc-594

ated isolation levels is serializable. As a side result, this work indirectly provides a necessary595

and sufficient condition for robustness against snapshot isolation, since robustness against596

snapshot isolation holds iff the allocation where each transaction is allocated to snapshot597

isolation is acceptable. Ketsman et al. [14] provide full characterisations for robustness598

against read committed and read uncommitted under lock-based semantics. In addition,599

it is shown that the corresponding decision problems are complete for conp and logspace,600

respectively, which should be contrasted with the polynomial time characterization obtained601

in [18] for robustness against multiversion read committed.602

8 Conclusion603

This paper falls within a more general research line investigating how transaction throughput604

can be improved through an approach based on robustness testing that can be readily applied605

without making any changes to the underlying database system. As argued in Section 2,606

incorporating functional constraints can detect larger sets of templates to be robust and607

requires less R-operations to be promoted to U-operations. In future work, we plan to look608

at lower bounds, restrictions that lower complexity, and consider other referential integrity609

constraints to further enlarge the modelling power of transaction templates.610
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A Proofs for Section 4648

Here, we present the proof of Theorem 10.649

▶ Theorem 10. t-robustness(EqTemp,RC) is undecidable.650

A domino is a pair (a, b) of two non-empty strings over Σ. Henceforth we call a its top651

value and b its bottom value. Given a set of dominoes D, the PCP asks if a non-empty652

sequence d1, d2, . . . , dr of dominoes in D exists such that, with di = (ai, bi), the strings653

a1a2 . . . ar and b1b2 . . . br are identical.654

For the reduction to non-robustness against RC, we construct a set P of transaction655

templates consisting of the transaction templates in Figure 7 for D. There are the trans-656

actions Split, First and Last (whose meaning will be explained next) and for every dom-657

ino in D there is a template in Figure 7 representing that domino and the action of ap-658

pending that domino to a sequence of dominoes. The schema consists of the relations659

{Boolean, InitialConflict, String, PCPSolution, DominoSequence} whose meaning will660

be explained below together with a discussion of all the functions. The schema graph is661

presented in Figure 6 and contains various cycles.662

InitialConflict

Boolean

PCPSolution

String

DominoSequence

de
fin

es

is-non-emptyis-error

final-domino-sequence

error-string

top
detach
append-0
append-1

next-sequence
previous-sequenceso

lu
tio

n-
st

rin
g

final-domino-sequence

top-string
bottom-string

empty-string

future-solution-stri
ng

pcp-dsds-pcp

Figure 6 Schema graph for the transaction templates in Figure 7 (for any set of dominoes).

To prove Theorem 10, we will show that there is a solution for PCP if and only if P663

is not robust against RC. For the only-if direction, we show that, if there is a solution664

d = d1, d2, . . . , dr for the PCP problem over D, then there is a multiversion split schedule665

that encodes this solution in a particular way: in this schedule the split transaction is666

an instantiation of transaction template Split, the next transaction is an instantiation667

of First, then followed by instantiations of transaction templates Dominod1 , . . . , Dominodr668

representing the sequence of dominoes in solution d, and finally an instantiation of transaction669

template Last. Henceforth, we call a schedule that encodes a sequence of dominoes d in this670

way a schedule-encoding of d. For the if-direction, we first show that every multiversion split671

schedule consistent with the transaction templates in Figure 7 for some set D of dominoes672

is a schedule-encoding for some sequence d of dominoes from D, and then that for every673

schedule-encoding of a sequence d of dominoes, d is always a solution for the PCP problem674

over a set of dominoes containing those in d.675
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Split(I):

W[X1 : Boolean]
R[I : InitialConflict]
R[S1 : String]
R[Se : String]
W[C : PCPSolution]
X1 = fis-non-empty(S1)
X1 = fis-error(Se)
C = ffinal-domino-sequence(I)
S1 = ffinal-dominoes-string(I)
Se = ferror-string(I)
S1 = fsolution-string(C)
I = fdefines(X1)

First(S1):

W[X2 : Boolean]
W[I : InitialConflict]
R[S0 : String]
R[Se : String]
R[S1 : String]
W[B : DominoSequence]
X2 = fis-non-empty(S0)
X2 = fis-error(S0)
S1 = ffinal-dominoes-string(I)
S0 = ftop-string(B)
S0 = fbottom-string(B)
S0 = fempty-string(B)
S1 = ffuture-solution-string(B)
Se = fdetach(S0)
Se = fdetach(Se)
I = fdefines(X2)
B = fempty-domino-sequence(S1)

Last(B):

W[B : DominoSequence]
R[St : String]
R[Sb : String]
R[S1 : String]
W[C : PCPSolution]
St = ftop-string(B)
Sb = fbottom-string(B)
S1 = ffuture-solution-string(B)
C = fDS→PCP(B)
St = fsolution-string(C)
Sb = fsolution-string(C)
S1 = fsolution-string(C)
B = fPCP→DS(C)

For every domino di = (a1a2 . . . ah, b1b2 . . . bk) ∈ D a transaction template Dominoi(B):

W[B : DominoSequence]
R[S0 : String]
R[S1 : String]
R[St : String]
R[Sta1 : String]
R[Sta1 a2 : String]
. . .

R[Sta1 a2 ...ah : String]
R[Sb : String]
R[Sbb1 : String]
R[Sbb1 b2 : String]
. . .

R[Sbb1 b2 ...bk : String]
W[Bnext : DominoSequence]

St = ftop-string(B)
Sta1 = fappend-a1(St)
Sta1 a2 = fappend-a2(Sta1 )
. . .

Sta1 a2 ...ah = fappend-ah
(Sta1 ...ah−1 )

St = fdetach(Sta1 )
Sta1 = fdetach(Sta1 a2 )
. . .

Sta1 a2 ...ah−1 = fdetach(Sta1 a2 ...ah )
Sta1 a2 ...ah = ftop-string(Bnext)
Sa1 = ftop(Sta1 )
Sa2 = ftop(Sta1 a2 )
. . .

Sah = ftop(Sta1 a2 ...ah )
S1 = ffuture-solution-string(B)
S0 = fempty-string(B)

Sb = fbottom-string(B)
Sbb1 = fappend-b1(Sb)
Sbb1 b2 = fappend-b2(Sbb1 )
. . .

Sbb1 b2 ...bk = fappend-bk
(Sbb1 ...bk−1 )

Sb = fdetach(Stb1 )
Sbb1 = fdetach(Sbb1 b2 )
. . .

Sbb1 b2 ...bk−1 = fdetach(Sbb1 b2 ...bk )
Sbb1 b2 ...bk = fbottom-string(Bnext)
Sb1 = ftop(Sbb1 )
Sb2 = ftop(Sbb1 b2 )
. . .

Sbk = ftop(Sbb1 b2 ...bk )
S1 = ffuture-solution-string(Bnext)
S0 = fempty-string(Bnext)
Bnext = fnext-sequence(B)
B = fprevious-sequence(Bnext)

Figure 7 Transaction templates for the proof of Theorem 10.
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A.1 Only-if direction for the proof of Theorem 10676

▶ Proposition 19 (Only-if part of Theorem 10). Let D be a set of dominoes with a solution d677

for the PCP problem for D. Then there exists a schedule-encoding of d that is consistent678

with the transaction templates in Figure 7 and some database D.679

Proof. Let d = d1, d2, . . . , dr be a solution to the PCP problem for D. Let a1a2 . . . ar be680

the read of top values and b1b2 . . . br be the read of bottom values, which thus represent an681

identical string c = c1 · · · cn, with ci ∈ Σ. We now construct a schedule s and database D as682

in Definition 6 with transactions based on the transaction templates P in Figure 7.683

Relation PCPSolution contains a tuple that we interpret as the PCP solution d =684

d1, d2, . . . , dr. Relation DominoSequence contains r + 1 tuples, one for every prefix of d,685

including the empty sequence () and the PCP solution d itself. For convenience of notation,686

we will henceforth often represent tuples by their interpretation, which is justified by the fact687

that every tuple in a particular relation will have a different interpretation, and the relation688

itself can always be derived from the context (e.g., the function signature).689

Since the PCP solution has an interpretation in both the relations PCPSolution and Domin-690

oSequence, we assume two functional constraints, fPCP→DS : PCPSolution → DominoSequence691

and fDS→PCP : DominoSequence → PCPSolution that map these interpretations on one an-692

other. That is, fD
PCP→DS(d) = d and fD

typecase-to-C(d) = d.693

Further, we have functions fnext-sequence : DominoSequence → DominoSequence and694

fprevious-sequence : DominoSequence → DominoSequence with following interpretation:695

fD
next-sequence(d′) = d′d with d′ a strict prefix of d followed by domino d in d,696

fD
next-sequence(d) = d,697

fD
previous-sequence(d′d) = d′ with d′ a strict prefix of d followed by domino d in d,698

fD
previous-sequence(()) = ().699

700

Relation StringD contains a tuple representing the read c of PCP-solution sequence d, a701

tuple representing an error ⟨error⟩, and a tuple for every substring of c, including the empty702

string ⟨⟩. We assume that all these tuples are different. We use notation ⟨⟩ to denote the703

empty string to distinguish it from (), which denotes the empty sequence of dominoes.704

Functions fappend-0 : String → String, fappend-1 : String → String, fdetach : String → String,705

and ftop : String → String simulate standard string operations for the interpretations of706

tuples in relation String. Thus, tuples representing a (possibly empty) string e:707

fD
append-c(⟨e⟩) =


⟨ec⟩ with e a (possibly empty) string over Σ, c ∈ Σ, and

⟨ec⟩ a substring of c,
⟨error⟩ otherwise,

708

fD
detach(⟨ec⟩) = ⟨e⟩ with e a (possibly empty) string over Σ, and c ∈ Σ,709

fD
detach(⟨⟩) = fdetach(⟨error⟩) = ⟨error⟩,710

fD
top(⟨ec⟩) = ⟨c⟩ with e a (possibly empty) string over Σ, and c ∈ Σ,711

fD
top(⟨⟩) = ftop(⟨error⟩) = ⟨error⟩.712

713

Notice that these function interpretations are closed under D, that is, every tuple from714

relation StringD maps onto a tuple that is in relation StringD.715

Every tuple in DominoSequence is associated with three tuples in String representing,716

respectively, the read of top values, the read of bottom values, and the empty string.717

The association is made via functions ftop-string : DominoSequence → String, fbottom-string :718
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DominoSequence → String, and fempty-string : DominoSequence → String with following719

interpretations in D:720

fD
top-string(d′) = e, with e the (possibly empty) read of top values on dominoes in d′,721

fD
bottom-string(d′) = e, with e the (possibly empty) read of bottom values on dominoes in d′, and722

fD
empty-string(d′) = ⟨⟩.723724

Finally, for function ffuture-solution-string : DominoSequence → String we consider the725

interpretation that associates every domino sequence d′ represented by a tuple in relation726

DominoSequence in D to the final read fD
future-solution-string(d′) = c. Function fsolution-string :727

PCPSolution → String does the same for the single tuple representing d in PCPSolution,728

thus with fD
solution-string(d) = c. Function fempty-domino-sequence : String → DominoSequence is729

interpreted to map every tuple in String onto the tuple from DominoSequence representing730

the empty sequence ().731

All other relations and functions have as purpose to pass tuples from one transaction to732

another in a schedule and to enforce that certain tuples do not collide, which is useful for733

the (if)-part of the proof.734

Relation BooleanD contains two tuples, which we interpret as Boolean values 0 and 1.735

Function fis-non-empty : String → Boolean and fis-error : String → Boolean are interpreted as736

follows:737

fD
is-non-empty(s) =

{
1 if s ̸= ⟨⟩,
0 otherwise,

, and738

fD
is-error(s) =

{
1 if s = ⟨error⟩,
0 otherwise,

, and.739

740

Finally, relation InitialConflictD contains a single tuple, which we refer to by ⟨init⟩. The741

interpretation of fdefines : Boolean → InitialConflict maps 1 and 0 onto ⟨init⟩. Function742

ferror-string : InitialConflict → String maps ⟨init⟩ onto ⟨error⟩. Functions ffinal-domino-string :743

InitialConflict → DominoSequence and ffinal-domino-sequence : InitialConfict → PCPSolution map744

⟨init⟩ onto the solution domino sequence d, respectively on the final read c of d.745

Now the schedule prefixb1(T1) · T2 · . . . · Tm · postfixb1(T1), taking T1 = Split(⟨init⟩),746

T2 = First(⟨init⟩), for i : 1 ≤ i ≤ r, transaction Ti+2 = Dominoi((d1, . . . , di)), Tm =747

Last((d1, . . . , dr)) and b1 = ⟨init⟩ has the conditions of Definition 6. Indeed, it is based on se-748

quence of conflict quadruples (T1, R1[⟨init⟩], W2[⟨init⟩], T2), (T2, W2[()], W3[()], T3), (T3, W3[(d1)],749

W4[(d2)], T4), . . . , (Tr+2, Wr+2[(d1, . . . , dr)], Wr+3[(d1, . . . , dr)], Tr+3), (Tr+3, Wr+3[d], W1[d], T1).750

Condition (1) is true because there is no ww-conflict between a write operation in751

prefixb1(T1) and a write operation in any of the transactions T2, . . . , Tm, since the first write752

operation, respectively second write operation, in Split(⟨init⟩) has a type that only occurs753

before the conflict with First(⟨init⟩), and is the conflict with Last((d1, . . . , dr)), respectively.754

Furthermore (2) is true because b1 <T1 a1 and Condition (3) is true because b1 and a2 are755

rw-conflicting. ◀756

A.2 Helpful lemma757

▶ Lemma 20. If a set P of transaction templates is not robust against RC then there is a758

multiversion split schedule prefixb1(T1) · T2 · . . . · Tm · postfixb1(T1) for a set T = {T1, . . . , Tm}759

of transactions consistent with P in which an operation from a transaction Tj depends on an760

operation from transaction Ti only if j = i + 1 or i = m and j = 1.761
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Proof. If P is not robust against RC, then there is a database D and a multiversion split762

schedule s = prefixb1(T1) · T2 · . . . · Tm · postfixb1(T1) · Tm+1 · . . . · Tn based on a sequence of763

conflict quadruples C for a set of transactions T that is consistent with P and D having the764

properties of Definition 6.765

We can assume that n = m. Otherwise removing the transactions Tm+1, . . . , Tn from766

T , s, and C. We can also assume that s is read-last-committed. Otherwise, choosing an767

appropriate version order ≪s and version function vs.768

Now suppose that there is a transaction Tj with an operation a′
j that depends on an769

operation b′
i from transaction Ti and with j ̸= i + 1 or i = m and j ≠ 1. Clearly, by definition770

of dependency and the structure of a multiversion split schedule, i < j or j = 1.771

We proceed the proof by a construction showing that, then, there is an alternative772

schedule s′ that is also a multiversion split schedule, but for a strict subset of transactions in773

