
Brigadier: A Datalog-based IAST framework for
Node.js Applications

Angel Luis Scull Pupo
Vrije Universiteit Brussel

angel.luis.scull.pupo@vub.be

Jens Nicolay
Vrije Universiteit Brussel

jens.nicolay@vub.be

Elisa Gonzalez Boix
Vrije Universiteit Brussel

egonzale@vub.be

Abstract—The NODE.JS runtime, in combination with Node
Package Manager (NPM), is a popular ecosystem for building
server-side web applications. Both JavaScript’s flexible and dy-
namic character and the vast amount of NPM libraries available
can speed up the development of web applications. However,
JavaScript and NODE.JS lack security mechanisms and abstrac-
tions. Despite the numerous language-based approaches proposed
to protect JavaScript applications, no work supports application-
level and business-level security properties. This means that in
order to achieve both application-level and business-level security,
developers are forced to rely on multiple different, unintegrated
and incompatible tools and mechanisms.

In this paper, we present BRIGADIER, an interactive security
testing framework for NODE.JS applications that enables the
specification of both application-level and business-level security
policies. BRIGADIER provides developers with a Datalog-based
policy specification language that features close interoperability
with running JavaScript programs under test. Input JavaScript
programs are instrumented to emit relevant application events
sent to a Datalog engine resulting from the compilation of
the policies. We exhibit BRIGADIER’s expressiveness by imple-
menting three case studies from the literature. We also assess
BRIGADIER’s performance overhead on server-side applications.
In our benchmarks, we observed a slowdown factor ranging from
∼1.2x to ∼3x, which is acceptable for a testing scenario.

Index Terms—JavaScript, security testing, security policy,
instrumentation, NODE.JS, Datalog, dynamic analysis

I. INTRODUCTION

The NODE.JS back-end JavaScript runtime environment and
the Node Package Manager (NPM) are a popular ecosystem
for building server-side web applications [1, 2]. JavaScript’s
flexible and dynamic nature in combination with the vast
amount of NPM available libraries is behind such popularity.
But, at the same time, the dynamic nature of JavaScript and its
flexibility often leads to vulnerable misbehaving applications.

We distinguish between two categories of vulnerabili-
ties: application-level and business-level vulnerabilities. An
application-level vulnerability is a weakness in an application
that enables attackers to perform exploits by abusing inse-
cure language features, vulnerable application components,
or flawed design decisions [3]. An example would be the
execution of a third-party component with more authority than
needed, such as a math utility library with access to the net-
work or the file system. Attackers may exploit the math library
and use the unnecessarily allotted privileges to cause severe
harm to the application and the systems it runs on. A business-
level vulnerability (or business logic flaw) is a weakness in the

business rules that enables an attacker to cause harm without
making an incorrect use of the application [4, 5]. An example
would be that the business logic fails to check whether the
amount paid by a user corresponds to the accumulated price
of all purchased items. This paper uses the term “vulnerability”
to refer to either of these two categories.

Program analyses have been proposed to help developers
to test and build secure JavaScript applications [6]. In this
work, we focus on supporting the development of dynamic
program analyses since they are invaluable in any real-world
application testing scenario, often complementing other (static)
techniques [7, 8, 9]. Since JavaScript was originally designed
to be used for scripting client-based applications, most of the
research efforts have been devoted to dynamically enforcing
application security policies at client-side web applications
(e.g., [10, 11, 12, 13, 14] for access control and [15, 16, 17,
18, 19, 20, 21] for information flow control). With the rising
popularity of NODE.JS applications, some approaches have
been recently proposed that specifically target the server-side
of web applications (e.g., [22, 23, 24, 1, 25, 26, 2, 27]).

A. Problem Statement

By surveying the existing dynamic approaches for secur-
ing client-side and server-side JavaScript web applications,
we observed five important shortcomings that hamper their
expressiveness and applicability.

a) Imperative Policy Specification: Some approaches
propose domain-specific languages for expressing custom
application-specific policies [25, 26]. However, using imper-
ative code in policy specifications increases the security risk
because they are difficult to maintain, combine, and reuse.

b) Inflexible and Non-Extensible Policy Specification:
Some analysis-based approaches, such as MIR [24] and
SYNODE [1], propose ad-hoc security policies mechanisms.
Although it is possible to configure these policies using a set
of configuration parameters, it is not possible to modify or
extend the set of enforced policies itself.

c) Coarse-Grained Policy Specification: NODEMOP [2]
and the work of Ancona et al. [27] enable the specification
of application-specific policies for NODE.JS programs in a
declarative way. However, their policies can only reason
about function calls. This reduces the expressiveness of these
approaches, which in turn may force developers to rely on

different tools to express other security aspects that cannot be
covered by only reasoning at the function level.

d) Intrusive Policy Deployment: Some approaches mod-
ify the target program or its runtime environment to deploy the
security policy. These modifications can prevent other libraries
or systems used by the application from being deployed in the
program. For example, approaches such as NODESENTRY and
MIR [24] cannot coexist within the same application, as both
approaches modify the NODE.JS’ module loader.

e) Policy Verification Disconnected From Application:
Approaches, such as the one proposed by Ancona et al. [27],
instrument the target program to generate events. These events
are sent to a policy verification mechanism residing in a
different process from the one of the target program. Having
the policy verification in a different process poses two diffi-
culties. First, program values must be serialised before being
communicated to the analysis process. Unfortunately, not all
JavaScript values can be easily serialized (e.g., functions).
Second, passing large object graphs between processes is
expensive in terms of performance.

B. Our Approach

In this paper, we present BRIGADIER 1, an interactive
application security testing (IAST) framework for server-
side JavaScript web applications. BRIGADIER was specially
designed to cope with the five identified shortcomings.

First, BRIGADIER provides developers with a declarative
language for specifying application and business-level policies.
More concretely, policies are specified in a Datalog dialect.
Such a declarative specification favours the policy’s readability
and understanding, leaving the implementation of its seman-
tics to the enforcement mechanism. Additionally, declarative
policy specifications facilitate the abstraction and composition
of policy specifications and their reuse across applications.

In contrast to current declarative approaches [2, 27], security
policies in BRIGADIER can observe and reason about more,
and fine-grained application events. This enables the expres-
sion of a wide range of effective security policies that can
control aspects of a JavaScript application’s behaviour beyond
function calls, e.g. property accesses or conditional statements.

To avoid intrusive policy deployment, BRIGADIER’s policy
deployment enables the coexistence of the security policy
monitoring mechanism with other unrelated program analyses
acting upon the same application.

Finally, BRIGADIER offers interoperability between the
security policies and the values of the running JavaScript
application under test. Because policies can directly inspect
and operate on JavaScript values, policy specifications become
simpler as no additional domain-specific features must be
present for working with the underlying application values.

The contributions of this paper are:
• A declarative security policy specification language that

features close interoperability with the values of the
NODE.JS program under test.

1https://gitlab.soft.vub.ac.be/ascullpu/brigadier

• A non-intrusive policy verification mechanism that can
exert fine-grained control over an application’s behaviour.

• Libraries of predefined rules that ease the reasoning about
popular NPM packages used within a target application.

• A validation of BRIGADIER’s expressiveness by im-
plementing access control and availability policies for
application-level and business-level concerns of three
case studies appearing in recent related work.

II. BRIGADIER

BRIGADIER consists of a policy specification language and
a monitoring mechanism for analysing NODE.JS applications
(i.e. enabling the runtime verification of the specified policies
on a target application). BRIGADIER’s policy language is
inspired by Datalog and enables developers to specify security
policies declaratively. The goal of these security policies is
to constrain the application behaviour to avoid and detect
application-level and business-level security vulnerabilities.
Application behaviour is reified as facts that are used by rules
to produce additional facts.

