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Abstract

The Stack Overflow Q&A platform boasts an active community of users who
often include code snippets in their questions and answers. Several development
tools rely on these code snippets as a source of information. Although code
snippets are intended as examples for humans, they may not form compilation
units. For instance, snippets illustrating how to use an API might lack the
import statements for the corresponding API types. Thus, it becomes essential
to determine the fully-qualified name of API types in incomplete snippets.

We present RESICO, a machine learning-based text classification approach
to resolving the simple name of API types to their fully-qualified names. RESI-
CO is trained on a corpus of Java programs for which a compiler can determine
the fully-qualified names. For four machine learning classifiers, we evaluate
the type resolution accuracy of the resulting models on the original and an
extended version of datasets of snippets previously used to evaluate the current
state-of-the-art approach based on information retrieval. Results show that our
approach outperforms the state-of-the-art one, although the training phase is
slightly slower. We observe that most of the incorrect type resolutions are not
due to ambiguities among the simple names for API types but due to similarities
among the contexts in which these types are used, representing a future research
challenge.

Keywords: Fully Qualified Name Resolution, Machine Learning, Text
Classification, Stack Overflow

1. Introduction

Developers may consult several sources of information online. Stack Overflow
(SO) is a platform where users can post questions answered by others with
expertise in the domain. SO posts often contain code snippets, e.g., to illustrate
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how to use the APIs of a library. However, such code snippets may miss the class
declarations and package import statements that constitute a compilation unit.
They may contain API usages without any syntactic reference to the library
that provides the APIs. Even if the library name is mentioned in the text
surrounding the code snippet (e.g., Guava), the fully-qualified name (FQN) of
the types to import (e.g., com.google.common.*) can be challenging to resolve.

Determining which library types to import for a given code snippet is a
problem shared by several tools that rely on SO. For instance, SISE [1] and
POME [2] overcome the problem through a series of regular expressions. Solu-
tions dedicated solely to this problem have also been proposed:

• Baker [3] takes a deductive reasoning approach for which it first popu-
lates a database from the JAR files of candidate libraries with semantic
information about the provided API elements. For a given ambiguous
API name, Baker can return a list of candidate FQNs that satisfy the se-
mantic constraints imposed by later expressions in the snippet. However,
the approach often cannot return such a list or provides several candidate
names for small or incomplete snippets. StatType [4] and COSTER [5],
in contrast, prefer the crowd’s wisdom over deductive reasoning.

• StatType [4] treats type resolution as an instance of statistical machine
translation from snippets with partially-qualified names to snippets with
FQNs. FQNs are learned from co-occurrences in a corpus of projects that
compile and use the APIs of the same libraries and are refined based on the
local context surrounding the name to be resolved. StatType is entirely
data-driven yet manages to outperform Baker in the evaluation by Phan et
al. Nevertheless, training the underlying models may be computationally
expensive.

• COSTER [5] takes an information retrieval approach to the problem, for
which it first populates a database with the co-occurrence likelihood of to-
kens and FQNs. Name and context similarities are leveraged to refine the
co-occurrence likelihood of candidates returned from the database. This
refinement is context-sensitive as, for each token, both the local context
of surrounding tokens and a global context of semantically-related usages
are considered. In a detailed evaluation [5], COSTER outperforms both
StatType and Baker; therefore, we consider it the state of the art.

This paper presents RESICO (RESolution in Incomplete COde), a new
learning-based text classification approach to the problem of resolving API types
in incomplete code snippets. The approach embraces the hypothesis that the
API elements used within a snippet and the context in which this usage oc-
curs often suffice to resolve the simple name of a type within the snippet to
its fully qualified one. Word2Vec plays a fundamental role in RESICO, where
it is used to learn vector representations for the API elements and their us-
age contexts within a dataset, so relying on a suboptimal predetermined one
can be avoided. Once vector representations or word embeddings have been
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learnt, RESICO vectorises the dataset and trains a multi-class (i.e., each FQN
corresponds to a class) machine learning algorithm on the resulting vectors.
RESICO supports using any supervised machine learning classifier to train on
the vectorised dataset and considers FQNs as the label to predict. At resolution
time, RESICO returns the most likely FQNs for all simple names in a given
code snippet, regardless of whether the snippet is incomplete or syntactically
incorrect.

