
Out-of-Things Debugging: A Live Debugging Approach for Internet
of Things

Carlos Rojas Castilloa, Matteo Marraa, Jim Bauwensa, and Elisa Gonzalez Boixa
a Vrije Universiteit Brussel, Brussels, Belgium

Abstract
Context Internet of Things (IoT) has become an important kind of distributed systems thanks to the wide-spread
of cheap embedded devices equipped with different networking technologies. Although ubiquitous, developing
IoT systems remains challenging.
Inquiry A recent field study with 194 IoT developers identifies debugging as one of the main challenges faced
when developing IoT systems. This comes from the lack of debugging tools taking into account the unique
properties of IoT systems such as non-deterministic data, and hardware restricted devices. On the one hand,
offline debuggers allow developers to analyse post-failure recorded program information, but impose too
much overhead on the devices while generating such information. Furthermore, the analysis process is also
time-consuming and might miss contextual information relevant to find the root cause of bugs. On the other
hand, online debuggers do allow debugging a program upon a failure while providing contextual information
(e.g., stack trace). In particular, remote online debuggers enable debugging of devices without physical access
to them. However, they experience debugging interference due to network delays which complicates bug
reproducibility, and have limited support for dynamic software updates on remote devices.
Approach This paper proposes out-of-things debugging, an online debugging approach especially designed for
IoT systems. The debugger is always-on as it ensures constant availability to for instance debug post-deployment
situations. Upon a failure or breakpoint, out-of-things debugging moves the state of a deployed application to
the developer’s machine. Developers can then debug the application locally by applying operations (e.g., step
commands) to the retrieved state. Once debugging is finished, developers can commit bug fixes to the device
through live update capabilities. Finally, by means of a fine-grained flexible interface for accessing remote
resources, developers have full control over the debugging overhead imposed on the device, and the access to
device hardware resources (e.g., sensors) needed during local debugging.
Knowledge Out-of-things debugging maintains good properties of remote debugging as it does not require
physical access to the device to debug it, while reducing debugging interference since there are no network
delays on operations (e.g., stepping) issued on the debugger since those happen locally. Furthermore, device
resources are only accessed when requested by the user which further mitigates overhead and opens avenues
for mocking or simulation of non-accessed resources.
Grounding We implemented an out-of-things debugger as an extension to a WebAssembly Virtual Machine and
benchmarked its suitability for IoT. In particular, we compared our solution to remote debugging alternatives
based on metrics such as network overhead, memory usage, scalability, and usability in production settings.
From the benchmarks, we conclude that our debugger exhibits competitive performance in addition to confining
overhead without sacrificing debugging convenience and flexibility.
Importance Out-of-things debugging enables debugging of IoT systems by means of classical online operations
(e.g., stepwise execution) while addressing IoT-specific concerns (e.g., hardware limitations). We show that
having the debugger always-on does not have to come at cost of performance loss or increased overhead but
instead can enforce a smooth-going and flexible debugging experience of IoT systems.

ACM CCS 2012
Software and its engineering→ Interpreters; Software testing and debugging;
Computer systems organization→ Embedded software;

Keywords debugging tools, remote debugging, IoT systems, VM, WebAssembly

The Art, Science, and Engineering of Programming

Submitted June 2, 2022

Published October 15, 2022

doi 10.22152/programming-journal.org/2023/7/5
© Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix
This work is licensed under a “CC BY-NC 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 2, 2023, article 5; 33 pages.

https://doi.org/10.22152/programming-journal.org/2023/7/5
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

1 Introduction

IoT systems have become widespread and applied across different domains including
healthcare, environmental monitoring, andmore. Despite suchwidespread, developing
IoT systems remains challenging. A recent study by Makhshari & Mesbah [18] on 194
IoT developers reports debugging as one of the main challenges faced by developers. In
particular, 62% of the participants agree on the complexity of handling failures without
loss of information or affecting the system availability. The study also shows that 74%
of the developers rely on the access of devices to test and debug IoT applications, e.g.,
resetting the devices or manually monitoring their output.

This paper focuses on debugging support to help developers find the root cause of
bugs in IoT systems. When debugging IoT systems, the following characteristics need to
be taken into account: first, programs run on hardware restricted devices i.e., limited
in computational power and memory capacity. Moreover, communication can be
limited in range, financially costly (e.g., IoT networks may limit the network messages
per day [25]), and consume essential device resources (e.g., battery life) [22]. Finally,
the distributed and non-deterministic nature of IoT applications further complicates
debugging as bugs may be more difficult to reproduce.

Current state-of-the-art debuggers have limited support to deal with IoT character-
istics. Often, debugging IoT systems relies on manual log-based debugging (i.e., print
statements added to the source code to record information during program execution)
and dumps (which provide information at the point of failure). Those techniques
often capture too little contextual information to find the root cause of bugs [23].
Offline debuggers like record & replay debuggers record information during program
execution to then enable a deterministic replay of past executions (that may contain
the bug). The problem is that the recording process imposes a too large overhead on
IoT devices as they are typically light on resources; the recorded session can thus grow
too large for the memory to fit (especially in a distributed setting), and the recording
process might greatly slow down program execution.

Alternatively, developers can use online debuggers present in many mainstream
languages and IDEs (e.g., gdb) which provide operations to control the program
execution at specific points of interest (e.g., breakpoints). Remote debugging is the
most appropriate online debugging architecture for IoT systems since it enables
debugging of IoT devices over the network removing the need to have physical access
to the device. However, remote debugging suffers from high network latency since all
debugging operations (e.g., stepping command, inspection of variables, etc.) incur in
network traffic, affecting also bug reproducibility. Recently, out-of-place debugging
has been proposed [20, 21] as a variation to remote debugging to lower network
latency from which remote debuggers suffer but has not yet been explored for IoT.

In this work, we investigate the suitability of out-of-place debugging as a new
debugging technique for IoT systems. Out-of-place debugging [21] proposes to bring
the state of a remote application (once a breakpoint is reached or upon failure) to
the developer’s machine so that debugging can happen locally on the developer’s
machine through a reconstruction of the remote application. And by means of proxy
objects and dynamic software update capabilities, the developer can respectively

5:2

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

access non-transferable resources (i.e., resources only available on the remote machine)
and fix software bugs on the remote machine [21]. However, out-of-place debugging
has been explored in the context of Big Data processing applications and does not
deal with the aforementioned IoT characteristics.

In this paper, we propose and explore an extension to out-of-place debugging called
out-of-things debugging which has been designed to deal with the resource constraint
environment of IoT systems. With out-of-things debugging, the debugger is always-on
and ensures that an application can be debugged at any moment in time, without the
need for disabling or restarting the whole system in debug mode. This ensures that
critical infrastructure can stay online all the time. As opposed to the original work on
out-of-place debugging [21], out-of-things debugging provides developers full control
over (1) the debugging overhead imposed on the device and (2) the access to device
hardware resources (e.g., sensors) needed during local debugging by means of an
extensible interface. Additionally, out-of-things debugging explores an implementation
of debugging support by extending a Virtual Machine (VM) targeting microcontrollers.
Relying on the reflective capabilities of the language as done by the original work was
not possible when targeting the IoT environment as managed runtimes need to be
highly optimized to fit the resource constraints of devices.

To validate our approach, we implement an out-of-things debugger for the We-
bAssembly WARDuino [13] VM called WOOD. We perform benchmarks to quantify
execution speed, network overhead, memory usage, scalability, and usability in pro-
duction settings, and compare WOOD to WARDuino’s remote debugging solution.

In summary, our contributions are the following:
We propose out-of-thing debugging, an always-on remote debugging approach for IoT
applications that addresses IoT concerns in a user customisable manner. Developers
have control over the imposed debugging overhead and hardware resource access
(e.g., sensors) by means of a fine-grained flexible interface that specifies access
strategies.
WOOD, an out-of-things debugger that results from extending and modifying the
WARDuinoWebAssembly VM. By building onWebAssembly, WOOD is able to benefit
from efficiency and compactness as the language is designed with performance
in mind. Importantly, it opens the avenue for the creation of language-agnostic
debugging support for IoT since WebAssembly is a target compilation language to
which higher-level languages can compile to (e.g., Java, Rust, etc.).
A performance evaluation that shows that having the debugger always-on does not
have to come at cost of performance loss or increased overhead but instead can
enforce a smooth-going and flexible debugging experience.
The rest of this paper is organised as follows: Section 2 provides the needed back-

ground for out-of-place debugging and WARDuino, motivates the need for a new
debugging technique within IoT by means of an example application, and sets the
problem statement. Section 3 introduces our novel debugging approach and Section 4
introduces WOOD, the debugger that implements our out-of-things debugging ap-
proach. Section 5 evaluates the viability of out-of-things debugging. Lastly, Section 6
and Section 7 detail the related work and conclude this paper, respectively.

5:3

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

2 Background & Motivation

In this section, we provide the needed background on out-of-place debugging and the
WARDuino VM that we respectively use to build our out-of-things debugging technique
(Section 3) and prototype debugger (Section 4). We also motivate our work by means
of an example where we describe the challenges in debugging IoT applications.

