
Robustness Against Read Committed: A Free Transactional Lunch
Brecht Vandevoort

UHasselt, Data Science Institute, ACSL
Hasselt, Belgium

brecht.vandevoort@uhasselt.be

Bas Ketsman
Vrije Universiteit Brussel

Brussels, Belgium
bas.ketsman@vub.be

Christoph Koch
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
christoph.koch@epfl.ch

Frank Neven
UHasselt, Data Science Institute, ACSL

Hasselt, Belgium
frank.neven@uhasselt.be

ABSTRACT

Transaction processing is a central part of most database applica-
tions. While serializability remains the gold standard for desirable
transactional semantics, many database systems offer improved
transaction throughput at the expense of introducing potential
anomalies through the choice of a lower isolation level. Transac-
tions are often not arbitrary but are constrained by a set of trans-
action programs defined at the application level (as is the case for
TPC-C for instance), implying that not every potential anomaly can
effectively be realized. The question central to this paper is the fol-
lowing: when - within the context of specific transaction programs
- do isolation levels weaker than serializability, provide the same
guarantees as serializability?We refer to the latter as the robustness
problem. This paper surveys recent results on robustness testing
against (multiversion) read committed focusing on complete rather
than sufficient conditions. We show how to lift robustness testing
to transaction templates as well as to programs to increase practical
applicability. We discuss open questions and highlight promising
directions for future research.

CCS CONCEPTS

• Information systems→ Data management systems.

KEYWORDS

databases, transactions, isolation levels, robustness

ACM Reference Format:

Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022.
Robustness Against Read Committed: A Free Transactional Lunch. In Pro-

ceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems (PODS ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3517804.3524162

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS ’22, June 12–17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9260-0/22/06. . . $15.00
https://doi.org/10.1145/3517804.3524162

1 INTRODUCTION

Clients interact with a DBMS by issuing transactions which, on a
conceptual level, are complex operations involving multiple data-
base objects. A transaction might, for instance, transfer a specific
amount of money from a savings to a checking account of the
same customer. The DBMS guarantees that transactions are exe-
cuted completely or not at all (atomicity), even in the case of failures.
Concurrent access to data is facilitated by interleaving operations in
transactions while guaranteeing consistency through a serializable
isolation level. Serializability ensures that the effect of concurrent
execution of transactions is always equivalent to a serial execution.
The database system thereby guarantees perfect isolation for every
transaction which is of paramount importance to application pro-
grammers as it allows them to restrict attention on the correctness
properties of individual transactions.

Ensuring serializability, however, comes at a non-trivial perfor-
mance cost [48]. Many approaches to increase transaction through-
put have been proposed: improved or novel pessimistic (cf., e.g., [24,
34, 36, 42, 49]) or optimistic (cf., e.g., [10, 11, 16, 17, 22, 23, 25, 27–
29, 31, 37, 38, 50, 51]) algorithms, as well as approaches based on
coordination avoidance (cf., e.g., [18, 19, 30, 33, 35, 40, 41]). An or-
thogonal approach offered by many database systems is to trade off
isolation guarantees for improved performance by offering a variety
of isolation levels. Even though isolation levels lower than serial-
izability are often configured by default (see, e.g., [4]), executing
transactions concurrently under such isolation levels is not without
risk as it can introduce certain anomalies. Sometimes, however, a
set of transactions can be executed at an isolation level lower than
serializability without introducing any anomalies. This is for in-
stance the case for the TPC-C benchmark application [43] running
under snapshot isolation. In such a case, the set of transactions is
said to be robust against a particular isolation level. More formally,
a set of transactions is robust against a given isolation level if every

possible interleaving of the transactions allowed under the specified

isolation level is serializable. Detecting robustness is highly desirable
as it allows guaranteeing perfect isolation at the performance cost
of a lower isolation level.

Fekete et al [21] initiated the study of robustness in the context
of snapshot isolation, referring to it as the acceptability prob-
lem, and providing a sufficient condition in terms of the absence of
cycles with specific types of edges in the static dependency graph.
These algorithms are sound but not complete as they can result in
false negatives but never in false positives. This result was extended
by Bernardi and Gotsman [9] by providing sufficient conditions for

https://orcid.org/0000-0002-7143-1903
https://doi.org/10.1145/3517804.3524162
https://doi.org/10.1145/3517804.3524162

deciding robustness against the different isolation levels that can
be defined in a declarative framework as introduced by Cerone et
al [12]. This framework provides a uniform specification of various
isolation levels (including snapshot isolation) that admit atomic
visibility, a condition requiring that either all or none of the updates
of each transaction are visible to other transactions. The atomic
visibility assumption is key as it allows specifying isolation levels
by consistency axioms on the level of transactions rather than on
the granularity of individual operations within each transaction.
The sufficient conditions are again based on the absence of cycles
with certain types of edges. A related but different notion is that of
transaction chopping which splits transactions into smaller pieces
to obtain performance benefits and is correct if, for every serializ-
able execution of the chopping, there is an equivalent serializable
execution of the original transactions [39]. Cerone et al. [13, 14]
studied chopping under various isolation levels.

While robustness received quite a bit of attention in the literature,
most existing work focuses on snapshot isolation [2, 6, 20, 21]
or higher isolation levels [7, 9, 12, 15]. So far, robustness against
lower isolation levels such as different variations of the Read Com-
mitted isolation level has received only little attention (one notable
exception being the work by Alomari and Fekete [3]). This might
seem surprising, as Read Committed is very common, often even
the default isolation level in quite a number of database systems [5],
and also one of the few isolation levels providing highly available
transactions [4]. As Read Committed provides a low performance
penalty, establishing robustness against this isolation level allows
rapid concurrent execution while guaranteeing perfect isolation.

In this paper, we survey recent work on the robustness problem
against (multiversion) read committed [26, 45–47]. A distinguishing
approach is that we initially focus on sound and complete algo-
rithms and set steps towards practical application of these results
through increasingly more general formalisations of transaction
programs.

In Section 3, we study robustness for the simplified setting where
transactions aremere sequences of reads andwrites whose structure
as well as the objects in the database that they will access, is known
beforehand. This setting is most similar to the one considered by
Fekete [20] who obtained sound and complete characterizations
for deciding robustness against snapshot isolation. We provide
complete characterizations for robustness against single-version as
well as multiversion read committed.

In practice, transactions are often generated by a (finite) num-
ber of transaction programs (for instance, made available through
an API). The TPC-C benchmark [43] for example consists of five
different transaction programs, from which an unlimited number
of concrete transactions can be instantiated. In Section 4, we ex-
tend (part of) the previous results to a formalization of transaction
programs that we refer to as transaction templates, which, concep-
tually, are functions with parameters. Robustness then becomes a
static property that can be tested offline at API design time. When
the set of templates passes the test, the database isolation level can
be set to read committed for that API without fear for introducing
anomalies. We obtain a sound and complete algorithm to decide
robustness for transaction templates against multiversion read com-
mitted. Larger sets of transaction templates can be determined to

be robust when taking additional constraints into account (like for-
eign key constraints). While such constraints render the robustness
problem undecidable in general, there are restrictions that make
the problem decidable and even tractable.

A major shortcoming of the machinery presented in Section 4 is
that it can not be extended to predicate reads, inserts or deletes, op-
erations that are common in real world transactions. We therefore
depart from our quest in obtaining sound and complete charac-
terizations in Section 5 and discuss how robustness can be tested
for more general transaction programs formalized as BTPs incor-
porating predicate reads, inserts, deletes as well as control struc-
tures. A main advantage is that once SQL transaction programs
are translated into the formalism of BTP, robustness testing is fully
automatic and no longer requires the intervention of a database
administrator to predict possible conflicts as is the case in earlier
work on robustness.

In Section 6 we discuss direction for future work. The treatment
in this paper is rather high level. We therefore refer to [44] for a
more in depth discussion and missing formal definitions.

2 PRELIMINARIES

We start by introducing the necessary definitions. Our formalization
of transactions and conflict serializability is based on [20]. These
definitions are closely related to the formalization presented by
Adya et al. [1], but we assume a total rather than a partial order
over the operations in a schedule.

2.1 Transactions and Schedules

For natural numbers 𝑖 and 𝑗 with 𝑖 ≤ 𝑗 , denote by [𝑖, 𝑗] the set
{𝑖, . . . , 𝑗}. We fix an infinite set of objects Obj. For an object t ∈
Obj, we denote by R [t] a read operation on t and by W [t] a write
operation on t. We also assume a special commit operation denoted
by C. A transaction 𝑇 is a sequence of read and write operations
on objects in Obj followed by a commit. Formally, we model a
transaction as a linear order (𝑇, ≤𝑇), where 𝑇 is the set of (read,
write and commit) operations occurring in the transaction and ≤𝑇
encodes the ordering of the operations. As usual, we use <𝑇 to
denote the strict ordering. For an operation 𝑏 ∈ 𝑇, we denote by
prefix𝑏 (𝑇) the restriction of𝑇 to all operations that are smaller than
or equal to 𝑏 according to ≤𝑇 . Similarly, we denote by postfix𝑏 (𝑇)
the restriction of 𝑇 to all operations that are strictly larger than 𝑏
according to ≤𝑇 . We interchangeably consider transactions both as
linear orders as well as sequences.

When considering a set T of transactions, we assume that every
transaction in the set has a unique id 𝑖 and write 𝑇𝑖 to make this
id explicit. Similarly, to distinguish the operations from different
transactions, we add this id as index to the operation. That is, we
write W𝑖 [t] and R𝑖 [t] to denote a write and read on object t occur-
ring in transaction 𝑇𝑖 ; similarly C𝑖 denotes the commit operation
in transaction 𝑇𝑖 . This convention is consistent with the literature
(see, e.g. [8, 20]). To avoid ambiguity of notation, we assume that a
transaction performs at most one read operation and at most one
write operation per object. The latter is a common assumption (see,
e.g. [20]). All results carry over to the more general setting in which
multiple writes and reads per tuple are allowed.

Example 1. As a running example, consider the set of transactions

T = {𝑇1,𝑇2,𝑇3} with 𝑇1 = R1 [t] W1 [v] C1, 𝑇2 = R2 [v] W2 [q] C2 and
𝑇3 = R3 [q] R3 [t] W3 [t] W3 [q] C3. If we take 𝑏 = R3 [t] in transaction

𝑇3, then prefix𝑏 (𝑇3) = R3 [q] R3 [t] and postfix𝑏 (𝑇3) = W3 [t] W3 [q] C3.
□

A (multiversion) schedule 𝑠 over a set T of transactions is a tuple
(𝑂𝑠 , ≤𝑠 ,≪𝑠 , 𝑣𝑠) where 𝑂𝑠 is the set containing all operations of
transactions in T as well as a special operation op0 conceptually
writing the initial versions of all existing objects, ≤𝑠 encodes the
ordering of these operations, ≪𝑠 is a version order providing for
each object t a total order over all write operations on t occurring
in 𝑠 , and 𝑣𝑠 is a version function mapping each read operation 𝑎

in 𝑠 to either op0 or to a write operation different from 𝑎 in 𝑠 . We
require that op0 ≤𝑠 𝑎 for every operation 𝑎 ∈ 𝑂𝑠 , op0 ≪𝑠 𝑎 for
every write operation 𝑎 ∈ 𝑂𝑠 , and that 𝑎 <𝑇 𝑏 implies 𝑎 <𝑠 𝑏 for
every 𝑇 ∈ T and every 𝑎, 𝑏 ∈ 𝑇. We furthermore require that for
every read operation 𝑎, 𝑣𝑠 (𝑎) <𝑠 𝑎 and, if 𝑣𝑠 (𝑎) ≠ op0, then the
operation 𝑣𝑠 (𝑎) is on the same object as 𝑎. Intuitively, op0 indicates
the start of the schedule, the order of operations in 𝑠 is consistent
with the order of operations in every transaction 𝑇 ∈ T , and the
version function maps each read operation 𝑎 to the operation that
wrote the version observed by 𝑎. If 𝑣𝑠 (𝑎) is op0, then 𝑎 observes
the initial version of this object. The version order ≪𝑠 represents
the order in which different versions of an object are installed in
the database. This separate version order is needed, as for a pair
of write operations on the same object, the order in which these
versions are installed does not necessarily coincide with ≤𝑠 .

