
An Empirical Evaluation of Quasi-Static Executable
Slices

Quentin Stiévenart, stievenart.quentin@uqam.caa, David Binkley,
binkley@cs.loyola.edub, Coen De Roover, coen.de.roover@vub.bec

aUniversité du Québec à Montréal, QC, Canada
bLoyola University Maryland, MD, USA

cVrije Universiteit Brussel, Belgium

Abstract

Program slicing aims to reduce a program to a minimal form that produces
the same output for a given slicing criterion. Program slicing approaches
divide into static and dynamic approaches: whereas static approaches gen-
erate an over-approximation of the slice that is valid for all possible program
inputs, dynamic approaches rely on executing the program and thus gener-
ate an under-approximation of the slice that is valid for only a subset of the
inputs. An important limitation of static approaches is that they often do
not generate an executable program, but rather identify only those program
components upon which the slicing criterion depends (referred to as a closure
slice). In order to overcome this limitation, we propose a novel approach that
combines static and dynamic slicing. We rely on observation-based slicing,
a dynamic approach, but protect all statements that have been identified as
part of the static slice by the static slicer CodeSurfer. As a result, we obtain
slices that cover at least the behavior of the static slice, and that can be
compiled and executed. We evaluated this new approach on a set of 62 C
programs and report our findings.

Keywords: program slicing, static slicing, dynamic slicing, program
dependence analysis

1. Introduction

Program slicing is a program decomposition technique that has a wide
range of applications in areas such as debugging [1, 2, 3], program compre-
hension [4, 5], software maintenance [6, 7], re-engineering [8], refactoring [9],

Preprint submitted to Journal of Systems and Software March 6, 2023

testing [10, 11, 12], reverse engineering [13, 14], comprehension [15, 16, 17],
tierless or multi-tier programming [18, 19], and vulnerability detection [20].

At its introduction program slicing was defined by Mark Weiser as fol-
lows: “Starting from a subset of a program’s behavior, slicing reduces that
program to a minimal form which still produces that behavior” [1]. The ini-
tial subset is referred to as a slicing criterion. Key to this definition is that a
slice is an executable program. A few years later Ottenstein and Ottenstein
observed that “The program dependence graph (PDG) ... allows programs
to be sliced in linear time” [21]. However this approach brings a key dif-
ference: the resulting slice is not guaranteed to be an executable program.
Thus, in contrast to Weiser’s original definition, which produced executable
slices, the slices produced from a PDG are referred to as closure slices as
their computation involves computing a transitive closure.

This dimension of executable slice versus closure slice is one of three
dimensions used to classify program slices [22]. The second dimension, static
versus dynamic, was introduced by Korel and Laski [23] who observed that
in some applications, such as debugging, it is not necessary to produce all
of the behavior of the original program. Rather, for these applications, it
suffices to preserve the behavior for only a selected set of inputs.

The final dimension, backward versus forward, was introduced by Hor-
witz et al. [24] who observed that the dependence edges of a PDG could be
traversed in either direction. In contrast to backward slicing, which captures
those program components that affect the slicing criterion, a forward slice
identifies those program components affected by the slicing criterion. This
paper considers only backward slicing.

Despite being efficient to compute, closure slices are not guaranteed to
be executable programs. For example, Horwitz et al. provide an example in
which two calls to a procedure require different subsets of the procedure’s
formal parameters and different subsets of the procedure’s statements. Fur-
thermore, although less problematic, the dependence graphs used to compute
closure slices typically omit much of the concrete syntax found in the source
code. However, it is not just closure slices that can fail to produce executable
programs. A long standing challenge for executable slicing algorithms has
been to guarantee that the resulting slice is a syntactically correct program
with the correct semantics [25].

One recent variation of dynamic slicing, referred to as observation-based
slicing [25], approaches the slicing problem from a different angle. Rather
than using static or dynamic analysis to determine which components of the

2

program to include in the slice, observation-based slicing tentatively removes
components from the program and then observes the impact of this removal.
A removal that has no impact on the behavior of the slicing criterion is made
permanent. By its very nature an observational slice is guaranteed to be
executable.

What is missing is a static slicing algorithm that can make the same
executability guarantee as observation-based slicing. This paper provides
such an algorithm through the combination of a static closure slicer and a
dynamic observation-based slicer. The key idea is to protect the code of the
static slice from removal during observation-based slicing. The result is a
Quasi-Static Executable Slice (QSES), which is a safe over-approximation to
the static slice that is also executable.

Specifically we investigate the combination of CodeSurfer [26], which effi-
ciently computes static closure slices, and pORBS [27], which uses a parallel
algorithm to compute (dynamic) observation-based slices. While in theory
the combination computes static executable slices, in practice there are some
interesting corner cases related to code structure, memory layout, and termi-
nation when slicing C code. We share the dataset used for our experiments,
along with all the slices produced1.

The remainder of this paper describes ORBS and CodeSurfer, and then
introduces QSES in greater detail, provides an empirical evaluation of QSES
by considering four research questions, and finally presents some related work
and concluding remarks.

This paper extends our earlier short paper [28] in the following ways:

• We extend our evaluation with three larger multi-file programs which
increase the number of slices taken by 15%.

• We double the number of research questions considered and thus the
number of experiments presented. We also expand upon the two origi-
nal research questions. The short paper includes a preliminary explo-
ration of research questions RQ1 and RQ4. In this paper we consider
two new research questions: in RQ2 we compare QSES to the dy-
namic slices produced by ORBS, and in RQ3 we evaluate the impact
of window size, a parameter of the slicing approach, on the slices and
the time required to compute them. While the more technical RQ3

1https://doi.org/10.5281/zenodo.7702888

3

https://doi.org/10.5281/zenodo.7702888

confirms that previous empirical results for ORBS also apply to QSES,
RQ2 provides an important lower bound. By better understanding how
QSES compares to ORBS and static slicing, we can better understand
the relationship between static and dynamic source-code analysis.

2. Background: ORBS and CodeSurfer

Observation-based slicing. Our approach builds on Observation-Based Slicing
(ORBS) [25], the algorithm for which is identical to Algorithm 1 except that
ORBS omits Line 12 and the input C. ORBS takes as input a source program
P to slice, a slicing criterion identified by a program variable ν, a program
location l and a set of inputs I, and a maximum window size δ. The set
of inputs I is sometimes referred to as the test suite of the program being
sliced. The slice computed by ORBS compiles and preserves the semantics
of program P for this set of inputs I, so the quality of the test suite has an
influence on the quality of the slice produced. ORBS is language agnostic so
it considers the program as a sequence of lines of text, l1 to ln. It can be made
slightly more efficient, by considering, for example, program statements, at
the expense of performing minimal language-specific parsing [29].

ORBS proceeds as follows. First, the program is instrumented by Setup,
which inserts a side-effect free line that tracks the value of variable ν, imme-
diately before line l. This is to ensure that the algorithm detects any changes
to that variable at that location upon the removal of other lines. The in-
strumented program is then run on each input in I and the tracked values
are captured in V , which is used as an oracle for the expected output. Then
Line 4 reverses the lines of the code so that they are effectively considered
bottom-up, which is more efficient as it can slice out the occurrences of a
variable before considering its declaration.

The rest of the algorithm iterates over the program tentatively removing
lines until no more lines can be deleted. Each iteration over the program
(Lines 8-24), tries to remove up to δ lines starting with the current line.
After each removal, the program is compiled. If it compiles, it is executed
and its output is captured in V ′. If the output matches the oracle V , then
the current removal can be safely made permanent. After multiple passes
over the program, the process will eventually stabilize. When no more lines
can be removed the result, S, is the dynamic observation-based slice.

In principle the removal might consider arbitrary subsets of the program
or, as with delta debugging [30], start by considering half the program, then

4

quarters, etc., but these approaches can prove quite expensive [25]. Instead
ORBS uses a window of up to δ contiguous lines. It thus computes 1-minimal
dynamic slices [25] (no single line can be removed from the slice). Past
empirical work has found that the value δ = 4 does a good job of balancing
slice size and slice computation time [25, 27].