T (thus also still consistent with P and D). The result of the lemma then follows from the774

observation that repeated application of this construction must lead to a schedule with the775

properties of the lemma, without existence of such a dependency.776

For the construction, we proceed by case distinction.777

If i ̸= 1 and j ̸= 1, we construct a schedule s′ from s by removing all operations from778

transactions Th with i < h < j. Notice that we remove at least one transaction, since779

i < i + 1 < j. We can derive a sequence of conflict quadruples C ′ from C by removing all780

occurrences of these transactions Th and adding the conflict quadruple (Ti, b′
i, a′

j , Tj) instead.781

By construction, s′ is a multiversion split schedule based on C ′ over a set of transactions782

consistent with P and D. It remains to show that the newly constructed schedule s′ has the783

properties of Definition 6. The latter is straightforward since C and C ′ agree on their first784

and last quadruple, due to assumption i ̸= 1 and j ̸= 1.785

If i = 1, it follows that i < j and thus j ̸= 1. Then, we construct a schedule s′ from s by786

removing all operations from transactions Th with i < h < j and updating the prefix and787

postfix of T1, now based on b′
i. Notice that we again remove at least one transaction, since788

i < i + 1 < j and that we can derive a sequence of conflict quadruples C ′ from C in the same789

way as before, by removing all occurrences of these transactions Th and adding the conflict790

quadruple (Ti, b′
i, a′

j , Tj) instead. By construction, s′ is a multiversion split schedule based791

on C ′ over a set of transactions consistent with P and D. It remains to show that the newly792

constructed schedule s′ has the properties of Definition 6.793

First, we observe that b′
1 and a′

j are rw-conflicting, which immediately implies that794

Condition (3) is true for s′. The argument is by exclusion. Indeed, if b′
1 and a′

j would be795

ww-conflicting, then b′
1 ≪s a′

j implying b′
1 <s a′

j (due to the assumed read-last committed)796

and thus b′
1 ≤s b1, which is not allowed by condition (1) on s. It follows from a similar797

argument that b′
1 and a′

j are not wr-conflicting: both b′
1 = vs(a′

j) and b′
1 ≪s vs(a′

j) imply798

b′
1 <s C1 <s a′

j , which contradicts with C1 being the last operation in s.799

Since b′
1 is rw-conflicting with a′

j , we have vs(b′
1) ≪s a′

j , implying b′
1 <s a′

j (due to read-800

last-committed and the structure of a multiversion split schedule), thus b′
1 ≤s b1. Therefore,801

condition (1) again transfers from s to s′. For similar reasons condition (2) applies on s′: If802

b1 <T1 a1 then b′
1 ≤T1 b1 <T1 a1,803

Otherwise, if j = 1, it follows that 1 < i. Then, we construct a schedule s′ from s by804

removing all operations from transactions Th with i < h. Notice that we remove at least805

one transaction, since i < m. We can derive a sequence of conflicting quadruples C ′ from C806

by removing all occurrences of these transactions Th and adding the conflicting quadruple807

(Ti, b′
i, a′

j , Tj) instead.808

In this schedule s′, condition (1) and (3) transfer from s by its construction. To see that809
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condition (2) is true on s′, simply notice that if b′
i and a′

1 are ww or wr-conflicting, then810

either b′
i ≪s a′

j or b′
i = vs(a′

j) or b′
i ≪s vs(a′

j), which all imply bi <s Ci <s a′
1 and thus that811

b1 <s a′
1, implying b1 <s′ a′

1. ◀812

A.3 If direction for the proof of Theorem 10813

A.3.1 First step814

Next, we show that, if there exists a multiversion split schedule for the set of transaction815

templates in Figure 7 for some set D of dominoes, then this schedule is always a schedule-816

encoding of a sequence of dominoes in D.817

▶ Proposition 21. Let D be a set of dominoes. If there is a multiversion split schedule s for818

a set of transactions consistent with the transaction template in Figure 7 for D and some819

database D, then this schedule s is a schedule-encoding of some sequence d of dominoes in D.820

For the proof, let D be a database and s = prefixb1(T1) · T2 · . . . · Tm · postfixb1(T1)821

a multiversion split schedule for a set of transactions T consistent with P and D, with822

the conditions of Lemma 20 and based on some sequence of conflict quadruples C =823

(T1, b1, a2, T2), (T2, b2, a3, T3) . . . , (Tm, bm, a1, T1). We show through a sequence of properties824

(Lemmas 23,24, 25, and 26), that s is a schedule-encoding of a sequence d of dominoes in D.825

As a first property (22), we observe that transaction templates in P heavily constrain826

the possible variable instantiations. For transaction template Split, for example, a variable827

mapping depends entirely on the choice of the value for variable I. Since Lemma 20 forbids828

the presence of duplicate transactions in T , two transactions Ti and Tj (with i ̸= j) based829

on transaction template Split cannot agree on their choice for variable I in s. By applying830

this argument to other transaction templates, we obtain the following corollary of Lemma 20.831

Here, for each transaction Ti in s, we write τi to denote the transaction template in P that832

it is based on, and by µi the associated variable mapping for τi, with µi(τi) = Ti.833

▶ Lemma 22. for two transactions Ti and Tj in s, with i ̸= j:834

if Ti and Tj are based on Split, then µi(I) ̸= µj(I);835

if Ti and Tj are based on First then µi(S1) ̸= µj(S1);836

if Ti and Tj are based on Last then µi(B) ̸= µj(B) and µi(C) ̸= µj(C);837

if Ti and Tj are based on domino transaction templates then µi(B) ̸= µj(B) and µi(Bnext) ̸=838

µj(Bnext).839

We conclude the proof of Proposition 21 with the necessary arguments that s is indeed a840

schedule-encoding for some sequence of dominoes.841

▶ Lemma 23. Transaction T1 is based on Split, T2 is based on First, and µ1(I) = µ2(I),842

µ1(X1) ̸= µ2(X2), and µ1(S1) = µ2(S1) ̸= µ2(S0).843

Proof. Since b1 and a2 are rw-conflicting (cf, Definition 6), and there are no updates in the844

considered transaction templates, operation b1 must be a read. Since InitialConflict is the only845

type allowing for conflicts involving a read, it is immediate that T1 must be based on Split and846

T2 based on First, with µ1(I) = µ2(I). From this equality and function ffinal-dominoes-string it847

follows that µ1(S1) = µ2(S1). From Definition 6, particularly that there is no ww-conflict848

between a write operation in prefixb1(T1) and a write operation in any of the transactions849

T2, . . . , Tm, it follows that µ1(X1) ̸= µ2(X2). Finally, function fis-non-empty, which maps S1850

onto X1 in transaction template Split and S0 onto X2 in transaction template First, implies851

µ1(S1) ̸= µ2(S0). ◀852
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▶ Lemma 24. There is a transaction T3 in s and it is based on a domino transaction853

template, with µ3(S1) = µ2(S1).854

Proof. First, suppose towards a contradiction that m = 2. We already know from Lemma 23855

that µ1(I) = µ2(I) and µ1(X1) ̸= µ2(X2), thus a1 = b1 = R[µ1(I)] and b2 = a2 = W[µ2(I)],856

indicating b1 →s a2, particularly, vs(b1) ≪s a2, thus implying that a1 cannot depend on b2,857

which is the desired contradiction.858

The remainder of the proof is by exclusion. Transaction T3 is not based on transaction859

template First, because all possible conflicts between T2 and an instantiation of transaction860

template First (implying either µ2(X2) = µ3(X2), µ2(B) = µ3(B), or µ2(I) = µ3(I)) would861

imply the equality µ2(S1) = µ3(S1) (through functional constraints I = fdefines(X2), S1 =862

ffuture-solution-string(B), and S1 = ffinal-dominoes-string(I)), which is forbidden by Lemma 22.863

The argument that transaction T3 cannot based on transaction template Split is similar: every864

possible conflict between T2 and an instantiation of Split implies µ1(I) = µ2(I) = µ3(I) either865

directly (taking µ2(I2) = µ3(I1) as conflict) or, when taking µ2(X2) = µ3(X1) as conflict,866

through constraints I = fdefines(X1) and I = fdefines(X2) in T2 and T3, respectively. Either way,867

µ1(I) = µ3(I) is forbidden by Lemma 22. Finally, to see that T3 is not based on transaction868

template Last, we observe that a conflict between T2 and an instantiation of transaction869

template Last must be ww-conflicting involving variables B, thus with µ2(B) = µ3(B). Then,870

µ2(S0) = µ3(St), due to functional constraint S0 = ftop-string(B) in T2 and St = ftop-string(B)871

in T3, and µ2(S1) = µ3(S1), due to functional constraint S1 = ffuture-solution-string(B) in T2872

and T3. However, we also have µ3(S1) = µ3(St), due to constraints S1 = fsolution-string(B)873

and St = fsolution-string(B), thus implying µ2(S0) = µ3(St) = µ3(S1) = µ2(S1), which874

contradicts with earlier proven Lemma 23. We conclude that T3 is indeed based on a875

domino transaction template. Therefore, the conflict quadruple (T2, b2, a3, T3) must admit876

ww-conflicting operations over variable B in T2 and either variable B or Bnext in T3. We877

notice that µ2(S1) = ffuture-solution-string(µ2(B)), µ3(S1) = ffuture-solution-string(µ3(B)), and878

µ3(S1) = ffuture-solution-string(µ3(Bnext)), thus independent of the variable Bnext or B in T3,879

we have µ2(S1) = µ3(S1). ◀880

▶ Lemma 25. For a transaction Ti, with i ≥ 4, for which all Tj’s, with j ∈ {3, . . . , i − 1},881

are based on domino transaction templates, transaction Ti is based on a domino transaction882

template or on transaction template Last. Furthermore µ2(S1) = µi(S1).883

Proof. Since domino transaction templates do not mention variables of type InitialConflict884

and write only to variables of type DominoSequence, it remains to show that Ti+1 is not885

based on transaction template First.886

For this, observe that µ2(S1) = µi−1(S1). Indeed, every conflict quadruple (Ti, bi, ai+1, Ti+1),887

with i ∈ {3, . . . , i − 1}, admits ww-conflicting operations with variables of type Domin-888

oSequence. No matter if the conflict is via a variable B or Bnext, the constraints S1 =889

ffuture-solution-string(B) and S1 = ffuture-solution-string(Bnext) ensure µ2(S1) = µi−1(S1).890

Now, assume towards a contradiction that Ti+1 is based on First, thus admitting a891

conflict quadruple (Ti, bi, ai+1, Ti+1) in C. Then either bi = µi(B) and ai+1 = µi+1(B) or892

bi = µi(Bnext) and ai+1 = µi+1(B). Both of these equalities imply µi(S1) = µi+1(S1) due893

to constraints S1 = ffuture-solution-string(B) and S1 = ffuture-solution-string(Bnext), thus implying894

µi(S1) = µ2(S1), this contradict with Lemma 22. We conclude that Ti is indeed based on895

a domino transaction template or on transaction template Last. That µi−1(S1) = µi(S1)896

follows again from the constraints using function ffuture-solution-string. ◀897

▶ Lemma 26. If Ti is based on transaction template Last, then i = m.898
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Proof. Let Tj be the transaction following Ti. We already know about Tj that either j = 1899

or must be a transaction that is different to all foregoing transactions T1, . . . , Ti (due to900

Lemma 20).901

We first show, by exclusion, that transaction Tj is based on Split: Transaction Tj cannot902

be based on Last, as then either µi(B) = µj(B) or µi(C) = µj(C), which directly contradicts903

Lemma 22. Similarly, transaction Tj cannot be based on First, as then µi(B) = µj(B) imply-904

ing µ2(S1) = µi(S1) = µj(S1), due to the constraints involving function ffuture-solution-string.905

Finally, transaction Tj cannot be based on a domino transaction template, because then906

µj(Bnext) = µi(B) = µj(B) or µi−1(Bnext) = µi(B) = µj(Bnext), thus with Ti and Tj contra-907

dicting Lemma 22. We can thus indeed conclude that transaction Tj is based on Split.908

To see that j = 1, recall that µ1(S1) = µi−1(S1) and the only possible conflict between909

Ti and Tj implies µi(C) = µj(C). From the latter we obtain µi−1(S1) = µi(S1), due to910

µi−1(Bnext) = µi(B) and function ffuture-solution-string. From this it follows that µ1(I) = µj(I)911

through I = (fdefines ◦ fis-non-empty)(S1) in transaction template Split. That j = 1 then912

follows from Lemma 22. ◀913

A.3.2 Final step914

Finally, we show that if there is a multiversion split schedule with the properties of Lemma 20915

that is a schedule-encoding for a sequence of dominoes d, then this sequence d is also a916

solution to the respective PCP problem. The next Proposition thus finalized the proof for917

the if-direction of Theorem 10.918

▶ Proposition 27. Let D be a set of dominoes. Let s be a multiversion split schedule with919

the properties of Lemma 20 that is consistent with the transaction templates in Figure 7 for920

D and with some database D. If s is a schedule-encoding of a sequence d of dominoes in D,921

then d is a solution for the PCP problem on input D.922

Proof. Let a1a2 . . . ah and b1b2 . . . bk be the two strings (with ai, bi ∈ Σ) obtained by reading923

from left to right, symbol by symbol, the values on the top, respectively, the bottom of924

dominoes d1, . . . , dr. Let us say that a1a2 . . . ah = a1a2 . . . ar and b1b2 . . . bk = b1b2 . . . br.925

Notice that h and k are not necessarily equal to r as the top and bottom value of an individual926

domino can be of different length.927

For convenience of notation, we introduce for every i ∈ {0, . . . , h} and j ∈ {1, . . . , k} the928

following notation:929

αi :=(fappend-ai
◦ fappend-ai−1 ◦ · · · ◦ fappend-a1)(µ2(S0)).930

βj :=(fappend-bj
◦ fappend-bj−1 ◦ · · · ◦ fappend-b1)(µ2(S0)).931

932

First, we show that933

αh = µ2(S1) = βk. (1)934
935

This result follows from the assumed structure of schedule s. More precisely, since an instan-936

tiation of First with an instantiation of Dominod1 can only have conflicts on instantiations of937

W[B : DominoSequence], we have µ2(B) = µ3(B), from which it follows that µ2(S1) = µ3(S1).938

For every individual instantiation of Dominodi in s, we have that fappend-aℓa
i

◦ · · · ◦939

fappend-a1
i
(µi(St)) = µi(Stai) and fappend-bℓb

i

◦ · · · ◦ fappend-b1
i
(µi(Sb)) = µi(Sbbi), with ai =940

a1a2 . . . aℓa
and bi = b1b2 . . . bℓb

.941
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For transactions Ti, with i ∈ {3, . . . , m + 1}, (thus representing an instantiation of942

Dominodi−2 which is followed in s by an instantiation of Dominodi−1), the only possible con-943

flict is between the instantiation of W[Bnext : DominoSequence] (Ti) and of W[B : DominoSequence]944

in (Ti+1) – notice that this is indeed the only option due to Lemma 22 – thus with µi(Bnext) =945

µi+1(B), implying µi(Stai) = µi+1(St), µi(Sbbi) = µi+1(Sb), and µi(S1) = µi+1(S1).946

Finally, transaction Tm−1 (an instantiation of Dominodm) can only conflict with transac-947

tion Tm (an instantiation of Last) on instantiations of Bnext (in Dominodm , and B (in Last),948

thus with µm−1(Bnext) = µm(B), implying µm−1(Star) = µm(St) = µm(Sb) = µm−1(Sbbr).949

Combining the above equalities indeed proves Condition (1).950

From Condition (1) we can now derive that,951

αi = µ2(S1) = βi, for every i ∈ {1, . . . min{h, k}}, (2)952
953

by following an analogous approach. Indeed, in every instantiation of Dominoi, there is a954

functional constraint for every application of the append function that requires its input to be955

the result of the detach function applied over its output, which indeed implies Condition (2).956