A schedule 𝑠 is a single version schedule if ≪𝑠 coincides with ≤𝑠
and every read operation always reads the last written version of
the object. Formally, for each pair of write operations 𝑎 and 𝑏 on
the same object, 𝑎 ≪𝑠 𝑏 iff 𝑎 <𝑠 𝑏, and for every read operation 𝑎

there is no write operation 𝑐 on the same object as 𝑎 with 𝑣𝑠 (𝑎) <𝑠
𝑐 <𝑠 𝑎. A single version schedule over a set of transactions T
is single version serial if its transactions are not interleaved with
operations from other transactions. That is, for every 𝑎, 𝑏, 𝑐 ∈ 𝑂𝑠

with 𝑎 <𝑠 𝑏 <𝑠 𝑐 and 𝑎, 𝑐 ∈ 𝑇 implies 𝑏 ∈ 𝑇 for every 𝑇 ∈ T .
The absence of aborts in our definition of a schedule is consistent

with the common assumption [9, 20] that an underlying recovery
mechanism will roll back transactions that interfere with aborted
transactions.

Example 2. Consider the set of transactions T given in Example 1.

Let 𝑠1 be the schedule where the ordering ≤𝑠1 of operations is

op0 R3 [q] R3 [t] W3 [t] R1 [t] W1 [v] C1 R2 [v] W2 [q] C2 W3 [q] C3,

the version order ≪𝑠1 equals op0 ≪𝑠1 W3 [t] for object t, op0 ≪𝑠1
W1 [v] for object v and op0 ≪𝑠1 W2 [q] ≪𝑠1 W3 [q] for object q, and the
version function 𝑣𝑠1 is

{R3 [q] → op0, R3 [t] → op0, R1 [t] → W3 [t], R2 [v] → W1 [v]}.

Here, the version order W2 [q] ≪𝑠1 W3 [q] should be interpreted as

transaction 𝑇2 installing a version of q that should precede the ver-

sion installed by transaction 𝑇3. Furthermore, 𝑣𝑠1 (R3 [t]) = op0 and
𝑣𝑠1 (R1 [t]) = W3 [t] imply that 𝑇3 observes the initial version of t,
whereas 𝑇1 observes the version written by 𝑇3. Notice that 𝑠1 is a sin-
gle version schedule, as ≪𝑠1 coincides with ≤𝑠1 and according to the

version function 𝑣𝑠1 each read operation observes the most recently

written version.

Next, let 𝑠2 be the schedule where the ordering ≤𝑠2 is equal to ≤𝑠1 ,
but where the version order ≪𝑠2 equals op0 ≪𝑠2 W3 [t] for object t,
op0 ≪𝑠2 W1 [v] for object v and op0 ≪𝑠2 W3 [q] ≪𝑠2 W2 [q] for object
q, and the version function 𝑣𝑠2 is

{R3 [q] → op0, R3 [t] → op0, R1 [t] → op0, R2 [v] → W1 [v]}.
Contrasting 𝑠1, this schedule 𝑠2 is not a single version schedule. Note

in particular that W3 [q] ≪𝑠2 W2 [q], whereas W2 [q] ≤𝑠2 W3 [q]. That
is, the version of q installed by 𝑇3 should precede the version of 𝑇2,
even though this version of 𝑇3 is installed later according to ≤𝑠2 .
Furthermore, the read operation R1 [t] does not read the most recent

version, as it observes the initial version of t rather than the more

recent version written by W3 [t]. □

2.2 Conflict Serializability

Let 𝑎 𝑗 and 𝑏𝑖 be two operations on the same object t from different
transactions 𝑇𝑗 and 𝑇𝑖 in a set of transactions T . We then say that
𝑎 𝑗 is conflicting with 𝑏𝑖 if:

• (ww-conflict) 𝑎 𝑗 = W𝑗 [t] and 𝑏𝑖 = W𝑖 [t]; or,
• (wr-conflict) 𝑎 𝑗 = W𝑗 [t] and 𝑏𝑖 = R𝑖 [t]; or,
• (rw-conflict) 𝑎 𝑗 = R𝑗 [t] and 𝑏𝑖 = W𝑖 [t].

In this case, we also say that 𝑎 𝑗 and 𝑏𝑖 are conflicting opera-
tions. Furthermore, commit operations and the special operation
op0 never conflict with any other operation.When 𝑎 𝑗 and𝑏𝑖 are con-
flicting operations in T , we say that 𝑎 𝑗 depends on 𝑏𝑖 in a schedule
𝑠 over T , denoted 𝑏𝑖 →𝑠 𝑎 𝑗 if:1

• (ww-dependency) 𝑏𝑖 is ww-conflicting with 𝑎 𝑗 and 𝑏𝑖 ≪𝑠 𝑎 𝑗 ;
or,

• (wr-dependency) 𝑏𝑖 is wr-conflicting with 𝑎 𝑗 and 𝑏𝑖 = 𝑣𝑠 (𝑎 𝑗)
or 𝑏𝑖 ≪𝑠 𝑣𝑠 (𝑎 𝑗); or,

• (rw-antidependency)𝑏𝑖 is rw-conflictingwith𝑎 𝑗 and 𝑣𝑠 (𝑏𝑖) ≪𝑠

𝑎 𝑗 .
Intuitively, a ww-dependency from𝑏𝑖 to 𝑎 𝑗 implies that 𝑎 𝑗 writes

a version of an object that is installed after the version written by
𝑏𝑖 . A wr-dependency from 𝑏𝑖 to 𝑎 𝑗 implies that 𝑏𝑖 either writes
the version observed by 𝑎 𝑗 , or it writes a version that is installed
before the version observed by 𝑎 𝑗 . A rw-antidependency from 𝑏𝑖
to 𝑎 𝑗 implies that 𝑏𝑖 observes a version installed before the version
written by 𝑎 𝑗 .

Example 3. Consider schedule 𝑠2 as defined in Example 2. In this

schedule, the dependency W3 [q] →𝑠2 W2 [q] is a ww-dependency

since W3 [q] ≪𝑠2 W2 [q]. This schedule 𝑠2 furthermore has a wr-

dependency from W1 [v] to R2 [v], as 𝑣𝑠2 (R2 [v]) = W1 [v]. The de-

pendency R1 [t] →𝑠2 W3 [t] is a rw-antidependency, witnessed by

𝑣𝑠2 (R1 [t]) = op0 ≪𝑠2 W3 [t]. □

Two schedules 𝑠 and 𝑠′ are conflict equivalent if they are over
the same set T of transactions and for every pair of conflicting
operations 𝑎 𝑗 and 𝑏𝑖 , 𝑏𝑖 →𝑠 𝑎 𝑗 iff 𝑏𝑖 →𝑠′ 𝑎 𝑗 .

Definition 4. A schedule 𝑠 is conflict serializable if it is conflict
equivalent to a single version serial schedule.

1We adopt the following convention: a 𝑏 operation can be understood as a ‘before’
while an 𝑎 can be interpreted as an ‘after’.

𝑇1 :R1 [t]W1 [v]C1 𝑇2 :R2 [v]W2 [q]C2

𝑇3 :R3 [q]R3 [t]W3 [t]W3 [q]C3

(a)𝐶𝐺 (𝑠1)

𝑇1 :R1 [t]W1 [v]C1 𝑇2 :R2 [v]W2 [q]C2

𝑇3 :R3 [q]R3 [t]W3 [t]W3 [q]C3

(b)𝐶𝐺 (𝑠2)

Figure 1: Conflict graphs for schedules 𝑠1 and 𝑠2 as defined
in Example 2.

A conflict graph
2 𝐶𝐺 (𝑠) for schedule 𝑠 over a set of transactions

T is the graph whose nodes are the transactions in T and where
there is an edge from𝑇𝑖 to𝑇𝑗 if𝑇𝑖 has an operation 𝑏𝑖 that conflicts
with an operation 𝑎 𝑗 in 𝑇𝑗 and 𝑏𝑖 →𝑠 𝑎 𝑗 . Since we are usually
not only interested in the existence of conflicting operations, but
also in the operations themselves, we assume the existence of a
labeling function _mapping each edge to a set of pairs of operations.
Formally, (𝑏𝑖 , 𝑎 𝑗) ∈ _(𝑇𝑖 ,𝑇𝑗) iff there is an operation 𝑏𝑖 ∈ 𝑇𝑖 that
conflicts with an operation 𝑎 𝑗 ∈ 𝑇𝑗 and 𝑏𝑖 <𝑠 𝑎 𝑗 . For ease of
notation, we choose to represent 𝐶𝐺 (𝑠) as a set of quadruples
(𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗) denoting all possible pairs of these transactions 𝑇𝑖
and 𝑇𝑗 with all possible choices of conflicting operations 𝑏𝑖 and 𝑎 𝑗 .
Henceforth, we refer to these quadruples simply as edges. Notice
that edges cannot contain commit operations.

A cycle 𝐶 in 𝐶𝐺 (𝑠) is a non-empty sequence of edges

(𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎3,𝑇3), . . . , (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1)

in 𝐶𝐺 (𝑠), in which every transaction is mentioned exactly twice.
Note that cycles are by definition simple. Here, transaction𝑇1 starts
and concludes the cycle. For a transaction 𝑇𝑖 in 𝐶 , we denote by
𝐶 [𝑇𝑖] the cycle obtained from 𝐶 by letting 𝑇𝑖 start and conclude
the cycle while otherwise respecting the order of transactions in 𝐶 .
That is, 𝐶 [𝑇𝑖] is the sequence

(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) · · · (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1) (𝑇1, 𝑏1, 𝑎2,𝑇2) · · · (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖) .

Theorem 5 ([32]). A schedule 𝑠 is conflict serializable iff the con-

flict graph for 𝑠 is acyclic.

2The term serialization graph is used to denote the multiversion equivalent of the
(single version) conflict graph. We use the term conflict graph in Section 3 (also for
multiversion conflict graphs) but switch to serialization graph in Section 5 to be
consistent with [46].

Example 6. The conflict graphs for schedules 𝑠1 and 𝑠2 in Exam-

ple 2 are given in Figure 1. Since 𝐶𝐺 (𝑠1) contains cycles, we conclude
that 𝑠1 is not conflict serializable. The conflict graph 𝐶𝐺 (𝑠2) on the

other hand is acyclic, thereby implying that 𝑠2 is conflict serializable.
Indeed, 𝑠2 is conflict equivalent to the single version serial schedule

𝑇1 ·𝑇3 ·𝑇2. □

2.3 Isolation Levels

An isolation level is a set of constraints over all possible schedules.
A schedule 𝑠 is allowed under an isolation level I if 𝑠 adheres to all
constraints set forth by I. We define isolation levels in terms of
the concurrency phenomena that we want to exclude from sched-
ules [8]. It is accustomed to view an isolation level as a set of allowed
schedules [32]. We say that an isolation level I is a restriction of an
isolation level I′, denoted I ⊆ I′, if the fact that a schedule 𝑠 is
allowed under I implies that 𝑠 is allowed under I′ as well.

