MODINF: Exploiting Reified Computational Dependencies for

Jens Van der Plas' @2, Jens Nicolay'©®, Wolfgang De Meuter' ©°¢ and Coen De Roover

Keywords:

Abstract:

Information Flow Analysis

Land

Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
{jens.van.der.plas, jens.nicolay, wolfgang.de.meuter, coen.de.roover} @vub.be

Information Flow Control, Data Flow Analysis, Taint Analysis, Static Analysis, Modular Analysis

Information Flow Control is important for securing applications, primarily to preserve the confidentiality and
integrity of applications and the data they process. Statically determining the flows of information for security
purposes helps to secure applications early in the development pipeline. However, a sound and precise static
analysis is difficult to scale. Modular static analysis is a technique for improving the scalability of static analy-
sis. In this paper, we present an approach for constructing a modular static analysis for performing Information
Flow Control for higher-order, imperative programs. A modular analysis requires information about data de-
pendencies between modules. These dependencies arise as a result of information flows between modules, and
therefore we piggy-back an Information Flow Control analysis on top of an existing modular analysis. Addi-
tionally, the resulting modular Information Flow Control analysis retains the benefits of its modular character.
We validate our approach by performing an Information Flow Control analysis on 9 synthetic benchmark pro-

grams that contain both explicit and implicit information flows.

1 INTRODUCTION

Information Flow Control (IFC) is the practice of
detecting and preventing undesirable flows of infor-
mation in an application to preserve certain security
properties of the application and the systems it runs
on. IFC can be used to preserve confidentiality, in-
tegrity and availability, by disallowing secret or sensi-
tive information to flow to public ‘sinks’ and by disal-
lowing untrusted data to end up at sensitive sinks like
a query evaluator. Unwanted flows can be detected
by a static information flow analysis (e.g., (Zanotti,
2002; De Bleser et al., 2017)) that tracks informa-
tion as it moves between sources and sinks. The most
well-known static IFC analysis is taint analysis.
Static information flow analysis can be ap-
plied early in a software development pipeline, but
analysing non-trivial applications is challenging with
respect to scalability and precision. To improve scal-
ability, modular analysis can be performed, where
instantiations of modules (or ‘components’) are an-
alyzed separately. In non-trivial applications, com-

https://orcid.org/0000-0002-7475-576X
https://orcid.org/0000-0003-4653-5820
https://orcid.org/0000-0002-5229-5627
4@ nttps://orcid.org/0000-0002-1710-1268

o

o

ponents can be inter-dependent. For example, when
treating functions as components, a function can call
another, or functions can access and modify shared re-
sources. The component dependency graph that arises
results of data flow between the different components.
In this paper, we exploit the insight that modular
analyses depend on data (or information) flow to han-
dle inter-component dependencies, and that this can
be the basis for a modular information flow analysis.
We adapt and extend MODF (Nicolay et al., 2019), a
generic modular static analysis for higher-order, im-
perative programs, into an information flow analy-
sis usable for IFC. MODF is function-modular, its
components correspond to function calls, and soundly
manages inter-component dependencies by tracking
interactions of components with the store (or heap).
IFC also requires tracking dependencies, not only
between components — like modular analysis — but
also inside components. In this paper, we propose to
reuse the dependency tracking mechanism of a mod-
ular analysis that we extend to track data flows within
components and through the program under analy-
sis. We explain our approach by extending MODF
to a modular information flow analysis we call MOD-
INF. MODF is generic and simple enough to represent
other modular analysis modelling inter-component
dependencies based on heap or other effects.



MODINF is capable of detecting information flow
as a result of both data dependence (explicit informa-
tion flow) and control dependence (implicit informa-
tion flow). We implemented a prototype of MODINF
and validated it on benchmark programs containing
a mix of language features (assignment, higher-order
functions,...), and different explicit and implicit flows.

2 BACKGROUND

MODINTF, is situated at the confluence of IFC and
(modular) static analysis, which we introduce here.