2.1 WARDuino

WARDuino [13] is a stack-based WebAssembly VM designed to execute on microcon-
trollers. Since WebAssembly is a target compilation language [14], one can conve-
niently implement IoT applications in any of the programming languages for which
compilers to Wasm (WebAssembly bytecode) exist. Popular compilers are for instance
Emscripten for C/C++, wasm-pack for Rust, and Wasmer for Go [5, 24, 28].

We built our work on WARDuino because (1) it can compile to run on micro-
controllers as well as the developer’s machine and (2) it already features remote
debugging capabilities which we can adapt to realize our out-of-things debugger. To
run an application, we flash WARDuino alongside the target Wasm application into
the microcontroller. WARDuino then identifies the main entry of the program and
starts executing it on the embedded device.

WARDuino exhibits several strengths that make it an ideal platform for investigating
debugging support for IoT systems:

Wasm was built to achieve great performance [14], which is positively reflected
in WARDuino: micro-benchmarks show that WARDuino out-runs popular MCU
runtime environments such as Espruino [13].
WARDuino can be configured to leave unneeded functionality out which in turn
reduces code space taken by the VM on the microcontroller. This contrasts with
other existing MCU runtime environments (e.g., Espruino [7] and MicroPython[9])
which usually adopt a traditional all or nothing approach.
WARDuino is built on top of Arduino and promotes reusable applications by exposing
Arduino libraries (e.g., GPIO, SPI, etc.) as Wasm modules [13]. Developers can thus
access device resources (e.g., sensor, timer, etc.) by importing the needed Wasm
functions out of the Wasm modules.

2.2 Motivating Example

Let us introduce the challenges of debugging IoT applications by means of a concrete
example. In the domain of smart homes, a Temperature Monitoring Application (TMA)
is a popular application that helps regulate the temperature across the house. Figure 1
(left) depicts this application that typically consists of temperature sensors spread
across different rooms and a thermostat running the temperature monitoring software.
There exists different ways on how to configure the TMA for regulating the house
temperature (e.g., heating level changes based on the time of the day). A possible
approach, depicted in Figure 1 (right), is that the TMA periodically queries the sensors

5:4

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Office Bedroom 1

router

Living room

22℃

Thermostat

Bedroom 2

1 (func $main
2 (type $voidtovoid)
3 (loop $loop
4 (global.set
5 $connected
6 (f32.const 0))
7 (call $avgTemp)
8 (call $regulate)
9 ;;sleep 3sec
10 (i32.const 3000)
11 (call $delay)
12 (br $loop)))

Figure 1 A Temperature Monitor Application (TMA). On the left: the application
deployed on a thermostat that communicates with sensors through the network
to regulate the house temperature based on temperature averages. On the right:
the main function of the TMA extracted from Appendix C and implemented in
WAT (WebAssembly Textual), which is, a human-readable textual representation
of Wasm binary format.

for temperature values, calculates an average temperature based on the returned
values, and then instructs the thermostat to adapt the house temperature based on
the obtained average. The full source code is available in Appendix C.

The Bug. Unfortunately, when programming the TMA application, the developer did
not account for the case when all the sensors are simultaneously unreachable through
the network. This causes a division by zero exception to be raised when calculating the
average temperature. From the perspective of the end-user, the thermostat periodically
reboots and sometimes even stays off for prolonged periods of time. This example
of issue is categorised in the literature as a device connectivity bug (e.g, unreliable
network, failing to connect to the network, etc.). Device connectivity issues are
considered to be one of the most frequent and severe bug categories [18]. Note also
that modern home automation applications usually rely on one device that serves as
the entry point to different services (e.g., switching bulbs through voice commands,
etc.). If TMA service gets restarted periodically due to the bug, other services may as
well become affected or unavailable.

Debugging Challenges. Debugging IoT applications like TMA is not trivial. First,
developers could use testing frameworks and simulation solutions [15, 18] during
development. Unfortunately, a bug may only manifest when run on a device in pro-
duction mode. Second, halting the application for debugging may halt or affect other
services. For example, when the TMA is part of a complex home automation system,
debugging the TMA may stop other services. Third, currently debugging relies on
physical access to the device [18], which may not be easy or financially expensive. For
instance, the company that developed the TMA may need to send a technician to the
customer’s house to investigate the problem. Thus debugging should be possible over

5:5

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

the air as opposed to flashing which requires physical access to the device. Fourth,
debugging should not compromise the TMA’s availability; the application should keep
running during debugging when possible and be resumed upon fixing. For instance, if
a function is suspected to be the root cause of the failure, developers should be allowed
to test its behaviour based on custom arguments. And this without having to restart
the debugging session for every potential test. Lastly, debugging solutions should
operate with minimal overhead (e.g., computational, memory, network) imposed on
the devices given that IoT devices are restricted in hardware resources.

Debugging with Current State of the Art Solutions. Modern runtime environments for
IoT devices, such as WARDuino [13] and Espruino [7] allow applications to remotely
debug from the developer’s machine. Unfortunately, most of them connect via serial
to the device (e.g., Espruino and WARDuino), requiring thus physical access to it.

Assuming that the developer can remotely debug the application over the network,
each debugging operation (e.g., stepping through execution, inspecting application’s
state, etc.) incurs in communication between the developer’s machine and the IoT
device. As a result, developers may experience high delays during a debugging session
due to network communication. And in situations where battery life is scarce, or
when developers pay for the used network bandwidth (e.g., cloud subscriptions [2],
Sigfox [25]), remote debugging is best kept to a bare minimum. Finally, when remote
debugging the TMA, there is no way to keep the application running while debugging
it. When developers insert breakpoints to halt the execution of TMA, this may cause
other services running in the home automation system unavailable. Similarly, when
operations are performed during debugging, those affect the whole application. As a
result, developers may need to restart the application in debug mode when the bug
does not get resolved with the modifications done during debugging.

When developers do not have access to remote debuggers, they typically rely on
testing during development and manual approaches to debugging such as serial
printf [18]. As mentioned before, current testing solutions are limited since the device
is not tested under the same deployment conditions [4, 18], making the finding of the
bug notoriously hard, or not possible (as it may not manifest during testing). Adding
printf statement to the application is a brittle solution since it does not guarantee that
the printed content provides enough context to help identify the bug [23]. On the
other hand, too much information being printed adds noise to the debugging process.
As a result, the developer is forced to undergo long and time-consuming debugging
sessions, relying on their intuition to identify the cause of bugs.

2.3 Problem Statement

In previous work, we propose out-of-place debugging [20, 21] as a novel online debug-
ging architecture that fixes some of the drawbacks of remote debugging, namely high
debugging latency and application interference. An out-of-place debugger captures a
running remote application (upon an exception or hitting a breakpoint) and brings
it over the network to the developer’s machine. As a result, the developer can now
debug locally on a reconstruction of the remote application and benefit from lower

5:6

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

debugging interference, limit side effects to the local reconstruction, and keep the
remote TMA running while debugging locally. Only when the debugger needs to access
a remote resource that cannot be transferred (e.g., sensors), it will behave as a remote
debugger and access it by communicating with the remote device over the network.
Finally, during a debugging session developers can perform source code changes on
the application which upon request can be committed back to the application process.

Out-of-place debugging exhibits several features that help cope with the challenges
of debugging IoT systems:

Local debugging of a remote application can (1) reduce the overhead (e.g., network,
memory, etc.) imposed by debug operations on the hardware restricted devices, (2)
reduce debugging latency thus alleviating the bug reproducibility issues, and (3)
enable debugging of production or non-stoppable applications with little downtime.
Given that IoT devices also dispose of non-transferable resources (e.g., sensors),
out-of-place debugging incorporates a mechanism to access them when needed.
Access to such resources is important because emulation or mocking alternatives
are not always desired nor easy to support in IoT systems [18].
The ability to dynamically commit changes on the remote device removes the
need to physically access the device which is not always easy nor possible. Without
dynamic software update, developers have to resort to time-consuming alternatives
such as flashing. In the study of Makhshari & Mesbah [18], half of the participants
expressed the need for dynamic update of the software of already shipped devices.
However, in prior work out-of-place debugging has been applied to debug Big

Data processing applications [20, 21]. Despite IoT systems being also distributed
applications, it features unique characteristics which out-of-place debugging does not
address, e.g., programs run on hardware restricted devices where communication can
also be limited. Concretely, out-of-place debugging suffers from the following issues
limiting its applicability for debugging IoT:

Out-of-place debugging is designed for general-purpose debugging on powerful
machines (e.g., desktops and servers in the cloud) relying on a highly reflective
runtime [12, 21]. Reflection is key for enabling out-of-place debugging but it is
difficult to have reflective capabilities in runtimes targeting IoT devices with very
lowmemory and processing power.We need to devise an alternative implementation
strategy that enables key concepts such as the capture and reconstruction of debug
sessions.
In out-of-place debugging access to non-transferable resources happens trans-
parently through proxies, a process similar to remote debugging. In IoT applica-
tions, network accesses should be minimized since they may impose a too high-
performance cost on the network and on the device itself. We need to devise a
mechanism that offers a different kind of access; for instance access only some
of the resources, mock non-accessed resources, use cached sensor values, etc. As
a result, we reduce overhead without the loss of contextual information needed
for debugging. Furthermore, the best access strategy is fully dependent on the
application and may vary while debugging.