3 ROBUSTNESS FOR TRANSACTIONS

We start out by considering robustness in a restricted setting where
the set of transactions under consideration is assumed to be known
in advance. Even though this restricted setting has little direct
practical relevance for the simple reason that transaction sets T are
usually not known in advance, we show in the next section that the
obtained results can be generalized to offline robustness testing on
the application level where interaction with the database happens
through an API consisting of a fixed set of transaction programs.

The robustness property [9] (also called acceptability in [20,
21]) guarantees serializability for all schedules of a given set of
transactions for a given isolation level:

Definition 7 (Robustness). A setT of transactions is robust against
an isolation level if every schedule for T that is allowed under that
isolation level is conflict serializable.

For an isolation level I, robustness(I) is the problem to decide
if a given set of transactions T is robust against I.

3.1 Single Version Read (Un)Committed

For a single version schedule 𝑠 = (𝑂𝑠 , ≤𝑠 ,≪𝑠 , 𝑣𝑠), the version order
≪𝑠 and version function 𝑣𝑠 are by definition implied by ≤𝑠 . Because
of this, dependencies between conflicting operations in 𝑠 can be
identified more directly based on the ordering of operations ≤𝑠
itself rather than ≪𝑠 and 𝑣𝑠 :

Proposition 8. Let 𝑎 𝑗 and 𝑏𝑖 be two conflicting operations oc-

curring in a single version schedule 𝑠 over a set of transactions T .

Then 𝑏𝑖 →𝑠 𝑎 𝑗 iff 𝑏𝑖 <𝑠 𝑎 𝑗 . Furthermore, (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗) is an edge in

𝐶𝐺 (𝑠) iff 𝑏𝑖 <𝑠 𝑎 𝑗 .

Since ≪𝑠 and 𝑣𝑠 can be derived from ≤𝑠 for a single version
schedule 𝑠 , we facilitate presentation in this subsection by omitting
≪𝑠 and 𝑣𝑠 in our notation, denoting 𝑠 by the tuple (𝑂𝑠 , ≤𝑠) instead.

Let 𝑠 be a single version schedule for a set T of transactions.
• Then, 𝑠 exhibits a dirty write iff there are two different trans-
actions 𝑇𝑖 and 𝑇𝑗 in T and an object t such that

W𝑖 [t] <𝑠 W𝑗 [t] <𝑠 C𝑖 .
That is, transaction 𝑇𝑗 writes to an object that has been
modified earlier by 𝑇𝑖 , but 𝑇𝑖 has not yet issued a commit.

𝑇1 :R1 [t]W1 [v]C1 𝑇2 :R2 [v]W2 [q]C2

𝑇3 :R3 [q]R3 [t]W3 [t]W3 [q]C3

Figure 2: 𝐼𝐺 (T) for T = {𝑇1,𝑇2,𝑇3} as defined in Example 13.

• Furthermore, 𝑠 exhibits a dirty read iff there are two different
transactions 𝑇𝑖 and 𝑇𝑗 in T and an object t such that

W𝑖 [t] <𝑠 R𝑗 [t] <𝑠 C𝑖 .
That is, transaction𝑇𝑗 reads an object that has been modified
earlier by 𝑇𝑖 , but 𝑇𝑖 has not yet issued a commit.

Definition 9. A single version schedule is allowed under isolation
level read uncommitted if it exhibits no dirty writes, and it is
allowed under isolation level read committed if, in addition, it also
exhibits no dirty reads.

Notice that read committed is a restriction of read uncom-
mitted, as every schedule allowed under read committed is also
allowed under read uncommitted.

We use a variant of the interference graph, as introduced by
Fekete [20], which essentially lifts the notion of a conflict graph
from schedules to sets of transactions. Consistent with our defi-
nition of conflict graph, we expose conflicting operations via an
explicit labeling of edges.

Definition 10. For a set of transactions T , the interference graph
𝐼𝐺 (T) for T is the graph whose nodes are the transactions in T
and where there is an edge from 𝑇𝑖 to 𝑇𝑗 if there is an operation
in 𝑇𝑖 that conflicts with some operation in 𝑇𝑗 . Again, we assume a
labeling function _mapping each edge to a set of pairs of conflicting
operations. Formally, (𝑏𝑖 , 𝑎 𝑗) ∈ _(𝑇𝑖 ,𝑇𝑗) iff there is an operation
𝑏𝑖 ∈ 𝑇𝑖 that conflicts with an operation 𝑎 𝑗 ∈ 𝑇𝑗 .

For convenience, just like for conflict graphs, we choose to
represent 𝐼𝐺 (T) as a set of quadruples of the form (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗).
That is, (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗) ∈ 𝐼𝐺 (T) iff there is an edge (𝑇𝑖 ,𝑇𝑗) and
(𝑏𝑖 , 𝑎 𝑗) ∈ _(𝑇𝑖 ,𝑇𝑗). Again, we then refer to these quadruples simply
as edges.

Notice that (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗) ∈ 𝐼𝐺 (T) implies (𝑇𝑗 , 𝑎 𝑗 , 𝑏𝑖 ,𝑇𝑖) ∈ 𝐼𝐺 (T).
Furthermore, the conflict graph 𝐶𝐺 (𝑠) for a schedule 𝑠 for T is al-
ways a subgraph of the interference graph 𝐼𝐺 (T) for T . Therefore,
every cycle in 𝐶𝐺 (𝑠) is a cycle in 𝐼𝐺 (T). However, the converse is
not always true. Sometimes a cycle in 𝐼𝐺 (T) can be found that does
not translate to a corresponding cycle in the conflict graph for any
schedule for T . We therefore introduce the notion of a transferable
cycle in an interference graph and show in Lemma 14 that when-
ever there is a transferable cycle in 𝐼𝐺 (T) there is a single version
schedule 𝑠 of a specific form called a split schedule (as defined in
Definition 12) that admits a cycle in 𝐶𝐺 (𝑠).

Definition 11. Let T be a set of transactions and 𝐶 a cycle in
𝐼𝐺 (T). Then,𝐶 is non-trivial if for some pair of edges (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗)

𝑇1
𝑇2
𝑇3
𝑇4

opening phase sequential phase closing phase

Figure 3: Abstract presentation of a split schedule for four

transactions. The drawing omits a possible trailing sequence

of non-interleaved transactions (cf. Definition 12).

and (𝑇𝑗 , 𝑏 𝑗 , 𝑎𝑘 ,𝑇𝑘) in 𝐶 the operations 𝑏 𝑗 and 𝑎 𝑗 are different. Fur-
thermore, 𝐶 is transferable if 𝑏 𝑗 <𝑇𝑗

𝑎 𝑗 for some pair of edges
(𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗) and (𝑇𝑗 , 𝑏 𝑗 , 𝑎𝑘 ,𝑇𝑘) in 𝐶 . We then say that 𝐶 is trans-
ferable in 𝑇𝑗 on operations (𝑏 𝑗 , 𝑎 𝑗).

When a cycle is transferable in𝑇 on (𝑏, 𝑎), we create a split sched-
ule by splitting 𝑇 between 𝑏 and 𝑎, inserting all other transactions
from the cycle in the created opening while maintaining their order-
ing and appending at the end all other transactions not occurring
in the cycle in an arbitrary order. Notice that split schedules exhibit
a cycle in their conflict graph. Split schedules are formally defined
as follows:

Definition 12 (Split schedule). Let T be a set of transactions and
𝐶 a transferable cycle in 𝐼𝐺 (T). A split schedule for T based on 𝐶
is a single version schedule having the form

prefix𝑏 (𝑇1) ·𝑇2 · . . . ·𝑇𝑚 · postfix𝑏 (𝑇1) ·𝑇𝑚+1 · . . . ·𝑇𝑛,

where
• (𝑇𝑚, 𝑏𝑚, 𝑎,𝑇1) and (𝑇1, 𝑏, 𝑎2,𝑇2) is a pair of edges in𝐶 and𝐶
is transferable in 𝑇 on (𝑏, 𝑎);

• 𝑇1, . . . ,𝑇𝑚 are the transactions in 𝐶 [𝑇1] in the order as they
occur3; and,

• 𝑇𝑚+1, . . . ,𝑇𝑛 are the remaining transactions in T in an arbi-
trary order.

More specifically, we say that the above schedule is a split schedule
for T based on 𝐶 , 𝑇1 and 𝑏.

We say that a single version schedule 𝑠 is a split schedule for
T if there is a transferable cycle 𝐶 in 𝐼𝐺 (T) such that 𝑠 is a split
schedule for T based on 𝐶 . Figure 3 provides an abstract view of a
split schedule omitting the trailing sequence 𝑇𝑚+1 · · ·𝑇𝑛 .

Example 13. Consider T = {𝑇1,𝑇2,𝑇3} with 𝑇1 = R1 [t] W1 [v] C1,
𝑇2 = R2 [v] W2 [q] C2 and𝑇3 = R3 [q] R3 [t] W3 [t] W3 [q] C3. Then 𝐼𝐺 (T)
is depicted in Figure 2. The cycle 𝐶1 consisting of the following edges

(𝑇1, W1 [v], R2 [v],𝑇2), (𝑇2, W2 [q], W3 [q],𝑇3), (𝑇3, W3 [t], R1 [t],𝑇1)

is transferable in 𝑇3 on (W3 [t], W3 [q]) as W3 [t] <𝑇3 W3 [q]. The cycle
𝐶2 consisting of the following edges

(𝑇1, W1 [v], R2 [v],𝑇2), (𝑇2, W2 [q], R3 [q],𝑇3), (𝑇3, W3 [t], R1 [t],𝑇1)

3Recall from Section 2.2 that𝐶 [𝑇1] denotes the cycle obtained from𝐶 by letting𝑇1
start and conclude the cycle while otherwise respecting the order of transactions in𝐶 .

is not transferable in 𝑇3 on (W3 [t], R3 [q]) as W3 [t] ≮𝑇3 R3 [q]. The
split schedule 𝑠1 for T based on 𝐶1, 𝑇3, and W3 [t] is as follows:

R3 [q]R3 [t]W3 [t]︸ ︷︷ ︸
prefix𝑏 (𝑇3)

R1 [t]W1 [v]C1︸ ︷︷ ︸
𝑇1

R2 [v]W2 [q]C2︸ ︷︷ ︸
𝑇2

W3 [q]C3︸ ︷︷ ︸
postfix𝑏 (𝑇3)

,

with 𝑏 = W3 [t]. □

The following lemma collects some interesting properties of
transactions.

Lemma 14. Let T be a set of transactions.

(1) If a schedule 𝑠 for T has a cycle 𝐶 in its conflict graph, then 𝐶

is a transferable cycle in 𝐼𝐺 (T).
(2) If there is a non-trivial cycle 𝐶 in 𝐼𝐺 (T) then there is a trans-

ferable cycle 𝐶′
in 𝐼𝐺 (T).

(3) Let 𝑠 be a split schedule for T based on a transferable cycle 𝐶

in 𝐼𝐺 (T). Then 𝐶 is a cycle in 𝐶𝐺 (𝑠).

Read Uncommitted. For a cycle to guarantee the existence of a
schedule allowed under read uncommitted, we need an additional
property:

Definition 15. Let T be a set of transactions and let𝐶 be a cycle in
𝐼𝐺 (T). Let 𝑇 ∈ T and 𝑏, 𝑎 ∈ 𝑇 . Then, 𝐶 is prefix-write-conflict-free
in𝑇 on operations (𝑏, 𝑎) if𝐶 is transferable in𝑇 on operations (𝑏, 𝑎)
and there is no write operation in prefix𝑏 (𝑇) that conflicts with a
write operation in a transaction in 𝐶 \ {𝑇}.4

Furthermore, 𝐶 is prefix-write-conflict-free if it is prefix-write-
conflict-free in 𝑇 on (𝑏, 𝑎) for some 𝑇 ∈ T and some operations
𝑏, 𝑎 ∈ 𝑇 .