BRIGADIER’s monitoring mechanism is designed to be used
as part of an Interactive Application Security Testing (IAST)
tool during the development and testing phase of the software
development lifecycle. BRIGADIER takes a policy specification
and a target NODE.JS application, and instruments this appli-
cation to emit events for sensitive program operations. Such
events include property access, function application, choosing
a branch in a conditional statement, etc. Those application
events are immediately turned into facts that are sent to
the BRIGADIER’s monitoring mechanism. Once a program
operation violates the policy specification, BRIGADIER emits a
notification. The goal of using BRIGADIER before deployment
is to precisely detect and fix security vulnerabilities before they
end up in a released product.

A. Brigadier By Example

We first introduce BRIGADIER by means of a security policy
that detects calls to sensitive functions, shown in Listing 1.
A BRIGADIER program specifies security policies as a non-
empty set of facts and rules. The example policy consists of
the definition of a fact (line 1), followed by the definition
of a rule (lines 2–4). Line 1 adds a fact to BRIGADIER’s
sets of facts (part of its monitoring mechanism). The fact can
be read as “eval is a sensitive function”. A fact consists
of a predicate name (e.g. SecSensitiveFn) and zero or
more attribute values (e.g. $eval). The $ preceding eval
indicates that eval here is a JavaScript value, i.e., a pointer to
the actual eval function used in the application. $Math and
$console are other examples of pointers in BRIGADIER.

1 SecSensitiveFn($eval).
2 SecViolation(fn, iid) <-
3 BeforeCall(i, iid, fn, ths, args, res),
4 SecSensitiveFn(fn).

Listing 1. Example BRIGADIER policy for detecting sensitive function calls.

https://gitlab.soft.vub.ac.be/ascullpu/brigadier

BeforeCall(i, iid, fn, ths, args)
AfterCall(i, iid, fn, ths, args, res)
BeforeWriteField(i, iid, ths, fld, val)
AfterRead(i, iid, name, val)
BeforeBinary(i, iid, op, lhs, rhs)
AfterConditional(i, iid, val)

Fig. 1. Excerpt of BRIGADIER language-level predicates.

The rule defined in Listing 1 can be read as “If a call to a
function fn is about to happen, and fn is a sensitive function,
then register this as a security violation”. Whenever the body
of a rule is satisfied, then the head fact is produced and added
to the set of facts. In our example, whenever an application
is about to apply a certain function object fn, the application
emits an event of the type BeforeCall. If this fn is flagged
as sensitive, then a SecViolation fact is produced.
BeforeCall actually corresponds to a language-level

predicate for the aforementioned event type. Language-level
predicates map relevant program operations to facts. Each
language-level predicate has a specific list of terms that
makes more detailed information of a program operation
available in a BRIGADIER program. For example, the terms
list (i, iid, fn, ths, args) for the BeforeCall
predicate brings the called function (fn), the this (ths)
object, and the arguments of the call (args) into the scope
of the SecViolation rule. Additionally, all language-level
predicate brings into the policy’s scope a unique identifier i
and the operation’s location identifier iid. Having a unique
identifier allows policies to reason about specific instances
of a program operation (e.g, two calls to eval) and to
maintain the order in which the operations were executed.
The location identifier iid is used by utility functions to
query location information at different levels of granularity.
For example, line 5 of Listing 6 shows an example usage of
the fullPathOf(iid) function to query the file path of
the program operation at line 3.

Figure 1 contains an excerpt of the language-level predicates
that BRIGADIER supports. Thanks to BRIGADIER’s declarative
nature, it is clear from the predicates declaration which type
of application events they represent. Language-level predicates
are prefixed with Before and After to indicate whether
the information related to some operation represents the point
in time right before or immediately after that operation.
For example, predicate AfterCall is the BeforeCall
counterpart and it additionally defines the return value (res)
of the call. The full list of supported language-level predicates
and their description can be found in Section A Table IV.

All predicates that are not language-level, are said to be
user-defined predicates. In Listing 1, SecSensitiveFn
and SecViolation are user-defined predicates expressing
a security policy that detects calls to sensitive functions. A
BRIGADIER program thus boils down to combining language-
level facts (representing application events) and user-defined
facts (representing policy configuration) into higher-level facts
that express security policies.

program := [require] [annotations] clause+

require := require(string[(, string)∗])
clause := fact | rule

fact := predicate ([constant (, constant)∗]) .
rule := head ← body.

head := predicate ([terms] [, aggregate])

body := atom+

atom := [not] predicate (terms) | app
app := app BINARY app

| (var | pointer) ([app [, app]∗])
| term | (app)

annotations := annotation∗
annotation := @ identifier (annot entries)

annot entries := [annot entry [(, annot entry)∗]]
annot entry := identifier : constant

terms := term [(, term)∗]
term := constant | var

constant := pointer | number | boolean
| string | null | undefined

pointer := $identifier
aggregate := (#max | #count | #sum . . .) var

Fig. 2. BRIGADIER’s formal grammar.

B. Syntax and Semantics

We now describe the syntax and semantics of BRIGADIER
which are based on Datalog [28]. Figure 2 shows
BRIGADIER’s complete grammar in an extended BNF style,
with names and symbols in green representing tokens.
BRIGADIER adds three syntactic extensions to Datalog: the
require statement, annotations (@), and pointers ($). The
require statement extends a program with rules and facts
contained in the imported file and is BRIGADIER’s main
mechanism for modularity and reuse. Annotations allow the
specification of metadata that can be used to specialize how
the policy is manipulated by BRIGADIER. An example of
an annotation is @Goal(name: ’Predicate’) which
instructs the framework to emit facts of the relation specified
by the @Goal’s name field. Finally, as introduced above,
pointers (e.g. $eval) in BRIGADIER point to global variables
in the target application.

C. BRIGADIER’s interoperability

Unique to BRIGADIER is the interoperability between secu-
rity policies and the values of the target JavaScript application.
This enables developers to work directly with JavaScript
values in their programs. Programmers do not need to turn
JavaScript values from the target application into facts to

reason about them in their policies since JavaScript values are
first-class in BRIGADIER. Listing 1 showed a basic form of
interoperability by using pointers to global variables in the
target program. In particular, that policy was able to have
access to the actual eval JavaScript function (instead of a
Datalog fact representing the function).

Rules can also apply plain JavaScript functions from their
bodies. For example, consider a policy to report HTTP re-
sponse cookies that do not have the HttpOnly flag set.
Sending a cookie without the HttpOnly flag implies that the
cookie is accessible to the client-side JavaScript code, which
is a vulnerability as third-party code can freely access them.
Listing 2 shows the specification of a policy to check whether
the HttpOnly flag was set in all HTTP cookie headers sent
by the server.

Assume that ResponseCookie facts represent cookie
headers that store the cookie string in the first term (line 2).
Cookie strings are represented as attributes that are separated
by a semicolon. Therefore, to know whether the HttpOnly
attribute is set in the cookie string, it should be split into
its constituent attributes before the attribute’s presence can
be verified. In BRIGADIER, this can be achieved by applying
the split and elementOf built-in functions. Both split
and elementOf are plain JavaScript functions part of the
BRIGADIER’s built-in functions API.

Figure 3 provides an overview of the currently supported
built-in functions. The list includes utility functions (such as
split and elementOf) and, more importantly, reflective
functions for introspecting the target application. For example,
an important built-in function is get(obj, prop) as it
provides a generic way for accessing object properties. This, in
turn, enables BRIGADIER policies to have access to all meth-
ods and properties of objects reachable from the global object.
Similarly, the other more specific utility built-in functions are
useful shortcuts that can be used in BRIGADIER specifications
without performing nested property lookup.

III. IMPLEMENTATION

We now describe the most relevant BRIGADIER’s imple-
mentation details. Figure 4 shows its core components and
how they interact. In the following, we highlight the important
aspects of each component.