To see that k = h, we observe that k ̸= h implies an application of the detach function957

over the instantiation of S1 (for which we already argued it has the same tuple assigned for958

every domino instantiation) for the shortest string, which contradicts with Condition (1)959

because such an application results in the same instantiation as Se, which can never equal960

the instantiation for S1.961

The desired result that the individual symbols in the top and bottom reads of dominoes in962

sequence d are the same now follows from the functional constraint that every interpretation of963

a string sequence mapped via function ftop onto either the interpretation for S1 (representing964

symbol 1 ∈ Σ) or S0 (representing symbol 0 ∈ Σ). ◀965

B Proofs for Section 5966

B.1 Proof for Lemma 13967

Before proving the correctness of Lemma 13, we first present two additional lemmas that968

will be used in the correctness proof.969

▶ Lemma 28. Let (Rels, Funcs) be a schema for which a disjoint partitioning of Funcs in970

pairs P = (f1, g1), (f2, g2), . . . , (fn, gn) exists such that dom(fi) = range(gi) and dom(gi) =971

range(fi) for every (fi, gi) ∈ P and every schema graph SG(Rels, {h1, h2, . . . , hn}) over the972

schema restricted to function names {h1, h2, . . . , hn} with hi ∈ (fi, gi) is a multi-tree. Then:973

1. there is no function name f ∈ Funcs with dom(f) = range(f); and974

2. for every path in SG(Rels, Funcs), say visiting the nodes R1, R2, . . . , Rm−1, Rm, if R1 =975

Rm and R1 ̸= Ri for every i ∈ [2, m − 1], then R2 = Rm−1 and (f, g) is a pair in P with976

f the edge from R1 to R2 and g the edge from Rm−1 to Rm.977

Proof. Towards a contradiction, assume (1) does not hold. That is, there is a function name978

fi with dom(fi) = range(fi) = R for some type R. Let gi be the function name such that979

(fi, gi) is a pair in P . By definition, dom(gi) = range(gi) = R. But then we cannot pick a980

hi ∈ (fi, gi) such that the resulting schema graph is a multi-tree. Indeed, in both cases, there981

is a self-loop on R, leading to the desired contradiction.982

For (2), assume towards a contradiction that R2 ̸= Rm−1. Without loss of generality, we983

can assume that each node is visited only once in R2, . . . , Rm−1. Otherwise, R2, . . . , Rm−1984

contains a loop that can be removed from this sequence without altering R2 and Rm−1. Since985
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R1, R2, . . . , Rm−1, Rm is a path in SG(Rels, Funcs), there is a sequence of function names986

F = e1 · · · em−1 such that each ei is an edge from Ri to Ri+1 in SG(Rels, Funcs), implying987

dom(ei) = Ri and range(ei) = Ri+1. By assumption that each type Ri occurs only once in988

R2, . . . , Rm−1 (notice that, for i = 1, this follows from Condition (2) of the lemma) and type989

R1 = Rm does not appear in R2, . . . , Rm−1, there is no pair of function names ei and ej in F990

with i ≠ j, dom(ei) = range(ej) and range(ei) = dom(ej). Therefore, at most one function991

name of each pair in P appears in F . But then we can choose hi = ei for each such pair in P ,992

with ei the function name appearing in F . Since F describes a cycle in SG(Rels, Funcs), the993

resulting schema graph restricted to these hi cannot be a multi-tree, as it contains a cycle.994

It remains to argue that if f is the edge from R1 to R2 and g is the edge from Rm−1 to995

Rm on this path, then (f, g) is a pair in P . To this end, note that dom(f) = range(g) and996

range(f) = dom(g), as R1 = Rm and R2 = Rm−1. If (f, g) is not a pair in P , then there are997

two pairs (f, f ′) and (g, g′) in P with dom(f) = dom(g′) = range(f ′) = range(g) = R1 and998

range(f) = range(g′) = dom(f ′) = dom(g) = R2. Then we can choose f in (f, f ′) and g in999

(g, g′). Since the resulting schema graph cannot be a multi-tree, as there is a cycle between1000

R1 and R2, this choice leads to a contradiction. ◀1001

▶ Lemma 29. Let D be a sequence of potentially conflicting quadruples over P ∈ MTBTemp.1002

Then1003

1. X ⇝τ Y iff Y ⇝τ X for every pair of variables X and Y occurring in a template τ ; and1004

2. X ⇝D Y iff Y ⇝D X for every pair of variables X and Y occurring in D.1005

Proof. (1) We argue by induction on the definition of X ⇝τ Y that X ⇝τ Y implies Y ⇝τ X.1006

The other direction is analogous. The base case is immediate, as X = Y implies Y ⇝τ X by1007

definition. For the inductive case, assume a variable Z such that Y = f(Z) is a constraint in τ1008

and X ⇝τ Z. By the induction hypothesis, Z F
⇝τ X for some sequence of function names F .1009

Since P ∈ MTBTemp, there is a constraint Z = f ′(Y) in τ as well. It follows that Y F ′

⇝τ X1010

with F ′ = f ′ · F .1011

(2) We argue by induction on the definition of X ⇝D Y that X ⇝D Y implies Y ⇝D X. The1012

other direction is again analogous. The first base case is now immediate, as we already argued1013

that X ⇝τ Y implies Y ⇝τ X. For the second base case, assume X ε
⇝D Y and (τi, oi, pj , τj)1014

is a potentially conflicting quadruple in D with var(oi) = X and var(pj) = Y (the case for1015

(τj , oj , pi, τi) is analogous). Y ε
⇝D X then follows by definition. For the inductive case, let Z be1016

a variable such that X F1⇝D Z and Z F2⇝D Y. Then by induction hypothesis Z F ′
1⇝D X and Y F ′

2⇝D Z1017

for some sequence of function names F ′
1 and F ′

2. By definition, Y F ′

⇝D X with F ′ = F ′
2 · F ′

1. ◀1018

▶ Lemma 13. Let D be a sequence of potentially conflicting quadruples over P ∈ MTBTemp.1019

Then X eD Y implies X ⇝D Y and Y ⇝D X. Furthermore, if type(X) = type(Y) then µ̄(X) = µ̄(Y)1020

for every variable mapping µ̄ for D that is admissible for some database D.1021

Proof. (1) Assuming X eD Y, we first show by induction on the definition of connectedness1022

that X ⇝D Y. By Lemma 29, Y ⇝D X then follows. For the base case, both X ⇝D Y and1023

Y ⇝D X imply X ⇝D Y, where the former is immediate and the latter is by Lemma 29. For the1024

inductive case, let Z be a variable with X eD Z and either Z ⇝D Y or Y ⇝D Z. Again, Z F2⇝D Y1025

for some sequence of function names F2 is implied in both cases. By induction hypothesis,1026

X F1⇝D Z for some sequence of function names F1. As a result, X F
⇝D Y with F = F1 · F2.1027

(2) Next, let X and Y be two variables occurring in Trans(D) with X eD Y and type(X) =1028

type(Y) and let µ̄ be a variable mapping for D that is admissible for a database D. We prove1029

that µ̄(X) = µ̄(Y).1030
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We already argued that X eD Y implies X ⇝D Y. By definition of X ⇝D Y, there is a1031

sequence of variables X1, X2 . . . , Xn with X1 = X and Xn = Y such that for each pair of adjacent1032

variables Xi and Xi+1:1033

(†) Xi and Xi+1 both occur in the same template τ ∈ Trans(D) and Xi+1 = f(Xi) ∈ Γ(τ) for1034

some function name f ; or1035

(‡) type(Xi) = type(Xi+1) and there is a potentially conflicting quadruple (τj , oj , pk, τk) in D1036

with either var(oj) = Xi and var(pk) = Xi+1 or var(pk) = Xi and var(oj) = Xi+1.1037

In the remainder of this proof, we show that for each pair of variables Xi and Xj in this1038

sequence with type(Xi) = type(Xj) that µ̄(Xi) = µ̄(Xj). The desired µ̄(X) = µ̄(Y) then1039

follows immediately as X = X1 and Y = Xn. Note that it suffices to show this property1040

only for pairs of variables Xi and Xj for which no variable Xk exists with i < k < j and1041

type(Xi) = type(Xj) = type(Xk). Indeed, if such an Xk exists, we can recursively argue that1042

µ̄(Xi) = µ̄(Xk) and µ̄(Xk) = µ̄(Xj). The argument is by induction on the number of variables1043

between Xi and Xj .1044

If j = i + 1 (base case), then (‡) applies to Xi and Xj . Indeed, if (†) would apply instead,1045

then there would be a function name f with dom(f) = type(Xi) = type(Xj) = range(f),1046

contradicting Condition (1) of Lemma 28. By definition of µ̄, we have µ̄(Xi) = µ̄(Xj).1047

Next, let i + 1 < j (inductive case), and assume that µ̄(Xk) = µ̄(Xℓ) for all Xk and Xℓ1048

with i < k ≤ ℓ < j and type(Xk) = type(Xℓ) (induction hypothesis). From this sequence1049

Xi, . . . Xj , we derive a sequence of function names F = f1 · · · fm−1, where each function1050

name fi is based on an application of (†) on adjacent variables (notice that applications1051

of (‡) do not result in a function name being added to F ). By assumption on the types of1052

variables Xk with i < k < j, we have in particular type(Xi+1) ̸= type(Xi) and type(Xj−1) ̸=1053

type(Xj). This implies that (†) is applicable for Xi and Xi+1 (respectively Xj−1 and Xj).1054

Furthermore, Xi and Xi+1 appear in the same template, say τi (respectively τj for Xj−1 and1055

Xj), and Xi+1 = f1(Xi) ∈ Γ(τi) (respectively Xj = fm−1(Xj−1) ∈ Γ(τj)). By construction,1056

F then describes a path in SG(Rels, Funcs) visiting the nodes R1, R2, . . . , Rm−1, Rm with1057

type(Xi) = R1, type(Xi+1) = R2, type(Xj−1) = Rm−1 and type(Xj) = Rm. Since this path1058

satisfies Condition 2 in Lemma 28, it follows that type(Xi+1) = type(Xj−1) and (f1, fm−1)1059

is a pair in the pairwise partitioning of Funcs witnessing P ∈ MTBTemp. By definition1060

of MTBTemp, Xi+1 = f1(Xi) ∈ Γ(τi) then implies Xi = fm−1(Xi+1) ∈ Γ(τi). According to1061

the induction hypothesis, µ̄(Xi+1) = µ̄(Xj−1). Since µ̄ is admissible for D, we conclude that1062

µ̄(Xi) = fD
m−1(µ̄(Xi+1)) = fD

m−1(µ̄(Xj−1)) = µ̄(Xj). ◀1063

B.2 Proof for Lemma 141064

▶ Lemma 14. For a multiversion split schedule s based on a sequence of conflicting quadruples1065

C over a set of transactions T consistent with a P ∈ MTBTemp and a database D, let µ̄1066

be the variable mapping for a sequence of potentially conflicting quadruples D over P with1067

µ̄(D) = C. Then, a set S of type mappings over disjoint ranges and a function φS : Var → S1068

exist with:1069

µ̄(X) = c(type(X)) for every variable X, with c = φS(X);1070

φS(X) = φS(Y) whenever X eD Y; and,1071

φS(X) ̸= φS(Y) for every constraint X ̸= Y occurring in a template τ ∈ Trans(D).1072

Proof. To aid the construction of S and φS , we first define a coloring function λ that assigns1073

a color to each tuple occurring in the schedule s such that the following holds: for every pair1074

of tuples t and v occurring in s:1075
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connected tuples are mapped to the same color: if µ̄(X) = t, µ̄(Y) = v and X eD Y for1076

some variables X, Y occurring in Trans(D), then λ(t) = λ(v); and1077

different tuples of the same type are mapped to different colors: if type(t) = type(v) and1078

t ̸= v, then λ(t) ̸= λ(v).1079

Note that we can always construct such a function λ as by Lemma 13, it cannot be the case1080

that type(t) = type(v), t ̸= v and there is a pair of variables X, Y with µ̄(X) = t, µ̄(Y) = v,1081

and X eD Y .1082

For α ∈ range(λ), define the type mapping cα as follows: for every type R ∈ Rels:

cα(R) =
{

t if λ(t) = α and type(t) = R,
vc,R otherwise,

where vc,R is an arbitrary tuple of type R not occurring in s or any other type mapping1083

cβ for β ∈ range(λ). Define S = {cα | α ∈ range(λ)}. By construction, every type mapping1084

in S is well defined and all type mappings are over disjoint ranges. Furthermore, cα ̸= cβ1085

whenever α ̸= β.1086

We now construct φS as follows: φS(X) = cα with α = λ(µ̄(X)) for every variable X1087

occurring in Trans(D). It remains to argue that φS indeed satisfies all properties stated in1088

Lemma 14. By construction of S and φS , we have µ̄(X) = c(type(X)) for every variable X,1089

with c = φS(X). Towards the second property, notice that X eD Y implies φS(X) = cλ(µ̄(X)) =1090

cλ(µ̄(Y)) = φS(Y) by definition of λ and φS . For the last property, assume X ̸= Y occurs in a1091

template τ ∈ Trans(D) and type(X) = type(Y). Since µ̄ is admissible for database D, µ̄(X) ̸=1092

µ̄(Y). Then, by definition of λ and φS , we have φS(X) = cλ(µ̄(X)) ̸= cλ(µ̄(Y)) = φS(Y). ◀1093

B.3 Proof for Lemma 151094

▶ Lemma 30. Let D be a sequence of potentially conflicting quadruples. If X eD Y and1095

Y eD Z then X eD Z for every triple of variables X, Y, Z occurring in Trans(D).1096

Proof. According to Lemma 13, X eD Y and Y eD Z imply respectively X ⇝D Y and Y ⇝D Z.1097

By definition, X ⇝D Z and hence X eD Z. ◀1098

▶ Lemma 15. Let P ∈ MTBTemp and let S = {c1, c2, c3, c4} be a set consisting of four1099

type mappings with disjoint ranges. Then, P is not robust against RC iff there is a sequence1100

of quintuples E = (τ1, o1, co1 , p1, cp1), . . . , (τm, om, com
, pm, cpm

) with m ≥ 2 such that for1101

each quintuple (τi, oi, coi
, pi, cpi

) in E:1102

1. oi and pi are operations in τi, and coi
, cpi

∈ S;1103

2. Xi e̸τi Yi for each constraint Xi ̸= Yi in τi;1104

3. coi
= cpi

if oi eτi
pi;1105

4. coi ̸= cpi if there is a constraint Xi ̸= Yi in τi with Xi eτi var(oi) and Yi eτi var(pi);1106

5. if i ̸= 1 and cqi
= cq1 for some qi ∈ {oi, pi} and q1 ∈ {o1, p1}, then there is no operation o′

i1107

in τi potentially ww-conflicting with an operation o′
1 in prefixo1(τ1) with var(o′

i) eτi
var(qi)1108

and var(o′
1) eτ1 var(q1).1109

Furthermore, for each pair of adjacent quintuples (τi, oi, coi
, pi, cpi

) and (τj , oj , coj
, pj , cpj

) in1110

E with j = i + 1, or i = m and j = 1:1111

6. oi is potentially conflicting with pj and coi
= cpj

;1112

7. if i = 1 and j = 2, then o1 is potentially rw-conflicting with p2; and1113

8. if i = m and j = 1, then o1 <τ1 p1 or om is potentially rw-conflicting with p1.1114

Proof. (if) Let D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) be the sequence of potentially con-1115

flicting quadruples derived from E. Notice in particular that D is indeed a sequence of1116
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potentially conflicting quadruples by (1) and (6). We construct a variable mapping µ̄ for1117

D admissible for a database D such that the sequence of conflicting quadruples C = µ̄(D)1118

satisfies the conditions in Definition 6, thereby proving that P is not robust against RC.1119

Let φS : Var → S be the (partial) function assigning a type mapping in S to each
variable occurring in an operation in E:

φS(X) =
{

coi
if var(oi) = X for some (τi, oi, coi

, pi, cpi
) ∈ E,

cpi if var(pi) = X for some (τi, oi, coi , pi, cpi) ∈ E.