Example 16. Cycle 𝐶1 of Example 13 is prefix-write-conflict-free

in𝑇3 on operations (W3 [t], W3 [q]). Indeed, there is no write operation
in 𝑇2 or 𝑇1 to object t. Notice that the split schedule 𝑠1 of Example 13

is allowed under read uncommitted. □

The next theorem then characterizes robustness against read
uncommitted:

Theorem 17 ([26]). Let T be a set of transactions. The following

are equivalent:

(1) T is not robust against isolation level read uncommitted;
(2) 𝐼𝐺 (T) contains a prefix-write-conflict-free cycle; and,
(3) there is a split schedule 𝑠 for T that is allowed under read

uncommitted.

Using the above characterization, the following theorem estab-
lishes the complexity of deciding robustness against read uncom-
mitted:

Theorem 18 ([26]). robustness(read uncommitted) is logspace-
complete.

Read Committed. Robustness against read committed can be
characterized in terms of the absence of counterexample schedules
of a particular form:

Definition 19. Let T be a set of transactions and 𝐶 a cycle in
𝐼𝐺 (T) that is transferable in its first transaction 𝑇1 on operations

4We abuse notation here and denote the set of transactions occurring in𝐶 also by𝐶 .

(𝑏1, 𝑎1). A multi-split schedule for T based on 𝐶 is any schedule of
the form

prefixY (𝑇1) (𝑇1) · . . . · prefixY (𝑇𝑚) (𝑇𝑚)
· postfixY (𝑇1) (𝑇1) · . . . · postfixY (𝑇𝑚) (𝑇𝑚)

·𝑇𝑚+1 · . . . ·𝑇𝑛,

with 𝑇1, . . . ,𝑇𝑚 denoting the transactions occurring in 𝐶 in the
order as they occur, and with 𝑇𝑚+1, . . . ,𝑇𝑛 denoting the remaining
transactions in T in an arbitrary order. Here, Y is a function that
maps each transaction occurring in 𝐶 to one of its operations and
that satisfies the following conditions: for every 𝑖 > 1,

(1) Y (𝑇1) = 𝑏1;
(2) if Y (𝑇𝑖−1) = C𝑖−1 then Y (𝑇𝑖) = C𝑖 ;5 and,
(3) if Y (𝑇𝑖−1) ≠ C𝑖−1 then Y (𝑇𝑖) = 𝑏𝑖 or Y (𝑇𝑖) = C𝑖 with the

edge (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗) in 𝐶 where 𝑗 = 1 if 𝑖 = 𝑚 and 𝑗 = 𝑖 + 1
otherwise.

The transaction 𝑇𝑖 is called open when Y (𝑇𝑖) ≠ C𝑖 and is closed
otherwise. Notice that for a closed transaction 𝑇𝑖 , prefixY (𝑇𝑖) (𝑇𝑖) =
𝑇𝑖 and postfixY (𝑇𝑖) (𝑇𝑖) is empty. A multi-split schedule is fully split

when all transactions are open, that is, Y (𝑇𝑖) ≠ C𝑖 for all 𝑖 ∈ [1,𝑚].

We say that 𝑠 is a multi-split schedule for T if it is a multi-split
schedule for T based on some cycle 𝐶 . Notice that there is always
a number 𝑘 > 0 such that the first 𝑘 transactions occurring in 𝐶

are open and the others (if any) are closed. In a fully split schedule
there are no closed transactions.

The next lemma establishes that a multi-split schedule gives rise
to a cycle in the corresponding conflict graph.

Lemma 20 ([26]). Let 𝑠 be a multi-split schedule for a set of trans-

actions T based on a cycle 𝐶 in 𝐼𝐺 (T). Then 𝐶 is also a cycle in

𝐶𝐺 (𝑠).

Notice that the previous lemma only implies that 𝑠 is not conflict
serializable, but does not state whether 𝑠 is allowed under read
committed. However, a multi-split schedule can only serve as a
valid counterexample for robustness against read committed if it
is allowed under read committed. To this end, we introduce the
definition of a multi-prefix-conflict-free cycle.

In the following definition, 𝑇 and 𝑇 ′ intuitively refer to the first
open and last open transaction in the multi-split schedule that can
be constructed from a multi-prefix-conflict-free cycle.

Definition 21. Let T be a set of transactions and let 𝐶 be a cycle
in 𝐼𝐺 (T) containing transactions 𝑇 and 𝑇 ′. Then 𝐶 is multi-prefix-

conflict-free in 𝑇 and 𝑇 ′ if 𝐶 is transferable in 𝑇 and for every
transaction 𝑇𝑖 that is equal to 𝑇 ′ or occurs before 𝑇 ′ in 𝐶 [𝑇] there
is no write operation in prefix𝑏 (𝑇𝑖) (𝑇𝑖) that

6

• conflicts with a read or write operation in prefix𝑏 (𝑇𝑗) (𝑇𝑗) of
some transaction 𝑇𝑗 occurring after𝑇𝑖 but before or equal to
𝑇 ′ in 𝐶 [𝑇]; or,

• conflicts with a read or write operation in some transaction
𝑇𝑗 occurring after 𝑇 ′ in 𝐶 [𝑇]; or,

5Recall that C𝑖−1 and C𝑖 are the commit operations of transactions 𝑇𝑖−1 and 𝑇𝑖 ,
respectively.
6Recall from Section 2.2 that 𝐶 [𝑇] denotes the cycle obtained from 𝐶 by letting 𝑇
start and conclude the cycle while otherwise respecting the order of transactions in𝐶 .

𝑇1 :W1 [t]W1 [v]C1 𝑇2 :R2 [p]R2 [q]W2 [p]W2 [t]C2

𝑇3 :R3 [v] W3 [q]C3

Figure 4: 𝐼𝐺 (T) for T = {𝑇1,𝑇2,𝑇3} as defined in Example 22.

• conflicts with a read or write operation in postfix𝑏 (𝑇𝑗) (𝑇𝑗)
of some transaction 𝑇𝑗 occurring strictly before 𝑇𝑖 in 𝐶 [𝑇].

Example 22. Consider T = {𝑇1,𝑇2,𝑇3} with 𝑇1 = W1 [t] W1 [v] C1,
𝑇2 = R2 [p] R2 [q] W2 [p] W2 [t] C2 and𝑇3 = R3 [v] W3 [q] C3. Then 𝐼𝐺 (T)
is depicted in Figure 4. The cycle 𝐶 consisting of the following edges

(𝑇1, W1 [t], W2 [t],𝑇2), (𝑇2, R2 [q], W3 [q],𝑇3), (𝑇3, R3 [v], W1 [v],𝑇1)
is multi-prefix-conflict-free in𝑇1 and𝑇2. The multi-split schedule 𝑠 for

T based on 𝐶 where 𝑇1 and 𝑇2 are open and 𝑇3 is closed is as follows:

W1 [t]︸︷︷︸
prefix𝑏1 (𝑇1)

R2 [p]R2 [q]︸ ︷︷ ︸
prefix𝑏2 (𝑇2)

R3 [v]W3 [q]C3︸ ︷︷ ︸
𝑇3

W1 [v]C1︸ ︷︷ ︸
postfix𝑏1 (𝑇1)

W2 [p]W2 [t]C2︸ ︷︷ ︸
postfix𝑏2 (𝑇2)

,

with 𝑏1 = W1 [t] and 𝑏2 = R2 [q]. Notice that 𝑠 is allowed under read
committed. □

The next theorem then characterizes robustness against read
committed:

Theorem 23 ([26]). Let T be a set of transactions. The following

are equivalent:

(1) T is not robust against isolation level read committed;
(2) 𝐼𝐺 (T) contains a multi-prefix-conflict-free cycle; and

(3) there is a multi-split schedule 𝑠 for T that is allowed under

read committed.

Using the above characterization, the following theorem estab-
lishes the complexity of deciding robustness against read commit-
ted:

Theorem 24 ([26]). robustness(read committed) is conp-complete.

3.2 Multiversion Read Committed

We shift attention to multiversion read committed (mvrc), a
variation of the Read Committed isolation level over multiversion
schedules. This isolation level allows a transaction to read the last
committed version of an object instead of waiting for the other
transaction to commit.

For a schedule 𝑠 , the version order≪𝑠 corresponds to the commit
order in 𝑠 if for every pair of write operations 𝑎 𝑗 ∈ 𝑇𝑗 and 𝑏𝑖 ∈ 𝑇𝑖 ,
we have 𝑏𝑖 ≪𝑠 𝑎 𝑗 iff C𝑖 <𝑠 𝑎 𝑗 . We say that a schedule 𝑠 is read-last-
committed (RLC) if ≪𝑠 corresponds to the commit order and for
every read operation 𝑎 𝑗 in 𝑠 on some tuple t the following holds:

• 𝑣𝑠 (𝑎 𝑗) = op0 or C𝑖 <𝑠 𝑎 𝑗 with 𝑣𝑠 (𝑎 𝑗) ∈ 𝑇𝑖 ; and
• there is no write operation 𝑐𝑘 ∈ 𝑇𝑘 on t with C𝑘 <𝑠 𝑎 𝑗 and
𝑣𝑠 (𝑎 𝑗)≪𝑠𝑐𝑘 .

That is, 𝑎 𝑗 observes the most recent version of t (according to the
order of commits) that is committed before 𝑎 𝑗 .

Definition 25. A schedule is allowed under isolation level multi-
version read committed (mvrc) if it is read-last-committed and
does not exhibit dirty writes.

Only schedules with a very particular structure have to be con-
sidered: multiversion split schedules.

Definition 26 (Multiversion split schedule). Let T be a set of
transactions and 𝐶 = (𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎3,𝑇3), . . . , (𝑇𝑚, 𝑏𝑚, 𝑎1,
𝑇1) a sequence of conflict quadruples for T s.t. each transaction in
T occurs in at most two quadruples. A multiversion split schedule

for T based on 𝐶 is a multiversion schedule that has the form

prefix𝑏1 (𝑇1) ·𝑇2 · . . . ·𝑇𝑚 · postfix𝑏1 (𝑇1) ·𝑇𝑚+1 · . . . ·𝑇𝑛,
where

(1) there is no write operation in prefix𝑏1 (𝑇1) ww-conflicting
with a write operation in any of the transactions 𝑇2, . . . ,𝑇𝑚 ;

(2) 𝑏1 <𝑇1 𝑎1 or 𝑏𝑚 is rw-conflicting with 𝑎1; and,
(3) 𝑏1 is rw-conflicting with 𝑎2.

Furthermore, 𝑇𝑚+1, . . . ,𝑇𝑛 are the remaining transactions in T
(those not mentioned in 𝐶) in an arbitrary order.

Schematically, a multiversion split schedule is as in Figure 3.
Intuitively, Condition (1) guarantees that 𝑠 is allowed under mvrc,
while Condition (2) and (3) ensure that 𝐶 corresponds to a cycle in
𝐶𝐺 (𝑠).

The following theorem characterizes non-robustness in terms
of the existence of a multiversion split schedule. The proof shows
that for any counterexample schedule allowed under mvrc, a coun-
terexample schedule can be constructed that is a multiversion split
schedule, and that, conversely, any multiversion split schedule 𝑠
gives rise to a cycle in the conflict-graph 𝐶𝐺 (𝑠).