RULESPACE Compiler: BRIGADIER policy specifica-
tions are parsed using ANTLR 2, and converted into
RULESPACE ASTs adorned with annotations. As shown in Fig-
ure 4, policies ASTs are given to the RULESPACE 3 component
which compiles them to an incremental Datalog engine fea-
turing aggregation and stratified negation [28]. The resulting

2https://www.antlr.org/
3https://github.com/rulespace/rulespace

1 NonHttpOnlyCookie(cookie, path) <-
2 ResponseCookie(cookie, path, _, _, _, _),
3 false = elementOf(’HttpOnly’, split(cookie, ’;’)).

Listing 2. Policy detecting cookies URL paths sending non HttpOnly cookies.

engine is a self-contained and embeddable JavaScript module
that triggers rule evaluations when facts are added. It can thus
store any JavaScript value as a term of a fact enabling the
interoperability between the analysis and the target application.

Handler Component: A handler wraps around the Data-
log engine and provides the means for hooking on engine-
specific events. The handler is notified of language-level
facts whenever the application under test performs a sen-
sitive operation. Hooking can be done by implementing
beforeAddFact and afterAddFact methods of the
REHandler class. Finally, the handler should provide the
semantics of the annotations present in the analysis by imple-
menting the processAnnotations method.

Listing 3 shows a sample implementation strategy of such
a handler implementing the afterAddFact hook to notify the
programmer whenever a goal fact has been derived. A goal
fact represents an instance of a policy violation in the analysis
program, for example, a call to eval in an application ana-
lyzed with Listing 1. The processAnnotations method
(lines 6–11) first looks for an annotation named Goal. Then,
at line 9, it extracts the relation name from the annotation
name entry. At line 10, it gets the relation class corresponding
to the relation name and saves it as the goalClass property.
The afterAddFact method notifies the goalListener
function whenever goal facts are generated.

1 class GoalLoggerHandler extends REHandler {
2 constructor(programAST, goalListener) {
3 super(programAST)
4 this.setGoalListener(goalListener);
5 }
6 processAnnotations() {
7 const annot = this.annotations
8 .find(annot => annot.annotName === ’Goal’)
9 const q = this.getAnnotEntryValue(annot, "name")

10 this.goalClass = this.getRelationClass(q);
11 }
12 afterAddFact(fact, deltas) {
13 const delta = deltas.get(this.goalClass);
14 if (delta.length > 0) {
15 this.goalListener(delta);
16 }
17 }
18 }

Listing 3. Hanlder of the rule engine.

Analysis Composer: The analysis composer takes care of
emitting facts corresponding to the relevant application events.
To this end, it generates a JALANGI-based [29] analysis used
to instrument the target application. As shown in Figure 4,
the composer receives the policy AST and a handler as input.
For each language-level predicate in the AST, it generates a
corresponding JALANGI hook. The body of each hook function
generates a language-level fact and adds it to the handler
instance.

Considering the AST of the code shown in Listing 1 and
an instance of the GoalLoggerHandler Listing 3 as input
to the component, it generates an analysis object where just
BeforeCall is materialized in the JALANGI analysis in-
stance. An example of the shape and behaviour of the analysis
object is shown in Listing 4. The invokeFunPre captures

apply(fn, ths, ...args) //Applies the fn function to the given args with this bound to ths.
elementOf(el, col) //Check whether el is in the iterable col.
arrayFrom(...args) //Builds an array with the given args.
get(obj, prop) //Returns the property the value of prop in obj.
prototypeOf(obj) //Returns the prototype of obj.
constructorOf(obj) //Returns the constructor of obj.
split(str, ptrn) //Splits the string str using the pattern ptrn.
indexOf(str, ptrn) //Returns the index of pattern ptrn in the string str.
lastIndexOf(str, ptrn) //Returns the last index of pattern ptrn in the string str.
startsWith(str, ptrn) //Checks whether the string str starts with the pattern ptrn.
endsWith(str, ptrn) //Checks whether the string str ends with the pattern ptrn.
substring(str, a, b) //Returns the substring of the string str from the range a to b.
concat(a, b) //Concatenates the given array arguments.
max(a, b) //Returns the maximum of a and b.
requireModule(name) //Performs the Node.js require and returns the required module‘s interface. It

//should be used with care because some modules are imported for side-effects.
locationOf(iid) //Returns a meta-object containing location-related information of the given iid.
fullPathOf(iid) //Returns a string representing full path of the given iid.
isInstanceOf(base, parent) //Checks whether base is an instance of parent.

Fig. 3. List of BRIGADIER built-in functions.

3DUVHU $QDO\VLV�
&RPSRVHU

SROLF\�FRGH

5XOHVSDFH

$IWHU&DOO

+DQGOHU

GDWDORJ��
HQJLQH

1RGHSURI

1RGH�MV
DSSOLFDWLRQ

-DODQJL�
DQDO\VLV

¬�LQYRNH)XQ

Fig. 4. BRIGADIER’s architecture overview.

function call events that are mapped to the BeforeCall facts
in Listing 1. At lines 3–5 the code creates a BeforeCall fact
and adds it to the engine by means of the addFact method
of the handler.

1 {
2 invokeFun: function(iid, fn, ths, xs){
3 const f = new BeforeCall(c++, iid, fn, ths, xs)
4 //logHndlr is an instance of GoalLoggerHandler
5 logHndlr.addFact(f)
6 }
7 }

Listing 4. Example implementation of a JALANGI analysis that triggers a
RULESPACE engine by adding a language-level fact.

NODEPROF: BRIGADIER employs NODEPROF [30] to
instrument the target application for generating the application
events that are sent to the JALANGI-based analysis. The level
of deep instrumentation offered by NODEPROF solves three
of the problems identified in Section I-A. First, NODEPROF
enables the specification and deployment of unintrusive poli-
cies concerning the program and its runtime environment. This
means that BRIGADIER policy specifications can observe and
reason about the target program and its environment without
modifying a single line of code. Second, in contrast to other
dynamic analysis tools for JavaScript such as JALANGI or
ARAN, NODEPROF enables the instrumentation of the target
program and its NPM dependencies, including NODE.JS built-
in modules. Third, NODEPROF-based analyses can generate

fine-grained application events allowing the implementation of
dynamic analysis categories beyond what we discuss in this
paper (e.g., taint analysis).

IV. VALIDATION

We now validate BRIGADIER to assess the expressive-
ness and performance of our approach. First, we show
BRIGADIER expressiveness by implementing application-level
and business-level access control and availability security
policies (Section IV-A). Second, we analyzed BRIGADIER’s
performance by measuring its throughput using policies from
the related work (Section IV-B). All experiments and mea-
surements were performed on Ubuntu 22.04 LTS, running on
a machine with an 8-core AMD Ryzen 7 3800X processor at
3.9GHz and 32GB of DDR4 RAM. GraalVM Node.js v14.17.6
running on GraalVM CE 21.3.0 (build 17.0.1+12-jvmci-21.3-
b05) was used to execute the target applications.

A. Expressiveness

To exhibit BRIGADIER’s capabilities for expressing different
security policy families, we implemented the vulnerability
detection phase of 3 recent systems proposing a business-level
availability policy (i.e. Zeller et al. [4]) and application-level
access control policies (i.e. NODESENTRY [26] and MIR [24]).

1) Policy System for Secure Integration of Third-Party
Modules: NODESENTRY [26] provides support for defining
upper-bound and lower-bound application-level access control
policies around the public interface of third-party modules.