This function φS is well defined: if there is a (τi, oi, coi
, pi, cpi

) ∈ E with var(oi) = var(pi) = X,1120

then oi eτi
pi and hence coi

= cpi
by (3). Recall that we assume that templates in E are1121

variable-disjoint. We argue that φS(X) = φS(Y) if X eD Y for each pair of variables X and1122

Y for which φS is defined. From Lemma 13, it follows that X ⇝D Y whenever X eD Y. Let1123

τi and τj be the template in which respectively X and Y occur. The argument is now by1124

induction on the definition of X ⇝D Y:1125

If i = j and X ⇝τi
Y, then φS(X) = φS(Y) is immediate by (3);1126

If (τi, oi, pj , τj) ∈ D with var(oi) = X and var(pj) = Y (respectively (τj , oj , pi, τi) ∈ D1127

with var(oj) = Y and var(pi) = X), then φS(X) = φS(Y) is immediate by (6);1128

Otherwise, if X ⇝D Z and Z ⇝D Y for some variable Z, then by induction φS(X) = φS(Z) =1129

φS(Y).1130

By Lemma 30, eD is an equivalence relation. For X occurring in Trans(D), denote by1131

[X] the equivalence class of X. Let S ′ be obtained by extending S with a type mapping c[X]1132

for each equivalence class where no variable Y ∈ [X] is defined in φS . Furthermore, each of1133

the c[X] are picked such that all type mappings in S ′ have disjoint ranges.1134

Next, we extend φS to a function φS′ : Var → S ′ assigning a type mapping to each
variable X occurring in Trans(D) as follows:

φS′(X) =


φS(X) if φS is defined for X,
φS(Y) if φS is defined for Y but not for X and X eD Y,
c[X] otherwise.

Notice, furthermore, that in the second case X might be connected in D to multiple variables1135

for which φS is defined, say Y1 and Y2. Then, by Lemma 30, Y1 eD Y2 and hence φS(Y1) =1136

φS(Y2). We therefore conclude that φS′(X) is well defined. We argue that φS′(X) = φS′(Y)1137

if X eD Y for each pair of variables X and Y. If φS is defined for both X and Y, then the1138

result is immediate by φS(X) = φS(Y). If φS is defined for one of these two variables, say1139

X, then φS′(X) = φS(X) = φS′(Y) by construction of φS′ . If φS is not defined for both X1140

and Y, then either there exists a variable Z for which φS is defined and Z is connected in1141

D to one of these two variables, say X, or no such variable Z exists. In the former case,1142

Z eD Y follows from Lemma 30, implying φS′(X) = φS(Z) = φS′(Y). In the latter case,1143

φS′(X) = c[X] = c[Y] = φS′(Y) by construction of φS′ .1144

We now define the variable mapping µ̄ from φS′ as µ̄(X) = c(type(X)) for each variable X,1145

where c = φS(X). Next, we construct the database D. For each template τi and corresponding1146

variable mapping µi in µ̄, we add all tuples in µi(τi) to the database D. Furthermore,1147

for each constraint X = f(Y) in Γ(τi), we have fD(µi(X)) = µi(Y) in D. This is well1148

defined for each function fD. Towards a contradiction, assume we have fD(µ̄(Xi)) = µ̄(Yi)1149

witnessed by a template τi and fD(µ̄(Xj)) = µ̄(Yj) witnessed by a template τj , where1150

µ̄(Xi) = µ̄(Xj), but µ̄(Yi) ̸= µ̄(Yj). Since Xi eD Yi, Xj eD Yj and µ̄(Xi) = µ̄(Xj), we have1151

φS′(Yi) = φS′(Xi) = φS′(Xj) = φS′(Yj). Then, µ̄(Yi) = µ̄(Yj), leading to a contradiction.1152
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In order to argue that µ̄ is indeed admissible for D, it remains to show that for each1153

constraint X ̸= Y in a template τi, we have µ̄(X) ̸= µ̄(Y). Again towards a contradiction,1154

assume µ̄(X) = µ̄(Y), and let (τi, oi, coi
, pi, cpi

) be the corresponding quintuple in E. By1155

definition of µ̄, we have φS′(X) = φS′(Y). It follows from φS′ that either X eτi Y; or1156

X eτi
var(oi) (respectively Y eτi

var(oi)), Y eτi
var(pi) (respectively X eτi

var(pi)) and1157

coi = cpi . However, the former is contradicted by (2) and the latter by (4). We therefore1158

conclude that µ̄ is admissible for D, as it satisfies all constraints.1159

It remains to argue that the sequence of conflicting quadruples C = µ̄(D) satisfies all1160

conditions stated in Definition 6. The second and third condition are immediate by respect-1161

ively (8) and (7). Towards a contradiction, assume the first condition holds. Then, there is1162

an operation b′
1 in prefixµ̄o1(µ̄(τ1)) ww-conflicting with an operation b′

i in a transaction µ̄τi.1163

Let b′
1 = µ̄(o′

1) with var(o′
1) = X1 and b′

i = µ̄(o′
i) with var(o′

i) = X, and let (τ1, o1, co1 , p1, cp1)1164

and (τi, oi, coi , pi, cpi) be the corresponding quintuples in E. Note that o′
1 is potentially1165

ww-conflicting with o′
i and µ̄(X1) = µ̄(Xi). Then, φA′(X1) = φA′(Xi). By construction of φA′ ,1166

this can only hold if X1 eτ1 var(q1), Xi eτi var(qi) and cq1 = cqi for some q1 ∈ o1, p1 and1167

qi ∈ oi, pi, thereby contradicting (5).1168

(only if) If P is not robust against RC, then there exists a multiversion split schedule s based1169

on a sequence of conflicting quadruples C over a set of transactions T consistent with P1170

and a database D. Let µ̄ be the variable mapping for a sequence of potentially conflicting1171

quadruples D = (τ1, o1, p1, τ2), . . . , (τm, om, p1, τ1) over P with µ̄(C) = D, and let S and φS1172

be as in Lemma 14.1173

From this sequence D and function φS , we derive the sequence of quintuples E =
(τ1, o1, φS(var(o1)), p1, φS(var(p1))), . . . , (τm, om, φS(var(om)), pm, φS(var(pm))). Let φ′

S =
{c1, c2, c3, c4} be a set consisting of four type mappings with disjoint ranges. We ad-
apt each quintuple in E in order, thereby creating a sequence E′ satisfying the prop-
erties stated in Lemma 15. First, we add (τ1, o1, c1, p1, ck) to E′, where ck = c1 if
φS(var(o1)) = φS(var(p1)), and ck = c2 otherwise. For each of the remaining quintuples in
E, let (τi−1, oi−1, coi−1 , pi−1, cpi−1) be the quintuple previously added to E′. We then add
(τi, oi, coi , pi, cpi) to E′ where coi = cpi−1 and

cpi
=



coi
if φS(var(oi)) = φS(var(pi)),

c1 if φS(var(oi)) = φS(var(o1)),
c2 if φS(var(oi)) = φS(var(p1)) and φS(var(o1)) ̸= φS(var(p1)),
c3 if φS(var(oi)) ̸= φS(var(pi)) and cpi

̸= c3,
c4 otherwise.

By construction, for every quintuple (τi, oi, coi , pi, cpi) in E′ we now have1174

coi
= cpi

iff φS(var(oi)) = φS(var(pi)); and1175

cqi = cq1 iff φS(var(qi)) = φS(var(q1)) for every qi ∈ {oi, pi} and q1 ∈ {o1, p1}.1176

It remains to argue that E′ indeed satisfies all required properties. (1) is trivial by1177

construction. (2) If Xi ̸= Yi is a constraint in τi, then φS(X) ̸= φS(Y) and X e̸D Y according1178

to Lemma 14. (3) If oi eτi
pi, then φS(var(oi)) = φS(var(pi)) by Lemma 14, and hence1179

coi
= cpi

. (4) Assume there is a constraint Xi ̸= Yi in a template τi with Xi eτi
var(oi)1180

and Yi eτi
var(pi). By Lemma 14, φS(Xi) = φS(var(oi)) ̸= φS(var(pi)) = φS(Yi), and1181

therefore coi
̸= cpi

. (5) Let cqi
= cq1 for some qi ∈ {oi, pi} and q1 ∈ {o1, p1}, with i ̸= 1.1182

Assume towards a contradiction that there is an operation o′
i in τi potentially ww-conflicting1183

with an operation o′
1 in prefixo1(τ1) with var(o′

i) eτi
var(qi) and var(o′

1) eτ1 var(q1). But1184
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then φS(var(o′
i)) = φS(var(qi)) = φS(var(q1)) = φS(var(o′

1)), implying that µ̄(o′
i) is ww-1185

conflicting with µ̄(o′
1), contradicting the properties of C stated in Definition 6. (6) is again1186

trivial by construction. (7) By Definition 6, µ̄(o1) is rw-conflicting with µ̄(p2) in C. Therefore,1187

o1 is potentially rw-conflicting with p2. (8) By Definition 6, µ̄(o1) <µ̄(τ1) µ̄(p1) or µ̄(om) is1188

rw-conflicting with µ̄(p1) in C. As a result, o1 <τ1 p1 or om is rw-conflicting with p1. ◀1189

B.4 NLOGSPACE upper bound1190

Theorem 12 relies on the characterization provided by Lemma 15 and the ability to guess a1191

sequence of quintuples and verify with logarithmic space if it has the properties of Lemma 15.1192

The algorithm goes as follows: We start by guessing three initial quintuples, representing1193

respectively the first, second and last quintuple of the possible sequence of quintuples as in1194

Lemma 15. Consistent with previously used notation, we refer to these quintuples by E1,1195

E2, and Em, with Ei = (τi, oi, coi , pi, cpi). Note that the indices we use here are not part of1196

the algorithm. They are only used to distinguish between the different considered quintuples1197

in the proof argument.1198

We store all three quintuples using a logarithmic amount of space, by storing pointers1199

to the respective transaction templates in P, the positions of operations in the respective1200

transaction templates, and the number 1, 2, 3 or 4 for the type mappings.1201

At this point, we verify that Condition (7) and (8) are true, that Conditions (1-5) are1202

true for all chosen transaction templates and operations, and that Condition (6) is true for1203

τ1 and τ2, and τ2 and τm. We reject the guessed quintuples if any of the conditions is false.1204

If all previous checks are true, we proceed by inserting another step. Let i = 2. We1205

guess a new quintuple Ei+1 and verify that Condition (5) is true for τi and τi+1 and that1206

Conditions (1-6) are true for τi+1 and reject the entire construction if one of these conditions1207

failed. Notice that all Conditions, including Condition (5) can be checked easily, particularly1208

because quintuple E1 is stored. To proceed, we discard quintuple Ei and store Ei+1 instead,1209

thus without increasing the amount of space we use.1210

If τi+1 and τm (from quintuple Em) have Condition (6), the algorithm emits an accept.1211

Indeed, then the sequence E1, . . . , Ei, Ei+1, Em of guessed quintuples has all the properties1212

of Lemma 15. Otherwise, the algorithm proceeds with another insertion step, for i = i + 1.1213

C Proofs for Section 61214

C.1 Proof for Lemma 171215

▶ Lemma 17. Let D be a sequence of potentially conflicting quadruples over a set of1216

transaction templates P ∈ AcycTemp. For every pair of variables X, Y occurring in Trans(D),1217

if X F
⇝D Y, then type(X) F

⇝SG type(Y), with SG the corresponding schema graph.1218

Proof. Let τi and τj be the templates in D in which X and Y occur, respectively. The proof1219

is by induction on the definition of X F
⇝D Y.1220

(Implication within the same template) If i = j and X F
⇝τi

Y, then either F = ε and1221

X = Y, or there is a variable Z such that Y = f(Z) is a constraint in Γ(τi), X F ′

⇝τi Z and1222

F = F ′ · f . In the former case, type(X) = type(Y), so type(X) ε
⇝SG type(Y) is immediate. In1223

the latter case, it follows by induction that type(X) F ′

⇝SG type(Z). Since dom(f) = type(Z)1224

and range(f) = type(Y), it follows by definition that type(Z) f
⇝SG type(Y) and furthermore1225

type(X) F
⇝SG type(Z) holds.1226

(Implication between templates) If F = ε and (τi, oi, pj , τj) (respectively (τj , oj , pi, τi))1227

is a potentially conflicting quadruple in D, with var(oi) = X and var(pj) = Y (respectively1228
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var(pi) = X and var(oj) = Y), then type(X) = type(Y) by definition of potentially conflicting1229

operations. So, type(X) ε
⇝SG type(Y) is again immediate.1230

(Inductive case) If X F1⇝D Z and Z F2⇝D Y for some variable Z with F = F1 · F2, then1231

type(X) F1⇝SG type(Z) and type(Z) F2⇝SG type(Y) follow by induction. We conclude that1232

type(X) F
⇝SG type(Y). ◀1233

C.2 Proof for Theorem 161234

We call node S a descendant of node R and R an ancestor of S in an acyclic schema graph1235

SG. We write R ε
⇝SG S, with ε denoting the empty labeling, for the case R = S. This means1236

that a node is a descendant and ancestor of itself. When F is not relevant, we simply write1237

R ⇝SG S.1238

Let cR and cS be two tuple-contexts for types R and S, respectively, such that S is a1239

descendant of R in SG, witnessed by the path R F
⇝SG S in SG. We then say that cS is1240

a tuple-subcontext of cR witnessed by F if cS(S F ′

⇝SG S′) = cR(R F · F ′

⇝SG S′) for every path1241

S F ′

⇝SG S′ in SG. It should be noted that R F · F ′

⇝SG S′ is indeed a valid path in SG, as it1242

concatenates the paths R F
⇝SG S and S F ′

⇝SG S′. For a given tuple-context c for a type R in1243

the schema graph SG, we will often write c(F ) as a shorthand notation for c(R F
⇝SG S).1244

Similar to Lemma 14 for sets of transaction templates admitting multi-tree bijectivity,1245

Lemma 34 shows that we can represent a counterexample schedule based on a sequence of1246

potentially conflicting quadruples D over an acyclic schema by assigning a tuple-context to1247

each variable in Trans(D), taking special care when assigning contexts to variables connected1248

in D to make sure that they are properly related to each other. For a set of tuple-contexts A,1249

we refer to a (partial) function φA : Var → A mapping (a subset of) variables in Trans(D)1250

to tuple-contexts in A as a (partial) context assignment for D over A. We furthermore say1251

that φA is a total context assignment for D over A if φA is defined for every variable in1252

Trans(D).1253

Two variables X and Y occurring in Trans(D) are equivalent in D, denoted X ≡D Y if1254

X = Y;1255

there exists a pair of variables Z and W and a sequence of function names F with Z ≡D W,1256

Z F
⇝D X and W F

⇝D Y; or1257

there exists a variable Z with X ≡D Z and Z ≡D Y.1258

Similarly, two variables X and Y occurring in a transaction template τ are equivalent in τ ,1259

denoted X ≡τ Y if1260

X = Y;1261

there exists a pair of variables Z and W in τ and a sequence of function names F with1262

Z ≡τ W, Z F
⇝τ X and W F

⇝τ Y; or1263

there exists a variable Z with X ≡τ Z and Y ≡τ Z.1264

Intuitively, every variable mapping admissible for a given database will assign the same1265

tuple to equivalent variables (see Lemma 32). Due to these equivalent variables, the1266

assignment of a tuple to a variable X for a given database might imply the tuple assigned1267

to a variable Y, even if X ⇝D Y does not hold. We capture this observation by introducing1268

variable determination, which is stronger than the previously defined variable implication.1269