2.1 Information Flow Control

The goal of Information Flow Control (IFC) (Hedin
and Sabelfeld, 2012; Scull Pupo et al., 2018; Russo
and Sabelfeld, 2010) is to detect and prevent flows of
information that decrease the security of an applica-
tion or the systems it runs on, €.g., to preserve proper-
ties such as confidentiality, integrity, and availability.

Information enters an application at one or more
sources and leaves the application at various sinks.
Conceptually, the information that appears at sources
is tagged with a particular value, depending on the
type of source and the security properties to be ver-
ified. When preserving confidentiality, sources tag
their values e.g., with a label indicating its confi-
dentiality level. Tags are drawn from a join semi-
lattice (Denning, 1976); when multiple tags have to
be joined, a unique least upper bound is always de-
fined. The simplest example of such a lattice only has
two elements: H, denoting highly-sensitive informa-
tion, and L, denoting the sensitivity of the information
is low. This lattice has the partial order L. C H; the join
operation is defined as L LI L = L and H otherwise.

Tags are propagated as the program manipulates
information. There are two dimensions along which
this happens: data dependence (giving rise to explicit
information flow) and control dependence (giving rise
to implicit information flow).

2.1.1 Explicit Information Flow

When new information is derived from previous in-
formation, this information is data-dependent on the
existing information. In this case, the newly derived
information has as label the unique least upper bound
of the set of tags belonging to the existing informa-
tion. This flow is called an ‘explicit’ information flow.

Consider e.g., the following simple Scheme pro-
gram that reads two values from user input and prints
their sum. The values of x and y thus come from

sources and can be labeled accordingly. The value
of z carries as label the join of the labels of x and y.

(define x (read))
(define y (read))
(define z (+ x y))
(display z)

2.1.2 Implicit Information Flow

When the derivation of new information is dependent
on a condition (also information), then the new infor-
mation is control-dependent on that condition, and it
is tagged with the label of the condition. This flow is
called an ‘implicit’ information flow.

The following code exemplifies such a flow.
Based on user input, the value of the variable result
may change. Thus, although no information flows di-
rectly from input to result, the value of the latter
still depends on the value of the former.

(define result #f)
(define input (read))
(if (> input 0) (set! result #t))

2.1.3 Declassification and Endorsement

Joining different tags of values due to data and con-
trol dependencies results in monotonically-increasing
tags: derived information can never be less sensitive,
more trustworthy, etc. than any of the information
from which it was derived. However, at some point
programs do have to release some information, and to
do so safely specific operations can be applied that re-
sultin a ‘decrease’ of a tag (Chong and Myers, 2004).
Take the example of preserving the confidentiality
of information using tags that indicate the information
secrecy level. Before storing some data in a database,
an application could first encrypt this data, resulting
in encrypted data that has a lower secrecy level than
the original data. In the context of preserving confi-
dentiality, such an encryption function is called a ‘de-
classifier’. Similarly, when protecting the integrity or
availability of systems and applications, ‘sanitizers’
or ‘endorsers’ in information flows have the ability to
decrease the untrustworthiness of information.

2.2 Modular Static Analysis

Static analysis is used to determine semantic proper-
ties of programs without actually executing those pro-
grams (Cousot and Cousot, 1977). Typically, static
analyses over-approximate the actual run-time be-
haviour to be sound and terminate within a reason-
able time, where ‘reasonable’ depends on the context.
This, however, means that results may be imprecise:



the analysis models all possible run-time behaviour,
but potentially also behaviour that can never occur.

The relation between speed, precision, and sound-
ness is complex (Andreasen et al., 2017): small
changes in any of these aspects may result in large,
unpredictable changes in results and the ability of the
analysis to produce useful answers. The main chal-
lenge is to produce useful answers in a fair amount of
time. Much research has been focused on techniques
for increasing static analysis performance without
negatively impacting other criteria such as precision
too much or at all (e.g., (Might and Shivers, 2006)).