Static SDG-based slicing. In addition to ORBS we make use of GrammaT-
ech’s CodeSurfer, to compute static closure slices. CodeSurfer builds a Sys-
tem Dependence Graph (SDG) [24, 31] for a program and then computes a
slice by walking this graph. The result is a set of graph vertices, which we
map back to lines of code in the original source. Because the SDG does not
represent much of the concrete syntax (e.g., the braces delimiting a block),
the identified source code is typically not an executable program.

3. Approach

One obvious advantage of ORBS over static closure slicing is that the
resulting slice is guaranteed to be an executable program. One obvious dis-
advantage is that the slice only preserves the behavior of the original program
when it is run on the inputs from the set I. Our key insight is that if be-
fore applying ORBS to the program, we protect from deletion the lines of
a (non-executable) static closure slice, then the result should preserve the
behavior of the static slice and be executable. In other words, the result is
expected to be an executable static slice. In addition to the protected lines
of the closure slice, this slice includes those parts of the code that ORBS
retains to ensure the slice compiles and executes correctly. We refer to this
combination as Quasi-Static Executable Slicing (QSES). Intuitively, it is not
necessary to check the behavior of the protected lines (make each of them
a slicing criteria) because, by its very definition, a closure slice includes any
required supporting computations.

3.1. Quasi-Static Executable Slicing (QSES)
Algorithm 1 depicts the QSES algorithm. The two differences compared

to ORBS are that QSES takes as input C, all the lines of the static closure
slice, and second, it will never try to remove a window of lines that overlaps
with C (see Line 12). Thus QSES never removes any line that is part of the
static slice. For all other lines, QSES, like ORBS, attempts the deletion and
then observes the behavior of the resulting program. If the program without
the lines produces the same behavior, then the lines can be safely removed.

5

1 QSESlice(P, ν, l, I, δ, C)
Input : Source program P = {p1, . . . , pn}, slicing criterion (ν, l, I),

maximum deletion window size δ, and static slice C
Output: A slice, S, of P for (ν, l, I)

2 O ← Setup(P, ν, l);
3 V ← Execute(Build(O), I);
4 S ← Reverse(O);
5 repeat
6 deleted← False;
7 i← 1;
8 while i ≤ length(S) do
9 builds← False;

10 for j ← 1 to δ do
11 S− ← {si, . . . , smin(length(S),i+j−1)};
12 if S− ∩ C = ∅ then
13 S′ ← S − S−;
14 B′ ← Build(Reverse(S′));
15 if B′ built successfully then
16 builds← True;
17 break
18 if builds then
19 V ′ ← Execute(B′, I);
20 if V = V ′ then
21 S ← S′;
22 deleted← True
23 else
24 i← i+ 1;
25 until ¬deleted;
26 return Reverse(S)

Algorithm 1: The QSES algorithm. The main change with respect to
ORBS is highlighted.

6

3.2. Quasi-Static Executable Slicing, Compilation Only (QSESC)
Taking the intuition behind QSES one step further, the inclusion of all

necessary supporting computations in a closure slice suggests that the ORBS
execution check is superfluous. In other words because all the lines that are
important for preserving the behavior of the program with respect to the
slicing criterion are part of the static closure slice, C, our speculation is that
any program that includes these lines and compiles should be an executable
static slice. Thus, we can simplify QSES by removing the execution check
(deleting Lines 19-20 and making Lines 21-24 subordinate to the if statement
on Line 18). We refer to the resulting algorithm as QSESC (QSES Compile
only). Program execution is expensive for ORBS and we expect QSESC

to slice more efficiently than QSES. Intuitively, QSESC ’s correctness follows
from the closure slice being a sound over-approximation of the minimal slice.
Any compiling subset of the original program that includes these lines should
have the correct semantics. QSESC is basically identifying a minimal set of
lines needed to make the closure slice compilable. We evaluate this intuition
in Section 4.

3.3. Implementation concerns
The implementation used in the experiments makes use of two enhance-

ments relative to the approach described above. First, compared to our
preliminary investigation [28], we enhance the closure slices produced by
CodeSurfer as follows. In the SDG the representation of an if statement in-
cludes control dependence edges labeled either true or false, but no explicit
representation of the keyword else. Thus, an else in the source is never in-
cluded in the set of CodeSurfer protected lines. ORBS will only remove this
keyword when it is safe to do so, but the removal often leads to uninteresting,
superficial, and even distracting changes to the code. The improved imple-
mentation, which produced the slices studied in this paper, includes a pass
over the code where we protect else statements whose matching if statement
was protected by CodeSurfer.

The second enhancement is that we make use of a parallel variant of
ORBS, pORBS [27]. In short pORBS spawns a thread for each value k be-
tween 1 and δ, in which it tries to remove k lines. After all threads have
finished, it removes the lines from the successful attempt by the thread with
the highest k. Compared to the sequential version of ORBS given as Algo-
rithm 1, this parallelism tends to decrease the wall-clock time required to
slice a program at the expense of CPU time because after computing the

7

result for each value of k only the largest successful deletion is kept. The
wall-clock time measures the elapsed time between the instant the slicing
process began and the instant it finished, while CPU time measures actual
processor usage of the slicing processes.

4. Evaluation

To empirically evaluate QSES, we compare its slices to those produced
by CodeSurfer, ORBS, and QSESC . These comparisons enable characteriz-
ing where QSES lies on the spectrum of slicing approaches, from precise but
potentially incomplete (e.g., ORBS) to complete but imprecise ones (e.g.,
CodeSurfer). CodeSurfer has been chosen as the static slicer in our exper-
iments, as it implements the typical slicing algorithm based on dependence
graphs [26], and is one of the few slicers that has had an available exe-
cutable. We quantitatively compare the resulting slices and qualitatively
consider some of the more interesting examples using the following four re-
search questions.

• RQ1: What needs to be added to a static closure slice to
render it executable? As a QSES slice is an extension of a closure
slice, we look at how much code needs to be added to the closure slice
and the different patterns of code additions.

• RQ2: How do QSES slices compare to ORBS slices? ORBS
slices, being purely dynamic, are expected to be smaller. However, by
their very nature they are expected to take longer to compute. We
investigate the difference in timing, size, and deletion patterns between
ORBS and QSES.

• RQ3: What is the impact of window size on the slices and
the slicing time? A smaller window size can make it hard to remove
groups of statements, while larger window sizes may waste time at-
tempting to remove large chunks of code. Prior work [25] found that
for ORBS, a window size of four strikes a good balance between these
two. We investigate whether the same holds for QSES.

• RQ4: What is the impact on the resulting slices of using
QSESC, which disables ORBS’ execution check? In order to
understand whether the static slice’s semantic guarantees are sufficient

8

program SLOC program SLOC program SLOC program SLOC

adpcm 585.1 fankuchredux5 115.5 jfdctint 119.0 ns 30.5
bc (bc) 8511.0 fasta1 126.1 lcdnum 62.0 nsichneu 2989.0
bc (execute) 9500.1 fasta2 264.1 lms 172.1 prime 51.0
binary-trees1 91.0 fasta3 90.0 ludcmp 109.3 qsort-exam 124.0
bs 46.0 fasta5 109.3 mandelbrot2 66.0 qurt 120.0
bsort100 61.0 fasta7 231.1 mandelbrot9 66.0 reverse-complement5 83.0
cnt 76.5 fasta8 150.6 matmult 54.1 reverse-complement6 96.0
compress 357.0 fasta9 161.4 mbe 63.1 scam 63.1
cover 625.0 fdct 138.0 minver 201.3 select 131.0
crc 94.0 fft1 128.1 nbody1 92.2 spectral-norm1 57.6
duff 44.0 fibcall 27.0 nbody2 107.0 st 98.4
ed (main_loop) 4485.0 fir 54.2 nbody3 90.1 statemate 1354.0
edn 170.1 indent (indent) 6680.0 nbody6 93.2 sumprod 17.1
expint 73.1 indent (parse) 5117.2 nbody7 137.0 ud 81.4
fac 23.7 insertsort 33.0 ndes 196.1 wc 49.0
fankuchredux1 79.4 janne_complex 38.0

Table 1: Programs used in our evaluation. Source lines of code (SLOC) computed by
sloccount_c includes only non-comment, non-blank lines of code. We report the mean
SLOC across all sliced versions of each program, because the instrumentation used to
perform slicing adds one or two lines depending on the slicing criterion. For multi-file
programs the file sliced is shown in parentheses.