Formally, a variable X determines a variable Y in D witnessed by a sequence of function1270

names F , denoted X F⇒D Y if:1271

X F
⇝D Y;1272

F = ε and X ≡D Y; or1273

there exists a variable Z with X F1⇒D Z, Z F2⇒D Y and F = F1 · F2.1274
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For two variables X and Y in a template τ ∈ Trans(D) we furthermore say that X determines1275

Y in τ witnessed by a sequence of function names F , denoted X F⇒τ Y if:1276

X F
⇝τ Y;1277

F = ε and X ≡τ Y; or1278

there exists a variable Z with X F1⇒τ Z, Z F2⇒τ Y and F = F1 · F2.1279

▶ Lemma 31. For a multiversion split schedule s based on a sequence of conflicting quadruples1280

C over a set of transactions T consistent with a set of transaction templates P and a database1281

D, let µ̄ be the variable mapping for a sequence of potentially conflicting quadruples D over1282

P with µ̄(D) = C. Then, for every combination of variables W, X, Y, Z occurring in Trans(D),1283

if Z F
⇝D X, W F

⇝D Y and µ̄(Z) = µ̄(W), then µ̄(X) = µ̄(Y).1284

Proof. By definition of Z ⇝D X, there is a sequence of variables X1, X2 . . . , Xn with X1 = Z1285

and Xn = X such that for each pair of adjacent variables Xi and Xi+1:1286

(†) Xi and Xi+1 both occur in the same template τ ∈ Trans(D) and Xi+1 = f(Xi) ∈ Γ(τ) for1287

some function name f ; or1288

(‡) type(Xi) = type(Xi+1) and there is a potentially conflicting quadruple (τj , oj , pk, τk) in D1289

with either var(oj) = Xi and var(pk) = Xi+1 or var(pk) = Xi and var(oj) = Xi+1.1290

Furthermore, the sequence F corresponds to the function names used in applications of (†).1291

Analogously, W ⇝D Y, implies a sequence of variables Y1, Y2 . . . , Yn with Y1 = W and Ym = Y1292

with the same properties. Notice that the lengths of these two sequences of variables, namely1293

n and m, are not necessarily equal to each other and to the length of F due to possible1294

applications of (‡). For a variable Xi in the sequence X1, X2, . . . , Xn, we denote the sequence of1295

function names derived from applications of (†) in the subsequence Xi, . . . , Xn by suffixF (Xi).1296

Notice that suffixF (Xi) is indeed always a suffix of F , and that suffixF (X1) = suffixF (Y1) = F1297

and suffixF (Xn) = suffixF (Yn) = ε.1298

We argue by induction that for every i ∈ [1, n] and j ∈ [1, m], if suffixF (Xi) = suffixF (Yj)1299

then µ̄(Xi) = µ̄(Yj). This then implies µ̄(X) = µ̄(Xn) = µ̄(Ym) = µ̄(Y). (base case) Note1300

that µ̄(X1) = µ̄(Z) = µ̄(W) = µ̄(Y1) and suffixF (X1) = F = suffixF (Y1). (inductive case) Let1301

suffixF (Xi+1) = suffixF (Yj+1). Then, we distinguish the following cases:1302

suffixF (Xi) = suffixF (Xi+1): This means that (‡) applies to Xi and Xi+1, and there1303

is a potentially conflicting quadruple (τk, ok, pℓ, τℓ) in D with either var(ok) = Xi and1304

var(pℓ) = Xi+1 or var(pℓ) = Xi and var(ok) = Xi+1. By definition of µ̄, we have µ̄(Xi+1) =1305

µ̄(Xi) and by induction that µ̄(Xi+1) = µ̄(Yj+1) implying that µ̄(Xi+1) = µ̄(Xj+1).1306

suffixF (Yj) = suffixF (Yj+1): similar as previous argument;1307

suffixF (Xi) ̸= suffixF (Xi+1) and suffixF (Yj) ̸= suffixF (Yj+1): Then, (†) applies to both1308

Xi and Xi+1, and Yj and Yj+1. Furthermore, suffixF (Xi) = suffixF (Yj) = f · F ′ for1309

some f and F ′. By induction, µ̄(Xi) = µ̄(Yj). Then, Xi+1 = f(Xi) is a constraint1310

in some template τk ∈ Trans(D) and Yj+1 = f(Yj) is a constraint in some template1311

τℓ ∈ Trans(D). Since µ̄ is admissible for database D and µ̄(Xi) = µ̄(Yj), it follows that1312

µ̄(Xi+1) = fD(µ̄(Xi)) = fD(µ̄(Yj)) = µ̄(Yj+1).1313

◀1314

▶ Lemma 32. For a multiversion split schedule s based on a sequence of conflicting quadruples1315

C over a set of transactions T consistent with a set of transaction templates P and a database1316

D, let µ̄ be the variable mapping for a sequence of potentially conflicting quadruples D over1317

P with µ̄(D) = C. Then, for every pair of variables X and Y occurring in templates τi and τj1318

in Trans(D) respectively, if X ≡D Y, then µ̄(X) = µ̄(Y).1319

Proof. The proof is by induction on the definition of X ≡D Y. (base case) If X = Y, then1320

the result is immediate. (inductive cases) If there are two variables Z and W and a sequence1321
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of function names F such that Z ≡D W, Z F
⇝D X and W F

⇝D Y, then by induction we have1322

µ̄(Z) = µ̄(W). The proof that µ̄(X) = µ̄(Y) is now immediate by application of Lemma 31. If1323

instead there is a variable Z with X ≡D Z and Y ≡D Z, then we can argue by induction that1324

µ̄(X) = µ̄(Z) and µ̄(Y) = µ̄(Z), and hence µ̄(X) = µ̄(Y). ◀1325

▶ Definition 33. Let D be a sequence of potentially conflicting quadruples, A a set of tuple-1326

contexts and φA a partial context assignment for D over A. We say that φA respects the1327

constraints of D if, for every two (not necessarily different) variables X and Y occurring in D1328

that φA is defined for, the following conditions are true, where cX = φA(X) and cY = φA(Y):1329

1. cX is a tuple-context for type(X);1330

2. for every X F1⇒D Z and Y F2⇒D Z, cX(F1) = cY(F2);1331

3. for every X F1⇒D W and Y F2⇒D Z with W ̸= Z a constraint in a template τ , cX(F1) ̸= cY(F2);1332

4. for every X F1⇒D W and Y F2⇒D Z, if cX(F1) = cY(F2), then there is no constraint W ̸= Z in a1333

template τ ∈ Trans(D);1334

5. if X F⇒D Y, then cY is a tuple-subcontext of cX witnessed by F ; and1335

6. for every pair of tuple-subcontexts c′
X and c′

Y of cX and cY witnessed by respectively FX and1336

FY, if cX(FX) = cY(FY), then c′
X = c′

Y.1337

▶ Lemma 34. For a multiversion split schedule s based on a sequence of conflicting quadruples1338

C over a set of transactions T consistent with a set of transaction templates P ∈ AcycTemp1339

and a database D, let µ̄ be the variable mapping for a sequence of potentially conflicting1340

quadruples D over P with µ̄(D) = C. Then a set A of tuple-contexts and a total context1341

assignment φA for D over A exist with:1342

φA respects the constraints of D; and1343

µ̄(X) = cX(ε) for every variable X, with cX = φA(X).1344

Proof. We first assign a tuple-context to each tuple in database D, based on the functions1345

in D. Let (Rels, Funcs) be the schema over which P is defined. Since the schema graph1346

SG(Rels, Funcs) is acyclic, a total order <SG over Rels exists such that there is no path from1347

type R to type S in SG if R <SG S. We now assign tuple-contexts to tuples based on the1348

order implied by <SG. That is, we first consider all tuples of the type that is ordered first1349

by <SG, then all tuples of the type that is ordered second, etc. If there are multiple tuples1350

of the same type, the relative order in which we handle them is not important. For each1351

tuple t, we construct a tuple-context ct with ct(ε) = t, and for each path F = f · F ′ in SG1352

starting in type(t), set ct(F ) = cv(F ′), with v = fD(t). Notice that cv is already defined1353

for v, as there is a path from type(t) to type(v) in SG and, hence, type(v) <SG type(t). By1354

construction, cv is a tuple-subcontext of ct witnessed by f .1355

Next, we construct φA as follows: φA(X) = ct with µ̄(X) = t for every variable X occurring1356

in Trans(D). We argue by induction on the definition of F⇒D that1357

ct(F ) = µ̄(Y) for every X F⇒D Y (with ct = φA(X)). (†)1358

If X F
⇝D Y, then by construction of φA and since µ̄ is admissible for D, we have ct(F ) = µ̄(Y).1359

If F = ε and X ≡D Y, then ct(ε) = µ̄(X) = µ̄(Y) by Lemma 32. Otherwise, if there exists a1360

variable Z with X F1⇒D Z, Z F2⇒D Y and F = F1 · F2, then by induction ct(F1) = µ̄(Z) = v and1361

cv(F2) = µ̄(Y), with φA(Z) = cv. By construction of ct and cv, the desired ct(F ) = µ̄(Y) now1362

follows.1363

It remains to verify that φA indeed satisfies all required properties. By construction,1364

µ̄(X) = ct(ε) with ct = φA(X), so we only need to show that φA respects the constraints of D1365

by verifying all properties in Definition 33. To this end, let X and Y be two variables occurring1366

in Trans(D), and let ct = φA(X) and cv = φA(Y). (1) By construction, ct is a tuple-context1367
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for type(X). (2) ct(F1) = µ̄(Z) = cv(F2) by (†). (3) If W ̸= Z is a constraint, then µ̄(W) ̸= µ̄(Z)1368

as µ̄ is admissible for D. By (†), it follows that ct(F1) = µ̄(W) ̸= µ̄(Z) = cv(F2). (4) If1369

ct(F1) = cv(F2), then µ̄(W) = ct(F1) = cv(F2) = µ̄(Z) by (†). Since µ̄ is admissible for D,1370

there cannot be a consraint W ≠ Z. (5) If X F⇒D Y, then by construction of the tuple-contexts1371

ct and cv it follows that cv is a tuple-subcontext of ct witnessed by F . (6) Let ct′ and cv′ be1372

tuple-subcontexts of ct and cv witnessed by respectively FX and FY. If ct(FX) = cv(FY) = q1373

for some tuple q, then by construction of ct and cv we have ct′ = cv′ = cq, with cq the1374

tuple-context assigned to this tuple q. ◀1375

From D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) and φA as in Lemma 34 we can derive a1376

sequence of quintuples E = (τ1, o1, co1 , p1, cp1), . . . , (τm, om, com
, pm, cpm

) such that coi
=1377

φA(Xi) (respectively cpi = φA(Yi)) for i ∈ [1, m] with oi (respectively pi) an operation1378

over variable Xi (respectively Yi). Intuitively, this sequence of quintuples can be used to1379

reconstruct the original multiversion split schedule s. To this end, notice that we can derive1380

the original sequence of potentially conflicting quadruples D and a partial context assignment1381

φ′
A from E that is defined for each variable Xi occurring in either an operation oi or pi in1382

τi. We first show that we can extend this partial context assignment φ′
A to a total context1383

assignment respecting the constraints in D (Lemma 35), and then prove that such a total1384

context assignment respecting the constraints in D implies a variable assignment µ̄ such that1385

the C = µ̄(D) is a valid sequence of conflicting quadruples (Lemma 36).1386

▶ Lemma 35. Let D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) be a sequence of potentially con-1387

flicting quadruples over a set of transaction templates P ∈ AcycTemp and φA a partial1388

context assignment defined for every variable Xi of oi and Yi of pi in every τi. If1389

φA respects the constraints of D; and1390

for every pair of variables X and Y in a template τi with X ≡τi
Y, there is no constraint1391

X ̸= Y in τi;1392

then we can extend φA to a total context assignment φ′
A for D respecting the constraints of1393

D.1394

Proof. By definition of equivalence, ≡D partitions all variables occurring in Trans(D) in1395

equivalence classes. That is, two variables X and Y are in the same equivalence class iff X ≡D Y.1396

For a given variable X, we denote the equivalence class X belongs to by [X]. Note that for1397

any pair of variables X and Y occurring in Trans(D), if X F⇒D Y, then X′ F⇒D Y′ for any pair of1398

variables X′ ∈ [X] and Y′ ∈ [Y]. By slight abuse of notation, we use X F⇒D [Y] and [X] F⇒D Y to1399

denote that X F⇒D Y′ for every Y′ ∈ [Y] and X′ F⇒D Y for every X′ ∈ [X], respectively.1400

Let (Rels, Funcs) be the schema over which P is defined. Since the schema graph1401

SG(Rels, Funcs) is acyclic, a total order <SG over Rels exists such that there is no path1402

from type R to type S in SG if R <SG S. We now define φ′
A for variables in Trans(D)1403

according to the order implied by <SG. If there are multiple variables of the same type, the1404

relative order in which we handle them is not important.1405

The proof is as follows. Assume φA respects the constraints of D and is at least defined1406

for every variable Xi of oi and Yi of pi in every τi. We extend φA towards φ′
A by defining1407

φ′
A for the whole equivalence class [X] of the first (according to <SG) variable X for which1408

φA is not defined. The precise construction is by case. In the first case, the tuple-context1409

that should be assigned to variables in [X] is already implied, as it is the tuple-subcontext of1410

an existing tuple-context. In the second case, we construct a fresh tuple-context, including1411

existing tuple-contexts as tuple-subcontexts where we need to make sure that φ′
A respects1412

the constraints in D. In each case, we then argue that φ′
A still respects the constraints in1413
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D. By repeating this argument, we can extend the context assignment to a total context1414

assignment defined for all variables occurring in Trans(D).1415

(Case 1) If a variable Y exists with φA defined for Y and Y F⇒D [X], then φ′
A(X′) = cX′1416

for every variable X′ ∈ [X], with cX′ the tuple-subcontext of cY = φA(Y) witnessed by F .1417

Notice that this is well defined, even if there are multiple such Y, as they all agree on cX′1418

by Definition 33 (2, 6). Also note that the special case where φA is already defined for at1419

least one variable X′ ∈ [X] is covered by this case as well, as X′ ε⇒D [X] follows from X′ ∈ [X].1420

In this special case, the tuple-subcontext of φA(X′) witnessed by ε (i.e., φA(X′) itself) will be1421

assigned to each variable in [X].1422

We show that φ′
A indeed respects the constraints in D according to the properties stated in1423

Definition 33. To this end, let X′ and Y′ be two variables, with cX′ = φ′
A(X′) and cY′ = φ′

A(Y′).1424

(1) By construction, cX′ is a tuple-context for type(X′). (2-4) Note that if X′′ F ′

⇒D Z′′ with1425

X′′ ∈ [X], then Y F · F ′

⇒ D Z′′ and cX′′ = φ′
A(X′′) is the tuple-subcontext of cY = φA(Y) witnessed1426

by F ′, implying that cX′′(F ′) = cY(F · F ′). If X′ and/or Y′ are in [X], then we can apply1427

this substition and use the fact that φA respects the constraints in τ to conclude that the1428

desired properties hold for φ′
A. (5) Assume X′ F ′

⇒D Y′. If both X′ ∈ [X] and Y′ ∈ [X], then1429

F ′ = ε as otherwise the schema graph is not acyclic. Since cY′ = cX′ , it follows that cY′ is1430

a tuple-subcontext of cX′ witnessed by ε. If X′ ∈ [X] and Y′ ̸∈ [X], then Y F · F ′