Lower-Bound policies: A lower-bound policy allows
developers to reduce the authority that a host module has
over the resources of a particular third-party module. For
example, it could allow limiting the authority of st [31],
a popular NPM module for serving static files. st attaches
a request/response handler function to an http 4 server
instance. Whenever a request triggering the handler is made,
the st module parses the requested file’s path, and reads

4https://nodejs.org/api/http.html

and sends the file contents to the user. For security reasons,
the authority of st should be limited to accessing only the
network API to reply to the user, and, more importantly,
to performing only read operations on the file system. As
such, the st module should only import read operations such
as readFile and readFileSync from the fs module.
However, the current st implementation (v3.0.0, July 2022)
imports the full fs API, in spite of the fact that a manual
review of the module’s source code reveals that only a small
subset of the fs module is actually used. This allows st mod-
ule to obtain more authority than needed, making the module
vulnerable to an attacker that may escalate the privileges and
write to the file system.

A lower-bound policy for client modules of st must there-
fore restrict file system access within st’s implementation to
read operations by allowing only specific fs operations to
be used. Listing 5 shows the specification of such a lower-
bound policy where an AuthViolation is raised whenever
st attempts to call a file system API function other than the
ones specified by an Allow(...) fact (see lines 3–5).

1 require(’core’)
2 @Goal(name:’AuthViolation’)
3 Allow(’path/st/’, ’fs’, ’createReadStream’).
4 Allow(’path/st/’, ’fs’, ’stat’).
5 Allow(’path/st/’, ’graceful-fs’, ’createReadStream’).
6

7 ObjectLiteral(mod) <- Allow(_, modName ,_),
8 mod := requireModule(modName).
9 ModName(modName) <- Allow(_, modName ,_).

10

11 AuthViolation(hostPath, mod, propName, srcObj) <-
12 ObjectProperty(mod, propName, fn, _, _),
13 ObjectLiteral(mod),
14 ModName(modName),
15 not Allow(hostPath, modName , propName),
16 BeforeCall(i, iid, fn, mod, _, _),
17 hostPath = fullPathOf(iid),
18 srcObj := sourceObjectOf(iid).

Listing 5. NODESENTRY’s lower-bound policy in BRIGADIER for disallowing
modules to write to the file system.

Fact Allow(client, mod, op) states that operation
op is allowed to be used on a module mod required
by client module client. The require(’core’) state-
ment imports BRIGADIER’s core utility module, which de-
fines the ObjectProperty rule. The @Goal annotation
specifies that facts with predicate AuthViolation are
output facts. The ObjectLiteral rule uses the built-in
requireModule function to get a reference to a fs module.
Then, rule AuthViolation (see lines 11–18) flags a call of
a function with name propName on a module mod required
by a client module located at hostPath as a violation when
it is not allowed. In this example, operations refer only to
function calls, but extending the policy in BRIGADIER to
authorizing property access is trivial.

Upper-Bound policies: An upper-bound policy allows
developers to add security checks or repair code before or
after a target module API is called. To exemplify the use of
such an upper-bound policy, consider again the aforementioned
st module. Prior to version 0.2.5, st was vulnerable to path
traversal attacks because it incorrectly parsed the requested

URL [25, 26]. Specifically, an attacker could use encoded
dots (%2e) to bypass the check that prevented URLs from
traversing directories by means of /../. Protecting the appli-
cation from vulnerabilities within the st library enabling such
a path traversal attack, would require checking and repairing
all URLs flowing into the library. This can be checked by an
upper-bound policy on the st module that validates whether
the URL of an incoming request is “malformed” whenever the
URL’s value is read inside the module. Listing 6 shows the
specification of such an upper-bound policy.

1 @Goal(name:’MaliciousURLViolation’)
2 MaliciousURLViolation(result) <-
3 GetField(_, iid, ths, ’url’, result),
4 ’IncomingMessage’ = constructorOf(ths),
5 ’/path/st.js’ = fullPathOf(iid),
6 indexOf(result, ’%2e’) > -1.

Listing 6. Example specification of an upper-bound policy for detecting
malicious urls flowing into the st library.

Rule MaliciousURLViolation (lines 2–6) checks
whether a url property that is being read (using GetField)
is performed on an IncomingMessage object (i.e., an
instance of an HTTP request) inside the st module. The
@Goal annotation enables the notification to the user of any
MaliciousURLViolation derived during the analysis.

2) Detecting violations of RWXI privileges of free variables
on NPM modules.: Vasilakis et al. [24] introduced a fine-
grained permission model around module boundaries called
MIR that aims to prevent the exploitation of vulnerabilities
in benign modules via its free variables. A policy in MIR
specifies what privileges a module has over specific free
variables (i.e. Read, Write, Execute, Import). More concretely,
free variables refer to global and built-in variables accessible to
all modules (e.g., eval, Function, console, process,
...) as well as variables locally accessible to modules such as
exports, module, require, and modules imported using
require.

serial:
eval: RX
module: R
require("log"): I

Listing 7. Example of a MIR policy specification to restrict the authority of
the serial library (inspired by [24].)

Listing 7 shows an example MIR policy stating that the
serial module can only read or execute the eval function,
read from the module variable, and import the log module.
Any attempt to override the eval function, import another
module, or calling a function exposed by log, will result in a
policy violation. We now show how MIR’s specification and
behaviour can be expressed in BRIGADIER.

Listing 8 shows the policy specification in BRIGADIER
which is a straightforward translation of MIR’s policy shown
in Listing 7.

1 PermSet(’/path/serial.js’, ’eval’, ’RX’).
2 PermSet(’/path/serial.js’, ’module’, ’R’).
3 PermSet(’/path/serial.js’, ’require("log")’, ’I’).

Listing 8. MIR policy configuration of Listing 9 expressed in BRIGADIER.

Recall that a policy violation should be reported whenever
a module performs an operation on a free variable or one of
its properties without permission. Listing 9 shows the core
of the detection phase of the RWXI permission model in
BRIGADIER. In particular, it shows the code for monitoring
all operations on free variables within any application module.

1 GlobalObject(’$Reflect’, $Reflect).
2 ... //other GlobalObjects
3 WrapSafeFn(fn) <- ...
4 WrapSafeResult(compiledWrapper) <- ...
5

6 ModuleObject(filename, exps, req, mod, dirname) <-
7 AfterCall(_, _, refApply, ths, args, result),
8 refApply = get($Reflect, ’apply’),
9 WrapSafeResult(compiledWrapper),

10 compiledWrapper = get(args, 0),
11 arr := get(args, 2),
12 exps := get(arr, 0),
13 filename := get(arr, 3),
14 dirname := get(arr, 4)
15 ...
16 ModuleScopedObject(mName, ’exports’, pointer) <-
17 ModuleObject(mName, pointer, _, _, _).
18 ... //other ’module local’: module, require, etc.
19 //Identify module and global variables per module.
20 FVar(inMod, vName, ptr) <-
21 GlobalObject(vName, ptr),
22 Path(inMod, _, _).
23 FVar(inMod, vName, ptr) <-
24 ModuleScopedObject(inMod, vName, ptr),
25 Path(inMod, _, _).
26

27 ObservedProperty(m, ths, name, pVal, path, perms) <-
28 PropInPath(m, ths, name, pos, path),
29 Path(m, path, perms),
30 pos + 1 = get(path, ’length’),
31 pVal := get(ths, name).
32

33 ObservedVar(inMod, ths, name, pth, ps) <-
34 ...//a free var in a policy
35 //calling a free var function is secur. sensitive
36 SensitiveCall(inMod, fnPtr, fName, iid) <-
37 AfterCall(_, iid, fnPtr, ths, args, _),
38 FreeVar(inMod, fName, fnPtr),
39 inMod = fullPathOf(iid).
40 //whitelist free vars that can be called
41 AllowCall(inMod, fnPtr) <-
42 ObservedVar(inMod, fnPtr, fName, _, perms),
43 true = elementOf(’X’, perms).
44 AllowCall(inMod, fnPtr) <-
45 ObservedProperty(inMod, _, _, fnPtr, _, perms),
46 true = elementOf(’X’, perms).
47 //defines the policy goal for function calls
48 ACViolation(inMod, ’[FUN CALL]’, fName, iid) <-
49 SensitiveCall(inMod, fnPtr, fName, iid),
50 FVar(inMod, fName, val),
51 not AllowCall(inMod, val),
52 val = fnPtr.
53

54 Path(modName, spl, perms) <-
55 PermSet(modName, pathStr, perms),
56 false = startsWith(pathStr, ’require(’),
57 spl := split(pathStr, ’.’).