Like StatType and COSTER, RESICO is applicable in contexts where the
crowd’s wisdom is to be preferred over the deductive reasoning of Baker, e.g.,
when snippets are small and contain few expressions that impose semantic con-
straints on ambiguous API names. Although RESICO is a machine learning
approach such as StatType, it features a different approach to solving the prob-
lem. StatType considers API type resolution as a sequence-to-sequence task.
In contrast, RESICO relies on a classification procedure where a learned con-
text influences the class prediction (i.e., the FQN of the API reference). On the
other hand, COSTER considers the surroundings of API references as RESICO,
but it does not perform any learning process to improve context comparisons
further. We chose COSTER as the baseline to compare to as previous studies
showed that it is similar or superior in performance to StatType. Furthermore,
despite repeated attempts, we could not obtain an implementation of StatType
from the authors.

We evaluate RESICO and COSTER extensively on four datasets: one gath-
ered from a corpus of 50K compilable GitHub projects and three datasets that
serve as external validators for the trained models. Our approach is more com-
plex than COSTER since it involves training several machine learning models;
hence, it consumes more computational resources during training. Despite be-
ing slower to train, RESICO outperforms COSTER in all experiments we con-
ducted. We also performed a root cause analysis of the type resolution failures
of the two approaches. More specifically, we measured how many of the failures
were due to simple names being ambiguous.

This paper makes the following contributions:

• We propose RESICO, a learning-based text classification approach to the
problem of resolving the simple names of API types within a code snip-
pet to the most likely corresponding FQNs. Incomplete and syntactically
incorrect code snippets, common on SO, are supported by design. It is
sufficient to train RESICO on compilable Java programs or snippets with
import statements that qualify the simple names. We instantiate RESICO
with four machine learning classifiers previously used in the literature for
text classification tasks.

• As a complement to the labelled COSTER-SO (401 complete snippets)
and StatType-SO (245 complete snippets) datasets on which COSTER
was evaluated, we contribute a more diverse and more complex labelled
dataset (i.e., RESICO-SO). The dataset consists of 371 syntactically cor-
rect and complete snippets referencing the same libraries considered in
previous datasets. The RESICO-SO dataset has more unique FQNs to
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predict, reinforcing the number of third-party references to predict, which
makes it a more challenging and complete dataset than previous propos-
als. RESICO-SO could also be employed for future benchmarking on the
topic. We used all these datasets in our evaluation.

• We share the code of RESICO, the datasets, and the RESICO-trained
models to resolve the types in incomplete code snippets.1 The model
could be helpful to compare future models and be integrated into tools
that need to complete the API information of SO code snippets.

The remainder of this paper is structured as follows. Section 2 motivates
the problem of resolving the simple names of API types in Stack Overflow code
snippets. Section 3 surveys the learning-based text classification techniques and
machine learning classifiers upon which we build. We detail our approach in
Section 4, and evaluate its prototype instantiations in Section 5. Section 6 and
Section 7 discuss the results and limitations of the proposed approach and its
evaluation. We detail the related work in Section 8 before concluding the paper
in Section 9.

2. Incomplete Code Snippets on Stack Overflow

1 Objects.toString(gearBox, "")

2 Objects.toString(id, "")

1 Ordering<Map.Entry<Key, Value>> entryOrdering =

Ordering.from(valueComparator)↪→
2 .onResultOf(new Function<Entry<Key, Value>, Value>() {

3 public Value apply(Entry<Key, Value> entry) {

4 return entry.getValue();

5 }

6 }).reverse();

1 Iterator<?> i = queue.iterator();

2 ...

3 Object next = i.next();

4 i.remove();

Listing 1: Incomplete code snippets containing different issues related to API resolution.

The code snippets in Listing 1 will serve to motivate the design of RESICO.

1. https://github.com/softwarelanguageslab/resico-paper
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The snippets with a black,2 blue,3 and olive4 frame will be referred to, in the
order of their appearance, as Code Snippets 1, 2, and 3 respectively. These
snippets stem from real-world answers on SO, the source of which is indicated
in their respective footnotes.

Incomplete Structures. Java compilers expect compilation units that group class
declarations together with import statements. On Q&A platforms, in contrast,
users frequently post sequences of standalone Java statements or expressions
that do not form a compilation unit. This is the case for all code snippets in
Listing 1, which is an issue for compilers and most code analysis tools alike.