5:7

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Dynamic software commit should be supported in a way to minimize the network
overhead and memory footprint of IoT devices. The existing implementations of
out-of-place debuggers target the Pharo Smalltalk programming language in which
source-code changes can be stored and then committed into another VM [19, 21].
However this requires bytecode instrumentation and the availability of an onboard
compiler, so it is not directly applicable to IoT.

The aforementioned issues motivate the introduction of a novel offspring of out-of-
place debugging targeted to IoT environments called out-things-debugging, which we
describe in what follows.

3 Out-of-Things: An Online Debugging Approach for IoT

In this paper, we present out-of-things debugging: a debugging model for IoT ap-
plications that adapts and extends out-of-place debugging [21] to account for the
characteristics of IoT systems. Applying out-of-place debugging to IoT requires the
redesign of its core concepts to fit the resource-constrained environment of IoT devices
in which applications run on runtimes that do not feature reflective capabilities that
reify call-stack and code changes.

In what follows, we first describe the out-of-place debugging core concepts and the
modifications brought to its architecture to realise our out-of-things debugging vision.
Then, we delve into the modifications and extensions brought to the core concepts:
Section 3.2 describes the capturing and transferring of the debugging session under
resource-restricted conditions, where no high-level serialization libraries are available.
Section 3.3 details the different access strategies for non-transferable resources. Finally,
Section 3.4 discusses capturing and applying code and state changes under the
hardware constraints of IoT devices.

3.1 The Out-of-Things Debugging Architecture

Before introducing out-of-things debugging architecture, we introduce the original
out-of-place debugging architecture so that we can better highlight the differences
introduced to target IoT runtimes. Figure 2 shows in black and in red the components
of out-of-place debugging and in blue, the added new components for out-of-things.

Out-of-Place Debugging Architecture. Out-of-place debugging features an online de-
bugging architecture spread across two different processes. The process on the right,
onwards referred to as the application process, runs the target application and a
Debugger Monitor component. The Debugger Monitor is responsible for monitoring
raised exceptions and breakpoints in the application. The process on the (top) left,
onwards referred to as the debugger process, contains a copy of the target application
(called local application in the figure) that can be controlled via the debugger’s user
interface. The debugger process also includes a Debugger Manager responsible for the
communication with the Debugger Monitor over a network communication channel
depicted by the double black arrow.

5:8

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Local Application Process

Application Process

Debugger Process

Debugger
Manager

Changes
Handler UpdaterDebugger

Monitor

Debugger UI Application

Local
Updater

Local
Debugger
Monitor

Local Application

Developer’s Machine Remote Device

Local Application

Network Communication

Inter-Process Communication

Figure 2 The architecture of an out-of-place and out-of-things debugger; the outer dashed
line square indicates a process and the arrows process communication. The out-
of-place architecture corresponds with the two top processes without the bottom
process. The out-of-things architecture consists of the three processes without
the top left local application box (in red).

When execution pauses due to an unhandled exception or a breakpoint, the De-
bugger Monitor extracts a debug session (i.e., the program and application state) and
sends it to the Debugger Manager. The Debugger Manager then signals the developer
that such a session has been received, restores the application in the local application
process depicted in red, and starts a debugger UI on that process. From this moment
on, debugging becomes thus a local activity reducing the debugging latency of classic
remote debuggers. To this end, the model assumes that the target application can also
run on machines other than the currently executing one. Moreover, the architecture
includes two components for recording and applying code updates. First, the Changes
Handler keeps track of local source changes and sends those to the Updater once
requested by the developer. Second, the Updater applies the recorded code changes
on the remote application to fix a bug.

Out-of-Things Debugging Architecture. When applying out-of-place debugging to IoT
runtimes, we introduced a third process: the local application process, marked in

5:9

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

blue at the bottom left of Figure 2. This change is necessary because such runtimes
cannot run an in-place debugger, i.e., a debugger that runs in the same process as
the application. More importantly, this eases deploying out-of-things debuggers on
runtimes that already support remote debugging (e.g., WARDuino). The out-of-things
debugging architecture thus consists of the black and blue components in figure 2.
Note that the local application, which in the original out-of-place runs within the
debugger process, is now moved to the local application process.

The local application process is connected to the debugger process through inter-
process communication. The Debugger Manager uses this connection to send the
retrieved debug session to the local application so that debugging can be initiated.
This communication channel is also used to propagate the debugging commands that
the developer instructs in the Debugger UI to the local application. Furthermore, the
local application process includes a Local Debugger Monitor used to capture further
errors that can happen during debugging and a Local Updater to update the local
application once the developer issues an update in the debugger UI. Finally, the local
application process is also connected to the application process running on the remote
device. This is needed to provide access to the non-transferable resources, which will
be further discussed in Section 3.3.

The architectural changes presented in this section represent the first big difference
between out-of-things and out-of-place debugging. In what follows, we delve into the
modifications and extensions of the core components for IoT debugging.

3.2 Enabling Local Debugging with a Debug Session

The concept of a debug session is crucial to enable local debugging of a remote execution.
To create a debug session on the developer’s machine, the runtime deployed on the
remote device (e.g., WARDuino) should be able to extract a debug session from the
application that it is currently executing, and when the runtime environment runs
the local application process, it should be able to receive such extracted debug session
and use it as the new state for its running application. As a result, the transfer of a
debug session from one runtime instance to the other enables local debugging of the
remote application from where the session got retrieved.

Prior work on out-of-place debugging could leverage the reflective capabilities of
an existing VM to reify the callstack. In this section, we instead explore the changes
that have to occur in the VM to enable out-of-things debugging with the additional
challenge of a restricted IoT environment.

Extracting a Debug Session. Since IoT VMs typically do not reify information about
the execution, this has to be extracted by extending it. To have as little impact as
possible on the execution, this information is extracted from the running application
only when it pauses due to an uncaught exception or breakpoint. The following
enumerates the content that should be included in an out-of-things debug session to
support the reconstruction of the application execution at another machine:

a program counter.

5:10

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

a call stack containing the trace of all the functions called at the moment the session
was created.
list of breakpoints. In the context of IoT, by keeping breakpoints at the VM we
remove the need for the debugger and application process to coordinate thus
preventing unnecessary overhead on the device.
an error counter that points to the program operation (or instruction) that caused
an exception to occur on the target device. The error counter is always changed
after raising new exceptions so that it points to the instruction that caused the latest
exception. The error counter is a lightweight mechanism used to communicate
faulty program locations long after exceptions occur. The debugger process can
thus be offline while an exception occurs and still get contextual information about
the exception when reconnecting to the VM.
in case of a stack-based VM, the value stack that contains state (e.g., function
arguments) and which is populated throughout program execution.
global variables and other language-specific components.

Reconstructing the Debug Session Once the debugging session is extracted by the
debugger monitor and transferred to the local application process (via the debugger
manager), it needs to be reconstructed to enable local debugging. As for creating
the session, in the current applications of out-of-place debugging all of this happens
reflectively. In our work, we instead extend the VM to resume the execution of an
application given a debug session extracted from another machine. This process entails
that the VM should first be informed about the sizes of the debug session’s constituents
(e.g., callstack size, quantity of global variables, etc.) so it does some setup (e.g., free
memory, allocate new space, empty stack, etc.). Afterwards, the VM can receive the
debug session and use it as new state of its current application.

3.3 Access Strategies for Non-transferable Resources

While debugging on the developer’s machine, the local application may need access
to resources present in the remote device which cannot be transferred (a.k.a. non-
transferable resources). In an IoT setting, those resources are usually sensors (or other
hardware components) only present on the IoT device.

Instead of transparently remotely accessing all non-transferable resources as done
in a classic remote debugger or an out-of-place debugger, an out-of-things debugger
offers different access strategies to non-transferable resources which developers can
choose depending on the resource. The goal of access strategies is to reduce network
communication with the remote device. For instance, network implications (e.g.,
limited battery life, financially costly) or the need for testing may make developers
opt for mocking of values instead of remote accessing the device.

To implement the concept of an access strategy, the underlying VM needs to intercept
invocations in the local application that requires access to non-transferable resources,
and pass control to the strategy to determine how to deal with the access. Currently,
we provide the following strategies:

5:11

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Remote Resource Access The local VM is instructed to request the remote runtime
(running on the application process) the access to the resource and return any
result. Thus, we access the actual resource (e.g., temperature value) under the
conditions that it has been deployed. This strategy requires that the remote runtime
disposes of an interrupt system to answer incoming requests.