Listing 9. Excert of the implementation using BRIGADIER of the detection
phase of the RWXI permission model of Vasilakis et al. [24].

In BRIGADIER, identifying global variables from within the
policy specification is straightforward as they are globally
accessible to all modules within the application (line 1).
However, free variables local to a module, such as require,
module, exports, etc., are added to the module’s scope at

load time by NODE.JS’ module loader. This requires hooking
into the module loader to access module locals variables
from outside a module’s source code (lines 3–17). Rules
WrapSafe and WrapSafeResult at lines 3 and 4, allow us
to obtain all wrapper functions created by the loader around
the applications’ modules. As shown in Listing 10, such a
wrapper function receives as arguments the module’s local free
variables.

1 function(exports, require, module, __filename ...) {
2 // module source code is copied here.
3 }

Listing 10. Excert of the wrapper function used by NODE.JS while loading
modules.

The implementation then hooks into wrapper functions calls
to collect calls arguments as shown in the specification of
the ModuleObject rule (lines 6–14). A module local free
variable is represented by a ModuleScopedObject fact.
Lines 20–25 define the FVars which provide a uniform
representation of the two types of free variables (i.e., global
such as eval and module-local variables such as module)
in the system).

Once the analysis has access to free variables, it is possible
to determine what sensitive operations are happening during
the program execution by matching the module’s free variables
(FVar) with program operation facts such as AfterCall,
AfterRead, etc. The SensitiveCall rule shown in lines
36–39 is triggered whenever a free var is called within the
module (inMod).

To know whether a sensitive operation violated any stated
permission for a module, we define the ObserverVar
and ObservedProperty rules. These rules match the
permissions stated in an access path (Path(modulePath,
accessPath, permissions)) with the corresponding
free variables (FVar). An RWXI violation is derived by
matching a sensitive operation (e.g., SensitiveCall)
with the absence of the permission (e.g., not
AllowCall(...)) for the free variable used by the
operation.

3) Detecting logic Denial of Service (DoS) attacks against
a hotel’s reservation system: Zeller et al. [4] proposed a self-
protection system for detecting the misuse of business rules of
a hotel chain booking system. In particular, the business rules
established by the hotel chain are:

1. The users must have a valid account with valid names
and credit card information to avoid fake bookings.

2. The number of rooms and nights that can be booked is
limited.

3. The hotel cannot be overbooked.
4. Hotel users have a free cancellation policy until one day

before check-in.
In this system, the fourth rule is actually vulnerable to a

logic attack. While the hotel management assumes that most
of the guests will show up on the check-in day, the free
cancellation policy enables a logical DoS attack. An attacker
could perform bookings without the intention of checking in
and cancelling the bookings at the last possible moment. In

this case, the availability of hotel rooms is depleted which
may affect the hotel’s revenue. Note also that knowing the
user’s intent is hard, therefore it is impossible to distinguish
between benign and malicious users.

Zeller et al. [4] proposed the analysis of traces of late
cancellations to detect such a DoS attack. All users cancelling
the last day within the free cancellation policy period are
subject to a policy that can lower their trust level. Whenever
the number of daily late cancellation exceeds a predefined
threshold the system lower the trust level of all users that
perform a late cancellation on this specific day. The trust level
is used to adapt the booking process for each user. Users
with low trust levels may be required to perform additional
verification steps to book a room.

We implemented the policy to detect the possible logic
DoS attacks in BRIGADIER. To this end, we prototyped
a JavaScript application using EXPRESS.JS simulating the
booking process equivalent to the original paper’s application
(which was written in Java). The application comprises a
Hotel class that implements the business logic for reserving
and cancelling rooms. A Hotel instance has, for example, the
pay, cancelBooking, and book methods. Reservations
are stored as Booking instances in an in-memory database.
Both the Hotel and Booking classes are public members
of the emphapp/models.js module.

Listing 11 shows the implementation of the aforementioned
DoS policy using BRIGADIER. Lines 2–8 specify how the
application’s module and the Hotel and Booking classes
are brought to the analysis scope. Lines 10–14 register
all accepted bookings by intercepting the instantiation (see
AfterConstructor at line 11) of the Booking class. The
CancelledBooking rule (lines 16–23) monitors all late
cancellations of the system. The CancellationsToday
rule (lines 26–27) counts daily late cancellations. While
the DecreasedTrustLevel rule (lines 29–33) identi-
fies the users whose trust level should be decreased, the
IncreaseTrustLevel rule (lines 35–39) takes care of
increasing the trust level when a user pays. Finally, the
UserTrust (lines 50–53) computes the user’s trust level
using the difference between the IncreasedTrustLevel
minus DecreasedTrustLevel.

1 ...
2 HotelMod(hotelMod) <-
3 hotelMod := requireModule(’app/models.js’).
4 BookingCtrFn(bookinCls) <-
5 HotelMod(mod), bookinCls := get(mod,’Booking’).
6 Clazz(hotelCls) <-
7 HotelMod(mod),
8 hotelCls := get(mod, ’Hotel’).
9

10 AcceptedBooking(user, inDay, i) <-
11 AfterConstructor(i, _, klass, _, args, res),
12 BookingCtrFn(klass),
13 user := get(args, 1),
14 inDay := get(args, 2).
15

16 CancelledBooking(currentDay, user, inDay, i) <-
17 ObjectProperty(_, ’cancelBooking’, fn, _, _),
18 AfterCall(i, _, fn, _, args, result),
19 true = result,

20 currentDay := get(args, 3),
21 user := get(args, 0),
22 inDay := get(args, 1),
23 currentDay + 1 = inDay.
24 //store late cancellations for each day
25 CancellationsToday(today, #count _) <-
26 CancelledBooking(today, user, inDay, _).
27 //decrease trust of late users on day
28 //with more than 5 late canc.
29 DecreaseTrustLevel(user, today) <-
30 CancelledBooking(today, user, inDay, _),
31 CancellationsToday(today, amount),
32 amount >= 5,
33 today + 1 = inDay.
34 //incr. trust of all users paying their bookings
35 IncreaseTrustLevel(user, inDay) <-
36 ObjectProperty(_, ’pay’, pay, _, _),
37 AfterCall(i, _, pay, _, args, result),
38 user := get(args, 0),
39 inDay := get(args, 1).
40

41 IncreasedTrustLevel(user, 0) <-
42 AcceptedBooking(user, _, _).
43 DecreasedTrustLevel(user, 0) <-
44 AcceptedBooking(user, _, _).
45

46 IncreasedTrustLevel(user, #count _) <-
47 IncreaseTrustLevel(user, today).
48 DecreasedTrustLevel(user, #count _) <-
49 DecreaseTrustLevel(user, today).
50

51 UserTrust(user, trustLevel) <-
52 DecreasedTrustLevel(user, ldec),
53 IncreasedTrustLevel(user, linc),
54 trustLevel := 3 + linc - ldec.

Listing 11. Policy specification for detecting a logic DDoS attack against an
online booking system of a hotel.

TABLE I
COMPARISON OF APPROACHES IN TERMS OF LINES OF CODE (LOC).