Missing Variable Declarations. Another source of incompleteness are references
to undeclared variables. This is the case for gearBox and id in Snippet 1,
valueComparator in Snippet 2, and queue in Snippet 3. The natural language
semantics of their names or the Q&A text around them could provide hints
about their types, but the information itself is missing from the code.

Missing Import Statements. Similarly, library types might be referenced by their
simple name while an explicit import statement for the corresponding declara-
tion is missing. Ordering, Map, Function, and Entry in the second snippet are
examples of library types (e.g., from Google Guava) that are referenced in the
snippet without their declaration being imported.

Name Ambiguities. Missing import statements cause another problem typical
of incomplete code snippets: name ambiguities. Many libraries could share the
same simple name for types and methods, encumbering the resolution of simple
name to a fully qualified one. For example, the Function name in snippet 2
could be a reference to either of the interfaces java.util.function.Function
or com.google.common.base.Function. This is a problem for both users and
tools needing to reuse or reason about the snippets.

Despite their incompleteness, code snippets on Q&A platforms are an im-
portant source of information for both developers and tools. To fully realise
their potential, a reliable and effective approach to resolving the simple name
of API types in a code snippet to their fully qualified names is needed. This
paper proposes such an approach, capable of predicting the most likely FQN
for incomplete and ambiguous names by leveraging similarities in name usage
contexts among other snippets on the Q&A platform.

2. https://stackoverflow.com/questions/21936577
3. https://stackoverflow.com/questions/8897384
4. https://stackoverflow.com/questions/2319126
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3. Background

3.1. Text Classification
Text classification [6] is a natural language processing problem that requires

assigning a correct label yi to each set X1, X2, . . . , Xn of tokens that corresponds
to a text from a given corpus. For example, a paragraph describing movies,
actors, directors and scenes might be tagged with the label “cinema”. In contrast,
a text about a forecast with snowfall, wind direction, and expected humidity
could be labelled as “weather”. Supervised machine learning approaches for text
classification train a learning model by extracting the relations between the
tokens and the labels of a smaller representative set (i.e., the training set) to
assign a correct label y′i to a new set of tokens X ′

1, X
′
2, . . . , X

′
n (i.e., the test set).

Several approaches to training and predicting these labels have been proposed
over the years (e.g., [7, 8, 9, 10, 11]).

3.2. Text Transformation
Generally, text classification approaches convert each input text into a struc-

tured representation through feature extraction. Representations such as Bag-
of-Words (BoW) [7], Term Frequency-Inverse Document Frequency (TF-IDF)
[8], and Word Embeddings [12, 13] have been proposed to this end. In all these
cases, the outcome is an n-dimensional matrix representing the frequency of
words (for BoW and TF-IDF) or the context-embedded vectors (for Word Em-
beddings). The use of Word Embeddings (e.g., Word2Vec) [12, 13] has become
popular due to their ability to capture the semantic relations between words
based on the surrounding context. For instance, the words “dog” and “pet” may
be related because of the similarity of their contexts.
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Figure 1: An overview of the CBOW architecture to extract word embeddings from a text
corpus.
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Two architectures characterise Word2Vec: Skip-gram and Continuous Bag
Of Words (CBOW) [12]. The former predicts the context around a word,
whereas the latter tries to predict a word given its surrounding context. We
use CBOW as it is faster than the alternative Skip-gram [13] while resulting in
similar efficiency. Figure 1 depicts an overview of the CBOW model architec-
ture. CBOW starts with a one-hot encoded vector for every target word (Input
layer) based on the words that surround it, and trains a single-layer neural net-
work (Hidden layer) to try to infer the target word’s vector (Output layer). Once
the goal is achieved, or the maximum number of iterations has been reached,
the resulting weight vector or embedding for the target word consists of the
learnt weights of the hidden layer in the neural network. This vector captures
the typical context in which the target word appears. Section 8 discusses recent
applications of word embeddings within source code analysis as related work
(e.g., [14, 15, 16, 17, 18, 19]).

3.3. ML-based Classification Algorithms
In classification problems, the feature vector resulting from feature extrac-

tion is given to a classification algorithm for either training or class prediction.
We briefly discuss the ML-based classification algorithms our approach has been
instantiated with.

