Result Invalidation for Incremental Modular
Analyses

Jens Van der Plagl0000-0002-7475-576X] " Oyyentin
Stiévenart|0000—0001-9985-9808] ,1q Coen De Roover[0000—0002-1710-1268]

Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium
{jens.van.der.plas,quentin.stievenart,coen.de.roover}@vub.be

Abstract. To reduce the running time of static analysis tools upon pro-
gram changes, incremental static analyses reuse and update pre-existing
results. Such analyses must efficiently detect and remove outdated re-
sults. We introduce three novel, complementary result invalidation strate-
gies for incremental modular analyses. The core idea of our work is to
alternate invalidation with computation. We apply our strategies to a re-
cent, state-of-the-art incremental modular analysis that suffers from im-
precision, and evaluate them on soundness, precision, and performance.
Our strategies lead to precision improvements compared to an incremen-
tal analysis without invalidation, though the precision of a full reanal-
ysis is not yet matched. On most benchmarks, our incremental analy-
sis performs well. However, on some benchmarks our analysis performs
poorly as the changes drastically change program behaviour, for which
the changes are difficult for an incremental analysis to handle.

Keywords: Static program analysis - Incremental program analysis -
Modular program analysis.

1 Introduction

Static analysis is an approach to computing properties of programs without
running them. It is the foundation of code smell, bug, and vulnerability detection
tools (e.g., [15, 35,21, 14, 28]) used in modern software engineering processes such
as continuous integration pipelines [31]. An analysis that is fast in the presence
of small and frequent code changes can even be incorporated into a development
environment. To meet these demands, incremental static analyses have been
proposed (2,27, 24,8, 13|. Given the results of an initial analysis, an incremental
analysis updates the results given the code changes. The goal of an incremental
analysis is to produce results faster than a full reanalysis by reusing and updating
previous results.

Recently, Van der Plas et al. [18] introduced a general approach to render-
ing any modular static analysis incremental. Modular analyses divide a program
into parts which are (re-)analysed separately but whose analyses may be inter-
dependent. The authors posit that modularity facilitates bounding the impact
of changes. While the evaluation shows that incremental updates are often faster

2 J. Van der Plas, Q). Stiévenart et al.

than a full reanalysis, incremental updates may be less precise than a full re-
analysis as the presented analysis cannot delete outdated results. In this paper,
we improve upon the approach by Van der Plas et al. [18] as follows:

— We introduce three complementary strategies to regain lost precision. The
idea is to interleave invalidation with recomputation, to maximise reuse of previ-
ously computed results. Our strategies can be applied to modular static analyses
that employ global-store widening and infer dependencies amongst components.

— We implemented these strategies and evaluate their impact on the precision
and performance of the incremental analysis, when used alone or in combination.

2 Background

We now introduce modular static analysis, following a recent formulation by
Nicolay et al. [16]. We obtain an incremental version of this formulation by
applying the incrementalisation approach by Van der Plas et al. [18].

2.1 Modular Static Analysis

A modular static analysis [5] divides a program into static parts, e.g., function
definitions, referred to as modules. A module may have multiple runtime instan-
tiations, e.g., function calls, which the analysis might discern as well. We refer to
their reification in the analysis as components. A component consists of a module
and a context used to discern the different instantiations. Depending on the defi-
nition of contexts, more instantiations may be discerned, increasing the analysis
precision (and complexity). A modular analysis analyses its components in iso-
lation. The analysis of one component may however trigger the (re-)analysis of
another. The remainder of this paper focuses on function-modular analyses. All
examples use a lattice representing each value as a set of its possible types, and
empty contexts, i.e., every module will correspond to at most one component.

Effect-Driven Modular Static Analysis Recently, ModF, an effect-driven
formulation of function-modular analysis has been introduced [16]. ModF is a
control-flow analysis also computing value information. It reifies the computa-
tional dependencies between components and uses these to drive a fixed-point
computation, alternating between an inter-component analysis, scheduling com-
ponents for analysis, and an intra-component analysis, analysing individual com-
ponents. The inter-component analysis, referred to as INTER and shown in Alg. 1,
uses a worklist of components to be analysed. Initially, this worklist contains a
MAIN component!, representing the program’s entry point (line 1). Every anal-
ysis step removes a component from the worklist (lines 6-7) and analyses it (line
8); the analysis terminates when the worklist is empty.

! In formalisms, lowercase Greek letters denote components (e.g., a and 3). Otherwise,
we denote them by their corresponding name in small caps (e.g., MAIN and FIB).

Result Invalidation for Incremental Modular Analyses 3

Algorithm 1: The inter-component analysis (INTER) of ModF.

WL := {Main}; // The work list, initially containing the MAIN component.
V := @; // The visited set.
D := A\r.@; // Set of dependencies (read effects).
o := Xa.Ll; // Global value store, initially all addresses map to bottom.
while WL # & do
a € WL;
WL := WL\ {a};
(¢, R',W’,o'") = intra(a, 0); // Intra-component analysis.
o:=0o';
Vi=VU{a};
WL := WLU (C'\V);
foreach r € R’ do D := D[r — D(r) U {a}];
foreach w € W’ do WL := WL U D(w);
end
return (o,V, D);

R R R R
OB O NKH OO KB NOOA®N KR

The store, mapping abstract addresses to abstract values, abstractly repre-
sents the heap. ModF uses global-store widening [30], i.e., there is a single global
value store o within the analysis [16]. For every component, o contains an ab-
stract return value. Upon a function call, ModF does not step into the function,
but retrieves the stored return value (or L if no value had been stored).

A component’s analysis returns a set of effects reifying its computational
dependencies, together with an updated store (line 8). Dependencies are function
calls (generating call effects) and reads/writes in the store (generating resp.
read/write effects — the latter is only generated when o actually changes).? These
effects are used to determine the component(s) to be added to the worklist,
causing components depending on updated information to be reanalysed.

A ModF analysis results in (line 15): (1) the store o, (2) the set of components
created, and (3) the set of dependencies (read effects). We consider all parts of
the result equally relevant, though in practice one might only be interested in o.

Example. We illustrate how ModF computes the control-flow and value
information of the Scheme® program in Listing 1. ModF analyses it as follows
(omitting some effects for brevity):

1. The analysis starts with MAIN. Binding x generates a write effect for
this variable. Then, a call effect to fun is generated, and the corresponding
component, FUN, is added to the worklist. As no return value had been computed
for FUN, L is read from the store; a read effect on this return value is registered.

2. FUN is analysed, producing a call effect for inc and read effects for x and
for the return value of INC. The new component INC is added to the worklist, as
is MAIN because FUN’s return value is updated to Int, generating a write effect.

2 For brevity, in pseudocode, the set C represents the set of all components corre-
sponding to the emitted call effects, and the sets R and W represent the addresses
corresponding to the emitted read and write effects respectively.

3 In this work, we use Scheme, a dynamically-typed dialect of Lisp with support for
higher-order functions. Its dynamic nature makes it difficult to analyse as control
and data flow are intertwined, precluding the computation of a call graph ahead of
time. Scheme is representative for a whole class of languages such as JavaScript.

oW N e

4 J. Van der Plas, Q). Stiévenart et al.

(define x 0) ; Definition of a variable z.
(define (fun) (inc) x) ; Function that reads .

(define (inc) (set! x (+ x 1)) #t) ; Function that reads and writes .
(fun)

Listing 1: Example Scheme program of two functions.