Theorem 27 (follows from [45]). For a set of transactions T ,

this is equivalent:

(1) T is not robust against mvrc;

(2) there is a multiversion split schedule 𝑠 for T based on some 𝐶 .

The above characterization for robustness against mvrc leads to
a polynomial time algorithm that cycles through all possible split
schedules. For this, we need to introduce the following notion. For
a transaction 𝑇1, an operation 𝑏1 ∈ 𝑇1 and a set of transactions
T with 𝑇1 ∉ T , define prefix-conflict-free-graph(𝑏1,𝑇1,T) as the
graph containing as nodes all transactions in T that do not contain
a ww-conflict with an operation in prefix𝑏1 (𝑇1). Furthermore, there
is an edge between two transactions𝑇𝑖 and𝑇𝑗 if𝑇𝑖 has an operation
that conflicts with an operation in 𝑇𝑗 .

Theorem 28 (follows from [45]). Algorithm 1 decides whether

a set of transactions T is robust against mvrc in time𝑂 (max{𝑘.|T |3,
𝑘3 .ℓ}), with𝑘 the total number of operations inT and ℓ the maximum

number of operations in a transaction in T .

4 STATIC ROBUSTNESS TESTING FOR

TEMPLATES

We next consider robustness testing as a static and offline problem
on the application level. We assume that transactions can only be

Algorithm 1: Deciding transaction robustness against
mvrc.
Input : Set of transactions T
Output : True iff T is robust against mvrc

for 𝑇1 ∈ T do

for 𝑏1 a read operation in 𝑇1 do
𝐺 := prefix-conflict-free-graph(𝑏1,𝑇1,T \ {𝑇1});
𝑇𝐶 := reflexive-transitive-closure of 𝐺 ;
for (𝑇2,𝑇𝑚) in 𝑇𝐶 do

for 𝑎1 ∈ 𝑇1, 𝑎2 ∈ 𝑇2, 𝑏𝑚 ∈ 𝑇𝑚 do

if 𝑎1 conflicts with 𝑏𝑚 and 𝑏1 is
rw-conflicting with 𝑎2 and (𝑏1 <𝑇1 𝑎1 or 𝑏𝑚
is rw-conflicting with 𝑎1) then

return False

return True

generated through an API consisting of a fixed set of transaction
programs. For instance, the TPC-C benchmark [43] consists of five
different transaction programs, from which an infinite number of
concrete transactions can be instantiated. A finite set of transac-
tion programs, like TPC-C, is robust against mvrc iff every set of
transactions that can be instantiated from these programs, is robust
against mvrc. If the answer is yes, then the isolation level can be
safely set to mvrc without giving up on serializability.

Our approach is based on a formalization of transaction pro-
grams, called transaction templates, facilitating fine-grained reason-
ing for robustness against mvrc. Key aspects of the formalization
are the following:

• Conceptually, transaction templates are functions with pa-
rameters, and can, for instance, be derived from stored proce-
dures inside a database system. The abstraction generalizes
transactions as usually studied in concurrency control re-
search – sequences of read and write operations – by making
the objects worked on variable, determined by input param-
eters. Such parameters are typed to add additional power to
the analysis.

• We support atomic updates (that is, a read followed by a write
of the same database object, to make a relative change to its
value) allowing us to identify some workloads as robust that
otherwise would not be.

• Furthermore, we model database objects read and written at
the granularity of fields, rather than just entire tuples, decou-
pling conflicts further and allowing to recognize additional
cases that would not be recognizable as robust on the tuple
level.

• Dependencies between tuples are modeled by functional

constraints.

There are also a few restrictions to the model. We assume there
is a fixed set of read-only attributes that cannot be updated and
which are used to select tuples for update. The most typical exam-
ple of this are primary key values passed to transaction templates
as parameters. The inability to update primary keys is not an im-
portant restriction in many workloads, where keys, once assigned,
never get changed, for regulatory or data integrity reasons. We

Account(Name, CustomerID, IsPremium)
Savings(CustomerID, Balance, InterestRate)
Checking(CustomerID, Balance)

Figure 5: Tables of the SmallBank
+
benchmark. Underlined

attributes are primary keys.

show in Section 5 how to surpass these restrictions at the expense
of completeness.

4.1 Formalization of Transaction Templates

We introduce transaction templates by means of an example and
refer to [45] for a formal definition. We present SmallBank+, a
small extension of the SmallBank benchmark [2], to exemplify the
modeling power of transaction templates.

The SmallBank schema consists of three tables as given in Fig-
ure 5. The Account table associates customer names with IDs and
keeps track of the premium status (Boolean); CustomerID is a
UNIQUE attribute. The other tables contain the balance (numeric
value) of the savings and checking accounts of customers identified
by their ID. Account (CustomerID) is a foreign key referencing both
the columns Savings (CustomerID) and Checking (CustomerID).
The interest rate on a savings account is based on a number of
parameters, including the account status (premium or not). The
application code can interact with the database only through a set
of predefined transaction programs.

• Balance(𝑁): returns the total balance (savings and checking)
for the customer with name 𝑁 .

• DepositChecking(𝑁 ,𝑉): makes a deposit of amount𝑉 on the
checking account of the customer with name 𝑁 .

• TransactSavings(𝑁 ,𝑉): makes a deposit or withdrawal 𝑉 on
the savings account of the customer with name 𝑁 .

• Amalgamate(𝑁1,𝑁2): transfers all the funds from the cus-
tomer with name 𝑁1 to the customer with name 𝑁2.

• WriteCheck(𝑁 ,𝑉): writes a check 𝑉 against the account of
the customer with name 𝑁 , penalizing if overdrawing.

• GoPremium(𝑁): converts the account of the customer with
name 𝑁 to a premium account and updates the interest
rate of the corresponding savings account. This transaction
program is an extension w.r.t. the original SmallBank bench-
mark [2].

The corresponding transaction templates are given in Figure 6. In
short, a transaction template is a sequence of read (R), write (W) and
update (U) statements over typed variables (X, Y, . . .) with additional
equality and disequality constraints. E.g., R [Y : Savings{C, I}}] in
template GoPremium indicates that a read operation is performed
to a tuple in relation Savings on the attributes CustomerID and In-
terestRate. We abbreviate the names of attributes by their first letter
to save space. The set {𝐶, 𝐼 } is the read set. Similarly, W and U refer
to write and update operations to tuples of a specific relation. Write
operations have an associatedwrite set while update operations con-
tain a read set followed by awrite set: e.g., U [X : Account{N, C}{I}}]
first reads the Name and CustomerID of tuple X and then writes
to the attribute InterestRate. Furthermore, the description of these
transaction programs implies certain dependencies between the
accessed tuples. For example, the transaction program Balance first

Balance:
R [X : Account{N, C}]
R [Y : Savings{C, B}]
R [Z : Checking{C, B}]
Y = 𝑓𝐴→𝑆 (X), X = 𝑓𝑆→𝐴 (Y)
Z = 𝑓𝐴→𝐶 (X), X = 𝑓𝐶→𝐴 (Z)

DepositChecking:

R [X : Account{N, C}]
U [Z : Checking{C, B}{B}]
Z = 𝑓𝐴→𝐶 (X), X = 𝑓𝐶→𝐴 (Z)

TransactSavings:

R [X : Account{N, C}]
U [Y : Savings{C, B}{B}]
Y = 𝑓𝐴→𝑆 (X), X = 𝑓𝑆→𝐴 (Y)

Amalgamate:

R [X1 : Account{N, C}]
R [X2 : Account{N, C}]
U [Y1 : Savings{C, B}{B}]
U [Z1 : Checking{C, B}{B}]
U [Z2 : Checking{C, B}{B}]
X1 ≠ X2,
Y1 = 𝑓𝐴→𝑆 (X1), X1 = 𝑓𝑆→𝐴 (Y1)
Y2 = 𝑓𝐴→𝑆 (X2), X2 = 𝑓𝑆→𝐴 (Y2)
Z1 = 𝑓𝐴→𝐶 (X1), X1 = 𝑓𝐶→𝐴 (Z1)
Z2 = 𝑓𝐴→𝐶 (X2), X2 = 𝑓𝐶→𝐴 (Z2)

WriteCheck:
R [X : Account{N, C}]
R [Y : Savings{C, B}]
R [Z : Checking{C, B}]
U [Z : Checking{C, B}{B}]
Y = 𝑓𝐴→𝑆 (X), X = 𝑓𝑆→𝐴 (Y)
Z = 𝑓𝐴→𝐶 (X), X = 𝑓𝐶→𝐴 (Z)

GoPremium:
U [X : Account{N, C}{I}]
R [Y : Savings{C, I}]
U [Y : Savings{C}{I}]
Y = 𝑓𝐴→𝑆 (X), X = 𝑓𝑆→𝐴 (Y)

Figure 6: Transaction templates for SmallBank
+
.

𝑇1 : U1 [a1 {N,C}{I}] R1 [s1 {C,I}] U1 [s1 {C}{I}] C1
𝑇2 : R2 [a1 {N,C}] U2 [s1 {C, B}{B}] C2

Figure 7: Example schedule.

reads a tuple of type Account and then uses the value of the Cus-
tomerID attribute to read the corresponding Savings and Checking
tuples. To capture these dependencies between tuples induced by
the foreign keys, we use two unary functions: 𝑓𝐴→𝑆 maps a tuple of
type Account to a tuple of type Savings, while 𝑓𝐴→𝐶 maps a tuple of
type Account to a tuple of type Checking. As Account(CustomerID)
is UNIQUE, every savings and checking account is associated to a
unique Account tuple. This is modelled through the functions 𝑓𝐶→𝐴

and 𝑓𝑆→𝐴 with an analogous interpretation. Notice that the equal-
ity constraints in Figure 6 imply that these functions are bijections
and each other’s inverses.

A transaction 𝑇 over a database D is an instantiation of a trans-
action template 𝜏 if there is a variable mapping ` from the variables
in 𝜏 to tuples in D that satisfies all the constraints in 𝜏 such that
` (𝜏) = 𝑇 . For instance, consider a database D with tuples a1, a2, . . .
of type Account, s1, s2, . . . of type Savings, and c1, c2, . . . of type
Checking with 𝑓 D

𝐴→𝑆
(a𝑖) = s𝑖 , 𝑓 D𝐴→𝐶

(a𝑖) = c𝑖 , 𝑓 D𝑆→𝐴
(s𝑖) = a𝑖 ,

𝑓 D
𝐶→𝐴

(c𝑖) = a𝑖 for each 𝑖 . Then, for `1 = {X → a1, Y → s1},
`1 (GoPremium) = U [a1] R [s1] U [s1] is an instantiation of Go-
Premium whereas `2 (GoPremium) with `2 = {X → a1, Y → s2}
is not as the functional constraint Y = 𝑓𝐴→𝑆 (X) is not satisfied.
Indeed, `2 (Y) = s2 ≠ s1 = 𝑓 D

𝐴→𝑆
(a1) = 𝑓 D

𝐴→𝑆
(`2 (X)). We then

say that a set of transactions is consistent with a set of templates if
every transaction is an instantiation of a transaction template.