Modularization is one technique to improve anal-
ysis performance (Cousot and Cousot, 2002; Nicolay
et al., 2019). A modular analysis analyses parts of
the program separately, and composes the results to
obtain information about the entire program. These
parts are referred to as modules. At runtime, multi-
ple instantiations of these modules may exist, which
the analysis may distinguish as well. For example,
a given function can be called multiple times. The
reifications within the analysis of these instantiations,
called components, are analysed in isolation. Mod-
ules can vary from coarse-grained (e.g., a thread defi-
nition (Stiévenart et al., 2019)) to fine-grained (e.g., a
function definition (Nicolay et al., 2019)). The corre-
sponding components are then a thread and a function
call. A component contains the corresponding mod-
ule and a context that allows more components to be
distinguished, thereby increasing analysis precision.

Modular analysis can be more efficient than
a whole-program counterpart for various reasons:
memory consumption is reduced, components can be
analysed in parallel (Van Es et al., 2020; Stiévenart
et al., 2021), and components will not be reanalyzed
due to non-relevant changes (Van der Plas et al., 2020;
Van der Plas et al., 2023).

Ideally, components do not depend on each other.
Yet, in all but the most trivial cases, components do
depend on information computed by other compo-
nents. A function may e.g., use the return value of
another. Thus, some ordering must be obeyed so that
a component is only analyzed after all its dependen-
cies have been analyzed. Computing inter-component
dependence can happen before or during the analy-
sis (Nicolay et al., 2019). In case of a cyclic depen-
dencies or self-dependence (e.g., due to recursion), no
such ordering may exist; components may be anal-
ysed multiple times to take into account information
computed by the analyses of the components it de-
pends on. In all cases, component dependencies can
be tracked using heap access: when a component
writes to a memory location, any component reading
this location depends on it.

2.3 Effect-driven Modular Analysis

MoDF (Nicolay et al., 2019) is a type of mod-
ular analysis, expressed as an abstract interpreta-
tion (Cousot and Cousot, 1977), computing essen-
tial control and value flow properties that found many
other non-trivial static analyses. Its fixed-point com-
putation consists of two alternating phases. An intra-
component analysis analyses a component in isola-
tion. Doing so, it infers effects representing its inter-
actions with the global store ¢ and the discovery of
other components. (MODF uses global store widen-
ing (Shivers, 1991), i.e., a single value store is shared
among all components.) An inter-component analy-
sis uses these effects to decide which components to
analyse using a worklist. For example, if a component
reads at an address in ¢ (indicated by a read effect), it
becomes dependent on it. If this address is later writ-
ten to and the value at the address changes (indicated
by a write effect), all dependent components must be
reanalysed. Thus, the inter-component analysis can
then add all dependent components to its worklist.
MoDF is function-modular: modules are func-
tions and components represent function calls. When
a function call is encountered, the analysis does not
step into this function but generates a call effect for
the component representing the call in the analysis. If
this component has not yet been analysed, the inter-
component analysis schedules it for analysis. The
analysis then retrieves the return value of the com-
ponent from ¢ (or L if it had not yet been analysed).
MODF reaches a fixed point as soon as the work-
list is empty. It can be used with different represen-
tations of abstract values and different context sensi-
tivities. The latter allows multiple components to be
used for a single function, increasing the precision of
the analysis. There can e.g., be a different component
for every calling location of a function. Effect-driven
analyses can also be created for other module granu-
larities such as threads (Stiévenart et al., 2019).

2.3.1 Example of a MODF Analysis

We exemplify MODF using the program in Listing 1,
visualising its analysis in Figure 1. When represent-
ing values by their type and using no context sensitiv-
ity, the program in Listing 1 is analysed as follows:

1. The Main component, representing the program
entry point, is analysed. Upon the definition of
num, a write effect is generated. When the call
to plus-n is encountered, a new component is
created and added to the worklist. As no return
value for plus-n was computed yet, L is retrieved
from o and a read effect is registered on this return
value. Finally, a return value is written to G.



Listing 1: Example program.
(define num 0)
(define (plus—n n) (set! num (+ n num)) (print))
(define (print) (display (string—append “current:”
(number—>string num))))
(plus—n 10)

return
(plus-n)

return
(print)

I
§ @ component @—0 Read effect
@<--0vrite effect %

- > call effect

% @ Global store address

Figure 1: MODF analysis of the program in Listing 1.