3. Either MAIN or INC can now be analysed. Assuming INC is analysed (the
order does not affect the result [16]), INC reads x, generating a read effect, and
also writes to this variable. As the value in the store is not updated, no write
effect is generated. As the return value of INC is updated to Bool, a write effect
is generated and FUN is added to the worklist again.

4. The analysis continues until the worklist is empty.

The principle of effect-driven flow analysis is applicable to different module
granularities, e.g., thread-modular analyses [22], and can be used with any ab-
stract domain without infinite ascending chains and with any context-sensitivity.

The Component Graph The analysis of a component generates call effects, each
corresponding to a component discovered by the analysis. After the analysis of
a component «, INTER collects the set of components called by «, denoted Cy.
This gives rise to a cyclic directed graph, the component graph, representing how
components are created: for every component 5 € Cq there is an edge from «
to 5. Fig. 1 depicts the component graph from previous example.

main > fun > inc

Fig.1: The component graph corresponding to the analysis of the program in
Listing 1: inc is called from fun, which is called from the program’s entry point.

2.2 Incremental Modular Static Analysis

Van der Plas et al. [18] present an approach to rendering an effect-driven modular
static analysis incremental. It requires the analysed program to be annotated
with change expressions, which are akin to the patch annotations of Palikareva et
al. [17]. A change expression specifies how a given expression is updated. Its first
argument represents the original expression; its second argument represents the
expression that replaces the original. Change expressions can be added manually,
or be inserted by a change distiller (e.g., [7,6]) or change logger (e.g., [32, 10,
12]). In the following function, the predicate is updated from (= » 0) to < n 2:
(define (factorial n)
(if (<change> (= n 0) (< n 2))

n
(* n (factorial (- n 1)))))

Bow N =

Result Invalidation for Incremental Modular Analyses 5

For a given set of change expressions, Van der Plas et al. [18] compute the af-
fected analysis results and update them accordingly. Their analysis tracks which
change expressions within the source code of a module were encountered during
the analysis of the corresponding components. Every component whose analy-
sis encountered a change expression is considered to be directly affected. If an
expression in a module changes, only the components that encountered this ex-
pression during their analysis are affected. All directly affected components are
added to the worklist and the fixed-point computation is restarted. The modular
analysis design ensures that indirectly affected components are reanalysed too.

Sources of Imprecision Tab. 1 shows the three parts of the result of a ModF
analysis. The approach by Van der Plas et al. [18] only updates prior results
monotonically: no outdated information can be removed; the result of the analy-
sis over-approximates the behaviour of both the updated and original program.
All parts of the result may suffer from imprecision, as shown in Tab. 1. This
means that components and dependencies no longer representing the program’s
behaviour cannot be removed. In o, values cannot become more precise. Impre-
cision in one part of the result may cause imprecision in other parts. E.g., when a
value in ¢ is imprecise, the analysis may explore more paths and thus infer more
components and dependencies, which may in turn degrade the store’s precision.

3 Strategies for Precision Recovery

We now introduce three complementary strategies that improve the precision of
an incremental analysis result by invalidating the information that corresponds
to outdated program behaviour. The aim is to minimise the precision loss caused
by monotonic updates to a prior analysis result, without increasing analysis time.

3.1 Invalidation Principle

The presented strategies treat the intra-component analysis as a black box and
do not put any restrictions on the lattice nor on the context-sensitivity used by
the analysis. The intra-component analysis must only compute a set of effects.
The aim is to invalidate as few valid results as possible, so that results not im-
pacted by a change need not be needlessly recomputed. Related work [2, 13| often
consist of an invalidation phase, which over-approrimates and clears outdated
results, and a recomputation phase, which updates the analysis results. To avoid
over-approximating outdated results, we interleaqve invalidation with recompu-
tation, maximising reuse. After an intra-component analysis, INTER computes
which parts of the results have become obsolete and removes them; information
is only removed when it is no longer computed by an intra-component analysis.
Mapping this onto Alg. 1, invalidation happens after line 8. Our approach leads
to a recompute-and-invalidate cycle: the analysis of a component may lead to a
result invalidation, which in turn can lead to more analyses of components.

6 J. Van der Plas, Q). Stiévenart et al.

Table 1: Overview of the parts of the analysis result, of the sources of imprecision
for each part, and of the corresponding strategies to invalidate outdated results.

COMPONENTS
Explanation

Imprecision

Solution

Set of components created during the analysis, each abstractly rep-
resenting an aspect of the runtime behaviour of the program, e.g.,
a function call.

Components no longer representing the program’s behaviour can-
not be removed.

COMPONENT INVALIDATION (CI): remove components that are no
longer created.

DEPENDENCIES
Explanation

Imprecision
Solutions

Set of inter-component dependencies (read effects) computed dur-
ing the analysis, each marking a link between a component and
an address in the global value store o. Using these dependencies,
the analysis of one component takes into account information com-
puted by the analysis of other components.

Dependencies that are no longer valid cannot be removed.
DEPENDENCY INVALIDATION (DI): remove dependencies that are
no longer computed by the reanalysis of an impacted component.
CI: removing a component clears its dependencies.

VALUE STORE o
Explanation

Imprecision

Solutions

Over-approximates the heap. Mapping of abstract addresses to ab-
stract values.

Values in ¢ are updated monotonically, since they are joined upon
updates.

WRITE INVALIDATION (WI): improve the precision of values in the
store o by removing values that are no longer written.

CI: when WI is enabled, the removal of a component may allow o
to be refined.

[o S B N A N

o e e
W N = O ©

Result Invalidation for Incremental Modular Analyses 7

(define (fac n)
(if (< n 2)

n
(* n (fac (- n 1)))))
(define (fac-loop n) ; Ezecutes the ‘fac‘ function in a loop.
(define (loop i)
(if (< i n)
(begin
(display (fac 1))
(display " ")
(loop (+ i 1)))))
(loop 0))
(<change> (fac-loop 10) (fac 10)) ; Updated to call ‘fac‘ directly.

Listing 2: A change causing components to be removed.

Tab. 1 outlines the developed strategies, one for each part of the analysis
result: component invalidation, dependency invalidation, and write invalidation.
Though, invalidations in one part of the result may impact the other parts.

3.2 Component Invalidation (CI)

Component invalidation (CI) removes components from the analysis result that
are no longer created by any other component, plus the dependencies related to
these components. Consider e.g., the program in Listing 2. The initial analysis
creates four components, shown by the component graph on top of Fig. 2. The
change expression replaces the call to fac-loop by a call to fac; fac-loop (and
transitively loop) are no longer called. The reanalysis of MAIN now finds that
FAC-LOOP is no longer called: FAC-LOOP and LOOP can both be removed.

After initial analysis main H fac-loop H loop H fac

After incremental update main e: e fac

Fig.2: ModF components for the program in Listing 2. On top, the components
after the initial analysis of the program; at the bottom, the components after
the incremental update. Arrows depict generated call effects.