Policy Approach LoC

Lower-bound BRIGADIER 16
NODESENTRY 12

Upper-bound BRIGADIER 6
NODESENTRY 13

RWXI BRIGADIER ∼200
MIR ∼2.8k

Discussion: We now compare BRIGADIER in terms of the
three case studies conducted in this section. Table I summa-
rizes the lines of code (LoC) of the original implementation
with respect to the BRIGADIER one. Overall, BRIGADIER re-
quires fewer lines of code. This is mainly due to its declarative
nature combined with the fact it features interoperability with
NODE.JS values. More importantly, BRIGADIER is able to
implement all three kinds of policies without changes to the
target application or its execution environment.

Table II compares BRIGADIER to the approaches targeting
JavaScript used in this section (i.e. NODESENTRY and MIR)
in terms of the shortcomings identified in related work in Sec-
tion I-A. We do not compare to Zeller et al. [4] as it targets
Java applications.

We consider the policy specification paradigm of both
NODESENTRY and MIR as hybrid because parts of the policy

TABLE II
COMPARISON OF APPROACHES W.R.T THE IDENTIFIED SHORTCOMINGS

ENUMERATED IN SECTION I-A: POLICY SPECIFICATION PARADIGM
(PAR.), EXTENSIBLE/REUSABLE POLICY SPECIFICATIONS (EXT./REUS.),
GRANULARITY (GRAN.), AND INTRUSIVE POLICY DEPLOYMENT (INTR.)

Approach Par. Ext./Reus. Gran. Intr.

BRIGADIER declarative yes fine-grained no
NODESENTRY hybrid no fine-grained yes
MIR hybrid no fixed yes

specifications are implemented imperatively. For example,
NODESENTRY follows an aspect-oriented policy specification
paradigm where points of interest are declaratively specified
but the policy semantics is imperatively implemented. In
MIR, programmers can declaratively configure the policy but,
the policy itself is implemented imperatively. In contrast,
policy specifications in BRIGADIER are fully declarative which
improve their composition and reuse.

Regarding extensibility and reusability, neither MIR nor
NODESENTRY are sufficiently general to enable the specifi-
cation of the policies shown in this section without making
changes to their implementation. For example, implementing
upper-bound and lower-bound access control policies using
MIR is just not possible without a major re-implementation
of their system. On the other hand, detecting violations of
RWXI privileges with NODESENTRY requires changes in
the NODE.JS’ module loader (i.e., the implementation of
require) to wrap module local free variables. In con-
trast, BRIGADIER enables the specification of upper-bound,
lower-bound and RWXI policies without changing the target
application or its execution environment.

In terms of granularity, NODESENTRY and BRIGADIER of-
fer fine-grained granularity for monitoring application events.
We consider MIR to have a fixed granularity as programmers
cannot reason nor combine specific application events.

Both NODESENTRY and MIR intrusive as they require
modifications of the NODE.JS’ module loader or the target
application. As a result, they cannot be combined to protect
a target application, i.e. they are incompatible. In contrast,
BRIGADIER policies can coexist with either NODESENTRY
or MIR policies without any additional requirement because
our approach does not change the target application or its
execution environment to perform the analysis.

Finally, while BRIGADIER, MIR and NODESENTRY have
the policy verification in the same process as the monitoring,
only BRIGADIER features close interoperability without mod-
ifying the target application.

B. Performance

To evaluate BRIGADIER in terms of performance, we mea-
sure the throughput of server-side applications. Our goal is to
see how many HTTP requests an application under test can
serve. This throughput gives the intuition of how many test
cases can be processed in a unit of time. All experiments in

this section were executed with wrk 5 using 15 seconds as
the time limit and one thread as configuration parameters.

Application-level AC: We used the NODE.JS test pro-
gram used in NODESENTRY [26], OWASP Juice Shop 6

and OWASP NodeGoat 7 as target applications. We used 3
configurations to execute each application: plain NODE.JS as
baseline, NODE.JS with BRIGADIER without policies and
NODE.JS with BRIGADIER and policies. Table III describes
the lower-bound and upper-bound policies combination used
to evaluate each test program. Each configuration was executed
5 times using a fresh VM. We do not consider the warmup
time or peak performance of the VM, because, in a testing
scenario, the VM is restarted very often preventing it from
reaching peak performance.

Figure 5 shows the throughput achieved by a target ap-
plication with policies deployed. An application executed
using BRIGADIER (blue bars) without any policy does not
suffer from any performance overhead as the code is not
instrumented. However, once the application is subject to a
policy (yellow and red bars) the throughput decreases from
∼1.2x to ∼3x.

Business-level availability: In a second experiment, we
measured the throughput of the hotel chain booking system
subject to the availability policy implemented in Listing 11. In
this experiment, the baseline execution featured a throughput
of ∼3588 req/sec, while execution subject to the policy had
a throughput of ∼1472 req/sec. On average, running the
application with the policy is ∼2.4x slower than the baseline.

Discussion: We believe that the main reason for our
performance overhead is the Datalog engine. Our engine
compiler materializes policies into a program that uses a
bottom-up evaluation strategy. However, typical optimizations
of database systems, such as indexes, rule re-writing, and effi-
cient data structures are still missing. Although this overhead is
high, the throughput achieved is still acceptable for a testing
scenario. Moreover, this performance penalty is outweighed
by the policy readability, expressiveness and non-intrusiveness
achieved with BRIGADIER.

V. RELATED WORK

In this section, we discuss both, language-based approaches
for securing client-side and server-side JavaScript applications
and security approaches based on Datalog.

Approaches for securing client-side JavaScript applications:
As mentioned in the introduction, a bulk of research has
focused on securing client-side web applications. [17, 19, 18,
16, 21, 20, 15] propose systems for enforcing information
flow control policies, and [32, 12, 11, 13, 14, 33, 10] propose
systems for enforcing access control policies. However, none
of those approaches is expressive enough to support the imple-
mentation of both application-level and business-level policies
without resorting to the host language, usually JavaScript.
For example, policy specifications of such approaches such as

5https://github.com/wg/wrk
6https://owasp.org/www-project-juice-shop/
7https://owasp.org/www-project-node.js-goat/

TABLE III
DESCRIPTION OF THE UPPER-BOUND AND LOWER-BOUND POLICIES USED FOR THE PERFORMANCE BENCHMARK EXPERIMENT.

Application Lower-bound policy Upper-bound policy

st server Detect unwanted file system accesses within the st module. Detect malicious urls with path traversal characters when
entering the st module.

JuiceShop Detect unwanted file system accesses within the send module. Detect malicious url with null byte payloads when entering
the fileServer component of the application.

NodeGoat Detect calls to eval within the contributions component of the
application.

Detect whether a given Express.js route handler can be exe-
cuted without calling an authorization middleware previously.

st Juice Shop Node Goat

101

102

103

T
hr

ou
gh

pu
t

(r
eq

ue
st

/s
ec

.)

NODE.JS BRIGADIER

Lower-bound policy Upper-bound policy

Fig. 5. Throughput (requests per second) of a server-based application using
the st library to serve static files. Each bar represents the average request/sec.
of executing 5 times the test program on each configuration.

Phung et al. [12] and CONSCRIPT [14], where the specification
follows an aspect-oriented programming style, require the
implementation of the policy semantics using imperative code.
In BRIGADIER, both, the point-cut and the policy semantics
are declaratively specified.

Approaches for securing NODE.JS applications: From the
existing dynamic approaches for NODE.JS applications [22,
23, 24, 1, 25, 26, 2, 27], only NODEMOP and the work
of Ancona et al. [27] offer declarative policy specification
like BRIGADIER. NODEMOP [2] propose a runtime verifi-
cation framework for NODE.JS applications. Users of NODE-
MOP can specify correctness properties (or security proper-
ties) by defining events and monitors. Monitors can detect and
recover from incorrect code patterns at run time. A monitor
requires the specification of events to map from function calls
to runtime events that are verified using a regular expression-
based language. In contrast, BRIGADIER can monitor other
operations than function calls, and can reason about all the
contextual information of the operation being monitored (e.g.,
the this value, and property name and value).