⇒ τ Y′ and cY′ is a1431

tuple-subcontext of cY witnessed by F · F ′ as φA respects the constraints of τ . Since cX′ is1432

the tuple-subcontext of cY witnessed by F , it follows that cY′ is a tuple-subcontext of cX′1433

witnessed by F ′. If X′ ̸∈ [X] and Y′ ∈ [X], then Y F⇒τ Y′. Since φA respects the constraints in1434

D, we apply Definition 33 (2, 5, 6) to conclude that cY′ is a tuple-subcontext of cX′ witnessed1435

by F ′. (6) Assume cX′(FX′) = cY′(FY′), and let cX′′ and cY′′ be the tuple-subcontexts of1436

respectively cX′ witnessed by FX′ and cY′ witnessed by FY′ . We argue that cX′′ = cY′′ . Note1437

that, if X′ ∈ [X], then cX′′ is the tuple-subcontext of cY witnessed by F · FX′ . The reasoning1438

for Y′ ∈ [X] is analogous. Since φA respects the constraints in D, it follows that cX′′ = cY′′ .1439

(Case 2) Otherwise, we construct a fresh tuple-context cX and define φ′
A(X′) = cX for every1440

variable X′ ∈ [X]. This tuple-context cX is constructed as follows: cX(ε) = tX, with tX a fresh1441

tuple of the appropriate type. For every path F = f · F ′ in SG starting in type(X), if there1442

is a variable Y with [X] f⇒D Y, then cX(F ) = cY(F ′), with cY = φA(Y). In other words, cY is1443

the tuple-subcontext of cX witnessed by f . Note that due to the order <SG, φA(Y) has to be1444

defined already. Also note that this is well defined, even if multiple such Y exist. In that1445

case, all these Y are equivalent to each other by definition of ≡D, and by construction of1446

φA they are assigned the same tuple-context. If instead no such variable Y exists, we define1447

cX(F ) = tF , with tF a fresh tuple of the appropriate type.1448

We show that φ′
A indeed respects the constraints in D according to the properties stated1449

in Definition 33. To this end, let X′ and Y′ be two variables occurring in Trans(D), with1450

cX′ = φ′
A(X′) and cY′ = φ′

A(Y′). (1) By construction, cX′ is a tuple-context for type(X′).1451

(2) Assume X′ F1⇒D Z and Y′ F2⇒D Z for some variable Z. We argue that there exists a1452

pair of variables X′′ and Y′′ and two sequences of function names F ′
1 and F ′

2 such that1453

cX′(F1) = cX′′(F ′
1) = cY′′(F ′

2) = cY′(F2), where cX′′ = φ′
A(X′′) and cY′′ = φ′

A(Y′′). If X′ ∈ [X],1454

then either F1 = f · F ′
1 or F1 = ε. In the former case there is a variable X′′ with X′′ f⇒D Z such1455

that cX′(F1) = cX′′(F ′
1), where cX′′ = φA(X′′). In the later case, Z ∈ [X], and we simply take1456

X′′ = X′ and F ′
1 = F1. If X′ ̸∈ [X], we take X′′ = X′ and F ′

1 = F1. For Y′ ∈ [X] and Y′ ∉ [X], the1457

reasoning is analogous. It remains to argue that cX′′(F ′
1) = cY′′(F ′

2). By choice of X′′ and Y′′,1458

either X′′ ̸∈ [X] and Y′′ ̸∈ [X]; or Z ∈ [X]. In te former case, cX′′(F ′
1) = cY′′(F ′

2) follows by the1459

fact that φA respects the constraints of D. In the latter case, both X′′ ∈ [X] and Y′′ ∈ [X], as1460

otherwise (Case 1) would apply to [X] instead. Then, cX′′(F ′
1) = cY′′(F ′

2) = cX(ε) = tX. (3, 4)1461
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The reasoning is analogous to the previous property. Note in particular that by construction1462

of the new cX we have cX′(F1) = cY′(F2) if W ≡D Z. Since W ≡D Z implies that there is1463

no constraint W ≠ Z by the assumptions on φA and on the disequality constraints in each1464

template τ ∈ Trans(D), this does not lead to contradictions. (5) If X′ F ′

⇒Y
′, then Y′ ∈ [X] only1465

if X′ ∈ [X], as otherwise (Case 1) would apply to [X] instead. We argue by case that cY′ is a1466

tuple-subcontext of cX′ witnessed by F ′. If X′ ̸∈ [X] and Y′ ̸∈ [X], the result is immediate by1467

the fact that φA respects the constraints of D. If X′ ∈ [X] and Y′ ̸∈ [X], then cX′ = cX and a1468

variable Z exists such that F ′ = f · F ′′, X′ f⇒D Z, Z F ′′

⇒D Y′, and, by construction of cX, cY′ is a1469

tuple-subcontext of φA(Z) witnessed by F ′′. It now follows that cY′ is a tuple-subcontext1470

of cX witnessed by F ′. Lastly, If both X′ ∈ [X] and Y′ ∈ [X], then F ′ = ε, as otherwise the1471

schema graph is not acyclic. The result is immediate, as cY′ = cX′ = cX is by definition a1472

tuple-subcontext of itself witnessed by ε. (6) Assume cX′′(F1) = cY′′(F1) for some pair of1473

tuple-contexts cX′′ and cY′′ that are tuple-subcontexts of respectively cX′ witnessed by F1 and1474

cY′ witnessed by F2. We argue that cX′′ = cY′′ . If both cX′ and cY′ are different from cX, the1475

result is immediate as φA respects the constraints of D. Otherwise, since the construction of1476

cX, either copies existing tuple-contexts as tuple-subcontexts, or introduces fresh variables.1477

the result holds if cX′ and/or cY′ are equal to cX. ◀1478

▶ Lemma 36. Let D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) be a sequence of potentially con-1479

flicting quadruples over a set of transaction templates P and φA a total context assignment for1480

D respecting the constraints of D. The variable mapping µ̄ obtained by defining µ̄(X) = cX(ε)1481

for every variable X in Trans(D) with cX = φA(X) then is a valid variable mapping admissible1482

for some database D.1483

Proof. We first argue that µ̄ is valid by showing for each conflicting quadruple (τi, oi, pj , τj)1484

in D that µ̄(X) = µ̄(Y) with X = var(oi) and Y = var(pj). By definition, X ε
⇝D Y, and hence1485

X ε⇒D Y. Let cX = φA(X) and cY = φA(Y). Since φA respects the constraints of D, cY is a1486

tuple-subcontext of cX witnessed by ε. By definition of tuple-subcontexts, cX(ε) = cY(ε), and,1487

as a result, µ̄(X) = cX(ε) = cY(ε) = µ̄(Y).1488

Next, we construct a database D and show that µ̄ is admissible for D. To this end, we1489

add the tuple µ̄(X) to D for each variable X occurring in Trans(D). For each functional1490

constraint Y = f(X) in a transaction template in Trans(D), we define µ̄(Y) = fD(µ̄(X)) for1491

the corresponding function fD in D. Note that this is well defined. Towards a contradiction,1492

assume that we have both µ̄(Y) = fD(µ̄(X)) and µ̄(W) = fD(µ̄(Z)), with µ̄(X) = µ̄(Z) but1493

µ̄(Y) ̸= µ̄(W). Let cX = φA(X), cY = φA(Y), cZ = φA(Z) and cW = φA(W). By construction of µ̄,1494

we have cX(ε) = µ̄(X) = µ̄(Z) = cZ(ε) and cY(ε) = µ̄(Y) ̸= µ̄(W) = cW(ε). By Definition 33 (6),1495

it now follows that cX = cZ, since cX (respectively cZ) is a tuple-subcontext of itself witnessed1496

by ε and cX(ε) = cZ(ε). Since we defined µ̄(Y) = fD(µ̄(X)), there is a constraint Y = f(X) in1497

some template in Trans(D), and hence X f⇒D Y. Analogously, Z f⇒D W. By Definition 33 (5),1498

cY and cW are tuple-subcontexts of respectively cX and cZ witnessed by f . As cX = cZ, it1499

immediately follows that cY = cW, and in particular cY(ε) = cW(ε), leading to the desired1500

contradiction.1501

To conclude the proof, we show that µ̄ is indeed admissible for D. By construction of1502

D based on µ̄, µ̄(Y) = fD(µ̄(X)) is immediate for each constraint Y = f(X) in a template1503

τ ∈ Trans(D). We still need to argue that µ̄(X) ̸= µ̄(Y) for each constraint X ≠ Y in a1504

template τ ∈ Trans(D). Let cX = φA(X) and cY = φA(Y). By construction of µ̄ we have1505

µ̄(X) = cX(ε) and µ̄(Y) = cY(ε). Note that X ε⇒D X and Y ε⇒D Y. Therefore, we can apply1506

Definition 33 (3) to conclude that cX(ε) ̸= cY(ε), and hence µ̄(X) ̸= µ̄(Y). ◀1507

In order to decide robustness against RC, one can now construct a sequence of quintuples1508
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E and derive the sequence of potentially conflicting quadruples D and partial context1509

assignment φA from it. If φA respects the constraints in D, then it follows from Lemma 351510

and Lemma 36 that we can construct a variable assignment µ̄ such that C = µ̄(D) is a1511

valid sequence of conflicting quadruples. However, in this construction of E, care should1512

be taken to guarantee that φA indeed respects the constraints in D, and that the resulting1513

multiversion split schedule based on C indeed satisfies all properties in Definition 6.1514

In the algorithm that we are about to propose, we search for such a sequence of quintuples1515

E, but without fixating all the tuples in each context. For this, we generalize our definition1516

of tuple-contexts to allow variables: A context for a type R is a function from paths with1517

source R in SG(Rels, Funcs) to variables in Var and tuples in Tuples of the appropriate1518

type. The purpose of variables is to encode equalities and disequalities within each context,1519

without being explicit about the precise tuples. That is, if two paths ending in the same1520

node in SG are mapped on the same variable, then they will represent the same tuple; if they1521

are mapped on different variables, then they represent a different tuple. We remark that a1522

same variable occurring in different contexts can still represent different tuples. Analogous1523

to tuple-subcontexts, for two types R and S with R F
⇝SG S, we say that a context cS for1524

type S is a subcontext of a context cR for type R witnessed by F if:1525

for every path S F ′

⇝SG S′ in SG, if cR(F ·F ′) is a tuple, then cS(F ′) = cR(F ·F ′); otherwise,1526

cS(F ′) is a variable; and1527

for every pair of paths S F1⇝SG S1 and S F2⇝SG S2 in SG with cR(F · F1) and cR(F · F2)1528

variables, cS(F1) = cS(F2) iff cR(F · F1) = cR(F · F2).1529

We call a context a variable-context if all paths are mapped on variables.1530

For a transaction template τ , tuple-context cp for p and co for o in τ , we consider1531

the set Contexts(SG, τ, p, cp, o, co) of all different (not-necessarily tuple-) contexts c (up to1532

isomorphisms over the variables in c) that can be obtained, starting from a variable-context1533

c′, by performing substitutions of subcontexts of c′ with subcontexts of cp and/or co. More1534

formally, these substitutions are of the form: For a path Rc
F
⇝SG S (here Rc is the type that1535

c is for) and Rp
F ′

⇝SG S (with Rp the type that cp is for) then c(F · F ′′) = cp(F ′ · F ′′) for1536

every path S F ′′

⇝SG S′ in SG and with c(F · F ′′) = c′(F · F ′′) otherwise. (The substitution1537

rule can be applied for cp as well as for co.)1538

▶ Lemma 37. Let P be a set of transaction templates over an acyclic schema. Then, P is1539

not robust against RC if, and only if, there is a sequence of quintuples E = (τ1, o1, co1 , p1, cp1),1540

. . . , (τm, om, com , pm, cpm) with m ≥ 2 such that for each quintuple (τi, oi, coi , pi, cpi) in E,1541

with qi and ri two (not necessarily different) operations in {oi, pi},1542

1. if i = 1, then co1 and cp1 are tuple-contexts for type(var(o1)) and type(var(p1)). Fur-1543

thermore, for every pair of tuple-subcontexts c′
o1

and c′
p1

of co1 and cp1 witnessed by1544

respectively F and F ′, if co1(F ) = cp1(F ′), then c′
o1

= c′
p1

;1545

2. if i ̸= 1, then coi
, cpi

∈ Contexts(SG, τ1, p1, cp1 , o1, co1) are contexts for type(var(oi)) and1546

type(var(pi));1547

3. for every pair of variables Wi and Zi in τi with Wi ≡τi Zi, there is no constraint Wi ̸= Zi in1548

τi;1549

4. for every var(qi) F1⇒τi Zi and var(ri) F2⇒τi Zi, the subcontext of cqi witnessed by F1 is equal1550

(up to isomorphisms over variables) to the subcontext of cri
witnessed by F2.1551

5. for every var(qi) F1⇒τi
Wi and var(ri) F2⇒τi

Zi with Wi ≠ Zi a constraint in τi, cqi
(F1) ̸=1552

cri
(F2) or cqi

(F1) and cri
(F2) are both variables;1553

6. for every var(qi) F1⇝τi
Wi and var(ri) F2⇝τi

Zi, if cqi
(F1) and cri

(F2) are the same tuple,1554

then there is no constraint Wi ̸= Zi in τi;1555

7. if var(qi) F⇒τi
var(ri), then cri

is a subcontext of cqi
witnessed by F ; and1556
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8. If i ̸= 1 and cqi(F ) = cq1(F ′) is a tuple for some q1 ∈ {o1, p1} and some sequence of1557

function names F and F ′, then there is no operation o′
i ∈ τi potentially ww-conflicting1558

with an operation o′
1 ∈ prefixo1(τ1) with var(qi) F⇒τi

var(o′
i) and var(q1) F ′

⇒τ1 var(o′
1).1559

Furthermore, for each pair of adjacent quintuples (τi, oi, coi , pi, cpi) and (τj , oj , coj , pj , cpj ) in1560

E with j = i + 1, or i = m and j = 1:1561

9. oi is potentially conflicting with pj and coi = cpj ;1562

10. if i = 1 and j = 2, then o1 is potentially rw-conflicting with p2; and1563

11. if i = m and j = 1, then o1 <τ1 p1 or om is potentially rw-conflicting with p1.1564

Proof. (if) Let D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1) be the sequence of potentially conflict-1565

ing quadruples derived from E. Note that each (τi, oi, pj , τj) ∈ D is indeed a valid sequence1566

of potentially conflicting quadruples, as oi is potentially conflicting with pj by (9). We show1567

in Lemma 38 that a partial context assignment φA over a set of tuple-contexts A exists such1568

that1569

for every pair of operations oi and pi occurring in D, φA is defined for var(oi) and1570

var(pi);1571

φA respects the constraints in D; and1572

for every template τi in D with i ̸= 1 and for every qi ∈ {oi, pi} and q1 ∈ {o1, p1}, let1573

cqi = φA(var(qi)) and cq1 = φA(var(q1)). If cqi(F ) = cq1(F ′) for some sequence of1574

function names F and F ′, then there is no operation o′
i ∈ τi potentially ww-conflicting1575

with an operation o′
1 ∈ prefixo1(τ1) with var(qi) F⇒τi var(o′

i) and var(q1) F ′

⇒τ1 var(o′
1).1576

Because of (3), we can now apply Lemma 35 extending φA to a total context assignment1577

defined for all variables occurring in Trans(D), without losing the property that φA respects1578

all constraints in D. Let µ̄ be the variable mapping obtained by defining µ̄(X) = cX(ε) for1579

every variable X in Trans(D) with cX = φA(X). By Lemma 36, µ̄ is a valid variable mapping1580

and a database D exists such that µ̄ is admissible for D.1581

We now prove that the sequence of conflicting quadruples C = µ̄(D) satisfies the conditions1582

stated in Definition 6 to show that P is indeed not robust against RC. Condition (2) and1583