CI uses the component graph to detect outdated components: all components
no longer transitively reachable from MAIN, i.e., the entry point of the program,
can be removed. Alg. 2 extends INTER with CI. For every component «, INTER
caches Cq, the set of components called by a’s last analysis, using a cache C.
The set of dependencies Rq, cached in R, allows the efficient removal of the

8 J. Van der Plas, Q). Stiévenart et al.

dependencies of deleted components (R holds the same information as D but
in the reverse order, avoiding a full traversal of D). After the analysis of a
component «, the set of components called by the analysis of this component,
CY,, is returned. INTER then retrieves C, the set of components called during the
previous analysis of a, and updates the cache C (lines 12-13). It then computes
the set containing all components that are no longer called by «. If this set is non-
empty, one or more edges were removed from the component graph and some
components may have become outdated (line 14). In this case, the transitive
closure of C is computed, starting from MAIN; all components that are not
part of it are removed (lines 15-16). All dependencies of these components are
removed too, avoiding the existence of dependencies to non-existent components.
The transitive closure is needed because a component can only be removed if it
is no longer created by any other component. Finally, R is updated (line 18).
Note that lines 15 and 16 will never be executed during the initial analysis of
the program. To avoid the needless but possibly expensive computation of set
differences in the condition, we first check whether an incremental update is
taking place (line 14). For similar reasons, we do the same for DI and WI.

Algorithm 2: INTER extended with component invalidation (in blue)
and dependency invalidation (in purple).

// Assumes the existence of a cache for the sets C, C, initialised as C:= \a.o
before the initial analysis, and the existence of a cache for the sets R, R,
initialised as R := A«a.d before the initial analysis.

1 Function deleteComponent(f) is
2 foreach r € R(8) do D := D[r — D(r) \ {8}]; // Delete dependencies.

// Remove (3 from all data structures.

3 Vi=VA\{B}; WL:= WL\ {8} R:=R\ {8} C:=C\{B};

4 end

5 while WL # @ do

6 ... // Ditto Alg. 1.

7 foreach w € W’ do WL := WL U D(w);

8 if incremental update then

9 R :=R(a);

10 ‘ foreach r € (R\ R’) do D := D[r+ D(r)\ {a}];
11 end

12 C:=C(w);

13 C:= C[a + C']; // Update C immediately to use the updated C’.
14 if incremental update and C \ C’' # @ then

15 reachable := C(MaIN) U {S|y € reachable A 8 € C(v)};

16 ‘ foreach 3 € (V \ reachable) do deleteComponent(f);

17 end

18 R := Rla + R']; // Both for component invalidation and dependency invalidation.
19 end

20 return (o, V, D);

3.3 Dependency Invalidation (DI)

The second strategy, dependency invalidation (DI), removes outdated dependen-
cies. This ensures that components are not spuriously reanalysed. Consider, e.g.,

o oA W N

<3S N U

Result Invalidation for Incremental Modular Analyses 9

(define x 1)

(define y 2)

(define (write) (<change> (set! x 7) (set! y 7)))
(define (read) (<change> x y))

(read)

(write)

Listing 3: Example program with changing dependencies. Initially READ has a
dependency on the address of variable x, a,. In the new version of the program,
READ solely has a dependency on a,, the address of variable y.

(define (fromBool b)
(if b
(<change> ’aSymbol "aString")
(<change> ’anotherSymbol "anotherString")))
(define x (fromBool (some-complicated-predicate)))
(display x)
Listing 4: Example program. Initially, x only holds a symbol, whereas after the

update it can only contain a string.

the program in Listing 3. Initially, READ has a dependency on a,. During the
incremental update, the analysis of READ will find a new dependency on a,,
whilst the dependency on a, can be removed.

Alg. 2 also extends INTER with DI. The set of dependencies computed during
the last analysis of every component «, Rg, is cached using the cache R (also
used by CI). After the (re-)analysis of a component «, INTER collects the com-
puted dependencies, Ry,. It then fetches the dependencies computed during the
previous analysis of a from R and computes the set of outdated dependencies
which are then removed (lines 9-10). Finally, as for CI, R is updated (line 18).

3.4 Write Invalidation (WTI)

Write invalidation (WI) aims to increase the precision of abstract values in the
store. It is motivated by Listing 4. Variable x is changed from storing symbols to
strings. A strong update would overwrite the abstract value Symbol by String
in ¢. A monotonic update instead joins the values together, resulting into the
less precise value {Symbol, String}. Clearly, a strong update is desired.

The values in ¢ are part of an abstract domain, forming a complete lattice.
The higher a value resides in the lattice, the less precise information it represents.
WI aims to lower all values as much as possible by monitoring the values com-
puted for every address in o, and by lowering values that no longer correspond
to the program’s behaviour. We first describe the required monitoring.

Provenance Tracking Values in ¢ result from one or more writes, each mono-
tonically updating the value. In this process, the analysis loses information w.r.t.
the constituents and origins of the values. E.g., when « writes 1 to a and 8 writes

10 J. Van der Plas, Q). Stiévenart et al.

-1 to a, o(a) contains {Int}, without information about the values written by
« and 3, nor about which components wrote these values. We introduce prove-
nance tracking to regain this information. For every component and address in
dom(o), the analysis maintains the contribution of the component to the ad-
dress, i.e., the join of all values written to the address during the analysis of the
component. This requires intercepting to write operations to the store.
Consider the case in Fig. 3: components a and 5 read and write two variables,
x and y: both write y, a reads x, and J reads y. When « writes Int to y and 8
writes Boolean to y, o holds join of these values, {Int, Boolean}, for y.

_ g Pa: {Int, Boolean}
Yy
O, p

String Int
‘In

ay,u
° {Int, Boolean} P_ 5:Boolean

Fig. 3: Interaction of intra-component analyses with variables and their values in
o illustrated. On the right, the provenance and contributions of a, are shown.

During the analysis of a component «, we track, for each written address
a, the join of all values written to that address. We call this joined value the
contribution of a to a, denoted P, . For every address, the contributions of all
components are cached. We call this cache the provenance of the address, P,.
We define the provenance value of an address a as the join of all values in its
provenance. Fig. 3 depicts this information on the right in grey.

Non-monotonic Store Updates The intra-component analyses perform all
updates monotonically. INTER thus has to restore precision after it has been
lost. Provenance tracking enables WI to perform non-monotonic updates to o,
improving its precision. This is possible when a previously-written address is no
longer written by a component, and when the contribution of a component to an
address changes in a non-monotonic way.* The code for WI is shown in Alg. 3.
Outdated writes. The analysis of a component tracks all addresses written
to. For every component «, INTER caches this set, W, using a cache W. After the
analysis of a component «, INTER collects the set of written addresses, WY, and
computes the set containing all addresses previously written by the component
that are no longer written (line 26). Finally, the cache W is updated (line 28).
When the contribution P, o of « to an address a is removed, its provenance
value, no longer influenced by P, q, is used as the new value for the address (lines
2-3). If the provenance value equals the value at o(a), deletion is completed.
Else, the provenance value replaces the value o. All dependent components are

4 Conceptually, the first case corresponds to the second case for which the contribution
of the component to an address has become 1. We treat it separately since no write
to the address is performed any more.

Result Invalidation for Incremental Modular Analyses 11

scheduled for reanalysis (line 5), allowing the new value to be taken into account
during their reanalysis, possibly leading to further refinements of the result.
When an address is no longer written by any component, all information in the
analysis’ data structures related to this address can be removed (line 6).

More precise writes. After every intra-component analysis, INTER com-
pares the contribution of the component for every written address, to the cor-
responding contribution computed by the component’s previous analysis. Based
on this comparison, the value at the given address in ¢ may be updated, in
which case all dependent components are added to the worklist (line 29). The
comparison may yield one of three possible results:

Poa= Pé}a The analysis did not compute new information, no information can
be discarded (line 11).