Cache The VM is instructed to use the result of a previous remote resource access
that got cached. This strategy can only be employed after a remote resource access
strategy was employed on the same local invocation that we now want to cache.
Access strategies provide a fine-grained extensible interface for controlling the access

to resources. The interface is offered by the local VM and can be configured through the
debugger UI when creating a debug session. Developers can also change the strategy
for a given call while debugging. For instance, developers can alternate between
remote resource access and a cache strategy depending on the network availability and
device overhead. Determining what functions to intercept and which strategy to apply
allows developers to control the impact of debugging regarding network bandwidth,
memory footprint, and computational overhead.

It is important to note that when choosing a remote resource access strategy, side
effects can no longer be scoped to the developer’s machine. Nevertheless, access to
non-transferable resources should be isolated in a way that minimises side-effects on
the application deployed on the device nor compromises the application in case of an
exception. Managing and catching exceptions caused by access to non-transferable
resources is extremely important as incorrect resource usage during the debugging of
a production application may cause it to crash if left unhandled.

3.4 Dynamic Software and State Update

Software update is a crucial part of debugging IoT applications: when a bug has been
identified, the developer should be able to deploy a new application on the remote
device. In out-of-place debugging software update happens at the source-code level
where source-code changes are sent to the remote machine and on reception compiled
and used as a new application. However, this approach is too demanding for the
limited hardware of IoT devices since it requires the presence of a compiler.

In contrast, out-of-things debugging commits bytecode over the air to the remote
device. More specifically, when a developer commits the source-code changes, the
Changes Handler compiles the whole source code on the developer’s machine to
one single bytecode sequence and deploys it on the remote device via the Updater
component that runs on the application process.

Such a dynamic software update mechanism is useful for debugging IoT systems as
it is faster than flashing a codebase over a serial connection and removes the need to
physically access the device. Moreover, it is also useful for supporting the development
of IoT systems as it allows developers to update software after device deployment
which is a necessity according to a recent field survey [18].

Application and Execution State Changes In out-of-things debugging it is also possible
to commit changes at the level of the application and execution state. This is important

5:12

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

to create a richer local debugging experience since the developer could for instance
manually change arguments provided to function calls to explore the function’s
behaviour around a wide range of argument values. Supported changes are about
state modification and include changes on the stack (e.g., function argument, local
variable, etc.), or global variables. Although useful, the ability to update and commit
state changes can compromise program execution since type safety may no longer
be guaranteed. The developer can for instance replace arguments of functions with
inappropriate data types, e.g., give an integer where a string value is expected. As
such the Changes Handler has to also validate changes at the level of the application
and execution state to guarantee type safety.

4 WOOD: An Out-of-Things Debugger for WARDuino

In this section, we describe WOOD, our proof-of-concept out-of-things debugger for
WebAssembly built on top of WARDuino. WOOD implements the application and local
application process (Figure 2) as extensions to WARDuino. The debugger process is
implemented as a standalone Python application that currently features a command
line interface as Debugging UI.

As mentioned in Section 2.1, WARDuino is a good technical foundation for WOOD
since it can execute applications that compile to Wasm on IoT devices, and it features
some remote debugging functionality, software updates at the level of Wasm functions,
and the possibility to query some execution state. In order to construct WOOD, we
extended WARDuino to extract and reconstruct a debug session, introduced access
strategies for non-transferable resources, and dynamic software update at the level of
a Wasm module. We also implemented other extensions to WARDuino that are also
usable for their existing remote debugger including a sockets module to enable over-
the-air debugging and new debugging operations (e.g., step over). In what follows we
describe the implementation details relevant to out-of-things debugging.

4.1 Debug Sessions in WOOD

In this section, we overview the changes brought to WARDuino to extract and recon-
struct a debug session as explained in Section 3.2.

Extracting a Debug Session. WOOD reuses WARDuino’s ability to extract information
on the debugged application and extends it to include all missing content to obtain
a debug session as described in Section 3.2. In particular, WARDuino provides two
different interrupts to give such information: (i) dump which gives the program
counter, callstack, breakpoints, and information about the type signature of functions,
and (ii) dumpLocals which provides the local variables of the function currently on top
of the callstack. For WOOD, we removed dumpLocals, and extended dump to include
the rest of the execution and application state (e.g., memory pages, global variables,
etc.) and removed the unnecessary information (i.e., function type signatures).

5:13

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

We implemented two ways for extracting a debug session: the debugger client
(Python application) is connected to the remote VM when an exception occurs which
causes a debug session to be automatically extracted, or the developer can ask for one
by placing breakpoints. For the latter case, we implemented breakpoint policies to give
the developer control over the debugger client’s behaviour around breakpoints. In
particular, the developer can use two policies: a single-stop policy ensures that when
a breakpoint is reached, (1) a debug session is extracted, (2) all the breakpoints on
the remove VM get removed, and (3) the remote application is resumed. A remove-
and-proceed policy is similar to the first one, except that (2) only removes the reached
breakpoint. Breakpoint policies are important to ensure that remote applications keep
running and thus to help debug production applications.

Reconstructing a Debug Session. To reconstruct a debug session, we extended WAR-
Duino with the ability to receive and apply a debug session. For this, we added a new
interrupt receive state and created a binary communication protocol to exchange debug
sessions in a memory-friendly manner. The protocol consists of two message types:

A memory management message sent first to WOOD that contains practical informa-
tion (e.g., quantity global variables, table size, etc.) that is used to free and allocate
memory space before the actual reception of the debug session.
A state message that is divided into chunks where each chunk gives information
about one aspect of the session (e.g., table entries, callstack, etc.). The last byte of
a state message informs WOOD whether the whole debug session got transferred.

4.2 WOOD’s Access to Remote Resources

Since WARDuino exposes hardware resources through function calls, we implemented
a remote function invocation mechanism to perform invocations on the remote VM and
thus access remote resources. More specifically, local WOOD performs remote function
calls for each encountered call instruction marked with the remote resource strategy.
The call traverses the network and remote WOOD (the VM deployed at the device)
handles it as an interrupt. Remote WOOD then temporarily pauses the execution of
the current application, executes the requested function, and returns the result of the
call which is either a value or an exception message if an exception got raised. On
the receiving side, local WOOD caches the returned value to let the developer use it
when changing the access strategy to a cache strategy.

To implement the remote function invocation and caching mechanism, we added
the following interrupts:

Monitoring proxy interrupt, linked to specific functions running in a local WOOD.
When the interrupt is performed, a list of all the functions that need remote
invocation is provided along with the interrupt so that any invocation of those
functions is caught and sent to the remote WOOD instance as a proxy call interrupt.
Proxy call interrupt invoked on remote WOOD instances. It pauses the execution of
the main application to call the requested function. Before executing the function,
remote WOOD saves the relevant execution state and restores it after the call
completes.

5:14

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Remote call use cache and Remote call no cache interrupt: where both interrupts
expect a list of functions to respectively enable or disable the use of cache on them.
To reduce the memory footprint of the debugger on the IoT device we use conditional

compilation to provide remote WOOD only with the ability to handle proxy call
interrupts and omit the other interrupts (i.e., monitor proxies, use cache or no cache).

With respect to side-effects, remote WOOD saves and restores the execution state
after the call completes either due to a successful return or exception thus isolating
potential failures from the deployed application. However, currently remote WOOD
does not recover from application state changes. Fortunately, application state changes
are only problematic when proxying non-primitive functions which in practice does
not occur since primitive functions are the ones that give access to hardware resources
(e.g., sensors) and thus the ones that need to be proxied.

4.3 WOOD’s Dynamic Module Update and State Update

WARDuino supports dynamic software update at the level of Wasm functions. This is
however limiting in situations where the module changes to include changed global
variables, new table entries, and so on. As a result, WOOD opts for software update at
the level of the module. However, in future work, for optimisation one could rely on
WARDuino’s function update for situations where only function updates are required.

To support dynamic module update, the Changes Handler running on the devel-
oper’s machine first compiles the source code to Wasm bytecode and then transfers
the obtained bytecode to the remote Updater. The remote Updater then replaces
the current Wasm module with the compiled one, making any changes permanent.
Additionally, remote WOOD frees application-related memory (e.g., Wasm, global
variables, etc.) and instructs the VM to process the newly received Wasm module,
which then replaces the old module (regardless of whether it was running or not).

Regarding state update (i.e., application and execution state), WOOD supports
changes on:

The stack of values (e.g., function argument, local variable, etc.) that gets populated
throughout the execution of a Wasm program.
The global variables.
The table entries i.e., change the function identifiers.

Those changes are only allowed as long as they preserve type safety.

5 Evaluation

To validate our solution, we conducted several experiments that aim to answer the
following research questions:
1. Can an out-of-things debugger be used in resource constraint devices?
2. Can an out-of-things debugger always be on?
3. Can we limit debugging activity to the developer’s machine?