2. The plus-n component is analysed. Reading n and
num generates read effects. Writing num generates
no write effect as the value of num in ¢ remains
unchanged (Int). As a call to print is encoun-
tered, a new component is created and added to
the worklist. After retrieving its return value (L)
from o, the return value of plus-n is written to G.

3. The print component is analysed. Reading num
generates a read effect. Then, the return value of
print (void) is written to 6. As a write effect is
generated, plus-n is added to the worklist again.

4. The analysis continues until the worklist is empty,
indicating that a fixed-point has been reached.

3 APPROACH

We exploit the inter-component dependencies of a
modular analysis, which model the inter-component
information flow of the application under analysis, as
a basis for an IFC analysis. We extend the modular
analysis to also compute intra-component informa-
tion flow information, thus obtaining the complete in-
formation flow, containing both explicit and implicit
flows, that can be used to perform taint analysis.

The benefit of our approach is that it does not re-
quire the design of an analysis with a specific taint
lattice. Instead, we use the data flow information that
already exists within a modular analysis and complete

it with the intra-component data flow. In particular,
we reuse the mechanism of the modular analysis for
tracking inter-component dependencies based on ac-
cess to shared resources, and extend it so that intra-
component dependencies are tracked as well. Typi-
cally, this means that only modest changes to the anal-
ysis are required. The resulting taint analysis also in-
herits (and benefits from) the modularity, context sen-
sitivity, lattice implementations, or any other property
or mechanism of the underlying analysis from which
it was derived. Our approach thus does not depend
on these properties or mechanisms, nor does it require
additional effort in designing and implementing them.
MODF represents the essence of a modular anal-
ysis: is does not prescribe how the intra-component
analysis must be performed, but only specifies two
constraints which enbody two essential ingredients of
any modular analysis: finite per-component analysis
and tracking of inter-component dependencies using
effects occurring on shared resources. Thus, while we
base our work on MODF, our approach can be instan-
tiated with any modular analysis that contains these
two ingredients and exposes information about them.
We assume the existence of three constructs to
provide information about taint in a program:

* (source x) returns the value of the variable x
and marks this as originating from a source;

e (sink x) indicates that the value of the variable
x has reached a sink, and also returns this value;

e (sanitize x) returns the value of the variable x
but indicates that this value has been sanitized.

In a real-world setting, existing (library) functions for
interacting with the outside world would play the role
of sources, sinks, and sanitizers. We abstract them
here to keep our approach general, and also for prac-
tical (testing) purposes (Section 6).

4 FROM MoDF TO MODINF

We chose MODF as the analysis to instantiate
our approach with, because it is a straightforward,
generic and modular flow analysis that models inter-
component dependencies. The resulting modular IFC
analysis is called MODINF.

In addition to inter-component data flow, MOD-
INF also has to track intra-component data flow.
It does so by extending the inter-component data
flow tracking offered by MODF. MODF infers inter-
component data flow by detecting how values flow
between addresses in the analysis store 6. The store
maps addresses to values, and represents the heap of



the analysis. Consequently, MODINF infers intra-
component data flow during the intra-component
analysis using the same mechanism of monitoring
store operations. In short, whenever the analysis of
a component reads a value from a certain address
in the store, this value is labeled with the address.
This means that addresses piggy-back on top of val-
ues as they flow through the analyzed program. In
the next sections, we describe how MODINF handles
both types of information flow (explicit and implicit)
in more detail.

4.1 Explicit Information Flow

Explicit information flow arises due to value flow in
the program. When a program is executed, values
are propagated through its operations, and values are
read from and stored in the heap. Similarly, during an
analysis, abstract values are propagated through ab-
stract operations, and abstract values are read from
and stored in the store.

During the analysis of a component, when values
are propagated, the labels of these values need to be
propagated together with the values flowing through
in the analysis. Doing so allows the analysis to keep
track of how values flow between addresses in the
analysis store (recall that the labels indicate the ad-
dresses in the store from which a value originates).