Py T P, o The update is monotonic, no information can hence be discarded.
The updated contribution is stored (line 12).

PoaZ P;ya The contribution changes non-monotonically. The value for a can
be replaced by the new provenance value (computed on line 14), now taking
into account the updated contribution P, ,, (stored in IP on line 12).

The second and third case may not lead to an update of o as the value computed
on line 14 can be the same as the value already in . Only when the new value
is different, dependent components need to be scheduled for reanalysis.

Reinforcing Component Invalidation §3.2 introduced CI. However, CI does
not allow for the removal of information from o: values written by removed
components cannot be deleted, a limitation that can be remedied by combining
CI with WI. When a component « is removed, all addresses in the set W(«)
are treated as outdated writes, described in §3.4. This allows ¢ to become more
precise, which may in turn invoke the analysis of other components. The updated
code for component deletion is shown in Algorithm 4.

4 Evaluation

We evaluated the presented strategies to answer the following research questions:

RQ1 How well do the three invalidation strategies improve the precision of the
analysis, both when applied individually and when applied in combination?

RQ2 What is the impact of the invalidation strategies on the time needed to
perform an incremental update?

RQ3 How much does the incremental analysis reduce the analysis time com-
pared to a full reanalysis of the program?

We tested soundness of the initial analysis and the incremental update exper-
imentally (1) by ensuring that the analysis over-approximates multiple runs of
a concrete interpreter [1,29], and (2) by comparing the incremental analysis re-
sults to the results of a non-incremental analysis. We performed these tests for a

12 J. Van der Plas, Q. Stiévenart et al.

Algorithm 3: INTER extended with write invalidation (in teal).

// Assumes the existence of a cache for the sets W, W, initialised as W := \a.&
before the initial analysis, and the existence of a cache P, the provenance,
initialised to P := Aa.(Aa.Ll) before the initial analysis.

1 Function deleteContribution(c, a) is
2 P:=Pla— (P(a) \ {a})];
3 vi= U/ﬁedom([}(a)) P(a)(B);
4 if v # o(a) then
5 WL := WLU D(a);
// 1f an address is no longer written by any component, it is deleted.
Otherwise, the store is updated.

6 if P(a) = @ then o:=o0\ {a}; P:=P\ {a}; D:= D\ {a}; else o :=ocla— v];
7 end
8 end

// updatedddressIncremental compares the new contribution v’ of a to a to the

previous contribution v, and improves the store if possible.
9 Function updateAddressIncremental(a, a,v’) is

10 v :=P(a)(a); // Previous contribution of « to a, Pa,«-
11 if v = v’ then return false; // Identical contribution: no precision gain.
12 P:=Pla — (P(a)[a — v'])];
13 old := o(a);
14 new := if v C v’ then old U v'else U/ﬁedom(ui(a)) P(a)(B);
15 if old = new then return false;
16 o := o[a — new|; // Update the store.
17 return true;
18 end
19 while WL # @ do
20 ... // Ditto Alg. 1.
21 o :=0'; // This line can now be omitted.
22 ... // Ditto Alg. 1.
23 foreach w € W’ do WL := WL U D(w); // This line can now be omitted.
24 if incremental update then
25 W = W(a);
26 foreach w € (W \ W’) do deleteContribution(c, w);
27 end
28 W= W[a — W'];
// P computed during the intra-component analysis. P maps every written address
to the join of all values written to it during the component’s analysis.
29 foreach (a,v) € P do if updateAddressIncremental(ca, a,v) then WL := WLU D(a);
30 end

31 return (o,V, D);

thread-modular analysis for a concurrent Scheme, for a function-modular analy-
sis, for all possible combinations of the invalidation strategies, and for a constant
propagation and a type abstract domain; no unsound results were encountered.

4.1 Experimental Design

Our evaluation uses a context-insensitive ModF analysis for Scheme, with a
LIFO-ordered worklist and a product lattice®. We implemented our contributions

5 The lattice represents primitive values by their possible types, except booleans which
are represented as their respective value when possible. Pointers are represented as
sets of addresses (in dom(o)); closures and primitives are represented using sets as
well. A join of two values is the pointwise join of the corresponding elements of the
product, where the join of two sets is their union.

Result Invalidation for Incremental Modular Analyses 13

Algorithm 4: deleteComponent (in blue) reinforced with WI (in teal).

1 Function deleteComponent(f) is
2 foreach r € R(8) do D := D[r — D(r) \ {8}]; // Delete dependencies.
// Remove (3 from all data structures.

3 V=V \{B}; WL:= WL\ {8} R:=R\ {8} C:=C\ {8}
a W = W(3);

5 forall w € W do deleteContribution(8, w);

6 W =W\ {5};

7 end

in the open-source MAF framework® [29]. Our evaluation is run on a 2015 Dell
PowerEdge R7307 running OpenJDK 1.8.0 312 and Scala 3.1.0. The JVM was
given a maximum of 32GB RAM, and all analyses used a timeout of 30 min.

To evaluate the precision of the incremental update (RQ1), we inspect the
store o at the end of the analysis. For each address, we measure the precision of
the incremental update by comparing its value to its counterpart in the store of a
full reanalysis. The proportion of addresses in the final store that contain values
equally or less precise than the values obtained by a full reanalysis shows us how
much precision can still be improved. We also compare to the store resulting
from an incremental analysis without result invalidation. Here, the proportion
of addresses in the final store that contain values equally or more precise than
the values obtained by an incremental update without invalidation shows us how
many addresses have an improved precision thanks to our strategies. We perform
these comparisons for all possible combinations of the invalidation strategies.

To evaluate the performance of our strategies (RQ2 & RQ3), we measure the
time needed to (1) analyse the initial program, (2) fully analyse the updated
program, and (3) perform the incremental update given a set of enabled strate-
gies. For (1) and (2), no strategy is enabled; the analysis will not maintain the
caches required by any strategy. For (3), the initial analysis initialises all caches
used by the strategies. Each measurement is repeated 15 times preceded by a
warm-up of 3 repetitions or of maximally 30 min. Garbage collection is forced
prior to each analysis.

Comparing the precision and performance of an incremental update using all
strategies to (1) an (imprecise but fast) update without invalidation, (2) an up-
date using only one or two strategies, and (3) a (precise but slow) full reanalysis,
allows us to investigate a trade-off between precision and performance.

Benchmarking Suites Our evaluation uses two benchmarking suites.® Each
benchmark program is a Scheme program containing real-world code, annotated
with change expressions. As such, a benchmark corresponds to program changes.

5 A repository containing our implementation can be found online:
https://github.com/softwarelanguageslab /maf (branch incremental-experiments).

7 The computer has 2 Intel Xeon 2637 processors and 256GB of RAM.

8 In our online repository, the curated benchmarks can be found in the folders
/test/changes/scheme and /test/changes/scheme/reinforcingcycles. The gen-
erated benchmarks can be found in the folder /test/changes/scheme/generated.