3.3.1. K-Nearest Neighbours
K-Nearest Neighbours (KNN) [20] classifies a new instance by analysing

its K closest neighbours in the space of the independent features. If these
neighbouring instances belong to different classes, the assigned class will be
the most common among the neighbours. KNN is popular because of its fast
convergence and good results. Previous work [21, 22, 23] has applied KNN to
text classification problems.

3.3.2. Random Forest
Random Forest (RF) [24, 25] belongs to the family of machine learning

classifiers categorised as ensemble algorithms. Ensemble classifiers group several
machine learning algorithms that are considered efficient yet lightweight. In the
particular case of Random Forests, the ensemble consists of several Decision
Tree classifiers, hence the term Forest. Each tree is trained with a random
selection of features, hence the term random, which turns RF into an unbiased
algorithm which can avoid overfitting, especially on imbalanced datasets. At
prediction time for a classification task, each of the trees performs a vote on the
decision to be taken, and the majority vote will represent the final prediction
of the model. The number of decision trees comprising the forest is set using a
hyperparameter. Like KNN, Random Forest has already been used with success
for text classification tasks [23, 26].
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3.3.3. Ridge Linear Classifier
Linear Regression classifiers fit a line to the data that optimally splits the

data into two categories or labels. To use them on multi-class datasets, many
techniques have been proposed including One-vs-Rest, One-vs-One, and regu-
larised linear classification. The latter has been used with success for text prob-
lems [27]. We will therefore instantiate our approach with the Ridge Linear (RL)
regressor [28], which first transforms the multi-class data into a multi-output
regression problem and then fits one regressor per target label. RL regressors
feature a regularisation parameter alpha that determines the variance of the
estimated weights for the model.5

3.3.4. Support Vector Machines
The Support Vector Machines (SVM) classifier [29] searches for an optimal

hyperplane that can effectively distinguish the classes based on their features.
For example, when the number of features in a dataset is two, SVM will try to
find the optimal line dividing the data in a 2D space. If the number of features
is three, the division becomes a plane trying to separate a 3D feature space.
This concept can be generalised to datasets with n feature dimensions and a
hyperplane with n−1 dimensions, which require considerable computational re-
sources if n is high. SVMs too have been used with success for text classification
problems [30, 31].

4. The RESICO Approach to API Type Resolution

We present RESICO, a learning-based text classification approach to resolve
API references in incomplete code snippets to FQNs. Figure 3, Figure 4, and
Figure 5 provide a detailed overview of the steps involved in RESICO. Letters
denote data resulting from (or given to) a step in a process, while numbers
denote the actual steps.

Figure 2 shows examples of the output that can be expected. Lines of code
from the input snippet are depicted in black. For this snippet, we removed all
import statements from which the FQNs could be resolved. We annotated the
API references to be resolved by RESICO with a rectangle. The line in red and
italics depicts the computed FQN for each API reference.

In all cases but one, the predicted FQN was correct compared to previ-
ously removed import statements. RESICO could precisely resolve the FQN for
most API references despite multiple candidates with the same simple name in
our dataset. For example, the simple names Configuration, SessionFactory,
Session and Transaction ambiguously denote 44, 4, 67 and 14 different FQNs
respectively in one of our datasets.

For the simple name not annotated (i.e., a dash appears instead), RESICO
could not correctly predict the FQN of the variable c, which was correctly

5. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClas
sifier.html
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Configuration c = new Configuration();

c.configure(“hibernate.cfg.xml”);

SessionFactory se = c.buildSessionFactory();

[org.hibernate.cfg.Configuration]

[-]

[org.hibernate.Transaction]

[org.hibernate.Session]

[org.hibernate.SessionFactory]

Session session = se.openSession();

Transaction tran = session.beginTransaction();

[org.hibernate.cfg.Configuration]

[org.hibernate.SessionFactory]

[org.hibernate.Session]

Figure 2: Example type resolutions computed by RESICO.

predicted for the line above (i.e., Configuration). However, if all predicted
FQNs are considered import statements, the missing FQN will not represent an
issue. Before detailing how RESICO resolves simple names to their FQN, we
briefly describe the Eclipse JDT as it features prominently in the remainder of
the section.