9

to ensure that a compilable program will execute correctly, we com-
pare the slices produced by QSES and QSESC in terms of their size
and semantics.

We share the dataset containing our evaluation data, namely the bench-
mark programs, the static slices produced by CodeSurfer, the ORBS slices,
the QSES slices, and the QSESC slices2.

4.1. Evaluation Method
Test inputs. Many of the benchmarks hard code a representative test “input”.
We run wc on itself and both mbe and scam run on sufficient inputs to cover
all possibilities (thus the resulting slices are the minimal static slice). For
the larger programs such as bc, we use a representative subset of the test
suite that accompanied the program. As we find later, QSES is much less
dependent than ORBS on the test inputs chosen.

Comparing slices. In order to compare the slices produced by the different
slicers, we rely on diff. As we use QSES, CodeSurfer, and ORBS in a line-
based setting, the only differences between slices are at the level of lines.

Normalization. We normalize the benchmark programs using the pycparser
library. We parse each program and pretty-print it again. We also instrument
the programs to add a printf statement that captures the slicing criterion.

Normalization accomplishes two main goals. First it removes stylistic
differences from the comparison of slices from different programs. Second
it places opening and closing braces each on their own line. This helps
ORBS delete, for example, unnecessary conditions that must otherwise been
retained if they share the same line as the opening brace of the following
block.

Subjects. The experiments consider subjects written in C because the static
slicer used, CodeSurfer, slices C code. Like ORBS, QSES is language agnostic:
both are applicable to any programming language with textual source code,
as they operate at the level of lines of source text.We study 62 C programs
gathered from the following sources:

2https://doi.org/10.5281/zenodo.7702888

10

https://doi.org/10.5281/zenodo.7702888

• Programs from the slicing literature: the original example of Weiser [1],
the SCAM Mug example [32], the Montréal Boat example [33], and
word count [6].

• Programs from the Mälardalen WCET research group [34], which have
been used to compare and evaluate WCET analysis tools.

• Programs from the Benchmarks Game [35], which are designed to
benchmark language implementations.

• Three multi-file systems used in previous slicing studies [36].

We omit programs from the second and third sources that span multiple
files, that fail to compile with -lm as the only compiler flag enabled, and that
are unsupported by the pycparser Python library.

Supplementing the subjects of our initial study [28], the last source pro-
vides three multi-file programs, bc, ed, and indent. For these programs QSES,
like ORBS, is configured to slice a specified file from the program. Thus
there is no practical limit on the size of the program it can slice. However,
CodeSurfer’s whole-program analysis can take considerable time to process
programs over a few hundred thousand lines of code. Fortunately, this step
need only be performed once as the resulting SDG can be saved and repeat-
edly sliced. For the three multi-file programs we consider two files from bc
and indent, and one from ed.

After normalization, the files to be sliced range from 17 to 3 335 SLOC,
with an average of 1 402 SLOC. For each program, we consider each assign-
ment to a scalar variable as a slicing criterion. This results in a total of
2 741 slices, with an average of 44 slices per source program. The list of
programs used in our evaluation is given in Table 1. Note that for multi-
file programs only the file to be sliced is normalized, which accounts for the
SLOC differences for the two versions of bc and the two version of indent.

The data for this paper was collected under CentOS Linux release 7.5.1804
running Linux version 3.10.0-862.3.3.el7.x86_64. The code was compiled
using clang version 13.0.0.

4.2. Results
This section first considers the data related to each research question in

turn. It then discusses the broader implications of the results. Finally, this
section consider threats to the validity of the experiments.

11

RQ1. RQ1 compares the slices produced by CodeSurfer and QSES. Our re-
sults are overviewed in Figure 1. In aggregate, the SLOC count of the static
slices totals 1 282 946 lines. QSES increases this to 1 900 340. However, most
of the added lines contain a single brace (i.e., ‘{’ or ‘}’). While essential
to maintain the block structure of the code at the source level, such lines
are not represented in the SDG used by CodeSurfer and thus not marked as
protected lines of the static closure slices. Numerically, 582 347 (94.3%) of
the 617 394 added lines contain a single brace. Because they are otherwise
uninteresting, henceforth we ignore such lines.

Ignoring braces, QSES increases the total SLOC count to 1 317 993, which
is only a 2.7% increase over the size of the static slices. Viewed per slice,
the average CodeSurfer slice is 48.2% of the original code, while the average
QSES slice is 49.9%, only 1.7 percentage points more per slice on average.
Visually, the top graph of Figure 1 shows these additions normalized across
all programs as the percent of the original program’s size. The increase is
surprisingly small, which indicates that CodeSurfer’s closure slices are very
close to being executable slices.

The lower graph of Figure 1 shows the size of each addition in SLOC
sorted by the magnitude of the difference instead of by QSES slice size as in
the top graph. Of the 2 741 slices, 1 479, or just over 50%, require no addi-
tions. In the remaining 1 262 slices QSES retains an average of 28 additional
lines, with a maximum of 872 lines. Thus for more than half of the cases, the
static closure slice is, in fact, already an executable slice (once any necessary
braces have been added). For ten of the 62 programs all of the slices were
executable. These ten are not limited to the smaller programs that have a
limited number of slices. For example, they include the 552 slices of nsichneu
and the 364 slices of statemate. However, at the other end of the spectrum
twenty programs produced no executable slices.

In total QSES includes 35 047 lines not found in the closure slices. Be-
cause many of these lines (e.g., enum and struct) declarations appear in multi-
ple slices, it turns out that the additions involve only 977 unique lines, which
makes it manageable to manually consider all of them. Of the 977 unique
lines, 484 (49%) are type and variable declarations while the others are var-
ious executable statements. One might expect a similar 50/50 split of the
35 047 lines, which is why it is somewhat surprising that 24 220 (69%) are
declarations, while only 10 827 (31%) are executable statements.

To better understand the differences, we had a closer look at the slices in
the smaller programs (829 slices in total). Inspecting the causes, 59% of the

12

Subjects
0%

25%

50%

75%

100%

Sl
ice

 si
ze

 /
or

ig
in

al
 si

ze
Slice size, sorted by QSES slice size

CodeSurfer QSES

Subjects
100

101

102

103

Sl
ice

 si
ze

di

ffe
re

nc
e

in
 S

LO
C

Slice size differences
QSES - CodeSurfer

Figure 1: Size comparison for the slices produced by QSES and CodeSurfer. (Note that
the y-axis of the lower graph uses a log scale.)

differences are caused by the granularity at which CodeSurfer slices, 39% by
CodeSurfer’s representation of declarations and control dependence, and the
remaining 2% by a range of diverse causes.

In more detail, the first group is caused by CodeSurfer slicing at a finer
level of granularity than ORBS. CodeSurfer works at the expression level
while QSES, like ORBS, works at the line-of-text level. For example, CodeSurfer
can include a call in a slice without including the actual parameters. Because
ORBS must include the entire line of text, it causes QSES to include the lines
that declare the actual parameters, and in some cases those that compute
their values. However, the corresponding formals go unused in the called
function (because they are not in the slice), thus the code computing their
values need only be included if its absence leads to abnormal termination.

13

For example, the following excerpt from a slice of word-count only requires
the return value of the call to scanf to maintain the same loop iterations and
thus does not include the two actual parameters. Therefore, the declaration
char c goes unprotected as it is not part of the closure slice, but is required
for the program to compile and execute.

1 char c; // unprotected
2 ...
3 while (scanf("%c", &c) == 1)

As a second granularity related example consider the following code where
only the side effect h_ptr++ is required by the closure slice. In this example
QSES must include the entire line and thus the declaration of ac_ptr and
xa1, and in this case, the initialization of ac_ptr to avoid a memory access
violation.

int accumc[11];
int *ac_ptr;
long int xa1;
...
ac_ptr = accumc;
...
xa1 += ((long) (*(ac_ptr++))) * (*(h_ptr++));
...

A less common granularity related impact found only in the multi-file
programs, occurs when there is a call from another file to a function in the
file being sliced. Even if such a function is not in the slice, because of the
external call it is necessary to retain an empty function definition to keep
the linker happy. Slicing the whole program rather than a single file from
within the program would avoid this issue. Likewise, QSES must retain
global declarations such as YYSTYPE yylval and its structure definition when
referenced in another file.