14 J. Van der Plas, Q). Stiévenart et al.

Curated Benchmarks. We curated a suite of 32 programs to which we
manually added changes resembling possible developer edits, shown in Tab. 2.
The programs originate from different sources, e.g., a university course with
programming exercises in Scheme, together with the solutions for solving par-
ticular exercises, and benchmarking suites used by other researchers. Example
edits include changing representations of data structures (e.g., replacing lists by
vectors in nbody-processed), or updating a meta-interpreter (e.g., adding the
ability to make variables immutable in freeze or making procedures dynami-
cally scoped in mceval-dynamic). In programs like s1ip-0-to-1, slip-1-to-2,
and slip-2-to-3, edits convert the program to a later version. A new abstrac-
tion is introduced and used throughout peval. Some edits were constructed
to be tricky for an incremental update to process accurately, as they trigger
cyclic reinforcement of lattice values [24,23] (see §4.2). Also, certain programs
contain the same changes but use a different granularity of change expressions;
this is e.g., the case for multiple-dwelling (coarse) and multiple-dwelling
(fine), and for satFine, satMiddle, and satCoarse. The runtimes of the initial
analyses of programs the curated suite vary from 0s to 117s.

Table 2: The curated suite, retrieved from various sources. For every benchmark,
we list the lines of code as counted with cloc and the number of change expres-
sions.

Benchmark LOC #Chg | Benchmark LOC #Chg
baseline 6 1 |primtest 43 11
browse 164 1| cycleCreation 3 1
collatz 18 1 |higher-order-paths1 4 2
fact 5 1 |higher-order-paths2 4 1
fib-loop 15 1|implicit-paths 3 1
fib 5 2 |ring-rotate 32 2
freeze 327 11| sat 16 4
gcipd 9 2| satCoarse 17 1
leval 379 11 | satFine 13 3
matrix 617 3| satMiddle 16 3
mceval-dynamic 246 4| satRem 20 2
multiple-dwelling (coarse) 434 1|slip-0-to-1 123 6
multiple-dwelling (fine) 404 3|slip-1-to-2 117 3
nbody-processed 1252 10 | s1ip-2-to-3 397 9
nboyer 636 2| tab-inc 317 3
peval 507 38| tab 307 3

Generated Benchmarks. We automatically generated 5 mutations for each
of 190 programs, originating from various sources, obtaining 950 programs. We
use a set of edit patterns of one or more change expressions that are inserted ran-
domly, with a certain probability and at an arbitrary depth in the program. We
consider the following patterns: expression deletion (7.5%), inserting a random

Result Invalidation for Incremental Modular Analyses 15

sub-expression (5%), swapping expressions (10%), wrapping an expression with
a call to the identity function (7.5%), negating the predicate of an if (7.5%),
and swapping the branches of an if (7.5%). A valid mutation has at least one
edit, is unique, and does not lead to an error after running it with a Scheme
interpreter for one minute. The runtimes of the initial analyses of programs the
generated suite vary from 0s to 148s, most programs complete in under 10s.

4.2 Precision Evaluation (RQ1)

We evaluate the precision improvement caused by our invalidation strategies as
follows. On every benchmark program, and for all possible configurations, we
count the percentage of addresses in o that is less precise than a full reanaly-
sis. Fig. 4 depicts the results of our precision evaluation. These allow us to (1)
evaluate the precision improvement caused by the application of the presented
strategies, and (2) to see whether additional opportunities for precision improve-
ment are possible. As a precision improvement of ¢ can only be expected when
WI is enabled, we only show results for an incremental update without result
invalidation, with WI, and with all strategies enabled (where CI reinforces WT).

Precision Improvements over Naive Incremental Analysis For the cu-
rated suite, in some cases such as higher-order-pathsl, we observe a big
precision improvement. On other programs, the improvement remains minor.
fib-loop shows that reinforcing CI can lead to additional precision improve-
ments. On benchmarks such as browse and nbody-processed, the benefit is
smaller, though browse now reaches full precision. Unexpectedly, and only on
slip-0-to-1, reinforcement decreases precision (this is not visible on the figure).
The reason for this seems to be that, although sound, the obtained fixed-point
depends on the analysis order of the components. On the generated suite, the
number of imprecise values in the store is reduced by 15%-20% on average (geo-
metric mean over all generated benchmarks): there is an improvement of about
10% with WI and an additional improvement of about 10% using all strategies.

Tab. 3 shows the quartiles of the distribution of the store’s precision among
all benchmarks in the generated suite for the same configurations. Without inval-
idation, more than 50% of all benchmark programs do not achieve full precision.
However, using all strategies, the analysis reaches full precision on most bench-
marks. The table shows the added benefit of reinforcing CI.

Remaining Imprecision in the Analysis Result Fig. 4 also shows remaining
possibilities for precision improvement. On 13 curated benchmarks for which
the incremental update without invalidation did not achieve full precision, the
update with all strategies now does (indicated by a bar reaching 100%). However,
on other benchmarks, more improvements remain possible.

The precision of ¢ influences the control flow explored by the analysis, and
so the number of components and dependencies: precision gains due to WI can
lead to the invalidation of components and dependencies when all strategies are

16 J. Van der Plas, Q). Stiévenart et al.

Precision comparison

100%9 m - -fl - -
80% i
60% i
40% B |
]
_ [|

20% A

CI-DI-WI
LWl
NoOpt

Precision (relative to reanalysis)

0%

§

generated NN I

QUONH=EQOVT [X L H CHN VO OO O
WO ENSOS= 0o 00N 500 o—
SLB88FuSsEEnch>>0 2285 cu D
=0 S5
%o 3 &’m—gggtggaggmmne oS
oo £ * SSooc clooit ORZ
o S—cP QU%%G? T ©
o= (] == %]
cf3y gopaes
>=3> 55
=35 9QE
0UTo Ui
242 22
T2 co
%ﬁ cc
=25
gE
1S

Fig. 4: Precision of values in ¢ after an incremental update compared to a full
reanalysis. Bars represent the percentage of addresses in ¢ of an incremental
update whose values match a full reanalysis. In grey, precision of an incremental
update without invalidation is shown. In dark green, the additional percentage
of matching addresses due to WI is shown. In light green, the further additional
percentage of matching addresses using all strategies is shown. The rightmost
bar shows the geometric mean of all benchmarks in the generated suite.

enabled. Of course, CI and DI can also be beneficial in without WI, though only
WI can propagate precision gains to other components.

The imprecision in ¢ is worsened by our change representation: change ex-
pressions always require an old and new expression. For example, to introduce
a new variable in a program, a placeholder value for the old program needs to
be used, e.g., #f (false): (define x (<change> #f 10)). As this value will re-
side in o and cannot be removed by the incremental update when WI is not
enabled, some values in o may be artificially imprecise. However, imprecision
still remains for some benchmarks when WI is enabled. One reason we found is
cyclic reinforcement of lattice values [24,23], which arises when, due to the ab-
stractions in the analysis, the computation of a value at an address is influenced
by the value at that address itself, thereby influencing its own provenance.® WI
cannot restore the precision of values in such a cycle. We also believe that this
phenomenon causes the result to depend on the exploration order, e.g., when

9 Some programs in our curated suite, such as cycleCreation and implicit-paths,
are explicitly created to contain this behaviour.

Result Invalidation for Incremental Modular Analyses 17

Table 3: Precision of values in ¢ after an incremental update compared a full
reanalysis. Percentages indicate the number of addresses in ¢ of an incremental
update whose values match a full reanalysis. The table shows the quartiles of the
distribution of these percentages among all programs in the generated suite, for
an incremental analysis without invalidation, with WI, and with all strategies.