4.1. An Overview of Eclipse JDT for Fact Extraction
Eclipse Java Development Tools (JDT)6 is a set of plugins developed for

the Eclipse platform that enable lightweight static analysis of Java programs.
The Eclipse JDT comprises five components: APT, Core, Debug, Text, and
UI. Each component is independent, and specialised in a different purpose. For
example, COSTER and RESICO use the Eclipse JDT Core component for their
fact extraction from compilable Java programs (e.g., information about method
invocations and variable declarations). It can be used headless without the
Eclipse IDE and provides, among others, Abstract Syntax Trees (ASTs) and
symbol and type hierarchy information for Java programs. As we use the Eclipse
JDT Core component frequently and none of the other components, we will refer
to the former as Eclipse JDT from now onwards.

4.2. Training Process
Figure 3 depicts the steps in the training process. This section will use the

snippet depicted in Listing 2 as a running example.
In the first step of the training process, depicted as action node 1, the Eclipse

JDT is used to i) compile the Java programs in the training corpus, and ii)
extract the simple names of API references and their FQNs as follows:

• for variable declarations, the simple name and FQN of the declared type.

• for variable and field accesses, the simple name of the accessed type, the
name of the field and the FQN of the accessed type.

• for method invocations, the simple name and FQN of the statically-declared
type of the receiver expression, and the identifier of the invoked method.

6. https://www.eclipse.org/jdt/
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1 import org.apache.cordova.DroidGap;

2 import android.context.Context;

3 import android.telephony.TelephonyManager;

4 import android.webkit.WebView;

5 import android.webkit.JavascriptInterface;

6

7 public class GetNativeTelephonyManager {

8 private WebView mAppView;

9 private DroidGap mGap;

10

11 public GetNativeTelephonyManager(DroidGap gap, WebView view) {

12 mGap = gap;

13 mAppView = view;

14 }

15 @JavascriptInterface

16 public String getIMEI() {

17 TelephonyManager tm = (TelephonyManager)

mGap.getSystemService(Context.SERVICE);↪→
18 String imeiID = tm.getDeviceId();

19 return imeiID;

20 }

21 }

Listing 2: Running example for explaining RESICO.

• the line numbers for each previous construct.

The information provided by the JDT is used to perform this extraction step.
For example, for the method invocation on Line 18 of Listing 2, RESICO first
collects TelephonyManager (the simple name or type of the receiver variable
tm), getDeviceId (the method identifier), and android.telephony.Telephony
Manager (the FQN of the receiver type). The latter represents the label to
predict by RESICO, whereas the former is part of the training data.

Train
Model

Java
program

API References 
& FQNs

Transformation 
Step

A B I1 7

Eclipse JDT
Compiler

APIs, FQNs 
& Contexts

Obtain 
Contexts

Classifier 
Model

2 C

Figure 3: Training based on a corpus of programs.

Figure 3 shows the information collected for each program as data node B.
The gathered data so far is further augmented with the context surrounding the
API reference. We define the context of an API reference as the information
extracted for all other API references in the same method body but without their
FQNs. In this way, RESICO can extract the same information from complete
and incomplete code snippets, since the FQNs are used neither in the API
reference nor in the contexts. Finally, RESICO collects the vocabularies for
both API references and contexts which will serve as input to train Word2Vec
models later in the process. The vocabulary for contexts is obtained by adding
all contexts into a single set of words. The vocabulary for the API references
comprises the set of API references themselves.
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To continue with our running example, from the API reference tm.get-
DeviceID on Line 18, its surrounding context is the following:

TelephonyManager, DroidGap, getSystemService, Context, SERVICE,
String, String

Within Figure 3, the context extracted for each API reference is depicted as
data node C in addition to the previously collected information. Table 1 shows
for every API reference (column API Ref.), the line numbers where they are
located (column #), their contexts (column Context) and their respective FQNs
(column FQN ) that RESICO is able to extract from the method getIMEI() from
Listing 2. As observed, many API references could be present on the same line,
enlarging the collected dataset even in small methods such as getIMEI().

# API Ref. Context FQN

17 TelephonyManager DroidGap,getSystemService,Context,SERVICE, android.telephony.TelephonyManager
String,TelephonyManager,getDeviceID,String

17 DroidGap,getSystemService TelephonyManager,Context,SERVICE, org.apache.cordova.DroidGap
String,TelephonyManager,getDeviceID,String

17 Context,SERVICE TelephonyManager,DroidGap,getSystemService, org.android.Context
String,TelephonyManager,getDeviceID,String

18 String TelephonyManager,DroidGap,getSystemService,Context, java.lang.String
SERVICE,TelephonyManager,getDeviceID,String

18 TelephonyManager,getDeviceID TelephonyManager,DroidGap,getSystemService, android.telephony.TelephonyManager
Context,SERVICE,String,String

19 String TelephonyManager,DroidGap,getSystemService,Context, java.lang.String
SERVICE,String,TelephonyManager,getDeviceID

Table 1: Extracted information from the method getIMEI() in Listing 2 by RESICO.