Condition (3) are immediate by respectively (11) and (10). Towards a contradiction, assume1584

Condition (1) does not hold. Then, there is an operation o′
i in a template τi potentially1585

ww-conflicting with an operation o′
1 ∈ prefixo1(τ1), and µ̄(var(o′

i)) = µ̄(var(o′
1)). Let1586

co′
i

= φA(var(o′
i)) and co′

1
= φA(var(o′

1)). By construction of µ̄, we have co′
i
(ε) = co′

1
(ε). By1587

construction of the total context assignment in Lemma 35, this is only the case if for some1588

qi ∈ {oi, pi} and q1 ∈ {o1, p1} it holds that var(qi) F⇒τi
var(o′

i) with cqi
(F ) = co′

i
(ε) and1589

var(q1) F⇒τ1 var(o′
1) with cq1(F ′) = co′

1
(ε). Consequently, cqi(F ) = cq1(F ′), contradicting1590

Lemma 38.1591

(only if) Since P is not robust against RC, a multiversion split schedule s exists based on1592

a sequence of conflicting quadruples C over a set of transactions T consistent with a set of1593

transaction templates P ∈ AcycTemp and a database D. Let µ̄ be the variable mapping1594

for a sequence of potentially conflicting quadruples D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1)1595

with µ̄(D) = C. By Lemma 34 a set A of tuple-contexts and a total context assignment φA1596

for D over A exist with:1597

φA respects the constraints of D; and1598

µ̄(X) = cX(ε) for every variable X, with cX = φA(X).1599

Let λ : Tuples → Tuples∪Var with λ(t) = t if t occurs in φA(var(o1)) or φA(var(p1));1600

and λ(t) ∈ Var otherwise, such that λ(t) ̸= λ(v) if t ̸= v. From D and φA we derive the1601

sequence of quintuples E = (τ1, o1, co1 , p1, cp1), . . . , (τm, om, com
, pm, cpm

) with coi
= λ ◦ c′

oi
1602

and cpi = λ ◦ c′
pi

for each oi and pi, where c′
oi

= φA(var(oi)) and c′
pi

= φA(var(pi)).1603

Intuitively, we modify the tuple-contexts for each var(oi) and var(pi) as defined by φA into1604
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contexts over tuples and variables by replacing all tuples that do not occur in φA(var(o1))1605

and φA(var(p1)) with unique variables. Note that by construction co1 = φA(var(o1)) and1606

cp1 = φA(var(p1)).1607

Next, we show that E satisfies all properties. In the argumentation below, we denote1608

φA(var(oi)) by c′
oi

and φA(var(pi)) by c′
pi

for each oi and pi in E. (1) By construction, co1 =1609

c′
o1

is a tuple-context for type(var(o1)), and cp1 = c′
p1

is a tuple-context for type(var(p1)).1610

By Condition (6) of Definition 33, we have c′
o1

= c′
p1

if co1(F ) = cp1(F ′) for every pair of1611

tuple-subcontexts c′
o1

and c′
p1

of co1 and cp1 witnessed by respectively F and F ′. (2) This1612

property follows by construction of coi
and cpi

based on λ and φA. For completeness1613

sake, one should note that for each group of contexts up to isomorphisms over variables,1614

Contexts(SG, τ1, p1, cp1 , o1, co1) contains only one context. W.l.o.g. we can implicitly assume1615

that each coi and cpi in E is replaced by the same context in Contexts(SG, τ1, p1, cp1 , o1, co1) up1616

to isomorphisms, as we will never directly test for equality or disequality between two variables1617

of different contexts. (3) Assume Wi ≡τi
Zi, then Wi

ε⇒D Zi. Since φA respects the constraints1618

in D, cZi
is a tuple-subcontext of cWi

witnessed by ε, with cZi
= φA(Zi) and cWi

= φA(Wi).1619

Then, cZi
= cWi

, and in particular cZi
(ε) = cWi

(ε). By Lemma 34, µ̄(Zi) = cZi
(ε) = cWi

(ε) =1620

µ̄(Wi). Since µ̄ is admissible for D, the constraint Wi ̸= Zi cannot exist. (4) Since φA1621

respects the constraints in D, it follows from Conditions (2) and (6) in Definition 33 that the1622

tuple-subcontext of c′
qi

witnessed by F1 is equal to the tuple-subcontext of c′
ri

witnessed by1623

F2. As a result, the subcontext of cqi
= λ ◦ c′

ri
witnessed by F1 is equal (up to isomorphisms1624

over variables) to the subcontext of cri = λ ◦ c′
ri

witnessed by F2. (5) Analogous to the1625

previous case, we can conclude that cqi
(F1) = λ ◦ c′

qi
(F1) and cri

(F2) = λ ◦ c′
ri

(F2) are either1626

two different tuples, or both a variable. (6) If cqi
(F1) = λ ◦ c′

qi
(F1) = λ ◦ c′

ri
(F2) = cri

(F2)1627

is a tuple, then c′
qi

(F1) = c′
ri

(F2). Since φA respects the constraints in D, it follows that1628

there is no constraint Wi ̸= vzi. (7) If var(qi) F⇒τi
var(ri), then c′

ri
is a tuple-subcontext of1629

c′
qi

, as φA respects the constraints of D. By construction of cqi and cri based on respectively1630

c′
qi

and c′
ri

, it immediately follows that cri
is a subcontext of cqi

. The case for Yi
F⇒τi

Xi is1631

analogous. (8) Assume towards a contradiction that cqi(F ) = cq1(F ′) is a tuple for some1632

q1 ∈ {o1, p1} and some sequence of function names F and F ′, and there is an operation o′
i ∈ τi1633

potentially ww-conflicting with an operation o′
1 ∈ prefixo1(τ1) with var(qi) F⇒τi

var(o′
i) and1634

var(q1) F ′

⇒τ1 var(o′
1). Since cqi(F ) = cq1(F ′) is a tuple, c′

qi
(F ) = cqi(F ) = cq1(F ′) = c′

q1
(F ′).1635

By definion of µ̄ and since φA respects the constraints in D, we conclude that µ̄(o′
i) in1636

µ̄(τi) is ww-conflicting with µ̄(o′
1) in prefixµ̄(o1)(µ̄(τ1)), thereby contradicting Condition (1)1637

of Definition 6. (9) Since E is based on C, the operation oi is potentially conflicting with pj .1638

Furthermore, since var(oi) ≡D var(pj) and since φA respects the constraints of D, c′
oi

= c′
pj

,1639

and hence coi
= cpj

. (10) Immediate by Condition (3) of Definition 6. (11) Immediate by1640

Condition (2) of Definition 6. ◀1641

Central to the correctness of the if-direction of Lemma 37 is the observation that for any1642

sequence E satisfying the stated conditions, we can assign tuples to variables in each context,1643

thereby replacing contexts with tuple-contexts, in such a way that the resulting context1644

assignment over tuple-contexts respects the constraints of the corresponding sequence of1645

potentially conflicting quadruples D. This observation is formalized in the following Lemma:1646

▶ Lemma 38. Let E = (τ1, o1, co1 , p1, cp1), . . . , (τm, om, com
, pm, cpm

) be a sequence of quin-1647

tuples satisfying the conditions stated in Lemma 37, and let D = (τ1, o1, p2, τ2), . . . , (τm, om, p1, τ1)1648

be the sequence of potentially conflicting quadruples derived from E. Then a partial context1649

assignment φA over a set of tuple-contexts A exists such that1650

for every pair of operations oi and pi occurring in D, φA is defined for var(oi) and1651
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var(pi);1652

φA respects the constraints in D; and1653

for every template τi in D with i ̸= 1 and for every qi ∈ {oi, pi} and q1 ∈ {o1, p1}, let1654

cqi = φA(var(qi)) and cq1 = φA(var(q1)). If cqi(F ) = cq1(F ′) for some sequence of1655

function names F and F ′, then there is no operation o′
i ∈ τi potentially ww-conflicting1656

with an operation o′
1 ∈ prefixo1(τ1) with var(qi) F⇒τi var(o′

i) and var(q1) F ′

⇒τ1 var(o′
1).1657

Proof. The general proof idea is as follows. We iteratively extend φA by deriving φA(var(oi))1658

and φA(var(pi)) from contexts coi and cpi for each quintuple (τi, oi, coi , pi, cpi) in the order1659

that they appear in E. Afterwards, we argue that φA respects the constraints in D and for1660

every qi ∈ {oi, pi} with i ≠ 1 and q1 ∈ {o1, p1} with cqi = φA(var(qi)) and cq1 = φA(var(q1)),1661

and for every pair of sequences of function names F and F ′ with cqi
(F ) = cq1(F ′), there1662

is no operation o′
i ∈ τi potentially ww-conflicting with an operation o′

1 ∈ prefixo1(τ1) with1663

var(qi) F⇒τi
var(o′

i) and var(q1) F ′

⇒τ1 var(o′
1).1664

Let (τ1, o1, co1 , p1, cp1) be the first quintuple in E. We initiate φA by defining φA(var(o1)) =1665

co1 and φA(var(p1)) = cp1 . Next, we iteratively extend φA by considering the remaining1666

quintuples in E in order. To this end, let (τi−1, oi−1, coi−1 , pi−1, cpi−1) be the last considered1667

quintuple and (τi, oi, coi , pi, cpi) the next quintuple in E. We define φA(var(pi)) = c′
pi

=1668

φA(var(oi−1)) and φA(var(oi)) = c′
oi

= λi ◦ coi
, where λi : Tuples ∪ Var → Tuples is a1669

function mapping tuples and variables occurring in coi
to tuples such that5

1670

λi(t) = t for each tuple t occurring in coi
;1671

λi(Q) = v for each variable Q occurring in coi
for which there is a variable Z in τi1672

and sequences of function names F , F ′ and F ′′ with var(pi) F⇒τi Z, var(oi) F ′

⇒τi Z,1673

c′
pi

(F · F ′′) = v and coi
(F ′ · F ′′) = Q; and1674

λi(Q) = ti,Q, for the remaining variables Q in coi where ti,Q is a fresh tuple.1675

Note that this λi is well defined. In particular, the second rule intuitively states that the1676

tuple-subcontext of the resulting c′
oi

witnessed by F ′ is equal to the tuple-subcontext of c′
pi

1677

witnessed by F , given that there is a variable Z with var(oi) F ′

⇒τi
Z and var(pi) F⇒τi

Z. This1678

substitution is well defined since in this case the subcontext of coi
witnessed by F ′ is equal1679

(up to isomorphisms over variables) to the subcontext of cpi witnessed by F according to1680

Condition 4 of Lemma 37.1681

It remains to show that φA indeed satisfies the conditions stated in Lemma 38. To this1682

end, note that by definition of variable determination, if X F⇒D Y with X in a template τi1683

and Y in a template τi in Trans(D), then a sequence of variables Xk1 , Yk1 , . . . , Xkm , Ykm exists1684

such that (†):1685

Xk1 = X and Ykm
= Y;1686

each pair of (not necessarily different) variables Xki , Yki occur in the same template τki in1687

Trans(D) and Xki
, Fi⇒τki

Yki
with F = F1 · . . . , Fm;1688

in the implied sequence of templates τk1 , . . . , τkm , these τki , . . . , τki+1 are neighbouring in1689

E (where we assume that τ1 is neighbouring to τn in E); and1690

for each pair of variables Yki , Xki+1 , there is a sequence of function names F ′ such that1691

var(oki
) F ′

⇒τki
Yki

and var(pki+1) F ′

⇒τki+1
Xki+1 (i.e., equivalence of Yki

and Xki+1 in D is1692

implied by equivalence of var(oki
) and var(pki+1)).1693

In other words, X F⇒D Y can be broken down into a sequence of Xki

Fi⇒τki
Yki through a1694

sequence of neighbouring templates, where equivalence between each Yki
and Xki+1 is implied1695

5 Note that λi is defined over variables in the context coi . These variables are unrelated to the variables
occurring in Trans(D). We therefore denote these variables by Q instead of the usual W, X, Y, Z to avoid
confusion.
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by the variables in the potentially conflicting operations oki and pki+1 . For ease of exposition,1696

we implicitly assumed that τk1 , . . . , τkm
agrees with the order in E. If the order is opposite1697

to the order in E instead, the above still holds, but the occurrences of oki
and pki+1 should1698

be replaced with pki and oki+1 .1699

We argue by construction of φA that for every pair of variables X and Y for which φA is1700

defined with cX = φA(X) and cY = φA(Y), if cX(F ) = cY(F ′) for some sequence of function1701

names F and F ′, then c′
X = c′

Y, where c′
X and c′

Y are the tuple-subcontexts of cX witnessed1702

by F and cY witnessed by F ′, respectively (‡). If X = var(o1) and Y = var(p1) (or the other1703

way around), the result is immediate by Lemma 37 (1). Otherwise, let X be the variable in a1704

template τi and Y the variable in a template τj such that j ≤ i (i.e., τi does not occur before1705

τj in E). W.l.o.g., we assume that X = var(oi) with i ̸= 1 (the case where X = var(pi) is1706

analogous, as φA(var(pi)) = φA(var(oi−1)) by construction). By construction of each c′
oi

1707

based on c′
pi

and λi, if c′
oi

(Fi) = c′
pi

(F ′
i ), then the whole tuple-subcontext of c′

oi
witnessed1708

by Fi is copied over from the tuple-subcontext of c′
pi

witnessed by F ′
i . Indeed λi introduces1709

fresh tuples whenever the tuple for c′
oi

(Fi) is not implied by c′
pi

.1710

The desired properties now follow from (†) and (‡) as well as the conditions in Lemma 37.1711

In particular, φA respecting the constraints of D can now be derived from Conditions (1, 2, 4-7)1712

in Lemma 37, and the last condition of Lemma 38 follows from Condition (8) in Lemma 37. ◀1713

A nexpspace algorithm proving the correctness of Theorem 16 is now immediate by1714

Lemma 37, as we can iteratively guess and verify quintuples in E while only keeping track of1715

the very first quintuple and the previous quintuple. Since in an acyclic schema graph the1716

number of paths starting in a given type is at most exponential in the total number of types,1717

each context is defined over at most an exponential number of paths. However, to formally1718

argue that these contexts can be encoded in exponential space, we still need to show that1719

each tuple or variable used in a context can be encoded in at most exponential space. Since1720

the only tuples used are those mentioned in co1 and cp1 , and since we can reuse the same1721

variables over all contexts, both the maximal number of tuples and the maximal number of1722

variables needed are exponential in the total number of types.1723

C.3 Proof for Theorem 181724

The pspace result for workloads over a schema (Rels, Funcs) where the number of paths1725

between any two nodes in the schema graph is bounded by a constant k is immediate by the1726

nondeterministic algorithm based on Lemma 37 presented for Theorem 16. Indeed, in this1727

case, the total number of paths starting in a given type is at most k.|Rels| and therefore each1728

context is defined over at most a polynomial number of paths, instead of an exponential1729

number of paths for the general case in Theorem 16.1730

The exptime result for workloads in AcycResTemp follows from a deterministic al-1731

gorithm based on Lemma 37. In the remainder of this section, we first present the algorithm,1732

and then discuss its complexity.1733

C.3.1 A deterministic algorithm1734

Towards a deterministic algorithm, assume the first quintuple (τ1, o1, co1 , p1, cp1) of E is fixed.1735