When a value is used in a computation, its labels
are added to the result of the computation; when mul-
tiple values are used in the computation, the result
carries the labels of all the argument values. After
all, when one value originates from address a and an-
other value originates from an address b, then the re-
sult from an operation on both values originates from
information in both a and b. Similarly, when e.g., a
pointer is dereferenced, the resulting value inherits the
labels of the pointer, as the resulting value depends on
the value of the pointer. Thus, the labels attached to
a value indicate all addresses in the store the value is
influenced by/originating from.

4.2 Implicit Information Flow

Implicit information flows arrive from conditions in
the program, such as branching in an if statement or
dynamic function calls: based on a condition, a piece
of code may or may not be executed, or the function
to be called depends on a value. A taint analysis must
take these implicit flows into account, because the
conditional branching may depend on a tainted value,
and the choice of function to be executed as well.

To handle these implicit flows, extra flow informa-
tion is needed. In general, this information originates

at the condition on which is branched (e.g., the predi-
cate in an if statement): all data that impacts a condi-
tion also impacts its branches and result. Thus, when
a value in a branch is written to the store, the analysis
does not only take its labels into account but also the
labels of the condition. These labels are also added to
the result value of the conditional computation, as this
is dependent on the value of the condition as well.
Consider e.g., the following program. Explicit
data flow in this program arises from the parameter
n, whose value flows to the result of maybe-inc. As
cond also influences the result, the labels attached to
its value are added to the return value of maybe-inc.

(define (maybe—inc n cond) (if cond (+ n 1) n))

A similar system is needed for dynamic func-
tion calls. To propagate implicit information flow
across function boundaries, which are also compo-
nent boundaries, upon a function call, the current im-
plicit information flow labels, as well as the explicit
flow labels of the function value, are ‘attached’ to the
called component. When the component is analysed,
these labels are considered as well when a value is
written to the analysis store. However, this implies
that when new labels are encountered upon a func-
tion call, the corresponding component needs to be
reanalysed (so the newly added labels can be propa-
gated during its analysis)!. Consider e.g., the program
in Listing 2. During the analysis of a, the analysis in-
fers that the argument of f is a boolean and discovers
no implicit flows to be added to f£. Thus, during the
analysis of £, no implicit flows are taken into account.
If then, however, b is analysed, an implicit flow for £
is found. However, since the abstract value for x re-
mains the same, a modular analysis would not reanal-
yse £, thus ignoring the implicit flows for £.

Listing 2: Reanalysis of f is needed to propagate labels.
(define (f x) (sink x))
(define (a) (f #t))
(define (b) (define v #t)
(define v-s (source v))
(if v=s (f #1)))
(a)
(b)

When conditional flows are nested (e.g., nested if
statements), implicit flow information arising from all
conditions must be taken into account as they all con-
tribute to the path that is taken by the program under
analysis. Also, control flow depends on value flow
and vice versa. The value of a predicate (value flow)

IThe authors assume that implicit flows over function
boundaries can also be added after the analysis by using the
inferred write and call effects, thereby avoiding these extra
component analyses, but have not explored this path further.



in a conditional statement such as if determines e.g.,
which branch of the conditional is executed (control
flow). If a tainted value induces control flow, then
any value flow that happens as a result of this control
flow must also be tainted. We say that the branch or
function body is executed in a fainted context.

4.3 Interactions with the Global Store ¢

When a value is propagated by the analysis, so are
its labels. Keeping these labels attached to the values
at all times is unnecessary, however, and would cause
the sets of labels of each value to keep growing. These
sets would also give little information on how values
actually flow through the program, but only contain
all addresses that may have influenced the value.

Instead of keeping labels attached at all times, we
remove labels from values prior to writing to 6. As
such, the store only contains values but no labels. For
every address in &, we keep track of the labels that
were attached to the values written, and we merge the
labels corresponding to the explicit and implicit infor-
mation flow together at the time of the store write. We
thus obtain a kind of data flow graph, where the edges
are directed backwards. As such, the analysis tracks
how values flow between addresses in o, and thus also
how values flow within the analyzed program.

4.4 Taint Derivation

The data flow information, computed as just ex-
plained, can be used as a basis for taint analysis.