5:15

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Setup We run our experiments using a developer’s machine (a MacBook Pro) and a
remote device (an M5Stack-C or an M5Stack Core2 depending on the experiment). All
machines run WARDuino [26] (commit number 362). The hardware specifications are:

M5StickC [3]: an ESP32-based IoT board, operating at 240MHz, with 520KiB of
SRAM and 4MiB of Flash ROM.
M5Stack [3]: an ESP32-based IoT board, operating at 240MHz, with 8MiB of SRAM
and 16MiB of Flash ROM.
MacBook Pro 14 inch: an Apple M1 Pro chip operating at 3.2 GHz CPU, 32GiB of
RAM, and 1 TB of SSD storage. Operating System: macOS Monterey 12.1.
In what follows, we describe the experiments and our findings regarding the re-

search questions.

5.1 Experiment 1: Execution Speed

In this experiment, we aim to investigate the impact of always having the debugger on.
This is important because it will give us an indication of whether having the debugger
on does not impose too much overhead on the execution of an application and thus
whether having the debugger on in production mode is practical. In particular, we
compare the execution speed of WOOD to WARDuino [13] to: (1) get an indication of
how well WOOD performs compared to existing runtime environments, and to (2)
measure the impact of running production applications in debug mode.

For the experiment, we base ourselves on the micro-benchmark used within WAR-
Duino [13] where WARDuino’s execution speed is compared to Espruinos’ across six
task-intensive applications. In our case, we reuse the same applications to compare
WOOD & WARDuino, and execute each application thirty times and measure at each
time the execution time.

For a fair comparison to [13], we use the same platform i.e., an ESP-VROOM-32 chip
with a capacity of 520KiB SRAM that operates at a rate of 240MHz. But whereas the
experiment in [13] uses an ESP DEVKITV1, we use an M5StickC. The board difference,
however, does not impact the experiment since both boards use the same chip.

Results The results are presented in Figure 3. While WARDuino outperforms WOOD
in five out of the six applications (WOOD performs slightly better in Catalan) those time
differences are neglectable. The execution time differences range betweenmilliseconds
and centiseconds which accounts for less than 0.2% of the total execution time for 4
out of the 6 applications, and 9% of the execution time for Fibonacci. This benchmark
shows that despite having the debugger always on, a deployed application will have
minor disturbances from it. And thus we can conclude that WOOD is suitable to
execute within the computational boundaries of IoT devices. Despite always having
the debugger on, WOOD still exhibits good performance as expected for such devices.

5.2 Experiment 2: Scalability of Out-of-Things Debugging

In this experiment, we investigate whether our debugger remains operational within
the memory and computational limits of IoT devices. In doing so, we show that our

5:16

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

WOOD WARDuino
5.135

5.14

5.145

5.15

5.155
WOOD
WARDuino

Tak

Ex
ec

ut
io

n
ti
m

e
(s

)

WOOD WARDuino

17.754

17.756

17.758

17.76

17.762

17.764

17.766

17.768 WOOD
WARDuino

Catalan

Ex
ec

ut
io

n
ti
m

e
(s

)

WOOD WARDuino
6.23

6.235

6.24

6.245

6.25

6.255

6.26

6.265

6.27
WOOD
WARDuino

Factorial

Ex
ec

ut
io

n
ti
m

e
(s

)

WOOD WARDuino
9.2

9.4

9.6

9.8

10

10.2

10.4
WOOD
WARDuino

Primes

Ex
ec

ut
io

n
ti
m

e
(s

)

WOOD WARDuino
5.175

5.18

5.185

5.19

5.195

5.2
WOOD
WARDuino

Fibonacci

Ex
ec

ut
io

n
ti
m

e
(s

)

WOOD WARDuino
5

5.02

5.04

5.06

5.08

5.1

5.12

5.14
WOOD
WARDuino

Greatest Common Divisor

Ex
ec

ut
io

n
ti
m

e
(s

)

Figure 3 Execution speed comparison between WOOD and WARDuino across six micro-
benchmarks from [13]. Each experiment was executed thirty times and each
application execution was timed. The results are reported as boxplots.

5:17

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Figure 4 Relates debug session sizes to their local reconstruction time. The time is an
average value across 30 measurements. The default stack line indicates the point
from which the default VM stack sizes of each device was increased to support
greater debug session sizes. And the memory limit line indicates the point at
which the memory limit of the devices was reached.

debugging solution is practical for production applications where applications can
vary in their memory and computational overhead. In particular, we measure the time
that WOOD takes to construct debug sessions of varying sizes since having access
to one debug session suffices to enable local debugging of a target application. The
experiment investigates two metrics for our debugger: (1) can it construct debug
sessions within the memory and computational boundaries of typical IoT devices and
(2) can it construct debug sessions within a reasonable amount of time.

We perform these measurements by using a recursive countdown application (source
code in Appendix A). It defines a countdown function that given an argument calls
itself recursively until the argument becomes zero. By changing the function argument,
we can generate increasingly larger debug sessions. For the experiment, we call the
countdown function with arguments ranging from 1 to 2301 and place a breakpoint
at line 27 (program location where the stack is maximal). Once the breakpoint is
reached, we measure the time elapsed between (i) requesting WOOD for a debug
session and (ii) locally reconstructing the debug session.

Results Figure 4 shows the results of the experiment. Overall the construction time
grows linear to the debug session size and is reasonably small for both devices: the
greatest debug session that one can obtain based on the default WOOD stack sizes
(25 KB) takes on average below 0.3 sec and the largest (474 KB) takes on average
2.5 sec. This is a respectable performance considering that the developer will just
create one single debug session. The figure also illustrates that WOOD can perform
beyond the default VM’s stack size (i.e., the default stack size line) until the point

5:18

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

where the devices can no longer allocate more memory (i.e., the memory limit line).
To test this, we manually modified WOOD’s maximal call and values stack size to
enable larger debug sessions.

This experiment demonstrates that our out-of-things debugger (1) remains func-
tional within the boundaries of IoT devices and (2) this in a reasonable amount of
time. The debugger remains functional because it manages to create debug sessions
even beyond the default stack size conditions of WOOD (which have been inherited
from WARDuino) until the point where IoT devices (i.e., the M5StickC and M5Stack)
have no memory left to allocate. In the worse case, it takes the debugger no more
than 2.5 sec which is acceptable in the very unlikely case that the debug session en-
compasses the entire available memory (which by default is not possible, as shown by
the fact that we artificially raised the stack limit for this experiment). We thus have
confidence that our debugging solution will enable the debugging of IoT applications
despite their consumed memory footprint and this in a reasonable amount of time.

5.3 Experiments 3-4: Network Overhead

In this section, we perform an experiment to quantify the network overhead imposed
by our out-of-things debugger and compare it to the remote debugging approach
offered by WARDuino. All of which to determine whether our out-of-things debugging
technique mitigates network overhead as claimed throughout the paper.

As mentioned in Section 3.2, a WOOD debug session contains more execution and
application state compared to WARDuino’s debug session and therefore is thus greater
in size. More specifically, the size relation is linear; Experiment 3 in Appendix D
verifies this relationship. As a result, WOOD uses more network bandwidth for one
single debug session as opposed to WARDuino. However, this does not limit the
applicability of out-of-things in situations where network activity needs to remain
low. First, in practice, IoT applications are not likely to produce large call and value
stacks. Secondly, although a single WOOD debug session is large in size, we argue
that in the long run, an out-of-things debugger incurs less network overhead than a
remote one because debugging operations are always local and only some access to
non-transferable resources require network communication. In contrast, in the case of
a remote debugger, all operations and accesses require remote access.

In this experiment, we investigate our claim by debugging the countdown applica-
tion (cf. Appendix A) and measuring the total network overhead caused by WOOD
and WARDuino. The scenario consists of placing a breakpoint at line 27 followed by
5-step commands. While simplistic, this scenario is representative of the debugging
operations that developers apply when a breakpoint is reached, e.g., stepwise advanc-
ing the execution to see how the state of the program changes. The experiment was
executed on an M5StickC for both WOOD and WARDuino.

Results Figure 5 shows the total network overhead as an accumulative sum. We
observe that the total number of bytes sent in WOOD is constant and equal to the first
debug session size. This is because after retrieving the first debug session, the following
debug actions are performed by local WOOD and do not require further network

5:19

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Figure 5 Debugging the countdown application consists of six actions. Step 0 is the retrieval
of the initial debug session after reaching breakpoint at line 27. Step 1 to 5 are
five consecutive step commands: after each step, we also retrieve the new debug
session. The bar height is accumulative i.e., step i indicates the total bytes sent
from the start of the debug scenario (step 0) until after step i completes.

communication. In contrast, debugging with WARDuino always happens remotely on
the device, thus retrieval of the new state increases network communication. Note
that the linear relation between WOOD and WARDuino’s debug session size can also
be observed in step 0, which corresponds to the retrieval of a single debug session.

From the results of experiment 4, we conclude that an out-of-things debugger
consumes less network bandwidth in the long run compared to a remote debugger.
After completion of the second debug action (i.e., step 1), WARDuino causes more
network communication than WOOD does throughout the whole debug scenario. This
reproduces the findings in [21], confirming that the long-run advantage is a general
property of out-of-place debuggers when compared to remote ones.