The specification of read and write sets for each operation en-
ables a more fine grained analysis of conflicts on the granularity
of attributes. Consider for example the schedule 𝑠 in Figure 7 over
transactions 𝑇1 and 𝑇2, where 𝑇1 is an instantiation of GoPremium,
and𝑇2 is an instantiation of TransactSavings (we show the read and
write sets to facilitate the discussion). Disregarding attributes, we

AccountSavings Checking

𝑓𝐴→𝑆

𝑓𝑆→𝐴

𝑓𝐴→𝐶

𝑓𝐶→𝐴

Figure 8: Schema graph for the SmallBank
+
benchmark. The

dashed edges correspond to the multi-tree schema graph for

the schema restricted to 𝑓𝐴→𝑆 and 𝑓𝐴→𝐶 .

would conclude that this schedule 𝑠 is not serializable, as there is a
rw-antidependency from R1 [s1] to U2 [s1], and a ww-dependency
from U2 [s1] to U1 [s1]. Notice however that U2 [s1] in𝑇2 only writes
to attribute Balance, whereas the operations in 𝑇1 only read and/or
write to the attributes CustomerID and InterestRate. Analogously,
there is no conflict between operation U1 [a1] in 𝑇1 and R2 [a1] in
𝑇2, as the former only writes to the attribute IsPremium, which is
not read by the latter. We can therefore safely conclude that there
are no conflicting operations between 𝑇1 and 𝑇2, and, as a result,
that the schedule is serializable! This analysis on the granularity
of attributes should be contrasted with concurrency control im-
plementations that operate on the level of tuples, e.g. by placing
locks on tuples rather than specific attributes. The consequences of
these differences are discussed in more detail in Section 8 of [45].
We emphasize in particular that the attribute-based characteriza-
tions for robustness are still applicable as sufficient conditions for
tuple-based systems, without requiring changes to the database sys-
tem. Intuitively, a tuple-based concurrency control implementation
will allow only a subset of the schedules that are possible under
an attribute-based implementation, since a tuple-based implemen-
tation will detect more conflicts compared to an attribute-based
one.

4.2 Detecting robust subsets

Deciding robustness against mvrc for transaction templates with
only functional constraints that are variable equalities, is in poly-
nomial time [45]. Algorithm 1 cannot be applied directly to test
robustness for transaction templates as there are infinitely many
sets of transactions consistent with a given set of transaction tem-
plates. However, Algorithm 1 can be generalized to interference
graphs on the level of transaction templates representing potential
conflicts: potentially conflicting operations lead to conflicting oper-
ations when the variables of these operations are mapped to the
same tuple by a variable assignment. The crux underlying the deci-
sion algorithm is that when a counterexample multiversion split
schedule exists, the needed variable instantiations can be compactly
represented.

Deciding robustness against mvrc for transaction templates with
general functional constraints is undecidable [47]. When functional
constraints satisfy certain restrictions, decidability can be retained.
For instance, when functional constraints admit multi-tree bijectiv-
ity robustness is in nlogspace [47]. The unary functions associated
to the database schema induce a schema graph mapping tuples of
one relation to another (see Figure 8 for the SmallBank+ bench-
mark). Informally, multi-tree bijectivity means that there should be
a partitioning of the functions (𝑓1, 𝑔1), . . . , (𝑓𝑛, 𝑔𝑛) such that each
𝑓𝑖 and 𝑔𝑖 are each other’s inverses and the schema graph restricted
to one choice for each (𝑓𝑖 , 𝑔𝑖) is a multi-tree.7 Furthermore, when
the schema graph is acyclic robustness is in expspace [47].

4.3 Robustness of SmallBank
+
and TPC-Ckv

Figure 9 gives an overview of the maximal subsets robust against
mvrc that are detected for the SmallBank+ and TPC-Ckv bench-
marks (TPC-Ckv is a version of TPC-C where selections are re-
stricted to be key-based). Transaction templates are presented in
abbreviated form (e.g., Bal refers to Balance). To assess the effect
of the different features of the abstraction, we consider different
settings: ‘Only R & W’ is the setting where updates are modeled
through a read followed by a write and where attributes and func-
tional constraints are ignored (that is, conflicts are considered on the
level of entire tuples and violations against functional constraints
are allowed).

The setting ‘Atomic Updates’ is the extension that models up-
dates explicitly as atomic updates. This setting already allows de-
tecting relatively large robust sets compared to the ‘Only R & W’
setting. Indeed, for SmallBank+ the set {Am, DC, TS} is a robust
subset indicating that any schedule using any number of instanti-
ations of just these three templates that is allowed under mvrc is
serializable! Also, for TPC-Ckv larger robust subsets are detected.

Next, ‘Attr conflicts’ includes attributes in the analysis (that is,
conflicts are specified on the level of attributes). This difference in
granularity has a profound effect for TPC-Ckv as can be seen in
the third row of Figure 9: a robust subset of four templates (out
of five!) is found: {Del, Pay, NO, SL}. For SmallBank+ there is no
improvement as almost all conflicts for this benchmark are based on
the same Balance attributes in Savings andChecking.We emphasize
that the analysis of conflicts on the granularity of attributes is still

7A graph is a multi-tree is there is at most one directed path between any pair of
vertices. Every multi-tree is acyclic but not vice-versa.

relevant if the database system’s concurrency control subsystem
works at the granularity of tuples rather than individual attributes:
robustness on attribute-level conflicts implies robustness on these
systems.

Finally, ‘Func constraints’ includes functional constraints in the
setting. For SmallBank+, the addition of functional constraints al-
lows adding GoPremium to each maximal robust set, which should
be contrasted with the fact that without functional constraints, the
set {GoPremium} on itself is not even robust against mvrc. For
TPC-Ckv, the addition of functional constraints does not lead to
larger subsets robust against mvrc.

4.4 When robustness fails: promotion

When a set of transaction templates is not robust against mvrc code
modification techniques can be applied to make it robust. Alomari
and Fekete [3] presented a technique that relies on the adding new
tuples to the database that act as locks for problematic combinations
of transactions, thereby enforcing that these transactions cannot
be interleaved with each other.

We propose a template modification technique based on insights
from Definition 26: an equivalent set of transaction templates ro-
bust against mvrc can be created by promoting R-operations to
U-operations that write back the read value. Such a change does
not alter the effect of the transaction template, but the newly intro-
duced write operation will trigger concurrency mechanisms in the
database. We emphasize that this is a general technique that can
always be used to construct an equivalent robust set of templates:
Definition 26 requires that operation 𝑏1 is rw-conflicting with 𝑎1
(Condition (3)), but not ww-conflicting with 𝑎1 (Condition (1)), so
promoting all R-operations to U-operations is sufficient to guarantee
robustness against mvrc. For example, the SmallBank+ benchmark
can be made robust against mvrc by changing all read operations
on tuples of type Savings and Checking in templates Balance and
WriteCheck to atomic updates. We refer to [45] for a more detailed
discussion.

5 STATIC ROBUSTNESS TESTING FOR

PROGRAMS

A drawback of the approach in Section 4 is that it can not be ex-
tended to take updates to key attributes or predicate reads into
account. In this section, we discuss an orthogonal approach where
we require soundness but no longer completeness. We present a
formal model BTP for transaction programs taking predicate reads,
inserts, deletes as well as control structures into account. A ro-
bustness test is then obtained by testing for the absence of certain
cycles in a so-called summary graph. The main advantage of the
presented approach is that the construction of the summary graph
only depends on the BTP formalization of the corresponding SQL
programs and can be constructed automatically: no intervention
from a domain specialist or database administrator to predict possi-
ble conflicts is necessary.

5.1 Auction Example

We illustrate the approach through a running example based on an
auction service, where the database schema consists of three rela-
tions: Buyer(id, calls), Bids(buyerId, bid), and Log(id, buyerId, bid),

SmallBank+ TPC-Ckv
Only R & W {Bal} {OS, SL}
Atomic Updates {Am, DC, TS}, {Del, Pay, SL}, {NO, SL},

{Bal, DC}, {Bal, TS} {Pay, OS, SL}
Attr conflicts {Am, DC, TS}, {Del, Pay, NO, SL},

{Bal, DC}, {Bal, TS} {Pay, OS, SL}
Func constraints {Am, DC, TS, GP}, {Del, Pay, NO, SL},

{Bal, DC, GP}, {Bal, TS, GP} {Pay, OS, SL}

Figure 9: Subsets of the SmallBank
+
and TPC-Ckv benchmarks robust against mvrc by analysis setting.

FindBids(:B, :T):
UPDATE Buyer --q1
SET calls = calls + 1
WHERE id = :B;

SELECT bid --q2
FROM Bids
WHERE bid >= :T;

COMMIT;

Auction schema
Buyer(id,calls)
Bids(buyerId, bid)
Log(id,buyerId,bid)

Foreign keys
𝑓1: Bids(BuyerId) → Buyer(id)
𝑓2: Log(BuyerId)→ Buyer(id)

BTP
FindBids 𝑞1;𝑞2
PlaceBid 𝑞3;𝑞4; (𝑞5 | Y) ;𝑞6

PlaceBid(:B, :V):
UPDATE Buyer --q3
SET calls = calls + 1
WHERE id = :B;

SELECT bid into :C --q4
FROM Bids
WHERE buyerId = :B;

IF :C < :V: --q5
UPDATE Bids
SET bid = :V
WHERE id = :B;

ENDIF;

:logId = uniqueLogId();

INSERT INTO Log --q6
VALUES(:logId, :B, :V);

COMMIT;

Figure 10: Auction schema, SQL code and BTP formalization

for FindBids(𝐵, 𝑇) and PlaceBid(𝐵, 𝑉)

where the primary key for each relation is underlined and buyerId
in Bids and Log is a foreign key referencing Buyer(id). The relation
Buyer lists all potential buyers, Bids keeps track of the current bid
for each potential buyer, and Log keeps a register of all bids. Each
buyer can interact with the auction service through API calls. For
logging purposes, the attribute Buyer(calls) counts the total number
of calls made by the buyer. The API interacts with the database via
two transaction programs: FindBids(𝐵,𝑇) and PlaceBid(𝐵,𝑉) whose
SQL code is given in Figure 10. FindBids returns all current bids
above threshold 𝑇 , whereas PlaceBids increases the bid of buyer 𝐵
to value𝑉 (if𝑉 is higher than the current bid, otherwise the current
bid remains unchanged) and inserts this newly placed bid as a new
tuple in Log. Both programs increment the number of calls for 𝐵.

5.2 Basic Transaction Programs

We introduce the formalism of basic transaction programs (BTP) to
overestimate the set of schedules that can arise when executing
transaction programs as given in Figure 10. A BTP is a sequence
of statements that only retains the information necessary to detect
robustness againstmvrc: the type of statement (insert, key-based se-
lection/update/delete, or predicate-based selection/update/delete),

𝑞 type(𝑞) rel(𝑞) PReadSet(𝑞) ReadSet(𝑞) WriteSet(𝑞)
FindBids

𝑞1 key upd Buyer ⊥ {calls} {calls}
𝑞2 pred sel Bids {bid} {bid} ⊥

PlaceBid

𝑞3 key upd Buyer ⊥ {calls} {calls}
𝑞4 key sel Bids ⊥ {bid} ⊥
𝑞5 key upd Bids ⊥ {} {bid}
𝑞6 ins Log ⊥ ⊥ {id, buyerId,

bid}

Figure 11: Query details for BTPs FindBids and PlaceBid.

the relation that is referred to, and the attributes that are read from,
written to, and that are used in predicates. In particular, BTPs ignore
the concrete predicate selection condition.