The second group of differences is made up of source code that has no
direct representation in CodeSurfer’s SDG. These lines include, for example,
typedefs and structs as well as lines that include only a label in the code. In the
latter case, the SDG’s control dependence analysis captures the control-flow
impact of uses of a label, but the label itself is not explicitly represented in
the SDG. If they were more prevalent, QSES could give such labels special
treatment similar to the special treatment that it gives else.

14

Turning to the differences with more diverse causes, we first consider two
examples where QSES uncovers “hidden” dependences that can be challenging
to model in a static analysis tool. For example, in the slice of the following
function, declared using an old-style C function declaration, MeanA is not
used. Therefore CodeSurfer does not include its declaration in the closure
slice. However, without the declaration, MeanA defaults to type int, which, on
the machine being used, is four bytes while a double is eight. As a consequence
MeanB’s address on the stack changes. To preserve the original behavior,
ORBS retains the declaration of MeanA as a double. The dependence of
MeanB on the declaration of MeanA is a static analysis challenge.

1 void Calc_LinCorrCoef(ArrayA, ArrayB, MeanA, MeanB)
2 double ArrayB[];
3 double MeanA;
4 double MeanB;
5

A second example of a hidden dependence is one that CodeSurfer’s ability
to model is disabled in the default configuration. CodeSurfer includes depen-
dence models for standard library functions. For example, the conservative
approach to modeling printf is to include the dependence on the initial value
of stdout and the fact that printf modifies stdout. However, including these
dependences means that each printf is transitively dependent on all the printfs
that might execute before it. Including all these calls bloats the slice with
uninteresting code.

Likewise, the default model for read does not capture the dependency
between the arguments and the return value. For example, in the following
code the value of end is transitively dependent on the assignment to buflen
in Line 7. Without this assignment, the last argument of the call to read
becomes negative, effectively terminating the loop early because read returns
an error. One of ORBS strengths is that it is able to selectively include such
dependences.

15

1 while (len = read(in, buf + end, (buflen - 256) - end))
2 {
3 ...
4 end += len; // slice here on the value of "end"
5 if (end >= (buflen - 256))
6 {
7 buflen = (buflen >= _1M) ? (buflen + _1M) : (buflen * 2);
8 buf = realloc(buf, buflen);

As this example illustrates, the more dynamic treatment of library calls is a
clear advantage of QSES as it can be selective between the include all and
include none options provided by static slicing.

RQ1 Summary

In summary, a simple answer to RQ1’s “What needs to be added to a
static closure slice to render it executable?” is “very little”. The bulk
of additions are declarations caused by CodeSurfer slicing at a finer
level of granularity than QSES. This is a fundamental difference where
a closure slice need not include parts of the code that are necessary
for its compilation and execution. While fewer in number, perhaps the
more interesting additions are related to hidden dependences whose
static modeling is very challenging.

RQ2. RQ2 complements RQ1. Whereas RQ1 compares QSES slices with
closure slices, RQ2 compares QSES slices to ORBS slices (see Figure 2, which
mirrors Figure 1). As ORBS is not required to include the lines of a static
closure slice, we expect it to produce smaller slices. It does so the majority
of the time. Numerically, the total size of the ORBS slices is 93 842 SLOC,
just 7% of QSES’ 1 317 993 SLOC. On average, an ORBS slice is only 12.4%
of the original program. This is in line with the slice sizes reported in the
original paper presenting ORBS [25].

Of the 2 741 slices, for 2 437 (88.9%) the ORBS slice is smaller. Of the
remaining slices, 296 (10.8%) are the same size while in eight cases (0.3%)
the ORBS slice is actually larger. The top graph of Figure 2 visualizes
these additions normalized across all programs as a percentage of the original
program’s size. Compared to the top graph of Figure 1, ORBS’ higher slice-
size variation is evident. The lower graph shows the size of each difference,
sorted by the magnitude of the difference instead of by QSES slice size as in

16

Subjects
0%

25%

50%

75%

100%

Sl
ice

 si
ze

 /
or

ig
in

al
 si

ze
Slice size, sorted by QSES slice size

ORBS QSES

Subjects
100

101

102

103

Sl
ice

 si
ze

di

ffe
re

nc
e

in
 S

LO
C

Slice size differences
QSES - ORBS

Figure 2: Size comparison for the slices produced by QSES and ORBS.

the top graph. Again compared to the lower graph of Figure 1, the overall
larger per-slice difference can be clearly seen.

To provide another view of this comparison, Figure 3 depicts a scatter
plot comparing the sizes. Points on the x = y diagonal are slices where QSES
and ORBS produce the same size slice, while points below this line are cases
for which the ORBS slice is smaller, and above the line are the rare cases for
which the ORBS slice is larger. Visually evident in the graph are vertically
stacked points. These are caused by programs where QSES produces slices of
similar size, while ORBS, by its dynamic nature, removes different portions
of the code for different criteria. Thus these stacks visually illustrate how
the static analysis over-approximation can vary in severity.

Also evident in this graph, as points found at the bottom of the graph,
are slices where the test suite fails to execute the slicing criteria. In these

17

cases the ORBS slice will include only the empty definition of main(). This is
the case for 713 of the 2 741 slices in total. Thus the tests used are attaining
approximately 74% coverage. Overall, removing these slices has a minimal
impact on the big picture: numerically, the total size of the remaining ORBS
slices is 93 129 SLOC, or 12.5% of 743 174 SLOC total for the corresponding
QSES slices. Slices for which the QSES slice is larger are a result of the over-
approximation of the static analysis of CodeSurfer. For example, consider a
pointer for which static analysis determines it may point to some structure.
If the pointer never points to this structure during any of the runs of the
program, the code supporting that structure will not be part of the ORBS
slice, but will be present in the QSES slice. Of the 2 028 remaining slices, for
1 724 (85.0%) the ORBS slice is smaller. Of the remaining slices, 296 (14.6%)
are the same size while in eight cases (0.4%) the ORBS slice is actually larger.

At first glance one might expect that an ORBS slice would never be
larger than the corresponding QSES slice. In theory, given a sufficiently strict
semantics, this is in fact the case. However, for C programs it turns out that
there are a few cases where ORBS produces larger slices than QSES. In the
results of our experiment, all of these have the same underlying cause. In
short, if early on ORBS performs an ill-advised deletion, it will subsequently
be required to retain considerable code. In the following excerpt, for example,
ORBS deletes Line 2 although it is protected in the static closure slice. This
preserves the correct execution behavior as long as the stack has a 0 at the
location used for cur_tid, which requires retaining other variable declarations,
that are otherwise not part of the slice, so that cur_tid remains at the same
stack location.

1 int cur_tid;
2 cur_tid = 0;
3 printf("\nORBS:%x\n", cur_tid)

One final difference is that QSES’s use of the static closure slice helps
it to preserve the structure of the code whereas ORBS changes the code’s
appearance. While ORBS still preserves the code’s semantics, structural
changes can be expensive to an engineer. In the following example, the else
on Line 5 is protected as part of the closure slice. ORBS deletes it, which
has no effect on the code’s behavior thanks to the return on Line 4.

1 int p(int j)
2 {

18

101 102 103

QSES (lg(SLOC))

101

102

103

OR
BS

 (l
g(

SL
OC

))
ORBS slice size vs. QSES slice size

Figure 3: QSES and ORBS slice sizes. Each individual point represents a slice. Slice
sizes are given in SLOC using a log scale.

3 if(j > 0)
4 return 1;
5 else
6 return 0;
7 }

Compared to CodeSurfer, ORBS, and thus QSES, are expensive. We
consider the relative times for ORBS and QSES to understand the impact
of protecting the lines of the closure slice on their relative execution time.
Table 2 shows the wall-clock and CPU time taken by ORBS and QSES as well
as the number of executions used by each slicer. The ORBS implementation
delegates the compilation (Line 15 of Algorithm 1) to an external script,
which calls a compiler such as gcc. We wanted the QSES implementation to
be as similar as possible to that of ORBS, so we updated this script to first
check if the deletion intersects with the static closure slice (Line 12). A more

19

efficient, but more invasive, approach would be for QSES to modify ORBS’
initialization so that all lines of the closure slice are marked as untouchable.
This would eliminate the overhead of creating external processes. Based
on the speedup achieved by having ORBS mark blank lines as deleted, this
would no doubt be faster. However, it might influence the internal pattern
of lines considered, so we have opted for the less invasive approach.