5.4 Experiment 5: Remote Access Strategy Overhead

In this experiment, we investigate the effect of performing remote resource access on
a device that is operating in production mode. And this to demonstrate that the impact
on the deployed application is comfortably small. Our goal is to show that remote
function call is a suitable access strategy for non-transferable resources and that devel-
opers should not refrain from using it despite debugging time-sensitive applications.
More concretely, in this experiment, we quantify the overhead of WOOD’s remote
access strategy to non-transferable resources based on proxy calls on a continuously
running target application. And we measure the impact on the execution of the target
application while performing proxy calls.

5:20

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Table 1 The master node’s reception time metrics of temperature values obtained after 30
executions. The values are sent by a device after each $sendtemp function call.
The first row is the case where the broadcasting device is not interrupted: the
second row is where the device is continuously interrupted with proxy calls.

Scenario mean (sec) min (sec) max (sec) std (sec)
Without Interrupts 1.0002 0.9999 1.0038 0.0016
Proxy Interrupts 1.0040 1.0000 1.0080 0.0026

For the experiment, we use a temperature broadcast application of which the code
is available in Appendix B. The application’s main function continuously loops over
three different tasks: (1) measuring the ambient temperature (by calling $ctemp),
(2) broadcasting the temperature to an external process master node (by calling
$sendtemp1), and (3) sleeping for one second. To quantify the impact of proxy calls on
the execution of the target application, we measure (at the master node) the time lapse
between two consecutive received temperature values in two different debugging
modes and for a total of 30 times:
Without Interrupts In this debugging mode, no remote access to the temperature

sensor happens, i.e., local WOOD does not connect to remote WOOD to gather
the temperature sensor data. This implies that remote WOOD runs the target
application without receiving any interrupts (e.g., proxy call interrupts).

With Proxy Interrupts Local WOOD connects to remote WOOD to enable remote access
to temperature sensor values. For every call to $ctemp, local WOOD performs a proxy
call to remote WOOD which ensures that the execution of the target application is
interrupted to get the sensor value.
For both modes, the master node runs in a separate process other than WOOD (on

the MacBook Pro) and receives sensor values from the M5Stick-C via the serial port.

Results The results of the two modes are shown in Table 1. The ’without interrupts’
row shows that the master node receives the sensed temperature at a steady interval
of 1 second. The near-zero standard deviation indicates that there is almost no time
difference between the other measurements. This matches our expectations as the
absence of proxy calls ensures that the target application can run without interruption
thus broadcasting the temperature at a steady interval. The “proxy interrupts” row
shows that proxying of $ctemp barely impacts the execution of the target application
and this is for any of the measured time values (near zero standard deviation).

It will not always be possible to have an almost-no impact when performing proxy
calls since it depends on the type of application and the number of functions being
proxied. The more functions developers proxy, the greater the execution impact will
be, which could be a problem when dealing with production applications where delays
might entail severe consequences. This issue motivates exactly the reason why we opt

1 The $ctemp and $sendtemp are primitive functions added in WOOD specifically for this
experiment.

5:21

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

for runtime configurable access strategies while debugging. Developers are able to play
with the trade-offs of each of the strategies, tuning them for their needs. Furthermore,
in practice, the proxy call rate will always be low during debugging, as developers tend
to spend some time looking at the application and execution state. At those moments,
the local execution is paused and no proxy calls are being issued. Therefore, in cases
where production applications can endure occasional delays, proxies are acceptable.

5.5 Experiment 6: Revisiting the Temperature Monitor Application

In this experiment, we revisit the temperature monitor application (TMA) introduced
in Section 2.2 to demonstrate how WOOD helps developers to identify the root cause
of the bug, fix the application, and deploy the fix on the device.

As mentioned in Section 2.2, the developer perceives that the application behaves
incorrectly after being deployed for some time on an IoT device (e.g., an M5StickC)
since it periodically restarts. To start debugging the application, the developer could
place a breakpoint on line 48 on the program location where the main loop restarts.

To this end, we apply the following sequence of operations:
1. We configure WOOD with a single-stop breakpoint policy and proxy all calls to

$isConnected and $reqTemp. The configuration file is displayed in Listing 6 (Ap-
pendix C).

2. We start the debugger and connect to the remote VM and local VM.
3. We place a breakpoint on line 48 on the remote VM. Once the breakpoint is reached

the debugger manager requests a debug session and sends it to the local VM. And
because of the single-stop policy, we know that all breakpoints on the remote VM
get removed once one is reached and the target application resumed.

4. The developer can debug from the local VM once a debug session is recreated on
his/hers machine.
If the bug manifested when the debugger was configured and connected to the

remote VM, the local VM will recreate the debug session and stop the application
at the point where the division by zero was raised (i.e., line 44). If the bug did not
manifest itself, the local VM will stop the application at the point the breakpoint was
set (i.e., line 48). However, a debug session in WOOD includes an error counter variable
(storing the location of the last raised exception). In that way, developers could learn
that the application was previously restarted due to an exception in line 44. That
could help developers suspect that a division by zero occurred because of network
disconnections since $connected should have been zero at that moment. To test this
hypothesis, developers can make use of the ability of local WOOD to change access
strategies. In particular, developers can ask local WOOD to stop proxying $isConnected
calls but instead mock the calls using the default mock implementation of the VM
that always returns false when called. After reconfiguring the debugger, we place a
breakpoint on line 44 and resume the local application to then inspect the arguments
provided to f32.div. Once the breakpoint is reached, we can indeed observe that the
passed denominator to f32.div is zero thus confirming that network disconnections
cause the division by zero.

5:22

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Now that we identified the bug, the developer can first upload a fixed version of the
code (the fix caches the last correctly calculated average value and uses that value
when all sensors are offline see Listing 5) to the local VM to test whether the issue
is indeed properly fixed by again mocking network disconnections. And only then
commits the fix to the remote VM.

Discussion Based on the previous experiment, we argue that an out-of-things debug-
ger exhibits the potential of debugging production applications locally. In particular, it
enables the following:
1. The debugger can aid the developer in identifying bugs and their root cause.
2. The debugger can assist the developer in fixing testing, and patching the bug.
3. The remote application can keep running while we debug locally, thanks to the

single-stop policy and retrieved debug session.
Comparing WOOD to a remote debugger (as the one present in WARDuino), we

observe the following. First, with a remote debugger, we cannot keep the target
application running while debugging it. Second, the remote debugger may not catch
the bug when one sets a breakpoint, but since it does not keep track of contextual
information like the error counter, it may require more debugging cycles to find the
root cause (as each "misplaced" breakpoint requires a restart of the application). Third,
a remote debugger does not let developers mock function calls to for instance simulate
network disconnections. Last but not least, once the bug is identified and the code
is fixed, redeploying the fixed application typically relies on a manual process that
flashes the new software into the device. Luckily, WARDuino allows dynamic software
updates at the function level. However, in this case, to fix the bug we need to introduce
a variable, a function reload is not enough, requiring a reflash of the application while
in WOOD it is not needed because it features module-level updates.

6 Related Work

We now discuss related work in the context of debugging IoT systems and runtimes
for microcontrollers.

Many mainstream languages integrate into their IDEs online debuggers, often offer-
ing support for remote debugging. For example, GDB enables remote debugging for C
and C++ [11], and TelePharo for Pharo Smalltalk [17]. Recently we also find several
remote debuggers for microcontrollers. Some work integrates a Python remote debug-
ger in Visual Studio for debugging Home Assistant instances [1]. To our knowledge,
this work is one of the few that also targets debugging of IoT production applications.
In Espruino [7], one can remote debug an application via serial through a GDB-like
API. For WebAssembly, there is work in progress in the project that targets source-code
level debugging of Wasm bytecode [27] but this work is inactive for already two years.
The WARDuino [13] VM in which we build WOOD also provides a remote debugger
and a limited form of live-code update to dynamically update WebAssembly functions.
In WOOD live-code update is supported at the level of the whole Wasm module.

5:23

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Within offline debugging techniques, manual log-based debugging (e.g., printf
statements in C/C++ programs) is mostly used during software development [18].
In MicroPython and Espruino [7, 9] for instance, developers can manually add print
statements to generate contextual information. As opposed to MicroPython, Espruino
provides a more advanced logging feature by making it possible to register logged
content in case the debugger is disconnected from the device and saves it until the
debugger reconnects. However, log-based debugging is unsuitable for production
mode since it requires source code modifications and impacts performance. Low-level
core dumps are also used by microcontrollers such as the ESP32 and ESP8266 [6] to
give contextual information (e.g., stack trace) at the point of failure.

Finally, record & replay has also been explored in the context of IoT. Resense [10],
for instance, is a sensor emulator at the level of the OS that records and replays
sensor data transparently to the application layer. However, Resense has only been
used on Raspberry Pis and not on more resource-constrained devices like the ones
we target (e.g., ESP32). Kirchhof et al [16] propose to record the communication
between components modeled as a component & connector architecture (i.e., systems
developed through Red-Node like tools) and replay all data through a separate
component to which debuggers could connect. IoTReplay [8] relies on edge devices
to record all the external events send to IoT devices and replays them either (1) on
IoT devices that are hardware copies of the deployed ones, or (2) on virtual devices.