Figure 4 zooms in on the following transformation step. We use Word2Vec [12,
13] to vectorise API references and contexts, whereas label categorisation is used
to convert FQNs to label numbers.

Vector per
Word

Vector per
Context

Word2vec
CBoW

Mean of
Vectors

API References

FQNs to Predict Encode Encoded FQNs

Word2Vec
Model Vectorise

C

H

D

E

F

C

3

4

5

6

Contexts
C

API Reference 
Vectors

Vector per Term 
in Context

Averaged
Vector

Mean of
Vectors

G5E

E

Figure 4: Transformation step used by the training process.

Word2Vec is used to learn the best possible vector representation of APIs and
contexts (columns API Ref. and Context of Table 1) and obtain a word embe-
dding per word in both cases. Each API reference is considered as a single word.
API reference records with two words (e.g., DroidGap, getSystemService on
line 17) are concatenated with a dot (e.g., ‘.’) as it is done for a field or method
call. However, words in context records are kept separate and considered indi-
vidually in the training phase. This decision was made because API references
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can take the form of variable declarations as well as method calls and field ac-
cesses, and the latter only comprise a single relevant word (i.e., the name of the
API type) while the latter comprise two (i.e., the field or method’s name along
with the name of the API type). Contexts, in contrast, comprise the simple
names stemming from surrounding API references and each word is therefore
considered equally relevant.

Step 3 iterates once over all extracted API references and contexts while
using the Word2Vec CBOW neural network architecture to train the algorithm
(cf. Section 3.2). We used the implementation of the Word2Vec model in the
Golang programming language7 to take advantage of its Goroutines. We config-
ured the Word2Vec training for the APIs and contexts similarly, relying on the
CBOW architecture, a batch size of 1000 words, 20 generated features, negative
sampling as the optimiser, five words of window size, a minimum occurrence of a
word equals to 1 (i.e., considering all words), and five iterations for the training
of the model. The number of features was set to 20 to enable us to perform
the following steps (e.g., hyperparameter optimisation) more efficiently without
reducing the ability to capture the semantic differences between the labels to
predict. The number of iterations for the learning was set to five to keep the
training process as simple as possible. The batch size considers numerous words
per training batch with a window size of five to take short segments around
the word to learn. The latter is also the default window size for the Word2Vec
implementation in the Python library Gensim as it is the selection of negative
sampling as optimiser.8 No other changes specific to the domain were made.

The resulting models or word embeddings were saved in external files and
are depicted as the data node D, one for the API references and another one for
the contexts. Once the word embeddings have been learned, step 4 transforms
the input data into the learned vectors. The vectors obtained for each word
(data node E ) are kept in the case of the API references and further averaged
in the case of contexts in step 5. Data node F depicts the averaged vectors per
context.9

To illustrate the transformation described above, Table 2 depicts the vector
representation of the information in Table 1. In this case, column API Vector
denotes a transformed API reference, whereas column Cont. Vect. denotes the
corresponding vector for each word in its context. The averaged vector of all
vectors in a context is shown in column Av. Cont. Vect.. This vector is stored
in data node F, which will be used in the following steps. The column FQN
remains the same, and it will be transformed in a subsequent step.

A final averaged vector is obtained in data node G by considering each vector
of API references and its corresponding averaged context vector. In parallel to
the vectorisation, step 6 encodes the FQNs collected in data node B. A natural
number is assigned to each FQN, denoting the label to be predicted by the

7. https://github.com/ynqa/wego
8. https://radimrehurek.com/gensim/models/word2vec.html
9. Please remember that contexts are composed of several words
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# API Vector Cont. Vect. Av. Cont. Vect. FQN

17 [0.684, . . . , 0.457] [-0.158, . . . , -0.378], [-0.332, . . . , 0.643] android.telephony.TelephonyManager
. . . , [-0.728, . . . , -0.629]