Similar to compilation, the ORBS implementation delegates Line 19 of
Algorithm 1 to an external script that executes the program on the test suite.
Executions can be particularly expensive when the watchdog timer is forced
to kill them. Table 2 compares the number of times the execution script is
invoked. It is clear from this data that QSES greatly reduces the number of
executions required. The reduction in the number of executions hints at the
potential performance improvement that more direct line-protection would
achieve.

Percent
ORBS QSES Reduction

Mean Time
per slice Wall Clock (sec) 686 581 15%
per slice CPU (sec) 1 679 1 371 18%

ORBS Executions
Mean 1 756 637 64%
Median 547 152 72%
Total 4 813 450 1 747 642 64%

Table 2: Execution comparison

20

RQ2 Summary

In summary for RQ2, we find the expected pattern where ORBS, be-
ing purely dynamic, produces considerably smaller slices. The vertical
columns of Figure 3 visually show how the requirements of the particu-
lar slice are more apparent when only dynamic dependences are taken
into account. In the extreme case where the test suite fails to execute
the slicing criteria, the ORBS slice will only include an empty defini-
tion for main. As QSES relies on CodeSurfer, it will suffer from the
over-approximations made by CodeSurfer, generally resulting in larger
slices. In QSES’ favor ORBS can “gets itself into trouble” as we see in
the few cases where it produces larger slices. ORBS being dependent
on the execution of the code, it is able to exploit platform-specific be-
havior to remove lines from a slice, which can reduce the slice size, but
may also prevent later deletions. In terms of timing, QSES reduces the
slicing time by 15%. In summary QSES provides a more stable and
faster slicer, at the cost of larger slices.

RQ3. RQ3 considers the impact of window size on slice size and on the time
required to compute the slices. To that end, we computed each slice using the
window sizes δ ∈ {1, 2, 3, 4, 5, 6, 7, 8, 12, 16}. Figure 4 depicts the resulting
slice sizes and slicing time.

We can clearly see that initially slice size decreases sharply as the window
size increases. This is because for small window sizes, a number of patterns
are impossible to remove from a slice. For example, with δ = 1 it is impossible
to remove a pair of braces on two consecutive lines. As the window size
increases, slice size drops. However, numerically this reduction stabilizes at
δ = 4. Even though larger window sizes still result in smaller slice sizes,
only a handful of extra lines get removed. For example, increasing δ from
12 to 16 results in only a total of three additional lines being removed over
all slices. The differences between δ = 4 and δ = 16 is only 294 lines, which
represents a mere 0.02% reduction. Statistically, Tukey’s honestly significant
difference (HSD) test using program and δ as explanatory variables, finds the
QSES slice size larger for δ ≤ 2 than the other values (p < 0.001).

The lower graph of Figure 4 shows how wall-clock time decreases as δ
increases while CPU time increases. The wall-clock time visually stabilizes
near δ = 4 or 5 while beyond δ = 4 the CPU time consistently grows. Applied

21

to the times, Tukey’s HSD test shows very little difference. For wall-clock
time δ = 4-8 are faster than δ = 1 and 2 (only 7 and 8 are faster than 3).
While for CPU time δ = 4-8 take more time than δ = 1 while only δ = 8
takes more time than δ = 2 and 3.

RQ3 Summary

In summary for RQ3, both slice size and wall-clock time decrease as the
window size δ increases, while CPU time increases. However, returns
are diminishing for higher values of δ, where the slice size only de-
creases slightly. While there is no clear sweet spot, similar to previous
studies [25, 27] δ = 4, seems to strike a good balance.

2 4 6 8 10 12 14 16
window size ()

40

50

60

70

sli
ce

 si
ze

 (S
LO

C)

Average slice size per window size
SLOC including braces
SLOC excluding braces

2 4 6 8 10 12 14 16
window size ()

100

200

tim
e

(s
ec

on
ds

)

Average user time per window size
CPU time
Wall-clock time

Figure 4: Effect of window size on slice size and slicing time. (Formally the windows sizes
are discrete, however we treat them as continuous and draw lines to help the patters stand
out.)

22

RQ4. RQ4 investigates whether all computations depended on by the static
closure slice are included and behave correctly.

From the perspective of taint analysis, no tainted values can ever enter the
computation of the slice. Thus in theory QSESC should be sufficient because
it includes all the code semantically needed from the closure slice, and it
compiles. This makes the QSES execution check not only a waste of time,
but undesirable because if it fails it may cause the retention of unnecessary
code.

To investigate RQ4, we compute the 2 741 slices using QSESC and then
compare them with the slices produced by QSES. If the theory holds then
the QSESC slice will be no larger than the QSES slice. A QSES slice might
be larger when the execution check leads to the retention of additional code.
This code is either unnecessary or indicates that there are dependences that
are not accounted for during static analysis. The latter suggests areas of
future static analysis work. Finally, the number of such slices provides an
indication of how often the theory does not hold.

The code found in the QSES slices that is not found in the QSESC slices
is minimal as the sum of the QSESC slice sizes, 1 315 747, is 99.83% of the
1 317 993 sum of the QSES slice sizes. Size-wise 158 (5.76%) of the QSESC

slices are smaller, 2583 (94.24%) are the same size, and none are larger. The
average addition per slice is less than a line, 0.81 SLOC. At the level of
programs, 41 programs have identical QSES and QSESC slices, while only
one has all of its slices differ. However, inspecting the resulting slices reveals
that QSESC slices do not always preserve the correct behavior. We consider
several examples.

In the following code, removing the second line causes the call to process
to get captured by the loop, which still compiles, but changes the behavior
of the program.

1 for (from = to; (*from) != '>'; from--)
2 ;
3 process(from, to);

This is an artifact of ORBS working at the line-of-text level while CodeSurfer
works at the statement level.

As a second example, QSESC never includes C’s do keyword because the
code always compiles without it. However, QSES will include this keyword
when the loop executes at least two times. While not practically feasible,

23

straightforward modification of CodeSurfer would enable the retention of the
do keyword.

A third example is tooling related as it is caused by the QSES deletion
window size. The following code can only be removed by QSES when using
a window size δ ≥ 6 as all six lines need to be removed together in order to
preserve the execution semantics.

1 while (1)
2 {
3 {
4 break;
5 }
6 }

With δ ≥ 2 QSESC can delete all six lines although it takes several iterations.
Finally, CodeSurfer protects struct fields that are required in the slice,

which means that unneeded struct fields are removed by QSESC . However,
the initialization of such structs is not adapted by QSESC , hence the program
semantics change. This is exemplified by the following code, where Line 3 is
removed by QSESC .

1 struct aminoacids
2 {
3 char c;
4 double p;
5 };
6

7 ...
8 struct aminoacids iub[] = {{'a', 0.27}, {'c', 0.12}, ...};

RQ4 Summary

In summary for RQ4, we find that disabling the execution check of
QSES may result in semantic differences. These differences stem
from two main sources: tooling artifacts, which could be resolved by
straightforward updates to CodeSurfer, and the different granularity
at which ORBS (line level) and CodeSurfer (expression level) operate.
In other cases being able to skip the execution check enables QSESC

to delete sections of the code that QSES could only remove if using a
larger deletion window.

24

Discussion. From advanced compilation to software engineering tools, depen-
dence analysis forms an essential component of source code analysis. Program
slicing provides an excellent vehicle to study the interplay between static and
dynamic dependence analysis. By definition a slice includes precisely those
program elements needed to preserve the behavior of the slicing criteria. Due
to their inherent limitations, static analysis tends to over-approximate this
precise slice while dynamic analysis tends to under-approximates it. While
not practical to compute, the ORBS slice constructed using all possible in-
puts is identical to the precise slice. Thus the QSES slice, constructed using
all possible inputs, would include the precise slice plus code attributed to the
static over-approximation.

For example, the vertically stacked points in Figure 3 visually illustrate
how the static analysis over-approximation can vary in severity. In this case
each stack represents a collection of slicing criteria for which QSES produces
slices of similar size because they each include essentially the same static
slice, while ORBS, by its dynamic nature, removes different portions of the
code.