7 Conclusion

In this work, we proposed out-of-things debugging: a live debugging approach designed
for IoT systems in which the debugger is always-on and the state of a deployed
application is moved to the developer’s machine for local debugging upon an exception
or breakpoint on the remote device. Developers can control access to non-transferable
resources (e.g., sensors) and apply different access strategies to limit the overhead of
debugging on the device and the network. While debugging, developers can use classic
online debugging features (e.g., step-by-step execution) as well as apply changes to
the application code and state. Developers can then commit bug fixes to the device
through live code update capabilities.

To validate our approach, we implemented an out-of-things debugger called WOOD
as an extension to the WARDuino VM that executes WebAssembly on IoT devices
and conducted several benchmarks across different metrics. We compared WOOD to
remote debugging alternatives based on metrics such as network overhead, memory
usage, scalability, and usability in a production setting. From the benchmarks, we
conclude that WOOD is a scalable solution that supports classical debugging operations
while addressing IoT-specific concerns.

In future work, we aim at integrating WOOD UI into a popular IDE (e.g., VSCode)
as well as to enable debugging at a higher-level language than the one we currently
support (i.e., textual WebAssembly). We also plan to explore different access strategies
like emulating or developer-defined mock functions for non-proxied resources.

5:24

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Acknowledgements We would like to thank the anonymous reviewers for their con-
structive comments. Jim Bauwens is a PhD-SB fellow at the Fonds Wetenschappelijk
Onderzoek - Vlaanderen - Project number: 1SA5222N.

A Countdown Application

Listing 1 Source code of the countdown application used for quantitative experiments of
Sections 5.2-5.3.

1 (module
2
3 (; Type declarations ;)
4 (type $i2v (func (param i64) (result)))
5 (type $i2i (func (param i64) (result i64)))
6 (type $v2v (func (param) (result)))
7
8 (export "main" (func $main))
9 (memory 1)
10 (table funcref (elem $countdown $start))
11
12 (global $g1 (mut i32) (i32.const 0))
13 (global $g2 (mut i32) (i32.const 0))
14
15 (func $start (type $i2v))
16 (func $countdown (type $i2i)
17 (i64.gt_s
18 (local.get 0)
19 (i64.const 0))
20 (if (result i64)
21 (then
22 (i64.sub
23 (local.get 0)
24 (i64.const 1))
25 (call $countdown))
26 (else
27 (i64.const 0))))
28
29 (func $main (type $v2v)
30 (loop $loop
31 (i64.const 2)
32 (call $countdown)
33 (call $start)
34 (br $loop))))

5:25

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

B Temperature Broadcast Application

Listing 2 Source code of the temperature broadcast application used for experiment of
Section 5.4.

1 (module
2 (import "env" "chip_delay" (func $delay (type $i32tovoid)))
3 (import "env" "bmp_ctemp" (func $ctemp (type $voidtof32)))
4 (import "env" "write_f32" (func $sendtemp (type $f32tovoid)))
5
6 (type $i32tovoid (func (param i32) (result)))
7 (type $void2void (func (param) (result)))
8 (type $voidtof32 (func (param) (result f32)))
9 (type $f32tovoid (func (param f32) (result)))
10
11 (export "main" (func $main))
12
13 (func $main (type $void2void)
14 (loop $loop
15 (call $ctemp)
16 (call $sendtemp)
17
18 (i32.const 1000)
19 (call $delay)
20 (br $loop))))

5:26

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

C Temperature Monitoring Application

Listing 3 Source code of the temperature monitoring application used for the qualitative
experiment (cf. Section 5.5).

1 (module
2 (import "env" "chip_delay" (func $delay (type $i32tovoid)))
3 (import "env" "req_temp" (func $reqTemp (type $i32tof32)))
4 (import "env" "is_connected" (func $isConnected (type $i32toi32)))
5
6 (type $i32tovoid (func (param i32) (result)))
7 (type $i32toi32 (func (param i32) (result i32)))
8 (type $i32tof32 (func (param i32) (result f32)))
9 (type $voidtovoid (func (param) (result)))
10 (type $voidtof32 (func (param) (result f32)))
11 (type $f32tovoid (func (param f32) (result)))
12
13 (export "main" (func $main))
14
15 (global $sensorA i32 (i32.const 3030))
16 (global $sensorB i32 (i32.const 3031))
17 (global $connected (mut f32) (f32.const 0))
18
19 (func $regulate (type $f32tovoid) nop)
20 (func $inc_connected (type $voidtovoid)
21 (f32.add
22 (global.get $connected)
23 (f32.const 1))
24 (global.set $connected))
25
26 (func $getTemp (type $i32tof32)
27 (local.get 0)
28 (call $isConnected)
29 (if (result f32)
30 (then
31 (call $inc_connected)
32 (local.get 0)
33 (call $reqTemp))
34 (else
35 (f32.const 0.0))))
36
37 (func $avgTemp (type $voidtof32)
38 (global.get $sensorA)
39 (call $getTemp)
40 (global.get $sensorB)
41 (call $getTemp)
42 f32.add
43 (global.get $connected)
44 f32.div)
45)

5:27

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Listing 4 The main function of the temperature monitoring application (cf. Listing 3).
1 (func $main (type $voidtovoid)
2 (loop $loop
3 (global.set $connected (f32.const 0))
4 (call $avgTemp)
5 (call $regulate)
6 ;;sleep 3sec
7 (i32.const 3000)
8 (call $delay)
9 (br $loop)))

Listing 5 The fix applied on the temperature monitor application in Listing 3. The fix intro-
duces a global variable $cachedAvg that keeps track of a previously calculated
average temperature. And $avgTemp returns the $cachedAvg value when both
sensors are disconnected.

1
2 ;; cache last average temp.
3 (global $cachedAvg (mut f32) (f32.const 0))
4
5 (func $avgTemp (type $voidtof32)
6 (local $sum f32)
7 (global.get $sensorA)
8 (call $getTemp)
9 (global.get $sensorB)
10 (call $getTemp)
11 f32.add
12 (local.set $sum)
13
14 ;; if no sensor was online
15 ;; then return $cachedAvg
16 (f32.eq
17 (global.get $connected)
18 (f32.const 0))
19 (if (result f32)
20 (then
21 (global.get $cachedAvg))
22 (else
23 (local.get $sum)
24 (global.get $connected)
25 f32.div
26 (global.set $cachedAvg)
27 (global.get $cachedAvg))))

5:28

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

Listing 6 The JSON configuration file that is used to configure the debugger for debugging
of the temperature monitor application as described in experiment Section 5.5.
The proxy entry indicates what to remotely access and policy tells the debugger
how to behave around breakpoints: single-stop ensures that the debugger (1)
stops at the first breakpoint reached, (2) retrieves a session, (3) removes all the
breakpoints and (4) resumes the execution of the deployed application.

1 {
2 "program": "temp_monitor.wast",
3 "proxy": ["$isConnected", "$reqTemp"],
4 "devices":
5 [
6 {"name": "monitor", "host": "IP adress", "port": 80,"policy": "single-stop" },
7 {"name": "local monitor", "port": 8080}
8]
9 }

D Experiment: Comparing WOOD and WARDuino’s Debug Session Sizes

In this experiment, we compare debug session sizes of WOOD to WARDuino and this
to demonstrate that (1) WOOD’s debug session sizes are greater than the ones of
WARDuino and (2) that their relationship is linear. For the experiment, we create
debug sessions in a similar manner as in experiment 2 (Section 5.2), that is, we execute
the countdown function with an increasing argument value, place a breakpoint at line
27, and generate a debug session for the reached breakpoint. We then measure the
size of the obtained debug session. The experiment was executed on an M5StickC for
WOOD and WARDuino.

Results Figure 6 presents the obtained results of the experiment. WOOD’s debug
sessions are always bigger compared to the ones of WARDuino, and thus they have
a higher network impact. This is expected as WOOD’s debug sessions contain more
information than those from WARDuino (for local debugging functionality). And as
expected, the size difference is linear due to the continuously increasing call and
values stack caused by the recursive call.

5:29

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

Figure 6 A comparison between WOOD and WARDuino’s debug session sizes generated
for the countdown application (Appendix A) and once breakpoint at line 27 is
reached. The x-axis illustrates the increasing arguments (expressed as powers of
two) that gave rise to the debug sessions; the y-axis shows the obtained debug
session sizes (expressed as powers of two).

References

[1] Home Assistant. Home Assistant. https://www.home-assistant.io/. Last accessed
on 2021-12-16.

[2] Google Cloud. IoT Core. https://cloud.google.com/iot-core/. Last accessed on
2021-12-16.

[3] M5stack Corporation. M5stack Corporation. https://www.m5stack.com/. Last
accessed on 2021-12-16.