Formally, a BTP is a sequence of statements 𝑞1; . . . ;𝑞𝑘 . For ex-
ample, FindBids is modeled by 𝑞1;𝑞2, where 𝑞1 and 𝑞2 are two state-
ments reflecting the corresponding SQL statements in Figure 10.
Each statement 𝑞𝑖 is supplemented with additional information as
detailed in Figure 11. There, type(𝑞𝑖) refers to the type of state-
ment: an insert, a key-based or predicate-based selection, update
or delete; rel(𝑞𝑖) is the relation under consideration; ReadSet(𝑞𝑖)
are the attributes read by 𝑞𝑖 ; WriteSet(𝑞𝑖) those written by 𝑞𝑖 ; and,
PReadSet(𝑞𝑖) the attributes used for predicates in the WHERE part
of the query. We use ⊥ to indicate that a specific function is not
applicable to a statement. For example, 𝑞1 in FindBids is a key-based
update over relation Buyer, since the corresponding SQL query se-
lects exactly one tuple based on the primary key attribute Buyer(id).
This statement reads and then overwrites the value for attribute
Buyer(calls), and therefore ReadSet(𝑞1) = WriteSet(𝑞1) = {calls}.
Since this statement is not predicate-based, we have PReadSet(𝑞1) =
⊥. Statement 𝑞2 is a predicate-based selection over relation Bids.
The predicate id = :B in the corresponding SQL statement only
uses the attribute Bids(bid), and therefore PReadSet(𝑞2) = {bid}.
Therefore, ReadSet(𝑞2) = {bid}.

BTPs incorporate conditional branching and loops as well. In-
deed, PlaceBid is modeled by 𝑞3;𝑞4; (𝑞5 | Y);𝑞6 supplemented with
additional information as depicted in Figure 11. Here, (𝑞5 | Y) de-
notes the branching corresponding to the IF-statement in the SQL
program: either 𝑞5 is executed (if the condition in the SQL program
evaluates to true), or nothing is executed (if the condition evaluates
to false). We note that an ELSE-clauses can be modeled by replacing
Y by a corresponding statement. Analogously, BTPs allow loop(𝑃)

to express iteration, where 𝑃 is an arbitrary sequence of statements.
Intuitively, loop(𝑃) specifies that 𝑃 can be repeated for an arbitrary
yet finite number of iterations.

A set of transaction programsP induces an infinite set of possible
schedules where each transaction in the schedule is an instantiation
of a program in P as informally explained next by means of an
example. Consider the schedule 𝑠 over transactions 𝑇1, 𝑇2 and 𝑇3
presented in Figure 12. Here,𝑇1 and𝑇2 are instantiations of PlaceBid
and 𝑇3 is an instantiation of FindBids (when considered as a BTP).
Furthermore, t1 and t2 are tuples of relation Buyer, v1, v2 and v3
are tuples of Bids, and l1 and l2 are tuples of Log. The operation
R1 [t1] (respectively W1 [t1]) indicates that transaction 𝑇1 reads (re-
spectively writes to) tuple t1, and operation I1 [l1] indicates that
𝑇1 inserts a new tuple l1 into the database. The operation PR3 [Bids]
in 𝑇3 is a predicate read that evaluates a predicate over all tuples in
relation Bids.

Figure 12 further illustrates how each statement in a BTP leads
to one or more operations over tuples. For example, the key-based
update 𝑞3 in PlaceBid results in two operations R1 [t1] and W1 [t1].
Notice in particular that these two operations are over the same
tuple t1 of relation Buyer = rel(𝑞3), where the first operation reads
the value for attribute Buyer(calls) and the second operation over-
writes the value for this attribute, as indicated by ReadSet(𝑞3) and
WriteSet(𝑞3). The predicate-based selection statement 𝑞2 of Find-
Bids results in a larger number of operations in 𝑇3. First, the pred-
icate read PR3 [Bids] evaluates a predicate over all tuples in Bids
= rel(𝑞2), where only attribute Bids(bid) is used in the predicate,
indicated by PReadSet(𝑞2). This predicate intuitively corresponds
to the WHERE clause of the corresponding SQL statement, but in
our formalism, we will only specify the attributes needed in the
predicate rather than the predicate itself. Then,𝑇3 reads three tuples
of relation Bids. For each such tuple, only the value of attribute
Bids(Bid) is read, as specified by ReadSet(𝑞2). Also notice how 𝑇1
is an instantiation of PlaceBid where the if-condition evaluates to
false, whereas for 𝑇2 it evaluates to true, witnessed by the presence
of 𝑞5 in 𝑇2 and its absence in 𝑇1.

5.3 Foreign Keys

Schedules should respect foreign keys. Two instantiations of Place-
Bid that access the same tuple t1 of relation Bids also need to access
the same Buyer v1 as Bids(buyerId) is a foreign key referencing
Buyer(Id). Such information can be used to rule out inadmissible
schedules (that could otherwise inadvertently cause a set of trans-
action programs to not be robust). For example, the schedule 𝑠′
obtained from 𝑠 by substituting t1 with t2 in𝑇1 violates the foreign
key constraint and is therefore not admissible.

5.4 mvrc, Dependencies and Conflict

Serializability

We extend some definitions presented in Section 2 and the defini-
tion of mvrc presented in Section 3.2 to include predicate reads.
When a database is operating under isolation level Multiversion
Read Committed (mvrc), each read operation reads the most re-
cently committed version of a tuple, and write operations cannot
overwrite uncommitted changes. Furthermore, for each tuple t in
some relation 𝑅, a predicate read PR𝑖 [𝑅] over a relation 𝑅 evaluates

its predicate over the most recently committed version of t. For
example, under the assumption that 𝑠 in Figure 12 is allowed under
mvrc, R2 [t1] will observe the version of t1 written by W1 [t1], as𝑇1
committed before R2 [t1]. Read operation R3 [v1] on the other hand
will not see the changes made by W2 [v1], as the commit of𝑇2 occurs
after R3 [v1]. The predicate read PR3 [Bids] evaluates the predicate
over the version of v1 before the version written by W2 [v1], as the
commit of 𝑇2 occurs after PR3 [bids].

We say that two operations occurring in two different trans-
actions are conflicting if they are over the same tuple, access a
common attribute of this tuple, and at least one of these two op-
erations overwrites the value for this common attribute. These
conflicts introduce dependencies between operations. For exam-
ple, W1 [t1] in 𝑇1 and R2 [t1] in 𝑇2 are conflicting, as the former
modifies the value for attribute Buyer(calls) and the latter reads
this value. We therefore say that there is a wr-dependency from
W1 [t1] to R2 [t1], denoted by W1 [t1] →𝑠 R2 [t1]. Similarly, since
we assume that 𝑠 is allowed under mvrc, R3 [v1] observes a version
of v1 before the changes made by W2 [v1]. We therefore say that
there is an rw-antidependency from R3 [v1] to W2 [v1], denoted by
R3 [v1] →𝑠 W2 [v1]. Since the predicate read PR3 [Bids] observes
a version of v1 before the version written by W2 [v1], we say that
there is a predicate rw-antidependency from PR3 [Bids] to W2 [v1],
denoted by PR3 [Bids] →𝑠 W2 [v1]. The serialization graph 𝑆𝑒𝐺 (𝑠)
contains transactions as nodes and edges correspond to dependen-
cies. It is well-known that a schedule is conflict serializable if there
is no cycle in 𝑆𝑒𝐺 (𝑠).

A dependency from a transaction 𝑇𝑖 to a transaction 𝑇𝑗 is coun-
terflow if 𝑇𝑗 commits before 𝑇𝑖 (that is, the direction of the depen-
dency is opposite to the commit order). In our running example,
the dependencies R3 [v1] →𝑠 W2 [v1] and PR3 [Bids] →𝑠 W2 [v1]
are counterflow dependencies, as 𝑇3 commits after 𝑇2. Alomari
and Fekete [3] showed that if a schedule is allowed under mvrc,
then every cycle in the serialization graph contains at least one
counterflow dependency. We refer to cycles containing at least one
counterflow dependency as a type-I cycle. In [46], we refine this
condition and show that every such cycle must either contain an
adjacent-counterflow pair or an ordered-counterflow pair, as well
as a non-counterflow dependency, and refer to the latter as a type-II
cycle . As every type-II cycle is a type-I cycle but not vice-versa,
this refinement will allow us to identify larger sets of programs to
be robust against mvrc.

5.5 Linear Transaction Programs

We refer to BTPs without branching and loops as linear transac-
tion programs (LTP). For each BTP an equivalent set of LTPs can
be derived by unfolding all branching statements and loops. Find-
Bids is also an LTP and PlaceBid can be unfolded into two LTPs
PlaceBid1 := 𝑞3;𝑞4;𝑞5;𝑞6 and PlaceBid2 := 𝑞3;𝑞4;𝑞6. Loop unfold-
ing gives rise to an infinite number of LTPs. However, we will show
that for detecting robustness against mvrc it suffices to limit loop
unfoldings to at most two iterations.

𝑇1 : R1 [t1]W1 [t1]︸ ︷︷ ︸
𝑞3

R1 [v1]︸ ︷︷ ︸
𝑞4

I1 [l1]︸ ︷︷ ︸
𝑞6

C1

𝑇2 : R2 [t1]W2 [t1]︸ ︷︷ ︸
𝑞3

R2 [v1]︸ ︷︷ ︸
𝑞4

W2 [v1]︸ ︷︷ ︸
𝑞5

I2 [l2]︸ ︷︷ ︸
𝑞6

C2

𝑇3 : R3 [t2]W3 [t2]︸ ︷︷ ︸
𝑞1

PR3 [Bids]R3 [v1]R3 [v2]R3 [v3]︸ ︷︷ ︸
𝑞2

C3

Figure 12: Example schedule 𝑠 where 𝑇1 and 𝑇2 are instantiations of PlaceBid and

𝑇3 is an instantiation of FindBids.

FindBids

PlaceBid1 PlaceBid2

𝑞1 → 𝑞1

𝑞1 →
𝑞3

𝑞3 →
𝑞1

𝑞 2
→
𝑞 5

𝑞 1
→
𝑞 3

𝑞 2
→
𝑞 5𝑞 3

→
𝑞 1

𝑞 5
→
𝑞 2

𝑞3 → 𝑞3

𝑞4 → 𝑞5
𝑞3 → 𝑞3

𝑞5 → 𝑞4
𝑞3 → 𝑞3

𝑞5 → 𝑞4

𝑞3 → 𝑞3

𝑞5 → 𝑞5 𝑞4 → 𝑞5

Figure 13: Summary graph containing

a type-I but no type-II cycles.

5.6 Detecting Robustness against mvrc

A set P of LTPs is robust against mvrc if every allowed schedule is
serializable. We therefore lift the just mentioned condition from se-
rialization graphs to summary graphs. The summary graph 𝑆𝑢𝐺 (P)
summarizes all serialization graphs for all possible schedules al-
lowed under mvrc over transactions instantiated from programs in
P. Here, nodes in 𝑆𝑢𝐺 (P) are programs in P and if a schedule al-
lowed under mvrc exists with a dependency 𝑏𝑖 → 𝑎 𝑗 , then an edge
is added from 𝑃𝑖 to 𝑃 𝑗 where 𝑏𝑖 is an operation in transaction 𝑇𝑖
instantiated from a program 𝑃𝑖 ∈ P and 𝑎 𝑗 is an operation in trans-
action 𝑇𝑗 instantiated from 𝑃 𝑗 ∈ P. That edge is annotated with
statements 𝑃𝑖 and 𝑃 𝑗 and is dashed when the dependency is coun-
terflow. The summary graph for the three LTPs FindBids, PlaceBid1
and PlaceBid2 is visualized in Figure 13. If we consider for example
the dependency W1 [t1] →𝑠 R2 [t1], we see that 𝑆𝑢𝐺 (P) has a cor-
responding edge from PlaceBid2 to PlaceBid1, labeled with 𝑞3 and
𝑞3. Analogously, the counterflow dependency R3 [v1] →𝑠 W2 [v1]
is witnessed by the counterflow edge from FindBids to PlaceBid1
in 𝑆𝑢𝐺 (P). We present a formal algorithm constructing the graph
𝑆𝑢𝐺 (P) for a given set of LTPs in [46].