17 [-0.154, . . . , 0.254] [0.029, . . . , -0.916], [0.378, . . . , -0.173] org.apache.cordova.DroidGap
. . . , [0.904, . . . , 0.601]

17 [-0.804, . . . , 0.915] [0.807, . . . , 0.092] [0.155, . . . , 0.791] org.android.Context
. . . , [0.277, . . . , 0.592]

18 [0.218, . . . , 0.613] [0.167, . . . , -0.805], [-0.464, . . . , 0.608] java.lang.String
. . . , [0.767, . . . , 0.466]

18 [0.349, . . . , 0.505] [0.092, . . . , 0.397], [0.047, . . . , 0.927] android.telephony.TelephonyManager
. . . , [-0.336, . . . , 0.719]

19 [0.218, . . . , 0.613] [0.167, . . . , -0.805], [-0.464, . . . , 0.608] java.lang.String
. . . , [0.767, . . . , 0.466]

Table 2: Transformed API references and contexts from Table 1 by the Word2Vec models.

classifier. Table 3 exemplifies this last transformation step for our dataset.
Column Av. Embedding Vector contains the final averaged vector, and column
FQN contains the transformed FQNs as numbered labels. In machine learning
concepts, the former is the training dataset, while the latter corresponds to the
class to predict.

# Av. Embedding Vector FQN

17 [-0.756, . . . , 0.628] 0

17 [0.118, . . . , 0.112] 1

17 [0.860, . . . , -0.145] 2

18 [0.253, . . . , 0.183] 3

18 [0.092, . . . , -0.792] 0

19 [0.253, . . . , 0.183] 3

Table 3: The last transformation step in the RESICO process. The previous context vector
is further averaged with the API vector, and FQNs are converted into numbers.

The last step in the training process (action node 7) is responsible for train-
ing a supervised machine learning classifier (data node I ) and for saving the
resulting model into a file. RESICO supports the use of any supervised machine
learning classifier with the data extracted at this point. For our experiments,
we selected four machine learning classifiers previously used in text classifica-
tion tasks: KNN, Random Forests, Ridge Linear Classifier, and Support Vector
Machines (cf. Section 3). The outcome of the training process is a model to
predict a numbered FQN given an averaged vector. The averaged vector is the
mean of a vector A for an API reference and a vector B which is the mean
vector of all vectors in the surrounding context of the mentioned API reference.

4.3. Resolution Process
The resolution process for code snippets depicted in Figure 5 resolves all

API type references within a code snippet to their FQNs. The process has to
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Figure 5: Resolution process for API type references in code snippets.

parse a snippet in a non-standard way due to the many issues a SO code might
have (cf. Section 2). RESICO uses a custom Island Parser [32] (action node 8)
configured to parse SO code snippets regardless of their syntactical correctness.
Such parsers focus on the constructs of interest (i.e., API references in our case)
and consider the remainder of the code as water. It is implemented using the
framework Parboiled10 for Java.

The statements are parsed using this parser. API references are gathered
in data node K, for which our supervised machine learning models will predict
missing FQNs. The contexts of API references are also collected similarly as
previously described for a complete code example.

After gathering API references and their respective contexts in an incomplete
code snippet, RESICO will transform the input to make it suitable for the
resolution phase. The vectorisation of API references and their contexts relies
on the formerly trained Word2Vec models saved in files for APIs and contexts
(data node D), respectively. The availability of each API reference word and its
context words are checked in the trained Word2Vec models. If the API reference
word cannot be found (i.e., the API Word2Vec model was not trained with
it), the process stops since API references are fundamental for the prediction.
However, if one or multiple context words cannot be found (i.e., the context
Word2Vec model was not trained with them), the resolution process continues
with other context words as this scenario is more likely to happen, and contexts
are usually composed of several words. Nonetheless, if there are no context
words, RESICO will also likely fail since in this case, it only depends on the
API reference word.

Each vector is processed to obtain an averaged vector that will serve as input
to the trained models in data node I. These trained models are loaded from
the previously saved files. Classifiers have different ways of predicting the class
for an unseen input; for example, KNN calculates the closest neighbours and
takes the majority class among them. The outcome of the machine learning
model therefore depends on how the classifier calculates the most likely class
for its final prediction. In general, their output takes the form of a number that
corresponds to a particular FQN and needs to be mapped back to the original
FQN.