Ancona et al. [27] propose a runtime verification framework
for NODE.JS and NODE-RED 8 applications. Applications
are instrumented using JALANGI to generate events that are
communicated to a server hosting a PROLOG interpreter via
HTTP. To avoid the issues when the policy verification is

8https://nodered.org/

disconnected from the application explained in the introduc-
tion, in BRIGADIER the DATALOG interpreter lives in the
same process as the target application. This results in better
interoperability between policies and applications as well as
easing the policy specification.

Datalog as Security Policy Language: Datalog has been
used previously as a language to express application-level
security policies in static program analysis approaches. In
this context, it has been used for expressing policies in static
analyses such as access control [9] and taint analysis [34, 9,
35]. Those Datalog dialects do not support interoperability
with the target program which is essential to enable precise
introspection and manipulation of the values of the program
under analysis.

In dynamic analysis, Datalog has been used as policy
language for other kinds of security policies than those tar-
geted by BRIGADIER. For example, many approaches [36,
37, 38, 39, 40] of trust management in distributed systems
adopted Datalog or extensions of it as the policy language. At
application-level,FAF [41] proposed a Datalog-based policy
language for specifying authorization policies that describe
which actions the users of the system can perform on data
items. These authorization policies are then enforced whenever
a user request permission to perform an action on a data item.

VI. CONCLUSION

This paper presented BRIGADIER, an interactive security
testing framework for NODE.JS applications. Developers spec-
ify security policies using a Datalog-based language to detect
application-level and business-level vulnerabilities. To the best
of our knowledge, BRIGADIER is the first IAST framework
for application-level and business-level policies leveraged on
top of a Datalog engine. In contrast to prior dynamic or
static datalog-based approaches, BRIGADIER features good
interoperability with the values of the program under analysis.

We demonstrated BRIGADIER’s expressiveness by means
of three case studies from recent related work proposing
application-level and business-level policies. We also con-
ducted benchmarks to assess the performance overhead of
BRIGADIER. Even though we observed a slowdown factor
ranging from ∼1.2x to ∼3x, we believe it is still acceptable
for a security testing scenario. The next steps include im-
proving BRIGADIER’s performance by adding optimizations
on the Datalog engine and providing support to enable policy
developers to delete unused/outdated facts from the database.

REFERENCES

[1] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE:
Understanding and Automatically Preventing Injection
Attacks on NODE.JS,” in Proceedings 2018 Network
and Distributed System Security Symposium, no.
February. Reston, VA: Internet Society, 2018. [Online].
Available: https://www.ndss-symposium.org/wp-content/
uploads/2018/02/ndss2018 07A-2 Staicu paper.pdf

[2] F. Schiavio, H. Sun, D. Bonetta, A. Rosà, and W. Binder,
“NodeMop: Runtime verification for Node.js applica-
tions,” in Proceedings of the ACM Symposium on Applied
Computing, vol. Part F1477. Association for Computing
Machinery, 2019, pp. 1794–1801.

[3] R. Ross, “Guide for conducting risk assessments,” 2012-
09-17 2012.

[4] S. Zeller, N. Khakpour, D. Weyns, and D. Deogun,
“Self-protection against business logic vulnerabilities,”
Proceedings - 2020 IEEE/ACM 15th International Sym-
posium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2020, pp. 174–180, 2020.

[5] G. Deepa, P. S. Thilagam, A. Praseed, and A. R.
Pais, “DetLogic: A black-box approach for detecting
logic vulnerabilities in web applications,” Journal of
Network and Computer Applications, vol. 109, no.
September 2017, pp. 89–109, 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2018.01.008

[6] E. Andreasen, L. Gong, A. Møller, M. Pradel,
M. Selakovic, K. Sen, and C.-A. Staicu, “A survey of
dynamic analysis and test generation for javascript,”
ACM Comput. Surv., vol. 50, no. 5, sep 2017. [Online].
Available: https://doi.org/10.1145/3106739

[7] A. L. S. Pupo, J. Nicolay, and E. G. Boix, “Deriving
static security testing from runtime security protection
for web applications,” Art Sci. Eng. Program., vol. 6,
no. 1, p. 1, 2022. [Online]. Available: https://doi.org/10.
22152/programming-journal.org/2022/6/1

[8] J. Nicolay, V. Spruyt, and C. D. Roover, “Static
detection of user-specified security vulnerabilities in
client-side javascript,” in Proceedings of the 2016
ACM Workshop on Programming Languages and
Analysis for Security, PLAS@CCS 2016, Vienna,
Austria, October 24, 2016, T. C. Murray and D. Stefan,
Eds. ACM, 2016, pp. 3–13. [Online]. Available:
https://doi.org/10.1145/2993600.2993612

[9] S. Guarnieri and B. Livshits, “Gatekeeper: Mostly static
enforcement of security and reliability policies for
JavaScript code,” in Proceedings of the 18th USENIX
Security Symposium, 2009, pp. 151–168.

[10] A. L. Scull Pupo, J. Nicolay, and E. Gonzalez Boix,
GUARDIA: specification and enforcement of JavaScript
security policies without VM modifications, ser. Proceed-
ings of the 15th International Conference on Managed
Languages & Runtimes - ManLang ’18. ACM, 09 2018.

[11] J. Magazinius, P. H. Phung, and D. Sands, “Safe Wrap-
pers and Sane Policies for Self Protecting JavaScript,”

ser. Informatics, 2012, vol. 7127, pp. 239 – 255.
[12] P. H. Phung, D. Sands, and A. Chudnov, “Lightweight

self-protecting JavaScript,” ser. the 4th International
Symposium, 2009, pp. 47 – 60.

[13] L. A. Meyerovich, A. P. Felt, and M. S. Miller, “Object
views: Fine-Grained Sharing in Browsers,” ser. the 19th
international conference, 2010, pp. 721 – 730.

[14] L. A. Meyerovich and B. Livshits, “ConScript: Speci-
fying and Enforcing Fine-Grained Security Policies for
JavaScript in the Browser,” ser. 2010 IEEE Symposium
on Security and Privacy, 2010, pp. 481 – 496.

[15] A. L. Scull Pupo, L. Christophe, J. Nicolay,
C. De Roover, and E. Gonzalez Boix, “Practical
Information Flow Control for Web Applications.” RV,
vol. 11237, no. 5, pp. 372 – 388, 2018.

[16] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Ham-
mer, “WebPol: Fine-Grained Information Flow Policies
for Web Browsers,” ser. Computer Security – ESORICS
2017. Springer, Cham, 09 2017, vol. 10492, pp. 242 –
259.

[17] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld,
“JSFlow - tracking information flow in JavaScript and
its APIs.” SAC, pp. 1663 – 1671, 2014.

[18] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer,
“Information Flow Control in WebKit’s JavaScript Byte-
code,” ser. Advances in Computer Science - ASIAN
2006. Secure Software and Related Issues. Springer
Berlin Heidelberg, 2014, vol. 8414, pp. 159 – 178.

[19] A. Chudnov and D. A. Naumann, “Inlined Information
Flow Monitoring for JavaScript,” ser. the 22nd ACM
SIGSAC Conference, 2015, pp. 629 – 643.

[20] T. H. Austin and C. Flanagan, “Multiple facets for
dynamic information flow.” POPL, p. 165, 2012.

[21] D. Devriese and F. Piessens, “Noninterference through
Secure Multi-execution,” ser. 2010 IEEE Symposium on
Security and Privacy (SP), 2010, pp. 109 – 124.