Configuration Q1 Q2 Q3
No invalidation| 73% 98% 100%

WI 97% 100% 100%
CI-DI-WI 100% 100% 100%

a value is refined before being introduced into a cycle, the cycle will be more
precise than when refining would have taken place afterwards.

Answer RQI1. Only WI can improve the precision of . WI significantly
improves the precision of values for a limited number of curated bench-
marks. Maximal precision is reached for 13 extra benchmarks when using
all strategies, i.e., using reinforced CI. For other curated benchmarks, a
large percentage of addresses remains less precise. We also observe a big
improvement on the generated suite, though several addresses still remain
imprecise. Once again, the combination of CI and WI leads to a substantial
additional precision improvement.

4.3 Performance w.r.t. No Invalidation (RQ2)

Fig. 5 shows the results of the performance evaluation for RQ2. Times are shown
relative to an incremental update without invalidation. CI and DI do not cause a
significant slowdown of the incremental analysis. A slowdown appears when using
WI, but, overall, the incremental update remains faster than a full reanalysis (see
§4.4). This slowdown can be explained as follows. As WI refines o, updates may
trigger the reanalysis components, leading to further reanalyses and impacting
performance. On the curated benchmarks, this increase in running time is more
moderate for the combination of CI and WI.

CI and WI combined reduce, in some cases, the analysis time as outdated
components are not analysed anymore. Also, WI may create more opportuni-
ties for CI: when values become more refined, this may lead to more outdated
components, which may in turn lead to an improvement of values in o.

Answer RQ2. CI and DI have no substantial negative impact on the running
time of an incremental update. Only WI causes a slowdown: as WI regains
precision, changes to 0 may cause components to be scheduled for reanalysis.

18 J. Van der Plas, Q. Stiévenart et al.

N
%
S

N
N
82

102

l
\

Time relative to no strategies
—
o
°

10!

I
~
o

-
N
s

Time relative to no strategies
o = =
~ o w
(5] o o

102

©
%
S

cl wi CI-DI-WI cl wi CI-DI-WI
Curated (32 programs) Generated (950 programs)

Fig. 5: Analysis time of the incremental update relative to an incremental update
without invalidation. Benchmarks for which the incremental update completed
in Oms are omitted in the graphs, because a relative time cannot be computed.

4.4 Performance w.r.t. Full Reanalysis (RQ3)

Fig. 6 shows the results of our performance evaluation for RQ3. Times are shown
relative to the time needed by a full reanalysis.

For the curated suite, overall, the incremental update is faster than a full
reanalysis. The medians are consistently under 0.2, meaning that on more than
half of the benchmark programs, the incremental update is more than 5 times
faster. When both CI and WI are used, we see one outlier which corresponds
to the primtest benchmark for which the running times are very low, meaning
that there is no opportunity for the incremental analysis to gain time.

The results of the generated suite are grouped based on the time taken by
the initial analysis and the full reanalysis. The slowdown caused by WI is most
outspoken for short-running generated benchmark programs, where the overhead
of the strategies may be relatively high. When both the initial analysis and full
reanalysis complete in under a second, and when both analyses run a second
or longer, overall, the incremental update remains faster than a full reanalysis.
Although WI may cause minor slowdowns, the incremental update remains more
than 10x faster compared to a full reanalysis. On programs that have an initial
analysis taking a second or more but a shorter full reanalysis, the incremental
update is slower: for almost all configurations, the incremental analysis takes at
least as long as a full reanalysis for most benchmarks, with median slowdowns
of up to 100 and outliers showing slowdowns larger than 1000. It is difficult to
pinpoint the exact root cause for each performance difference. We list several
possible reasons that may explain this behaviour:

— The change representation may cause less result reuse. In our implementa-
tion, change expressions cannot be placed at all program points. Some changes
must be represented with coarse-grained change expressions. E.g., to rename a

Result Invalidation for Incremental Modular Analyses 19

aln

=
N

Iy
o

o
©
—
o
2

Time relative to full reanalysis
o
o

Time relative to full reanalysis

10°
0.4
0.2
0.0
NoOpt Wi CI-DI-wWI NoOpt Wi CI-DI-WI
Curated Generated, initial analysis <1s, full reanalysis <1s
(32 programs) (880 programs)
! . : '
L ! n ‘ ’
w0 M 0w
2103 . ' >
© ' ’ © 10°
c c
© ©
[[
= s
3 R
° o 107
- -
¢ g
5 10! E=
o o
[102
() [}
E 100 £
= =
1073
NoOpt Wi CI-DI-WI NoOpt Wi CI-DI-WI
Generated, initial analysis >=1s, full reanalysis <1s Generated, initial analysis >=1s, full reanalysis >=1s
(33 programs) (37 programs)

Fig.6: Analysis time of the incremental update relative to a full reanalysis.
Benchmarks for which the full reanalysis completed in Oms are counted but
omitted in the graphs because a relative time cannot be computed.

function parameter, the change expression must wrap around the entire function
definition, thus components corresponding to the function cannot be reused.

— The generated programs may contain too many changes, leading to many
impacted components: 25 programs have over 30 changes and 79 programs have
over 20 changes. On almost half of the programs, more than 20% of the com-
ponents is directly affected. As many components are affected, the incremental
analysis may not benefit from its modularity to bound the impact of the changes.

— Changes may significantly alter program behaviour. 33 benchmarks had
a long-running initial analysis and short-running full reanalysis. In these cases,
the incremental analysis performs very poorly. It is possible that the randomly
inserted changes prune away a lot of program functionality, leading to a very
fast reanalysis, whereas an incremental update needs to propagate information
deletion. Although we haven’t verified the behaviour of all benchmarks individ-
ually, the reduced running time of the full analysis indicates that in these cases,
an incremental update is inadequate due to the nature of the program changes.

20 J. Van der Plas, Q). Stiévenart et al.

— No dedicated worklist algorithm is used. Components may be scheduled
for analysis due to newly inferred information or due to invalidation, but neither
is prioritised. By intertwining recomputation by invalidation, information may
be added or removed in an unspecified order; information may be removed that
is later readded, or vice versa. We assume that the analysis of components in an
unordered way may negatively impact the analysis performance.

To improve performance, future work should consider imposing an order on
the worklist. It may also be useful to investigate heuristics to determine which
changes would better be processed by a full reanalysis, e.g., when a program
update leads to a big removal of program functionality.

Answer RQ3. On the curated suite, on the short-running generated bench-
marks, and on the generated benchmarks with a long-running initial anal-
ysis and reanalysis, overall, the incremental update is faster. Yet, on the
generated benchmarks with a long-running initial analysis but with a short-
running full reanalysis, almost all incremental updates are slower. The na-
ture of the changes may be to blame for this: a very fast reanalysis may indi-
cate a serious reduction in program behaviour, in which case the incremental
update has to invalidate many results, causing high relative runtimes.

5 Related Work

Nichols et al. [13] introduce fizpoint reuse to incrementally analyse JavaScript
programs. They map program points to corresponding program points in the
new program, allowing reuse of analysis results for mapped points. The mapping
function plays a key role: more mapped points lead to more reuse and a faster
analysis, but incorrect matches can cause the analysis to lose precision.

IncA [27,24, 26, 25] is a Datalog-based analysis framework that produces the
same results as a full reanalysis. It uses an incremental Datalog with a semi-naive,
stratified evaluation strategy [25]. For every tuple, a support count indicating the
number different derivations of the tuple is maintained and used to invalidate
tuples after program updates. Contrary to IncA, our approach does not require
programs and analyses to be converted into a Datalog-like representation.