This observation suggests one area of future work with QSES: an explo-
ration into the impact that the test suite has on a QSES slice. As evidenced
by the points along the bottom of the graph in Figure 3, an inadequate test
suite can have a huge impact on an ORBS slice. Because QSES essentially
degenerates into QSESC when using an empty suite, the results of RQ4 show
how QSES is more stable in the presence of an inadequate test suite. The
results for RQ1 suggest that the addition of test cases should modestly in-
crease slice size over that of the static closure slice. Thus with a growing
test suite, the difference between a QSES slice and an ORBS slice should be-
come an ever better estimate of the static analysis over-approximation and
thus provide a vehicle to study the precision of static analysis algorithms.
A related question is how quickly the slice stabilizes, which provides, among
other things, an indication of the diversity of the tests and thus the quality
of the test suite.

Binkley et al. investigated the limits of static analysis by considering
the differences between the slices produced by ORBS and those produced
by CodeSurfer [29]. They report that these differences have two causes:
code needed to make the slice executable and code that is part of the static
over-approximation. The separate comparisons supporting RQ1 and RQ2
enable the refinement of this work where in RQ1, the comparison of QSES to
CodeSurfer, focuses on the first cause, and RQ2’s comparison of QSES and

25

ORBS focuses on the second.
An excellent example from the discussion of RQ1 comes from the modeling

of library code. The safe static-analysis approach is to include a dependence
model relating each function’s output back to its inputs as done by the sum-
mary graphs introduced by Horwitz et al. [31]. QSES enables the inspection
of the cost of this safety. Omitting these dependence models omits all of the
code the call depends on. However ORBS will include the necessary subset
of this code for the cases where the dependences of the called function influ-
ence the slicing criteria. Thus, one of ORBS strengths that QSES inherits is
the ability to be selective between the include all and include none options
provided by static analysis.

A related result is QSES’ uncovering of hidden dependences. For exam-
ple, the need for the slice to include a declaration such as double MeanA is
hard to model in static analysis, especially when, as in this case, the depen-
dences are architecture specific. This however implies that ORBS slices are
platform/architecture dependent.

Furthermore, ORBS occasionally gets itself in trouble by deleting code
that appears unnecessary only because the location assigned to a variable
contains a fortuitous value. As seen in the examples supporting RQ2, the
static slice acts as an “anchor” that helps mitigate ORBS dependence on the
underlying runtime system.

QSES also provides a vehicle to study the impact of termination on de-
pendence analysis [37, 38, 39]. For example, including all exit points of the
program as additional slicing criteria requires the slice to terminate normally.
In the absence of such a criteria a slice can compute the desired value and
then diverge. The result is typically a smaller slice at the expense of not
preserving the original program’s termination behavior.

Threats to Validity. Threats to the external validity of this work comes from
the dataset considered and the static slicer used for our experiments. We fo-
cused on a set of 62 programs written in the C programming language. The
behavior of QSES is influenced by the underlying static slicer, CodeSurfer
in our case. Should QSES be applied to programs written in a different lan-
guage, the results will again depend on the static slicer used to identify the
lines to protect. Moreover, as we have discussed, ORBS is platform depen-
dent, and one might obtain different results by reproducing these experiments
on a different platform. However, our manual investigation revealed that only
a handful of slices are subject to such platform-specific behavior.

26

A threat to internal validity stems from the choice of slicing criterion for
programs in the dataset. Specifically, we considered only scalar variables as
the slicing criterion. We leave the extension of this experiment to non-scalar
variables such as pointers to future work.

5. Related Work

5.1. Observation-Based Slicing
In addition to the work on ORBS [25], discussed in Section 2, Binkley et

al. [29] consider ORBS and what its slices can tell us about the limits of static
slicing. For example, observation can capture dependencies that arise from
“back channels” such as data stored and later retrieved from a database. One
indicator of such “hidden” dependences is when a static slice is smaller than
the corresponding ORBS slice. Similar to ORBS, QSES is able to discover
such hidden dependences as illustrated in Section 4.

By its very nature a static slice is an over-approximation to the (unde-
cidable) true slice, while a dynamic slice is an under-approximation to this
slice. It is interesting to note that as the input ORBS is given approaches
the set of all-possible-inputs, an ORBS slice approaches the true slice from
below. Investigations such as that of Binkley et al. and the work presented
here help us probe and thus better understand the limits of both static and
dynamic dependence analysis. For example, past comparisons between the
slices of ORBS and CodeSurfer have a hard time distinguishing code related
to a slice being static from code related to it being executable. QSES fills
this void.

5.2. Static Slicing
The distinction between static and dynamic slicing was introduced by

Korel and Laski [40, 23]. Static slicing approaches have been applied to
numerous types of programs, such as non-deterministic programs [41], func-
tional programs [42], WebAssembly binaries [43], or Python objects [44].
Static slicers generally rely on a static dependence analysis, which requires
modeling the language being analyzed. QSES works from the results of a
static slicer, but remains language agnostic. The static slicer that we use in
our evaluation is CodeSurfer [26].

27

5.3. Dynamic Slicing
ORBS has been compared to several dynamic slicing techniques [25], as it

is most closely related to dynamic slicing. Many dynamic slicing approaches
exist [45, 46, 47, 48], but all require complex program analyses and target a
single specific programming language.

A closely related work to observation-based slicing is critical slicing [49]
where a statement is considered to be critical if its deletion results in a
changed observed behaviour for the slicing criterion. One limitation of this
approach is that it considers statements to be critical although they may
not be, and thus could be deleted after another statement is deleted. For
example, a critical variable declaration is no longer “critical” after all of the
variable’s references have been removed. Critical slices can be significantly
larger than ORBS slices, but more importantly, can be incorrect [25].

5.4. Combination of Static and Dynamic Slicing
Static and dynamic slicing have been combined before. Conditioned slic-

ing is a generalization of static and dynamic slicing. Fox et al. present an
approach to compute a conditioned slice based on symbolic execution and
theorem proving to first generate a slice, which is then augmented with the
information from a static slice [50]. Our approach instead uses the static
slice ahead of dynamic slicing.

Venkatesh [51] formalized and categorized various notions of program
slicing. They mention quasi-static slices, which despite having a name similar
to QSES, have a different goal. Venkatesh’s quasi-static slices are static slices
computed with some inputs having statically known values. Our quasi-static
executable slices are computed starting from a static slice, itself computed
for all possible input values.

Gupta et al. present a hybrid slicing approach that, instead of introduc-
ing static information by protecting statements of a static slice, introduces
dynamic information from breakpoints, calls, and returns, during static slic-
ing in order to augment the static slicing process [52]. Finally, rather than
actually combining static and dynamic slicing, Ashida et al. [53] present four
approaches that combine static and dynamic analyses for performing slicing,
such as combining a statically computed PDG with execution histories to
compute a slice.

28

6. Future Work

One interesting direction for future work is applying QSES to other lan-
guages. One challenge here is that production quality static slicers are rare
because they require significant static analysis. For the most part our re-
sults should hold for features of other languages that are similar to C. More
challenging features include Java’s reflection, languages such as Scheme that
allow the programmer to define their own syntax, and any sufficiently dy-
namic language for which performing static analysis becomes a real challenge.

What is interesting about QSES is that it will work with any static slicer
that under-approximates the statements of the slice. For example, a static
slicer for Java that ignores reflection will yield a subset of the true slice.
However QSES’ use of ORBS means that it will include the omitted com-
ponents. The same is true for dependences transmitted through embedded
SQL, which are hard on static analysis, but will be correctly handled by
QSES. This opens up the possibility of producing quasi-static slicers for a
multitude of languages by computing the “easy” subset of the semantics and
then letting QSES fill in the hard parts.

We also plan to investigate some of the ideas that arose in the discussion
at the end of Section 4.2 such as the impact of different test suites on a
QSES slice. While a challenge to answer, a key research question here is
“how much execution is required?”. Another interesting aspect to explore is
the granularity of the slicers used. For example, we might force CodeSurfer
to slice at the line (or at least statement) level. Alternatively, we might
experiment with finer-grained observation-based slicing approaches such as
T-ORBS [54], which can operate at granularities smaller than ORBS’ line
level. Other interesting possible future investigations include the possibility
of a forward slicing variant of QSES and the consideration of slicing criteria
beyond scalar assignments.