When a value is marked as originating from a
source, it is labeled with a specific label which can
e.g., carry information indicating the type of taint. A
sanitizer causes the value flow to be threaded through
G using a specific sanitization address to allow the
traversal (described next) to stop looking for tainted
values as sanitization removes taint. When encoun-
tering a sink, the analysis also threads the value flow
through G, using a specific sink address, allowing the
traversal to find sinks as starting points for tracing.

At the end of the analysis, the data flow infor-
mation can be used to detect harmful flows by trac-
ing the data flow backwards starting from sink ad-
dresses. A sanitization address causes the trace to be
abandoned as no tainted flow can originate from it.
‘When a source label is found, however, there exists a
non-sanitized flow from the corresponding source to
at least one sink. Hence, a security risk may exist in
the application. Our analysis then reports a tuple con-
taining the source and sink (but could e.g., also report
the entire flow path).

S IMPLEMENTATION

We have implemented MODINF in MAF (Van Es
et al., 2020), a framework for the construction of
modular analyses. Our implementation can analyse
Scheme programs that are enriched with the source,
sink, and sanitize constructs presented earlier.
Scheme, a dynamically-typed higher-order language,
is very difficult to analyse since control flow and data
flow are intertwined. The concepts introduced in this
work can therefore be transferred to other highly-
dynamic languages, like JavaScript, Java, and C++.

Only minor changes were needed to extend an ex-
isting modular analysis in MAF with intra-component
data-flow information. We extended the representa-
tion of abstract values so that labels can be piggy-
backed. When values are joined, the union of the sets
carried along those values is computed. When an op-
eration is applied to values, the result is labeled with
the union of the label sets of the arguments. When an
abstract pointer is dereferenced, the obtained value is
labeled with the labels of the pointer.

To propagate implicit flow information across
function boundaries, we store for every component a
set of all implicit taints that were present during any
call to that component. The analysis of a component
considers this set as being part of the implicit flows
and adds it to the implicit flows caused by condition-
als upon every write to the analysis store.

6 VALIDATION

We performed a preliminary validation of our work
using 9 hand-crafted programs that reflect the vari-
ous ways in which taints may flow through a program.
The goal of this validation is to ensure that our anal-
ysis finds all vulnerable flows, i.e., that it is sound, in
the presence of various complex value flows. To facil-
itate our validation, we constructed the smallest pos-
sible programs that contain complex flows. Exploring
properties of MODINF such as performance and scal-
ability is an interesting avenue of future work.

Concretely, we considered the following 9 small
programs (each between 5 and 10 LOC):

bad-flow-retrigger-needed Shown in Listing 2.
Contains a flow from a source to a sink that, given
the worklist algorithm used by this validation (de-
scribed later), can only be found if a component is
reanalysed after new implicit flows are found.

implicit-flow Contains conditional branching based
on a tainted value.

sanitization-in-tainted-context Shown in Listing 3.



Sanitizes a value and feeds it to a sink in a tainted
context, for which the analysis should still con-
sider this as a harmful flow.

sanitized-flow A flow originating from a source
passes a sanitizer and flows to a sink. Hence, this
program should be considered safe.

side-effecting-function Calls a function in a tainted
context. The called function changes the value of
a variable which flows to a sink afterwards.

simple-flow A tainted value flows to a sink.

sink-in-tainted-context A tainted value is passed
through a sanitizer to a sink. The flow of this value
to the sink depends on the original tainted value.
Hence, there is a harmful (implicit) flow.

tainted-function-choice-1 A side-effecting function
to be executed is selected from a list based on a
tainted value. The side-effect influences the value
flowing to a sink.

tainted-function-choice-2 Shown in Listing 4. The
return value of a function call flows to a sink.
However, the function might have been overrid-
den (depending on a tainted value).

Listing 3: The sanitization-in-tainted-context

benchmark.

(define x #t)

(define x-s (source x))

(if x-s (let ((san (sanitize x-s))) (sink san)))

Listing 4: The tainted-function-choice-2 benchmark.
(define a #t)

(define a2 (source a)) :Value comes from a source.
(define (b x) x)

(define (set—b) (set! b (lambda (x) #f)))

(if a2 (set-b)) :b depends on a2.
(define res (b 10))
(sink res) ;Result of (b 10) flows to a sink.