Andromeda [28] is an incremental, demand-driven taint analysis. Its relies on
a support graph to find taint facts that are outdated. In contrast, our analysis
is not tailored to a specific client analysis. Saha and Ramakrishnan [20] also use
support graphs in their framework for implementing incremental, demand-driven
analyses. They require analyses and programs under analysis to be specified as
Horn clauses and represent changes by means of the addition or deletion of facts.

Reviser [2] is an incremental, inter-procedural data-flow analysis for analyses
expressible in the IDE or IFDS frameworks. Its results match a full program
analysis but it requires a static call-graph; dynamic languages are unsupported.
Our approach is not limited to specific analyses and does not require a static call
graph. Other incremental approaches relying on static call graphs comprise a.o.
alias analyses [33], interval analyses [3], dataflow analyses [34, 4, 19], and analyses

Result Invalidation for Incremental Modular Analyses 21

tailored to specific client tools, such as race detection [35]. Liu et al. [11] present
an incremental points-to analysis not requiring a prebuilt call graph. It preserves
precision but is limited to flow-insensitive analyses, unlike ours.
Garcia-Contreras et al. [8] present a context-sensitive incremental modular
analysis which achieves incrementality at the inter-modular and intra-modular
level. The analysis requires an encoding of the program in constrained Horn
clauses. Contrary to ours, the analysis does not divide the program into modules
itself and does not use components but a programmer-defined lexical module
partitioning is used, but it is claimed that any partitioning is possible. Thus,
their analysis can, e.g., not be used with thread-modular analyses, in contrast
to ours. Later work [9] presents an updated approach, also capable of handling
external modules, together with a formal description and a further evaluation.

6 Conclusion

We presented three complementary invalidation strategies to improve the preci-
sion and performance of the incremental modular analysis approach presented by
Van der Plas et al. [18]. Our approach interleaves reanalysis of components with
invalidation. Component invalidation removes outdated components and their
dependencies, and, when combined with write invalidation, can also improve the
precision of the values in the store 0. Dependency invalidation removes outdated
dependencies. Write invalidation uses provenance tracking to retract and replace
outdated contributions from components to ¢, enabling non-monotonic updates.

We tested our strategies for unsoundness and evaluated their precision and
performance empirically on real-world programs using a small suite of 32 pro-
grams with possible developer edits and a large corpus 950 of programs with
generated edits. Our strategies allow the incremental analysis to reach the same
result as a full reanalysis on 13 more programs in the curated suite in comparison
to when none of the proposed strategies is used. On other programs, the precision
loss is reduced, yet the results did not match the precision of a full reanalysis. For
the generated suite, using all strategies, on average, the number of less precise
addresses in o is reduced from 30% to about 10%. The best improvements were
realised by the combination of write invalidation with component invalidation.

Performance-wise, overall, the incremental analysis scores well. We did find
some benchmarks with particular program changes for which the incremental
update proved to be slower than a full reanalysis, e.g., in 33 of the 950 programs
in the generated suite where the changes removed a big part of a program’s func-
tionality. Future work includes handling cyclic reinforcement of lattice values,
stratifying the worklist of the analyses, and investigating heuristics for triggering
a full reanalysis rather than an incremental update.

Acknowledgements

This work was partially supported by the Research Foundation — Flanders (FWO)
(grant number 11F4822N) and by the Cybersecurity Initiative Flanders.

22 J. Van der Plas, Q). Stiévenart et al.
References
1. Andreasen, E.S., Mgller, A., Nielsen, B.B.: Systematic Approaches for Increasing

10.

11.

12.

Soundness and Precision of Static Analyzer. In: Proceedings of the 6th ACM SIG-
PLAN International Workshop on State Of the Art in Program Analysis, SOAP
2017. pp. 31—36. Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3088515.3088521

Arzt, S., Bodden, E.: Reviser: Efficiently Updating IDE-/IFDS-Based Data-
Flow Analyses in Response to Incremental Program Changes. In: Jalote, P.,
Briand, L.C., van der Hoek, A. (eds.) Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE 2014, Hyderabad, India, May
31-June 07, 2014. pp. 288-298. ACM Press, New York, NY, USA (2014).
https://doi.org/10.1145/2568225.2568243

Burke, M.G.: An interval-based approach to exhaustive and incremental interproce-
dural data-flow analysis. ACM Trans. Program. Lang. Syst. 12(3), 341-395 (1990).
https://doi.org/10.1145/78969.78963, https://doi.org/10.1145/78969.78963
Carroll, M.D.; Ryder, B.G.: Incremental data flow analysis via dominator and
attribute updates. In: Ferrante, J., Mager, P. (eds.) Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages, San
Diego, California, USA, January 10-13, 1988. pp. 274-284. ACM Press (1988).
https://doi.org/10.1145/73560.73584, https://doi.org/10.1145/73560.73584
Cousot, P., Cousot, R.: Modular Static Program Analysis. In: Horspool, R.N. (ed.)
Proceedings of the 11th International Conference on Compiler Construction, CC
2002, Grenoble, France, April 8-12, 2002. pp. 159-178. Springer, Berlin, Heidelberg,
Germany (2002). https://doi.org/10.1007/3-540-45937-5 13

Falleri, J., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained and
Accurate Source Code Differencing. In: Crnkovic, I., Chechik, M., Griinbacher, P.
(eds.) ACM/IEEE International Conference on Automated Software Engineering,
ASE 14, Vasteras, Sweden - September 15-19, 2014. pp. 313-324. ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2642937.2642982

Gall, H.C., Fluri, B., Pinzger, M.: Change Analysis with Evolizer and ChangeDis-
tiller. IEEE Softw. 26(1), 26-33 (2009). https://doi.org,/10.1109/MS.2009.6
Garcia-Contreras, I., Caballero, J.F.M., Hermenegildo, M.V.. An Ap-
proach to Incremental and Modular Context-Sensitive Analysis (2018),
http://oa.upm.es/53067/

Garcia-Contreras, 1., Morales, J.F., Hermenegildo, M.V.: Incremental and Modu-
lar Context-sensitive Analysis. Theory and Practice of Logic Programming 21(2),
196-243 (2021). https://doi.org/10.1017/S1471068420000496

Hattori, L., Lanza, M.: Syde: A tool for collaborative software development. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 2. p. 235-238. ICSE 2010, Association for Computing Machinery,
New York, NY, USA (2010). https://doi.org/10.1145/1810295.1810339

Liu, B., Huang, J., Rauchwerger, L.: Rethinking Incremental and Parallel Pointer
Analysis. ACM Transactions on Programming Languages and Systems 41(1), 6:1—
6:31 (2019)

Negara, S., Vakilian, M., Chen, N., Johnson, R.E., Dig, D.: Is It Dangerous to
Use Version Control Histories to Study Source Code Evolution? In: Noble, J.
(ed.) Proceedings of the 26th European Conference on Object-Oriented Program-
ming, ECOOP 2010, Beijing, China, June 11-16, 2012. pp. 79-103. Springer (2012).
https://doi.org/10.1007/978-3-642-31057-7_5

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Result Invalidation for Incremental Modular Analyses 23