Let 𝑠 be an arbitrary schedule allowed under mvrc where trans-
actions are instantiations of P. As each dependency in the seri-
alization graph 𝑆𝑒𝐺 (𝑠) is witnessed by an edge in the summary
graph 𝑆𝑢𝐺 (P), it immediately follows that each cycle in 𝑆𝑒𝐺 (𝑠) is
witnessed by a cycle in 𝑆𝑢𝐺 (P). So, when 𝑆𝑢𝐺 (P) does not con-
tain a type-II cycle, we can safely conclude that P is robust against
mvrc. Indeed, the absence of such cycles indicates that no schedule
allowed under mvrc exists with a cycle in its serialization graph,
implying that every such schedule is serializable. The presence of a
type-II cycle does not necessarily imply non-robustness as there
might not be a single schedule in which the corresponding cycle
is realized. However, in that case, the conservative approach is to
attest non-robustness to avoid false positives. Algorithm 2 in [46]
follows this conservative approach and determines P to be robust
iff 𝑆𝑢𝐺 (P) does not contain a type-II cycle.

It can be shown that the summary graph in Figure 13 does not
contain a type-II cycle. The set {FindBids, PlaceBid} is therefore
identified as robust against mvrc. The SQL programs presented in
Figure 10 can thus be safely executed under isolation level mvrc,
without risking non-serializable behavior. This improves over ear-
lier work, as the summary graph does contain a type-I cycle (e.g.,
between FindBids and PlaceBid1), and, hence, the method of [3]
can not identify {FindBids, PlaceBid} as robust.

A major advantage of the presented approach is that once a set
of SQL transaction programs is translated in BTP, the construction

of the summary graph is fully automated. This should be contrasted
with earlier work [3, 21] where the construction of the static de-
pendency graph is a manual step that should be performed by a
database specialist. This is of course a difficult problem as the deci-
sion to place an edge requires reasoning over all possible schedules.
In [46], we show the effectiveness of the approach in detecting
larger subsets of transaction programs to be robust against mvrc
as before.

6 RESEARCH DIRECTIONS

Even though database concurrency control has not received much
attention from the database theory research community in the
past decade, we do think that many interesting challenges remain
unanswered. We discuss some possible directions for future work:

• All work on robustness is cast in the setting of conflict-
serializability even though more general notions exist like
view-serializability or final-state serializability [32]. It would
be interesting to see whether similar characterizations for
robustness testing as obtained for snapshot isolation [20],
read committed [26] and multiversion read commit-
ted [45] can be obtained for those settings as well. How these
can be generalized to transaction templates andwhether they
make a difference in practice.

• The general aim of this work is to develop machinery for
choosing an adequate isolation level. Robustness provides
ease of mind: increased throughput guarantees of the lower
isolation level, while not giving up on serializability. But
what can be done when a workload is not robust? One op-
tion is to make workloads robust through code modification
techniques (e.g., [3, 45]) but these come with a performance
penalty as well. From a theory perspective two orthogonal
approaches come to mind. Robustness as considered in this
paper is a binary property: a workload is robust, or it is not
robust. Is it possible to quantify failure of robustness, as in,
the probability that a schedule is not serializable? Another
direction is to consider mixed isolation levels where you
allow different transactions to be executed under different
isolation levels. Rather than deciding robustness, we want to
find an optimal allocation of isolation levels. The allocation
problem has been studied by Fekete [20] for snapshot isola-
tion and serializable, and mixed isolation levels have been
considered by [1], but a general theory for the allocation
problem is lacking.

• Robustness for transaction templates is undecidable when
taking functional constraints into account. While some de-
cidable restrictions have been obtained, we do not have a
good understanding of precisely what is needed for unde-
cidability. We think that larger decidable settings can still be
obtained.

• The results mentioned in Section 5 are a first formal step
towards robustness testing in practice. A shortcoming is that
the predicate conditions used in the SQL statements are not
taken into account. It would be interesting to see how the
present approach can be generalized to that end. This might
require reasoning on intermediate representations of the
transaction program code and could benefit from technology
from the programming languages and compilers field.

ACKNOWLEDGMENTS

This work is funded by FWO-grant G019921N.

REFERENCES

[1] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation
Level Definitions. In ICDE. 67–78.

[2] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The Cost
of Serializability on Platforms That Use Snapshot Isolation. In ICDE. 576–585.

[3] Mohammad Alomari and Alan Fekete. 2015. Serializable use of Read Committed
isolation level. In AICCSA. 1–8.

[4] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and
Ion Stoica. 2013. Highly Available Transactions: Virtues and Limitations. PVLDB
7, 3 (2013), 181–192.

[5] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013.
HAT, Not CAP: Towards Highly Available Transactions. In USENIX HotOS. 24–24.

[6] Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019. Checking
Robustness Against Snapshot Isolation. In CAV. 286–304.

[7] Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019. Robustness
Against Transactional Causal Consistency. In CONCUR. 1–18.

[8] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In SIGMOD.
1–10.

[9] Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against Consistency
Models with Atomic Visibility. In CONCUR. 7:1–7:15.

[10] Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. 2015. Op-
timizing Optimistic Concurrency Control for Tree-Structured, Log-Structured
Databases. In SIGMOD. 1295–1309.

[11] Philip A. Bernstein, ColinW. Reid, and Sudipto Das. 2011. Hyder - A Transactional
Record Manager for Shared Flash. In CIDR. 9–20.

[12] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for
Transactional Consistency Models with Atomic Visibility. In CONCUR. 58–71.

[13] Andrea Cerone and Alexey Gotsman. 2018. Analysing Snapshot Isolation. J.ACM
65, 2 (2018), 1–41.

[14] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2015. Transaction Chop-
ping for Parallel Snapshot Isolation. In DISC, Vol. 9363. 388–404.

[15] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2017. Algebraic Laws for
Weak Consistency. In CONCUR. 26:1–26:18.

[16] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD. 1243–1254.

[17] Bailu Ding, Lucja Kot, Alan J. Demers, and Johannes Gehrke. 2015. Centiman:
elastic, high performance optimistic concurrency control by watermarking. In
SoCC. 262–275.

[18] Jose M. Faleiro, Daniel Abadi, and Joseph M. Hellerstein. 2017. High Performance
Transactions via Early Write Visibility. PVLDB 10, 5 (2017), 613–624.

[19] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking serializable multiversion
concurrency control. PVLDB 8, 11 (2015), 1190–1201.

[20] Alan Fekete. 2005. Allocating isolation levels to transactions. In PODS. 206–215.
[21] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil, and

Dennis E. Shasha. 2005. Making snapshot isolation serializable. ACM Trans.

Database Syst. 30, 2 (2005), 492–528.
[22] Jinwei Guo, Peng Cai, Jiahao Wang, Weining Qian, and Aoying Zhou. 2019.

Adaptive Optimistic Concurrency Control for Heterogeneous Workloads. PVLDB

12, 5 (2019), 584–596.
[23] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.

Opportunities for Optimism in Contended Main-Memory Multicore Transactions.
PVLDB 13, 5 (2020), 629–642.

[24] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. 2009. Improving OLTP
Scalability using Speculative Lock Inheritance. PVLDB 2, 1 (2009), 479–489.

[25] Evan P. C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low overhead
concurrency control for partitioned main memory databases. In SIGMOD. 603–
614.

[26] Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort. 2020. De-
ciding Robustness for Lower SQL Isolation Levels. In PODS. 315–330.

[27] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads.
In SIGMOD. 1675–1687.

[28] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. PVLDB 5, 4 (2011), 298–309.

[29] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: De-
pendably Fast Multi-Core In-Memory Transactions. In SIGMOD. 21–35.

[30] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. PVLDB 13, 11 (2020), 2047–2060.

[31] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD. 677–689.

[32] Christos H. Papadimitriou. 1986. The Theory of Database Concurrency Control.
Computer Science Press.

[33] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended
OLTP Workloads Using Fast Dynamic Partitioning. In SIGMOD. 527–542.

[34] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. 2016. Design Principles for Scaling
Multi-core OLTP Under High Contention. In SIGMOD. 1583–1598.

[35] Kun Ren, Dennis Li, and Daniel J. Abadi. 2019. SLOG: Serializable, Low-latency,
Geo-replicated Transactions. PVLDB 12, 11 (2019), 1747–1761.

[36] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2012. Lightweight Locking
for Main Memory Database Systems. PVLDB 6, 2 (2012), 145–156.

[37] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian Nagel,
and Kenneth A. Ross. 2014. Reducing Database Locking Contention Through
Multi-version Concurrency. PVLDB 7, 13 (2014), 1331–1342.

[38] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Accelerating
Analytical Processing in MVCC using Fine-Granular High-Frequency Virtual
Snapshotting. In SIGMOD. 245–258.

[39] Dennis E. Shasha, François Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-
action Chopping: Algorithms and Performance Studies. ACM Trans. Database

Syst. 20, 3 (1995), 325–363.
[40] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.

Scheduling OLTP transactions via learned abort prediction. In aiDM. 1:1–1:8.
[41] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao,

and Daniel J. Abadi. 2012. Calvin: fast distributed transactions for partitioned
database systems. In SIGMOD. 1–12.

[42] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck. 2018.
Contention-Aware Lock Scheduling for Transactional Databases. PVLDB 11,
5 (2018), 648–662.

[43] TPC-C. 1992. On-Line Transaction Processing Benchmark. (1992). http://www.
tpc.org/tpcc/.

[44] Brecht Vandevoort. 2021. Optimizing Concurrency Control: Robustness Against

Read Committed Revisited. Ph. D. Dissertation. Universiteit Hasselt.
[45] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2021. Ro-

bustness against Read Committed for Transaction Templates. PVLDB 14, 11
(2021), 2141–2153.

[46] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Detect-
ing Robustness against MVRC for Transaction Programs with Predicate Reads.
(2022). Manuscript.

[47] Brecht Vandevoort, Bas Ketsman, Christoph Koch, and Frank Neven. 2022. Ro-
bustness against Read Committed for Transaction Templates with Functional
Constraints. In ICDT, Vol. 220. 16:1–16:17.

[48] Gerhard Weikum and Gottfried Vossen. 2002. Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann.

[49] Cong Yan and Alvin Cheung. 2016. Leveraging Lock Contention to Improve
OLTP Application Performance. PVLDB 9, 5 (2016), 444–455.

[50] Xiangyao Yu, Andrew Pavlo, Daniel Sánchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In SIGMOD. 1629–1642.

[51] Yuan Yuan, KaiboWang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros Blanas, and
Xiaodong Zhang. 2016. BCC: Reducing False Aborts in Optimistic Concurrency
Control with Low Cost for In-Memory Databases. PVLDB 9, 6 (2016), 504–515.

http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Transactions and Schedules
	2.2 Conflict Serializability
	2.3 Isolation Levels

	3 Robustness for transactions
	3.1 Single Version Read (Un)Committed
	3.2 Multiversion Read Committed

	4 Static Robustness Testing for templates
	4.1 Formalization of Transaction Templates
	4.2 Detecting robust subsets
	4.3 Robustness of SmallBank+ and TPC-Ckv
	4.4 When robustness fails: promotion

	5 Static Robustness Testing for Programs
	5.1 Auction Example
	5.2 Basic Transaction Programs
	5.3 Foreign Keys
	5.4 mvrc, Dependencies and Conflict Serializability
	5.5 Linear Transaction Programs
	5.6 Detecting Robustness against mvrc

	6 Research Directions
	Acknowledgments
	References