We instantiated MODINF with a type domain
(representing values by their type except booleans
which are represented concretely when possible;
pointers, closures and primitive functions are repre-
sented using sets), without context sensitivity and a
last-in-first-out worklist algorithm. (Other lattice rep-
resentations, context sensitivities and worklist algo-
rithms are possible as well.) Our analysis was able to
detect all harmful flows within the programs. Thus,
our preliminary evaluation shows that our analysis
does not have false negatives on several small hand-
crafted programs containing challenging value flow.
We also did not find any false positives in the results
of the analysis, though this may be caused by the lim-
ited size of the programs used. Therefore, future work
should evaluate the precision of our analysis using

bigger programs, that are already supported by our
implementation, in which false positives may arise.

7 RELATED WORK

To the best of our knowledge, there are no related ap-
proaches that describe the relation or transition be-
tween modular static analysis and static [FC analysis.
Some related static analysis approaches also use
the store to determine dependence, but for other pur-
poses. (Nicolay et al., 2011) attempts to parallelize
binding expressions by computing dependencies be-
tween these expressions based on address reads and
writes. (Stiévenart et al., 2015) detects concurrency
bugs based on conflicts involving shared addresses.
(Nicolay et al., 2017) investigates function purity
based on reading and writing of store addresses vis-
ible from the point of view of all callers on the stack.
The majority of static IFC analysis approaches
and implementations (see e.g. (Pauck et al., 2018) for
an overview) are not modular by design. MODINF
differs from most of the existing work as it does not
use a state space in which a value is tagged with a
taint label from a lattice. Instead, MODINF tracks ad-
dress dependencies as values are read and written in
the store, without propagating taint labels explicitly.
Modular (static) IFC analyses are far and few be-
tween. A notable example of a modular static taint
analysis is LGTM?, a code analysis platform devel-
oped by GitHub that is capable of performing taint
analysis of modules in JavaScript applications. It
achieves modularity by either not stepping into other
modules, or relying on a manually provided specifica-
tion of taint flows, requiring a trade-off between accu-
racy and effort (Staicu et al., 2020). In contrast, our
approach does not rely on manual specifications.

8 CONCLUSION AND FUTURE
WORK

In this paper, we introduced MODINF, a novel way
to information flow analysis that leverages the inter-
component data flow information inferred by a mod-
ular analysis. We extended this data flow informa-
tion with intra-component data flow information and
differentiate between ‘explicit’ information flow, in-
dicating data dependence, and ‘implicit’ information
flow, indicating control dependence. Using this flow
information, we obtain an information flow analysis

Zhttps://Igtm.com/, soon to be integrated in GitHub
code scanning.



that can detect harmful flows in computer programs.
We validated our approach using 9 hand-crafted pro-
grams with complex data flows and verified that all
harmful flows were discovered by the analysis.

Our work shows that an information flow analysis
can be obtained by making only minor changes to a
modular analysis. The resulting analysis is modular,
meaning that it scales well to large programs, and in-
dependent of a particular lattice or context sensitivity.

Future work may consider distinguishing different
types of taint tags, e.g., to reflect levels of information
sensitivity where low-sensitive data may e.g., be al-
lowed at some sinks in a program. Another improve-
ment would be to extend our validation and evalua-
tion using larger programs, allowing e.g., to evaluate
the precision of the analysis (i.e., the number of false
positives found by the analysis). Our implementation
already supports these bigger programs.

ACKNOWLEDGEMENTS

This work was partially supported by the Research
Foundation — Flanders (FWO) (grant No. 11F4822N)
and by the Cybersecurity Initiative Flanders.

REFERENCES

Andreasen, E. S., Mgller, A., and Nielsen, B. B. (2017).
Systematic approaches for increasing soundness and
precision of static analyzers. In SOAP 2017, Proc.,
pages 31-36.

Chong, S. and Myers, A. C. (2004). Security policies for
downgrading. In CCS 2004, Proc., pages 198-209.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL
1977, Proc., pages 238-252.

Cousot, P. and Cousot, R. (2002). Modular Static Pro-
gram Analysis. In CC 2002, Proc., pages 159-179.
Springer.