[22] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js
prototype pollution vulnerabilities via object lookup
analysis,” in ESEC/FSE 2021 - Proceedings of the 29th
ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. Association for Computing
Machinery, Inc, aug 2021, pp. 268–279. [Online].
Available: https://doi.org/10.1145/3468264.3468542

[23] B. B. Nielsen, B. Hassanshahi, and F. Gauthier,
“Nodest: Feedback-driven static analysis of Node.js
applications,” in ESEC/FSE 2019 - Proceedings
of the 2019 27th ACM Joint Meeting European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering,
vol. 19, 2019, pp. 455–465. [Online]. Available:
https://doi.org/10.1145/3338906.3338933

[24] N. Vasilakis, C. A. Staicu, G. Ntousakis, K. Kallas,
B. Karel, A. Dehon, and M. Pradel, “Preventing
dynamic library compromise on node.js via rwx-
based privilege reduction.” Association for Computing

https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-2_Staicu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_07A-2_Staicu_paper.pdf
http://dx.doi.org/10.1016/j.jnca.2018.01.008
https://doi.org/10.1145/3106739
https://doi.org/10.22152/programming-journal.org/2022/6/1
https://doi.org/10.22152/programming-journal.org/2022/6/1
https://doi.org/10.1145/2993600.2993612
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1145/3338906.3338933

Machinery, 11 2021, pp. 1821–1838. [Online]. Available:
https://doi.org/10.1145/3460120.3484535

[25] W. De Groef, F. Massacci, and F. Piessens,
“Nodesentry: Least-privilege library integration for
server-side javascript,” in Proceedings of the 30th
Annual Computer Security Applications Conference, ser.
ACSAC ’14. New York, NY, USA: Association for
Computing Machinery, 2014, pp. 446–455. [Online].
Available: https://doi.org/10.1145/2664243.2664276

[26] N. Van Ginkel, W. De Groef, F. Massacci, and
F. Piessens, “A Server-Side JavaScript Security Archi-
tecture for Secure Integration of Third-Party Libraries,”
Security and Communication Networks, vol. 2019, 2019.

[27] D. Ancona, L. Franceschini, G. Delzanno, M. Leotta,
M. Ribaudo, and F. Ricca, “Towards Runtime Monitoring
of Node.js and Its Application to the Internet of
Things,” Electronic Proceedings in Theoretical Computer
Science, EPTCS, vol. 264, pp. 27–42, feb 2018.
[Online]. Available: http://arxiv.org/abs/1802.01790http:
//dx.doi.org/10.4204/EPTCS.264.4

[28] T. J. Green, S. S. Huang, B. T. Loo, and W. Zhou,
“Datalog and recursive query processing,” Foundations
and Trends in Databases, vol. 5, no. 2, pp. 105–195,
2012.

[29] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs,
“Jalangi: A selective record-replay and dynamic analysis
framework for javascript,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 488–498. [Online].
Available: https://doi.org/10.1145/2491411.2491447

[30] H. Sun, C. Humer, D. Bonetta, and W. Binder, “Efficient
dynamic analysis for node.Js,” in CC 2018 - Proceedings
of the 27th International Conference on Compiler Con-
struction, Co-located with CGO 2018, vol. 2018-Febru,
2018.

[31] I. npm, “st,” https://www.npmjs.com/package/st, July
2022, (Accessed on 07/27/2022).

[32] P. Agten, S. V. Acker, Y. Brondsema, P. H. Phung,
L. Desmet, and F. Piessens, “JSand: complete client-side
sandboxing of third-party JavaScript without browser
modifications.” ACSAC, pp. 1 – 10, 2012.

[33] D. Goltzsche, C. Wulf, D. Muthukumaran, K. Rieck, P. R.
Pietzuch, and R. Kapitza, “TrustJS - Trusted Client-side
Execution of JavaScript.” EUROSEC, pp. 1 – 6, 2017.

[34] B. Livshits, “Improving software security with precise
static and runtime analysis,” Ph.D. dissertation, Stanford,
CA, USA, 2006, aAI3242585.

[35] N. Grech and Y. Smaragdakis, “P/Taint: Unified points-
to and taint analysis,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, 2017.
[Online]. Available: https://doi.org/10.1145/3133926

[36] N. Li, B. N. Grosof, and J. Feigenbaum, “A Logic-
based Knowledge Representation for Authorization with
Delegation,” 1999.

[37] W. Winsborough, K. Seamons, and V. Jones, “Automated

trust negotiation,” in Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX’00,
vol. 1, 2000, pp. 88–102 vol.1.

[38] T. Jim, “SD3: A trust management system with
certified evaluation,” in Proceedings of the IEEE
Computer Society Symposium on Research in Security
and Privacy, 2001, pp. 106–115. [Online]. Available:
www.lcs.mit.edu.’.

[39] J. DeTreville, “Binder, a logic-based security language,”
Proceedings - IEEE Symposium on Security and Privacy,
vol. 2002-January, pp. 105–113, 2002.

[40] N. Li and J. C. Mitchell, “DATALOG with constraints:
A foundation for trust management languages,” Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 2562, pp. 58–73, 2003.

[41] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Sub-
rahmanian, “Flexible Support for Multiple Access Con-
trol Policies,” ACM Transactions on Database Systems,
vol. 26, no. 2, pp. 214–260, 2001.

APPENDIX A
LANGUAGE-LEVEL PREDICATES

Table IV describes the language-level predicates currently
supported by BRIGADIER.

https://doi.org/10.1145/3460120.3484535
https://doi.org/10.1145/2664243.2664276
http://arxiv.org/abs/1802.01790 http://dx.doi.org/10.4204/EPTCS.264.4
http://arxiv.org/abs/1802.01790 http://dx.doi.org/10.4204/EPTCS.264.4
https://doi.org/10.1145/2491411.2491447
https://www.npmjs.com/package/st
https://doi.org/10.1145/3133926
www.lcs.mit.edu.'.

TABLE IV
LIST OF BRIGADIER LANGUAGE-LEVEL PREDICATES.

Predicate Description

BeforeCall(i, iid, fn, ths, args) Captures the function fn, the this ths and arguments args before a function call.

AfterCall(i, iid, fn, ths, args, res) Captures the function fn, the this ths, arguments args and result res after a function
call.

BeforeConstructor(i, iid, fn, args) Captures the function fn and arguments argsused before a constructor call.

AfterConstructor(i, iid, fn, args, res) Captures the function fn, arguments args and result res after a constructor call.

BeforeGetField(i, iid, ths, fld) Captures the information before getting an object ths property’s (fld) value

AfterGetField(i, iid, ths, fld, res) Captures the information after getting an object ths property’s (fld) value res.

BeforeWriteField(i, iid, ths, fld, val) Captures the information before setting an object ths property’s (fld) value val.

AfterWriteField(i, iid, ths, fld, val) Captures the information after setting an object ths property’ (fld) value val.

AfterWrite(i, iid, name, val) Captures the information after writing a variable name with the value val.

AfterRead(i, iid, name, val) Captures the information after reading a variable name holding the value val.

BeforeBinary(i, iid, op, lhs, rhs) Captures the information before evaluating a binary expression op with left lhs and
right rhs.

AfterBinary(i, iid, op, lhs, rhs, res) Captures the information after evaluating a binary expression op with left lhs and right
rhs and value res.

AfterLiteral(i, iid, val) Captures the information after evaluating a literal val.

AfterConditional(i, iid, val) Captures the information after evaluating a conditional expression with result val.

	Introduction
	Problem Statement
	Our Approach

	Brigadier
	Brigadier By Example
	Syntax and Semantics
	Brigadier's interoperability

	Implementation
	Validation
	Expressiveness
	Policy System for Secure Integration of Third-Party Modules
	Detecting violations of RWXI privileges of free variables on NPM modules.
	Detecting logic Denial of Service (DoS) attacks against a hotel's reservation system

	Performance

	Related Work
	Conclusion
	Appendix A: Language-level Predicates