To provide some initial indication, we took a preliminary look at the
research question “What is the impact of the test suite on QSES slices?”.
The study of QSESC tells us something about the impact of the test suite
on a QSES slice because QSESC is equivalent to QSES using zero test cases
and thus never executing the slice. At the other end of the spectrum is the
likely infinite test suite that includes all possible inputs. While intractable,
in theory the ORBS slice produced using all possible inputs is, by definition,
the precise static slice. Its comparison to the corresponding QSES slice, for
example, precisely captures the static over approximation.

29

Of course, all possible inputs is not feasible in practice. However, for
smaller programs it is possible to hand craft a test suite that has the same
effect as all possible inputs. Specifically we identify a finite test suite such
that there does not exist any test whose addition would change any of the
program’s slices. Using first the word count program, wc, and then the
triangle program, which is well studied in the testing literature, we consider
the exhaustive impact of all possible test suite subsets.

For wc.c an input can either include or not include characters, lines, and
words leading to eight possible inputs. However a test can’t have words
without having characters, nor can it have lines without having characters,
thus only five of the eight are possible:

Test Chars Lines Words Test Description
t1 N N N "" empty file
t2 Y N N " " three spaces
t3 Y Y N " \n \n \n" three lines with one space each
t4 Y N Y "aa bb" no newline
t5 Y Y Y "aa \nbb\n" all three

There are 17 slices of the word count program. Using the 32 possible
subsets of the five inputs yields 544 slices. Over all 32 inputs each of the
17 slices is unchanged, thus illustrating that each of the 17 static slices is
precise. For comparison running the same experiment with ORBS shows
expected differences. For example, using the empty test suite ORBS deletes
all but main() { } while for t1 it deletes the entire “for each character” loop
which for an empty file never executes.

Turning to the triangle program, seven tests are sufficient to cover all
possibles inputs, one covers the program being given something other than
the expected three inputs, a second covers invalid (e.g., non-positive) values,
and the remaining five each test one of the five types of triangles the program
can identify. With seven tests there are 128 possible test suites. The program
also has seven slices, so the experiment involved producing 896 total slices.
Comparing these slices, the tests do have an impact, but only a relatively
minor one. Without the declaration double atof(char *) only the invalid number
of inputs and the invalid triangle tests pass. This is because without a
prototype, C assumes that a function returns an int, all of which end up
being zero. Thus test suites limited to subsets of these tests enable the
deletion of the declaration.

30

In summary, similar to the 1 479 static slices that required no additions by
QSES, wc’s static slices include all the required statements and thus varying
the test suite has no impact on the slice. In contrast the triangle program’s
slices did differ, but only by a single declaration statement. While it will
require a larger study to understand exactly how sensitive QSES’ slices are
to the test suite, these two preliminary experiments suggest that QSES is
quite robust to test suite differences.

7. Conclusion

This paper introduces and studies Quasi-Static Executable Slices, QSES.
We provide an algorithm to compute such slices based on first identifying a
static closure slice using CodeSurfer before applying observation-based slic-
ing (ORBS) to add in code necessary to yield an executable program. The
additions include syntactic elements that are not modeled in CodeSurfer’s
SDGs and statements that are required to preserve the semantics of the pro-
gram due to, for example, memory dependencies. Other minor differences are
related to artifacts of the dynamic slicing approach used (e.g., the difference
in granularity between ORBS with CodeSurfer and the choice of the deletion
window size used by ORBS).

Acknowledgements

This work was partially supported by the “Cybersecurity Initiative Flan-
ders”.

References

[1] M. Weiser, Program slicing, in: 5th International Conference on Soft-
ware Engineering, 1981, pp. 439–449.

[2] M. Kamkar, N. Shahmehri, P. Fritzson, Bug localization by algo-
rithmic debugging and program slicing, in: 2nd International Work-
shop Programming Language Implementation and Logic Programming,
PLILP’90, Vol. 456, 1990, pp. 60–74.

[3] S. Kusumoto, A. Nishimatsu, K. Nishie, K. Inoue, Experimental evalu-
ation of program slicing for fault localization, Empirical Software Engi-
neering 7 (2002).

31

[4] D. W. Binkley, L. R. Raszewski, C. Smith, M. Harman, An empirical
study of amorphous slicing as a program comprehension support tool, in:
8th International Workshop on Program Comprehension (IWPC 2000),
2000, pp. 161–170.

[5] E. Hosnieh, H. Haga, A novel approach to program comprehension pro-
cess using slicing techniques, J. Comput. 11 (5) (2016) 353–364.

[6] K. B. Gallagher, J. R. Lyle, Using program slicing in software mainte-
nance, IEEE Trans. Software Eng. 17 (8) (1991) 751–761.

[7] Á. Hajnal, I. Forgács, A demand-driven approach to slicing legacy
COBOL systems, Journal of Software: Evolution and Process 24 (1)
(2011).

[8] C. Cifuentes, A. Fraboulet, Intraprocedural static slicing of binary exe-
cutables, in: Proc. Intl. Conf. on Software Maintenance (ICSM), 1997.

[9] R. Ettinger, M. Verbaere, Untangling: a slice extraction refactoring, in:
Proc. of the 3rd Intl. Conf. on Aspect-Oriented Software Development
(AOSD), 2004.

[10] M. Harman, S. Danicic, Using program slicing to simplify testing, Softw.
Test. Verification Reliab. 5 (3) (1995) 143–162.

[11] D. W. Binkley, The application of program slicing to regression testing,
Inf. Softw. Technol. 40 (11-12) (1998) 583–594.

[12] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, M. Daoudi, Condi-
tioned slicing supports partition testing, Software Testing, Verification
and Reliability 12 (2002).

[13] J. Beck, D. Eichmann, Program and interface slicing for reverse en-
gineering, in: 15th International Conference on Software Engineering,
1993, pp. 509–518.

[14] T. Akgul, V. J. M. III, S. Pande, A fast assembly level reverse execu-
tion method via dynamic slicing, in: 26th International Conference on
Software Engineering (ICSE 2004), 2004, pp. 522–531.

32

[15] A. De Lucia, A. R. Fasolino, M. Munro, Understanding function be-
haviours through program slicing, in: 4th Intl. Workshop on Program
Comprehension, 1996.

[16] B. Korel, J. Rilling, Dynamic program slicing in understanding of pro-
gram execution, in: Proc. of the 5th Intl. Workshop on Program Com-
prehension (IWPC), 1997.

[17] P. Tonella, Using a concept lattice of decomposition slices for program
understanding and impact analysis, IEEE Transactions on Software En-
gineering 29 (6) (2003).

[18] L. Philips, C. De Roover, T. Van Cutsem, W. De Meuter, Towards
tierless web development without tierless languages, in: ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (SPLASH/OnWard!14), 2014.

[19] L. Philips, J. De Koster, W. De Meuter, C. De Roover, Search-based
tier assignment for optimising offline availability in multi-tier web ap-
plications, The Art, Science, and Engineering of Programming 2 (2)
(2018).

[20] S. Salimi, M. Ebrahimzadeh, M. Kharrazi, Improving real-world vulner-
ability characterization with vulnerable slices, in: 16th ACM Interna-
tional Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE), 2020, pp. 11–20.

[21] K. J. Ottenstein, L. M. Ottenstein, The program dependence graph in
a software development environment, in: ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development
Environments, 1984, pp. 177–184.

[22] D. Binkley, K. B. Gallagher, Program slicing, in: M. Zelkowitz (Ed.),
Advances in Computing, Volume 43, Academic Press, 1996, pp. 1–50.

[23] B. Korel, J. W. Laski, Dynamic slicing of computer programs, J. Syst.
Softw. 13 (3) (1990) 187–195.

[24] S. Horwitz, T. W. Reps, D. W. Binkley, Interprocedural slicing using
dependence graphs, in: ACM SIGPLAN’88 Conference on Programming
Language Design and Implementation (PLDI), 1988, pp. 35–46.

33

[25] D. W. Binkley, N. Gold, M. Harman, S. S. Islam, J. Krinke, S. Yoo,
ORBS: language-independent program slicing, in: 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing, (FSE-22), 2014, pp. 109–120.

[26] T. Teitelbaum, Codesurfer, ACM SIGSOFT Softw. Eng. Notes 25 (1)
(2000) 99.