We now translate the problem of deciding whether we can extend E such that it satisfies all1736

properties to a graph problem over a graph G(τ1, o1, co1 , p1, cp1). This graph is constructed1737

as follows:1738

each quintuple (τi, oi, coi , pi, cpi) satisfying Conditions (2-8) of Lemma 37 is added as a1739

node to G(τ1, o1, co1 , p1, cp1); and1740
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there is an edge from a node (τi, oi, coi , pi, cpi) to a node (τj , oj , coj , pj , cpj ) if oi is1741

potentially conflicting with pj and coi
= cpj

(c.f. Condition (9) of Lemma 37).1742

By construction, it is now easy to see that there is a sequence E satisfying Lemma 37 if1743

there is a path from a quintuple (τ2, o2, co2 , p2, cp2) to a quintuple (τm, om, com , pm, cpm) in1744

G(τ1, o1, co1 , p1, cp1) (where we allow a zero-length path with 2 = m), such that (†)1745

co1 = cp2 and com = cp1 (c.f. Condition (9) of Lemma 37);1746

o1 is potentially rw-conflicting with p2 (c.f. Condition (10) of Lemma 37); and1747

o1 <τ1 p1 or om is potentially rw-conflicting with p1 (c.f. Condition (11) of Lemma 37).1748

(Algorithm) Given a set of transaction templates P over a schema (Rels, Funcs), the1749

algorithm iterates over all possible quintuples (τ1, o1, co1 , p1, cp1) satisfying Condition (1, 3-7)1750

of Lemma 37, where we consider all possible tuple-contexts co1 and cp1 up to isomorphisms.1751

For each such quintuple, the graph G(τ1, o1, co1 , p1, cp1) is constructed. Let TC be the1752

reflexive-transitive closure of G. If there is a pair of quintuples (τ2, o2, co2 , p2, cp2) and1753

(τm, om, com , pm, cpm) in TC satisfying (†), the algorithm emits a reject, indicating that P is1754

not robust against RC. Otherwise, it proceeds with a new choice for (τ1, o1, co1 , p1, cp1). If,1755

the algorithm didn’t reject after considering all such quintuples, it accepts, indicating that P1756

is indeed robust against RC. The correctness of this algorithm is immediate by Lemma 37.1757

C.3.2 Complexity analysis1758

We show the complexity of the presented algorithm. For this, first, notice that we have1759

defined contexts c based on a type S (with S not necessarily a root of SG). For encoding1760

purposes it makes sense to encode these as contexts for a root type R in combination with1761

the intended type S. The context as defined in the previous section can then be derived by1762

taking the left-most subtree with root S. Notice that this is purely an encoding choice that1763

will simplify the analysis.1764

For a schema graph SG(Rels, Funcs) the total number of non-isomorphic tuple-contexts1765

can be expressed using Bell’s number B(n), denoting the number of partitions for a set of1766

size n, and the set PathsSG(R, S) = {(R, F, S) | R F
⇝SG S} expressing the different paths1767

from one node R to another node S in SG. Concretely,1768

|TupleContexts(SG)| ≤
∑

R∈roots(SG)

∏
S∈Rels

B(|PathsSG(R, S)|) = B∗
1769

where TupleContexts(SG) denotes the set containing all different tuple-contexts (up to1770

isomorphisms).1771

Now let c1 and c2 be two fixed contexts for types that are descendants of roots R1 and1772

root R2, respectively, in SG, and let c be a context for a type descending from root R. To1773

express a bound on the number of substitutions in c from (parts of) c1 and c2, we need some1774

additional terminology: Let PathsSG(R, ∗) =
⋃

S∈Rels PathsSG(R, S). We say that a path1775

R F1⇝SG S is a prefix of a path R F
⇝SG S′ in SG if there is a (possibly empty) sequence of1776

function names F2 with F = F1 · F2. The number of substitutions in c from (parts of) c11777

and c2 is now bounded by1778 ∑
Part⊆PathsSG(R,∗)

1P F P

∏
R

F
⇝SGS∈Part

(|PathsSG(R1, S)| + |PathsSG(R2, S)|) ≤ T ℓ.(2P )ℓ ≤ (2TP )ℓ
1779

In the above expression, 1P F P is an indicator variable that equals 1 if no path in Part1780

is a prefix of another path in Part and that equals 0 otherwise. Further: P denotes the1781

maximum number of different paths between a particular root and a particular node in SG,1782
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Balance:

R[X : Account{N, C}]
R[Y : Savings{C, B}]
R[Z : Checking{C, B}]
Y = fA→S(X), X = fS→A(Y)
Z = fA→C(X), X = fC→A(Z)

DepositChecking:

R[X : Account{N, C}]
U[Z : Checking{C, B}{B}]
Z = fA→C(X), X = fC→A(Z)

TransactSavings:

R[X : Account{N, C}]
U[Y : Savings{C, B}{B}]
Y = fA→S(X), X = fS→A(Y)

Amalgamate:

R[X1 : Account{N, C}]
R[X2 : Account{N, C}]
U[Y1 : Savings{C, B}{B}]
U[Z1 : Checking{C, B}{B}]
U[Z2 : Checking{C, B}{B}]
X1 ̸= X2,

Y1 = fA→S(X1), X1 = fS→A(Y1)
Y2 = fA→S(X2), X2 = fS→A(Y2)
Z1 = fA→C(X1), X1 = fC→A(Z1)
Z2 = fA→C(X2), X2 = fC→A(Z2)

WriteCheck:

R[X : Account{N, C}]
R[Y : Savings{C, B}]
R[Z : Checking{C, B}]
U[Z : Checking{C, B}{B}]
Y = fA→S(X), X = fS→A(Y)
Z = fA→C(X), X = fC→A(Z)

GoPremium:

U[X : Account{N, C}{I}]
R[Y : Savings{C, I}]
U[Y : Savings{C}{I}]
Y = fA→S(X), X = fS→A(Y)

Figure 8 Transaction templates for SmallBank.

Account(Name, CustomerID, IsPremium)
Savings(CustomerID, Balance, InterestRate)
Checking(CustomerID, Balance)

Figure 9 Tables of the SmallBank benchmark. Underlined attributes are primary keys.

T denotes the maximum number of different paths from a particular root to nodes in SG,1783

and ℓ denotes the maximal size of a set in which no path is a prefix of another path in the1784

set. The latter is trivially bounded by T .1785

A special cases exists if all templates τ in P are restricted. In that case, the size of sets1786

Part is bounded by 2, hence ℓ ≤ 2.1787

With the above bounds, the complexity of the presented algorithm is rather straight-1788

forward. The iteration over all possible quintuples (τ1, o1, co1 , p1, cp1) requires at most1789

|P|.t2. (B∗)2 iterations, with t denoting the maximal number of operations in a transaction1790

template of P . The remainder of the computation is dominated by the transitive-closure com-1791

putation. Since the constructed graph G(τ1, o1, co1 , p1, cp1) has at most |P|.t2.
(
B∗.(2TP )ℓ

)2
1792

nodes, the transitive closure computation requires
(

|P|.t2.
(
B∗.(2TP )ℓ

)2
)3

steps. Putting1793

these numbers together, we obtain:1794

O(|P|4.t8. (B∗)8
.(2TP )6ℓ).1795

Since ℓ is bounded by a constant if all template are restricted, and since B∗, T and P1796

can be exponential in the size of the input, the presented algorithm indeed decides t-1797

robustness(AcycResTemp,RC) in exptime.1798

D SmallBank and TPC-C benchmarks1799

D.1 SmallBank Benchmark1800

The SmallBank schema consists of three tables as given in Figure 9. The Account table1801

associates customer names with IDs and keeps track of the premium status (Boolean);1802



B. Vandevoort, B. Ketsman, C. Koch, and F. Neven 23:45

CustomerID is a UNIQUE attribute. The other tables contain the balance (numeric value) of the1803

savings and checking accounts of customers identified by their ID. Account (CustomerID) is a1804

foreign key referencing both the columns Savings (CustomerID) and Checking (CustomerID).1805

The interest rate on a savings account is based on a number of parameters, including the1806

account status (premium or not). The application code can interact with the database only1807

through the following transaction programs:1808

Balance(N): returns the total balance (savings & checking) for a customer with name N .1809

DepositChecking(N ,V ): makes a deposit of amount V on the checking account of the1810

customer with name N .1811

TransactSavings(N ,V ): makes a deposit or withdrawal V on the savings account of the1812

customer with name N .1813

Amalgamate(N1,N2): transfers all the funds from N1 to N2.1814

WriteCheck(N ,V ): writes a check V against the account of the customer with name N ,1815

penalizing if overdrawing.1816

GoPremium(N): converts the account of the customer with name N to a premium account1817

and updates the interest rate of the corresponding savings account. This transaction1818

program is an extension w.r.t. [2].1819

Figure 10 contains the SQL code for the SmallBank transaction templates presented in1820

Figure 8.1821

D.2 TPC-C Benchmark1822

This benchmark is based on the TPC-C benchmark [17]. We modified the schema and1823

templates to turn all predicate reads into key-based accesses. The schema consists of six1824

relations:1825

Warehouse(WarehouseID, Info, YTD),1826

District(WarehouseID, DistrictID, Info, YTD, NextOrderID),1827

Customer(WarehouseID, DistrictID, CustID, Info, Balance),1828

Order(WarehouseID, DistrictID, OrderID, CustID, Status),1829

OrderLine(WarehouseID, DistrictID, OrderID, OrderLineID, ItemID, DeliveryInfo, Quant-1830

ity), and1831

Stock(WarehouseID, ItemID, Quantity).1832

The function names belonging to this schema are given in Table 1.1833

We focus on five different transaction templates:1834

1. NewOrder(W , D, C, I1, Q1, I2, Q2, . . . ): creates a new order for the customer identified1835

by (W, D, C). The id for this order is obtained by increasing the NextOrderID attribute1836

of the District tuple identified by (W, D) by one. Each order consists of a number of1837

items I1, I2, . . . with respectively quantities Q1, Q2, . . .. For each of these items, a new1838

OrderLine tuple is created and the related stock quantity is decreased.1839

2. Payment(W , D, C, A): represents a customer identified by (W, D, C) paying an amount1840

A. This payment is reflected in the database by increasing the balance of this customer1841

by A. This amount is furthermore added to the YearToDate (YTD) income of both the1842

related warehouse and district.1843

3. OrderStatus(W , D, C, O): requests information about the current status of the order1844

identified by (W, D, O). This transaction template collects information of the customer1845

identified by (W, D, C) who created the order, the order itself, and the different OrderLine1846

tuples related to this order.1847

4. Delivery(W , D, C, O): delivers the order represented by (W, D, O). The status of the1848

order is updated, as well as the DeliveryInfo attribute of each OrderLine tuple related to1849
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Balance(N):
SELECT CustomerId INTO :x

FROM Account
WHERE Name=:N;

SELECT Balance INTO :a
FROM Savings

WHERE CustomerId=:x;

SELECT Balance + :a
FROM Checking

WHERE CustomerId=:x;
COMMIT;

Amalgamate(N1,N2):
SELECT CustomerId INTO :x1

FROM Account
WHERE Name=:N1;

SELECT CustomerId INTO :x2
FROM Account

WHERE Name=:N2;

UPDATE Savings AS new
SET Balance = 0

FROM Savings AS old
WHERE new.CustomerId=:x1

AND old.CustomerId
= new.CustomerId

RETURNING old.Balance INTO :a;

UPDATE Checking AS new
SET Balance = 0

FROM Checking AS old
WHERE new.CustomerId=:x1

AND old.CustomerId
= new.CustomerId

RETURNING old.Balance INTO :b;

UPDATE Checking
SET Balance = Balance + :a + :b

WHERE CustomerId=:x2;

DepositChecking(N,V):
SELECT CustomerId INTO :x

FROM Account
WHERE Name=:N;

UPDATE Checking
SET Balance = Balance + :V

WHERE CustomerId=:x;
COMMIT;

TransactSavings(N,V):
SELECT CustomerId INTO :x

FROM Account
WHERE Name=:N;

UPDATE Savings
SET Balance = Balance + :V

WHERE CustomerId=:x;
COMMIT;

WriteCheck(N,V):
SELECT CustomerId INTO :x

FROM Account
WHERE Name=:N;

SELECT Balance INTO :a
FROM Savings

WHERE CustomerId=:x;

SELECT Balance INTO :b
FROM Checking

WHERE CustomerId=:x;

IF (:a + :b) < :V THEN
UPDATE Checking

SET Balance = Balance - (:V + 1)
WHERE CustomerId=:x;

ELSE
UPDATE Checking

SET Balance = Balance - :V
WHERE CustomerId=:x;

END IF;
COMMIT;

GoPremium(N):
UPDATE Account

SET IsPremium = TRUE
WHERE Name=:N

RETURNING CustomerId INTO :x;

SELECT InterestRate INTO :a
FROM Savings

WHERE CustomerId=:x;

:rate = computePremiumRate(:x,:a);

UPDATE Savings
SET InterestRate = :rate

WHERE CustomerId=:x;
COMMIT;

Figure 10 SmallBank SQL Transaction Templates.
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f dom(f) range(f)
fD→W District Warehouse
fC→D Customer District
fO→C Order Customer
fL→O OrderLine Order
fL→S OrderLine Stock
fS→W Stock Warehouse

Table 1 Function names for the TPC-C benchmark schema.

NewOrder:

R[X : Warehouse{W, Inf}]
U[Y : District{W, D, Inf, N}{N}]
R[Z : Customer{W, D, C, Inf}]
W[S : Order{W, D O, C, Sta}]
U[T1 : Stock{W, I, Qua}{Qua}]
W[V1 : OrderLine{W, D, O, OL, I, Del, Qua}]
U[T2 : Stock{W, I, Qua}{Qua}]
W[V2 : OrderLine{W, D, O, OL, I, Del, Qua}]
X = fD→W (Y), Y = fC→D(Z), Z = fO→C(S)
S = fL→O(V1), S = fL→O(V2)
T1 = fL→S(V1), T2 = fL→S(V2)
X = fS→W (T1), X = fS→W (T2)

Payment:

U[X : Warehouse{W, YTD}{YTD}]
U[Y : District{W, D, YTD}{YTD}]
U[Z : Customer{W, D, C, Bal}{Bal}]
X = fD→W (Y), Y = fC→D(Z)

OrderStatus:

R[Z : Customer{W, D, C, Inf, Bal}]
R[S : Order{W, D, O, C, Sta}]
R[V1 : OrderLine{W, D, O, OL, I, Del, Qua}]
R[V2 : OrderLine{W, D, O, OL, I, Del, Qua}]
Z = fO→C(S), S = fL→O(V1), S = fL→O(V2)

Delivery:

U[S : Order{W, D, O}{Sta}]
U[V1 : OrderLine{W, D, O, OL, Del}{Del}]
U[V2 : OrderLine{W, D, O, OL, Del}{Del}]
U[Z : Customer{W, D, C, Bal}{Bal}]
Z = fO→C(S), S = fL→O(V1), S = fL→O(V2)

StockLevel:

R[T : Stock{W, I, Qua}]

Figure 11 Abstraction for the TPC-C transaction templates. Attribute names are abbreviated.

this order. The total price of the order is deduced from the balance of the customer who1850

made this order, identified by (W, D, C).1851

5. StockLevel(W , I): returns the current stock level of item I in warehouse W .1852

A detailed abstraction of each transaction template is given in Figure 11. To shorten the1853

presentation, we only show two orderlines per order.1854
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