[4] João Pedro Dias, Flávio Couto, Ana C.R. Paiva, and Hugo Sereno Ferreira. “A
Brief Overview of Existing Tools for Testing the Internet-of-Things”. In: 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). Västerås, Sweden: IEEE, 2018, pages 104–109. doi: 10.
1109/ICSTW.2018.00035.

[5] Emscripten. Emscripten. https://emscripten.org/. Last accessed on 2021-12-16.

[6] Espressif. Espressif. https://www.espressif.com/. Last accessed on 2021-12-16.

[7] Espruino. Espruino. https://www.espruino.com/. Last accessed on 2021-12-16.

[8] Kaiming Fang and Guanhua Yan. “IoTReplay: Troubleshooting COTS IoT De-
vices with Record and Replay”. In: 2020 IEEE/ACM Symposium on Edge Com-
puting (SEC). San Jose, CA, USA: IEEE, 2020, pages 193–205. doi: 10.1109/
SEC50012.2020.00033.

5:30

https://www.home-assistant.io/
https://cloud.google.com/iot-core/
https://www.m5stack.com/
https://doi.org/10.1109/ICSTW.2018.00035
https://doi.org/10.1109/ICSTW.2018.00035
https://emscripten.org/
https://www.espressif.com/
https://www.espruino.com/
https://doi.org/10.1109/SEC50012.2020.00033
https://doi.org/10.1109/SEC50012.2020.00033

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

[9] Damien George. MicroPython. https ://micropython .org/. Last accessed on
2021-12-16.

[10] Dimitrios Giouroukis, Julius Hülsmann, Janis von Bleichert, Morgan Gelden-
huys, Tim Stullich, Felipe Oliveira Gutierrez, Jonas Traub, Kaustubh Beed-
kar, and Volker Markl. “Resense: Transparent Record and Replay of Sensor
Data in the Internet of Things”. In: 22nd International Conference on Extending
Database Technology (EDBT). Lisbon, Portugal: OpenProceedings.org, 2019. doi:
10.5441/002/edbt.2019.63.

[11] GNU. The GNU Project Debugger. https://www.gnu.org/software/gdb/. Last
accessed on 2021-12-16.

[12] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-
mentation. USA: Addison-Wesley Longman Publishing Co., Inc., 1983. isbn:
0201113716.

[13] Robbert Gurdeep Singh and Christophe Scholliers. “WARDuino: a dynamic
WebAssembly virtual machine for programming microcontrollers”. In: Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed Program-
ming Languages and Runtimes - MPLR 2019. Athens, Greece: ACM Press, 2019,
pages 27–36. doi: 10.1145/3357390.3361029.

[14] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-
man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. “Bringing the
Web up to Speed with WebAssembly”. In: Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
2017. Barcelona, Spain: ACM, 2017, pages 185–200. isbn: 9781450349888. doi:
10.1145/3062341.3062363.

[15] Gabor Kecskemeti, Giuliano Casale, Devki Nandan Jha, Justin Lyon, and Rajiv
Ranjan. “Modelling and Simulation Challenges in Internet of Things”. In: IEEE
Cloud Computing 4.1 (2017), pages 62–69. doi: 10.1109/MCC.2017.18.

[16] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. “Understand-
ing and Improving Model-Driven IoT Systems through Accompanying Digital
Twins”. In: Proceedings of the 20th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. GPCE 2021. Chicago, IL, USA:
ACM, 2021, pages 197–209. isbn: 9781450391122. doi: 10.1145/3486609.3487210.

[17] Denis Kudriashov. Telepharo. https://github.com/pharo-ide/TelePharo. Last
accessed on 2021-12-16.

[18] Amir Makhshari and Ali Mesbah. “IoT Bugs and Development Challenges”. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
Madrid, Spain: IEEE, 2021, pages 460–472. doi: 10.1109/ICSE43902.2021.00051.

[19] Matteo Marra. IDRA. https://gitlab.soft.vub.ac.be/Marra/IDRA. Last accessed on
2021-12-16.

5:31

https://micropython.org/
https://doi.org/10.5441/002/edbt.2019.63
https://www.gnu.org/software/gdb/
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1109/MCC.2017.18
https://doi.org/10.1145/3486609.3487210
https://github.com/pharo-ide/TelePharo
https://doi.org/10.1109/ICSE43902.2021.00051
https://gitlab.soft.vub.ac.be/Marra/IDRA

Out-of-Things Debugging: A Live Debugging Approach for Internet of Things

[20] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. “Practical Online De-
bugging of Spark-like Applications”. In: 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security (QRS). Hainan, China: IEEE, Dec.
2021, pages 620–631. doi: 10.1109/QRS54544.2021.00072.

[21] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. “Out-Of-Place de-
bugging: a debugging architecture to reduce debugging interference”. In: The
Art, Science, and Engineering of Programming 3.2 (Nov. 2018). doi: 10.22152/
programming-journal.org/2019/3/3.

[22] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.
“Internet of things: Vision, applications and research challenges”. In: Ad Hoc
Networks 10.7 (2012), pages 1497–1516. issn: 1570-8705. doi: 10.1016/j.adhoc.
2012.02.016.

[23] David Pacheco. “Postmortem Debugging in Dynamic Environments”. In: Com-
mun. ACM 54.12 (Dec. 2011), pages 44–51. issn: 0001-0782. doi: 10.1145/2043174.
2043189.

[24] Rust and WebAssembly. Wasm-pack. https://github.com/rustwasm/wasm-pack.
Last accessed on 2021-12-16.

[25] SIGFOX. SIGFOX, THE 0G NETWORK. https://www.sigfox.com/en. Last accessed
on 2021-12-16.

[26] TOPLLab. WARDuino. https://github.com/TOPLLab/WARDuino. Last accessed on
2022-01-10.

[27] wasm3. wasm-debug. https://github.com/wasm3/wasm-debug. Last accessed on
2021-12-16.

[28] Wasmer. Wasmer. https://wasmer.io/. Last accessed on 2021-12-16.

5:32

https://doi.org/10.1109/QRS54544.2021.00072
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1016/j.adhoc.2012.02.016
https://doi.org/10.1145/2043174.2043189
https://doi.org/10.1145/2043174.2043189
https://github.com/rustwasm/wasm-pack
https://www.sigfox.com/en
https://github.com/TOPLLab/WARDuino
https://github.com/wasm3/wasm-debug
https://wasmer.io/

Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix

About the authors

Carlos Rojas Castillo is a PhD candidate at the Software Lan-
guages Lab of the Vrije Universiteit Brussel. He obtained his mas-
ter’s degree in 2021 where he specialised in Software Languages
and Software Engineering. His research focuses on improving the
tooling support for IoT. You can contact him at crojcas@vub.be.

Matteo Marra is a postdoctoral researcher at the Software Lan-
guages Lab of the Vrije Universiteit Brussel, where he obtained
his Master in 2017 and his PhD in 2022. His PhD mainly focused
on a live debugging approach for Big Data applications. You can
contact him at mmarra@vub.be.

Jim Bauwens is a PhD candidate at the Software Languages Lab
of the Vrije Universiteit Brussel. His research focuses on highly
available replicated data types and their implementation within
programming languages and frameworks. You can contact him at
jim.bauwens@vub.be.

Elisa Gonzalez Boix is an Assistant Professor at the Software Lan-
guages Lab of the Vrije Universiteit Brussel, Belgium. She obtained
her Master in Informatics Engineering in 2004 from the Universitat
Politecnica de Catalunya (Spain) and her PhD in Sciences in 2012
from VUB on programming language abstractions and tools for
handling partial failures in distributed applications running on
mobile ad hoc networks. Her PhD heavily relied on reflection and
meta-level programming. Since 2014, she leads a group on concur-
rent and distributed systems, studying programming abstractions
and dynamic software tools like debuggers. You can contact her
at egonzale@vub.be.

5:33

mailto:crojcas@vub.be
mailto:mmarra@vub.be
mailto:jim.bauwens@vub.be
mailto:egonzale@vub.be

	1 Introduction
	2 Background & Motivation
	2.1 WARDuino
	2.2 Motivating Example
	2.3 Problem Statement

	3 Out-of-Things: An Online Debugging Approach for IoT
	3.1 The Out-of-Things Debugging Architecture
	3.2 Enabling Local Debugging with a Debug Session
	3.3 Access Strategies for Non-transferable Resources
	3.4 Dynamic Software and State Update

	4 WOOD: An Out-of-Things Debugger for WARDuino
	4.1 Debug Sessions in WOOD
	4.2 WOOD's Access to Remote Resources
	4.3 WOOD's Dynamic Module Update and State Update

	5 Evaluation
	5.1 Experiment 1: Execution Speed
	5.2 Experiment 2: Scalability of Out-of-Things Debugging
	5.3 Experiments 3-4: Network Overhead
	5.4 Experiment 5: Remote Access Strategy Overhead
	5.5 Experiment 6: Revisiting the Temperature Monitor Application

	6 Related Work
	7 Conclusion
	A Countdown Application
	B Temperature Broadcast Application
	C Temperature Monitoring Application
	D Experiment: Comparing WOOD and WARDuino's Debug Session Sizes
	References
	About the authors