[27] S. Islam, D. Binkley, Porbs: A parallel observation-based slicer, in:
2016 IEEE 24th International Conference on Program Comprehension
(ICPC), 2016, pp. 1–3.

[28] Q. Stiévenart, D. W. Binkley, C. D. Roover, QSES: quasi-static ex-
ecutable slices, in: 21st IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2021, Luxembourg,
September 27-28, 2021, IEEE, 2021, pp. 209–213. doi:10.1109/
SCAM52516.2021.00033.
URL https://doi.org/10.1109/SCAM52516.2021.00033

[29] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, S. Yoo, Orbs and
the limits of static slicing, in: 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2015,
pp. 1–10.

[30] A. Zeller, R. Hildebrandt, Simplifying and isolating failure-inducing in-
put, IEEE Transactions on Software Engineering 28 (2) (2002) 183–200.

[31] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using depen-
dence graphs, ACM Transactions on Programming Languages and Sys-
tems 12 (1) (1990) 26–61.

[32] M. P. Ward, Slicing the SCAM mug: A case study in semantic slicing,
in: 3rd IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2003), 2003, pp. 88–97.

[33] S. Danicic, J. Howroyd, Montréal boat example, in: Source Code Analy-
sis and Manipulation (SCAM 2002) conference resources website, 2002.

[34] M. W. research group, Mälardalen wcet research group’s benchmarks,
https://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

34

https://doi.org/10.1109/SCAM52516.2021.00033
https://doi.org/10.1109/SCAM52516.2021.00033
https://doi.org/10.1109/SCAM52516.2021.00033
https://doi.org/10.1109/SCAM52516.2021.00033
https://doi.org/10.1109/SCAM52516.2021.00033
https://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[35] B. Fulgham, I. Gouy, The computer language benchmarks game, https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/.

[36] D. Binkley, N. Gold, M. Harman, An empirical study of static program
slice size, ACM Transactions on Software Engineering and Methodology
16 (2) (2007) 1–32.

[37] R. Barraclough, D. Binkley, S. Danicic, M. Harman, R. Hierons, çkos
Kiss, M. Laurence, A trajectory-based strict semantics for program slic-
ing, Theoretical Computer Science 411 (11–13) (2010) 1372–1386.

[38] M. Harman, C. Fox, R. M. Hierons, D. Binkley, S. Danicic, Program sim-
plification as a means of approximating undecidable propositions, in: 7th
IEEE International Workshop on Program Comprenhesion (IWPC’99),
IEEE Computer Society Press, Los Alamitos, California, USA, 1999,
pp. 208–217.

[39] S. Danicic, M. Harman, J. Howroyd, L. Ouarbya, A lazy semantics
for program slicing, in: 1st. International Workshop on Programming
Language Interference and Dependence, Verona, Italy, 2004.
URL http://profs.sci.univr.it/~mastroen/noninterference.
html

[40] B. Korel, J. Laski, Dynamic program slicing, Information Processing
Letters 29 (3) (1988) 155–163.

[41] S. Danicic, M. R. Laurence, Static backward slicing of non-deterministic
programs and systems, ACM Trans. Program. Lang. Syst. 40 (3) (2018)
11:1–11:46. doi:10.1145/2886098.
URL https://doi.org/10.1145/2886098

[42] P. K. K., A. Sanyal, A. Karkare, S. Padhi, A static slicing method
for functional programs and its incremental version, in: J. N. Amaral,
M. Kulkarni (Eds.), Proceedings of the 28th International Conference
on Compiler Construction, CC 2019, Washington, DC, USA, February
16-17, 2019, ACM, 2019, pp. 53–64. doi:10.1145/3302516.3307345.
URL https://doi.org/10.1145/3302516.3307345

[43] Q. Stiévenart, D. W. Binkley, C. D. Roover, Static stack-preserving
intra-procedural slicing of webassembly binaries, in: 44th IEEE/ACM

35

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
http://profs.sci.univr.it/~mastroen/noninterference.html
http://profs.sci.univr.it/~mastroen/noninterference.html
http://profs.sci.univr.it/~mastroen/noninterference.html
http://profs.sci.univr.it/~mastroen/noninterference.html
https://doi.org/10.1145/2886098
https://doi.org/10.1145/2886098
https://doi.org/10.1145/2886098
https://doi.org/10.1145/2886098
https://doi.org/10.1145/3302516.3307345
https://doi.org/10.1145/3302516.3307345
https://doi.org/10.1145/3302516.3307345
https://doi.org/10.1145/3302516.3307345
https://doi.org/10.1145/3510003.3510070
https://doi.org/10.1145/3510003.3510070

44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022, ACM, 2022, pp. 2031–2042.
doi:10.1145/3510003.3510070.
URL https://doi.org/10.1145/3510003.3510070

[44] Z. Xu, J. Qian, L. Chen, Z. Chen, B. Xu, Static slicing for python
first-class objects, in: 2013 13th International Conference on Quality
Software, Najing, China, July 29-30, 2013, IEEE, 2013, pp. 117–124.
doi:10.1109/QSIC.2013.50.
URL https://doi.org/10.1109/QSIC.2013.50

[45] A. Beszedes, T. Gergely, Z. M. Szabó, J. Csirik, T. Gyimothy, Dynamic
slicing method for maintenance of large c programs, in: Proceedings of
the 5th European Conference on Software Maintenance and Reengineer-
ing, 2001, pp. 105–113.

[46] A. Beszedes, T. Gergely, T. Gyimóthy, Graph-less dynamic dependence-
based dynamic slicing algorithms, in: Proceedings of the 6th IEEE Inter-
national Workshop on Source Code Analysis and Manipulation, IEEE,
2006, pp. 21–30.

[47] X. Zhang, N. Gupta, R. Gupta, A study of effectiveness of dynamic
slicing in locating real faults, Empirical Software Engineering 12 (2)
(Apr. 2007).

[48] S. S. Barpanda, D. P. Mohapatra, Dynamic slicing of distributed object-
oriented programs, IET software 5 (5) (2011) 425–433.

[49] R. A. DeMillo, H. Pan, E. H. Spafford, Critical slicing for software fault
localization, in: International Symposium on Software Testing and Anal-
ysis, ACM, 1996, pp. 121–134.

[50] C. Fox, M. Harman, R. M. Hierons, S. Danicic, Consit: A conditioned
program slicer, in: 2000 International Conference on Software Mainte-
nance, ICSM 2000, 2000, p. 216.

[51] G. A. Venkatesh, The semantic approach to program slicing, in: D. S.
Wise (Ed.), Proceedings of the ACM SIGPLAN’91 Conference on Pro-
gramming Language Design and Implementation (PLDI), Toronto, On-
tario, Canada, June 26-28, 1991, ACM, 1991, pp. 107–119. doi:

36

https://doi.org/10.1145/3510003.3510070
https://doi.org/10.1145/3510003.3510070
https://doi.org/10.1109/QSIC.2013.50
https://doi.org/10.1109/QSIC.2013.50
https://doi.org/10.1109/QSIC.2013.50
https://doi.org/10.1109/QSIC.2013.50
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455

10.1145/113445.113455.
URL https://doi.org/10.1145/113445.113455

[52] R. Gupta, M. L. Soffa, J. Howard, Hybrid slicing: Integrating dynamic
information with static analysis, ACM Trans. Softw. Eng. Methodol.
6 (4) (1997) 370–397.

[53] Y. Ashida, F. Ohata, K. Inoue, Slicing methods using static and dy-
namic analysis information, in: 6th Asia-Pacific Software Engineering
Conference (APSEC ’99), 1999, pp. 344–350.

[54] D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, S. Yoo, Tree-
oriented vs. line-oriented observation-based slicing, in: 2017 IEEE In-
ternational Working Conference on Source Code Analysis and Manipu-
lation (SCAM), 2017.

37

https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/113445.113455

	Introduction
	Background: ORBS and CodeSurfer
	Approach
	Quasi-Static Executable Slicing (QSES)
	Quasi-Static Executable Slicing, Compilation Only (QSESC)
	Implementation concerns

	Evaluation
	Evaluation Method
	Results

	Related Work
	Observation-Based Slicing
	Static Slicing
	Dynamic Slicing
	Combination of Static and Dynamic Slicing

	Future Work
	Conclusion