Nichols, L., Emre, M., Hardekopf, B.: Fixpoint reuse for incremen-
tal javascript analysis. In: Grech, N., Lavoie, T. (eds.) Proceedings
of the 8th ACM SIGPLAN International Workshop on State Of the
Art in Program Analysis, SOAPQPLDI 2019, Phoenix, AZ, USA, June
22, 2019. pp. 2-7. ACM (2019). https://doi.org/10.1145/3315568.3329964,
https://doi.org/10.1145/3315568.3329964

Nicolay, J., Noguera, C., De Roover, C., De Meuter, W.: Determining dynamic
coupling in javascript using object type inference. In: 2013 IEEE 13th International
Working Conference on Source Code Analysis and Manipulation (SCAM). pp. 126—
135. IEEE (2013)

Nicolay, J., Stiévenart, Q., De Meuter, W., De Roover, C.: Purity analysis for
JavaScript through abstract interpretation. Journal of Software: Evolution and
Process 29(12), 1889 (2017)

Nicolay, J., Stiévenart, Q., De Meuter, W., De Roover, C.: Effect-Driven Flow
Analysis. In: Enea, C., Piskac, R. (eds.) Proceedings of the 20th International
Conference on Verification, Model Checking, and Abstract Interpretation, VMCAI
2019, Cascais, Portugal, January 13-15, 2019. pp. 247-274. Springer International
Publishing, Cham, Switzerland (2019). https://doi.org/10.1007/978-3-030-11245-
5 12

Palikareva, H., Kuchta, T., Cadar, C.: Shadow of a Doubt: Testing for Divergences
Between Software Versions. In: Dillon, L.K., Visser, W., Williams, L. (eds.) Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016. pp. 1181-1192. ACM, New York, NY, USA
(2016). https://doi.org/10.1145/2884781.2884845

Van der Plas, J., Stiévenart, Q., Van Es, N., De Roover, C.: Incremental Flow
Analysis through Computational Dependency Reification. In: 20th IEEE In-
ternational Working Conference on Source Code Analysis and Manipulation,
SCAM 2020, September 27-28, 2020. pp. 25-36. IEEE Computer Society (2020).
https://doi.org/10.1109/SCAM51674.2020.00008

Pollock, L.L., Soffa, M.L.: An incremental version of iterative data
flow analysis. IEEE Trans. Software Eng. 15(12), 1537-1549 (1989).
https://doi.org/10.1109/32.58766, https://doi.org/10.1109,/32.58766

Saha, D., Ramakrishnan, C.R.: Incremental and Demand-driven Points-To Anal-
ysis Using Logic Programming. In: Barahona, P., Felty, A.P. (eds.) Proceedings of
the 7th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, July 11-13 2005, Lisbon, Portugal. pp. 117-128. ACM
(2005). https://doi.org/10.1145/1069774.1069785

Stievenart, Q., Nicolay, J., De Meuter, W., De Roover, C.: Detecting concurrency
bugs in higher-order programs through abstract interpretation. In: Proceedings
of the 17th International Symposium on Principles and Practice of Declarative
Programming. pp. 232-243 (2015)

Stiévenart, Q., Nicolay, J., De Meuter, W., De Roover, C.: A General Method for
Rendering Static Analyses for Diverse Concurrency Models Modular. Journal of
Systems and Software 147, 17-45 (2019). https://doi.org/10.1016/j.jss.2018.10.001
Szabd, T.: Incrementalizing Static Analyses in Datalog. Doctoral disser-
tation, Johannes Gutenberg-Universitit Mainz, Mainz, Germany (2021).
https://doi.org/http://doi.org/10.25358 /openscience-5613

Szabo, T., Bergmann, G., Erdweg, S., Voelter, M.: Incrementalizing lattice-based
program analyses in Datalog. Proceedings of the ACM on Programming Languages
2(OOPSLA), 1-29 (2018). https://doi.org/10.1145/3276509

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

J. Van der Plas, Q). Stiévenart et al.

Szabo, T., Erdweg, S., Bergmann, G.: Incremental Whole-Program Analysis in
Datalog with Lattices. In: Freund, S.N., Yahav, E. (eds.) Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation, PLDI 2021. pp. 1-15. ACM, New York, NY, USA (2021).
https://doi.org/10.1145/3453483.3454026

Szabo, T., Bergmann, G., Erdweg, S.: Incrementalizing inter-procedural program
analyses with recursive aggregation in Datalog p. 3 (2019), Presented at the Second
Workshop on Incremental Computing, IC 2019, Athens, Greece, October 21, 2019
Szabo, T., Erdweg, S., Voelter, M.: IncA: A DSL for the Definition of In-
cremental Program Analyses. In: Lo, D., Apel, S., Khurshid, S. (eds.) Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2016. pp. 320-331. ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2970276.2970298

Tripp, O., Pistoia, M., Cousot, P., Cousot, R., Guarnieri, S.: Andromeda: Ac-
curate and Scalable Security Analysis of Web Applications. In: Cortellessa,
V., Varr6, D. (eds.) Proceedings of the 16th International Conference on
Fundamental Approaches to Software Engineering, FASE 2013, Rome, Italy,
March 16-24, 2013. pp. 210-225. Springer, Berlin, Heidelberg, Germany (2013).
https://doi.org/10.1007/978-3-642-37057-1 15

Van Es; N., Van der Plas, J., Stiévenart, Q., De Roover, C.: MAF: A Framework for
Modular Static Analysis of Higher-Order Languages. In: 20th IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2020,
Adelaide, Australia, September 27-28, 2020. IEEE Computer Society (2020)

Van Horn, D., Might, M.: Abstracting Abstract Machines. In: Hudak, P.,
Weirich, S. (eds.) Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2010, Baltimore, MD, USA,
September 27-29, 2010. pp. 51-62. ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1863543.1863553

Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H.C., Zaidman, A.:
How developers engage with static analysis tools in different contexts. Empirical
Software Engineering 25(2), 1419-1457 (2020). https://doi.org/10.1007/s10664-
019-09750-5

Yoon, Y., Myers, B.A.: Capturing and analyzing low-level events from
the code editor. In: Proceedings of the 3rd ACM SIGPLAN Work-
shop on Evaluation and Usability of Programming Languages and
Tools. p. 25-30. PLATEAU ’11, Association for Computing Machinery,
New York, NY, USA (2011). https://doi.org/10.1145/2089155.2089163,
https://doi.org/10.1145/2089155.2089163

Yur, J., Ryder, B.G., Landi, W.: An Incremental Flow- and Context-Sensitive
Pointer Aliasing Analysis. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Pro-
ceedings of the 1999 International Conference on Software Engineering, ICSE
1999, Los Angeles, CA, USA, May 16-22, 1999. pp. 442-451. ACM (1999).
https://doi.org/10.1145/302405.302676

Zadeck, F.K.: Incremental Data Flow Analysis in a Structured Program Editor. In:
Deusen, M.S.V., Graham, S.L. (eds.) Proceedings of the 1984 SIGPLAN Sympo-
sium on Compiler Construction, Montreal, Canada, June 17-22, 1984. pp. 132-143.
ACM (1984). https://doi.org/10.1145/502874.502838

Zhan, S., Huang, J.: ECHO: Instantaneous In Situ Race Detection in the
IDE. In: Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, Novem-

Result Invalidation for Incremental Modular Analyses 25

ber 13-18, 2016. pp. 775-786 (2016). https://doi.org/10.1145/2950290.2950332,
https://doi.org/10.1145/2950290.2950332