De Bleser, J., Stiévenart, Q., Nicolay, J., and De Roover, C.
(2017). Static Taint Analysis of Event-driven Scheme
Programs. In ELS, pages 80-87.

Denning, D. E. (1976). A lattice model of secure informa-
tion flow. Commun. ACM, 19(5):236-243.

Hedin, D. and Sabelfeld, A. (2012). A perspective on
information-flow control. In Software safety and se-
curity, pages 319-347. 10S Press.

Might, M. and Shivers, O. (2006). Improving flow analyses
via ycfa: Abstract garbage collection and counting. In
ICFP 2020, Proc., pages 13-25.

Nicolay, J., De Roover, C., De Meuter, W., and Jonck-
ers, V. (2011). Automatic Parallelization of Side-

Effecting Higher-Order Scheme Programs. In SCAM
2011, Proc., pages 185-194. IEEE.

Nicolay, J., Stiévenart, Q., De Meuter, W., and De Roover,
C. (2017). Purity analysis for JavaScript through ab-
stract interpretation. Journal of Software: Evolution
and Process, 29(12).

Nicolay, J., Stiévenart, Q., De Meuter, W., and De Roover,
C. (2019). Effect-driven Flow Analysis. In VMCAI
2019, Proc., pages 247-274. Springer.

Pauck, F., Bodden, E., and Wehrheim, H. (2018). Do an-
droid taint analysis tools keep their promises? In ES-
EC/FSE 2018, Proc., pages 331-341.

Russo, A. and Sabelfeld, A. (2010). Dynamic vs. static
flow-sensitive security analysis. In CSF 2010, pages
186-199. IEEE.

Scull Pupo, A. L., Christophe, L., Nicolay, J., Roover, C. d.,
and Gonzalez Boix, E. (2018). Practical information
flow control for web applications. In RV 2018, Proc.,
pages 372-388. Springer.

Shivers, O. (1991). Control-Flow Analysis of Higher-Order
Languages. Doctoral dissertation, Carnegie Mellon
University, Pittsburgh, PA, USA.

Staicu, C.-A., Torp, M. T., Schifer, M., Mgller, A., and
Pradel, M. (2020). Extracting taint specifications for
javascript libraries. In ICSE 2020, Proc., pages 198—
209.

Stiévenart, Q., Nicolay, J., De Meuter, W., and De Roover,
C. (2015). Detecting Concurrency Bugs in Higher-
Order Programs through Abstract Interpretation. In
PPDP 2015, Proc., pages 232-243.

Stiévenart, Q., Nicolay, J., De Meuter, W., and De Roover,
C. (2019). A general method for rendering static anal-
yses for diverse concurrency models modular. Journal
of Systems and Software, 147:17-45.

Stiévenart, Q., Van Es, N., Van der Plas, J., and De Roover,
C. (2021). A parallel worklist algorithm and its explo-
ration heuristics for static modular analyses. Journal
of Systems and Software, 181:111042.

Van der Plas, J., Stiévenart, Q., and De Roover, C. (2023).
Result Invalidation for Incremental Modular Analy-
ses. In Dragoi, C., Emmi, M., and Wang, J., editors,
VMCAI 2023, Proc., volume 13881 of Lecture Notes
in Computer Science, pages 296-319. Springer.

Van der Plas, J., Stiévenart, Q., Van Es, N., and De Roover,
C. (2020). Incremental Flow Analysis through Com-
putational Dependency Reification. In SCAM 2020,
Proc., pages 25-36. IEEE Computer Society.

Van Es, N., Stiévenart, Q., Van der Plas, J., and De Roover,
C. (2020). A Parallel Worklist Algorithm for Modular
Analyses. In SCAM 2020, Proc., pages 1-12. IEEE.

Van Es, N., Van der Plas, J., Stiévenart, Q., and De Roover,
C. (2020). MAF: A Framework for Modular Static
Analysis of Higher-Order Languages. In SCAM 2020,
Proc. IEEE Computer Society.

Zanotti, M. (2002). Security typings by abstract interpre-
tation. In International Static Analysis Symposium,
pages 360-375. Springer.