10. https://github.com/sirthias/parboiled
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4.3.1. Providing Top-K Recommendations
Most supervised machine learning classifiers predict the class with the high-

est probability for a certain input vector. This probability is calculated based
on the similarity of the input vector to already trained vectors in the model.
By default, trained models make a Top-1 prediction, returning the class that
achieved the highest probability for a certain input vector. However, it is com-
mon for implementations to provide access to the internal probabilities for all
of the predicteded classes. For example, in the Python Scikit-Learn framework,
method predict_proba11 is provided by most implementations. RESICO will
therefore return a Top-K with 1 ≤ K ≤ N_Classes for its resolutions of API
type references. If the actual FQN of the reference is among the Top-K reso-
lutions returned by RESICO, the resolution is considered successful; otherwise,
the resolution represents a failure of the trained model.

5. Evaluation

We describe the design and results of the empirical evaluation conducted to
assess the RESICO machine learning classifiers (from now onwards, RESICO
classifiers) for API type resolution. The evaluation compares our approach to
COSTER [5], an information retrieval-based approach, which outperforms in
several circumstances earlier methods such as StatType [4] and BAKER [3].
Please note that we contacted COSTER’s authors to verify that we
configured and used the tool correctly before conducting our evalua-
tion.12
Our study aims to answer the following research questions:

RQ1 What are the best hyperparameter combinations for the classifiers used
within RESICO?

RQ2 How well do COSTER and the RESICO classifiers perform on instances
extracted from the dataset used for training?

RQ3 What are the performance of COSTER and RESICO classifiers when
evaluated on unseen datasets?

RQ4 How much time is needed to train COSTER and the RESICO classifiers?

RQ5 To what extent do ambiguities in simple names influence the performance
of the approaches?

Figure 6 depicts a graphical overview of the steps we took to answer these
research questions. Our evaluation started by gathering the datasets needed to
train and evaluate RESICO and COSTER. We collected one dataset to train

11. https://github.com/scikit-learn/scikit-learn/blob/f3f51f9b6/sklearn/neighbors/_c
lassification.py#L256

12. Boldface added for the reviewing process only.
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and evaluate the models, and three additional datasets to analyse the prediction
capabilities of the trained models. Given the imbalanced nature of the dataset
used to train the models, we applied data balancing. The same balanced dataset
is also used to optimise the hyperparameters of the RESICO classifiers in RQ1.
In RQ2, we use the best configuration of hyperparameters for each RESICO
classifier to conduct an internal evaluation with the balanced dataset and com-
pare our approach against COSTER. We also perform an external evaluation
in RQ3 to assess the performance of the two approaches on other datasets. For
RQ4, we present the performance results in terms of training time required by
each approach. Finally, we perform an ambiguity analysis in RQ5 on the best
RESICO and COSTER models.

5.1. Datasets Collection
In this section, we report on the datasets used in our empirical study: the

dataset used to train and tune models and to evaluate their performance on
similar data in RQ2, and the three datasets used to evaluate the obtained models
on different data in RQ3.

5.1.1. Internal Dataset
We relied on the 50K-C dataset to answer RQ1, RQ2 and train the models

(i.e., COSTER and all RESICO classifiers) that are further evaluated on external
datasets in RQ3. The dataset was extracted from a collection of 50K compilable
Java projects mined from GitHub [33]. We followed the same extraction process
previously used by Saifullah et al. [5] for COSTER, using the same Eclipse JDT
extractor configuration for the internal datasets of the two approaches. We did
it this way to ensure that the internal datasets where COSTER and RESICO
are trained and evaluated were constructed with the same API references and to
avoid bias in the evaluation towards either approach. After the API references
are extracted, we build the surrounding contexts for each and store the API
reference, its context and its corresponding FQN.

We consider not only the 100 most frequent libraries as reported in Saifullah
et al. [5] but all 5,356 libraries provided by the 50K-C dataset. From an initial
pool of 50,000 projects, we extracted the API references, contexts, and FQNs
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for 48,951 (i.e., 98%). The resulting dataset contains 19,088,813 records, each
representing an API reference.

Data Balancing. The dataset gathered in the previous step is highly imbal-
anced. As can be expected, it contains more instances related to some com-
monly used FQNs (e.g., java.lang.String with more than 2M occurrences)
and lacks instances of some rarely used FQNs (e.g., java.sql.Statement[]
with only one occurrence). Figure 7 shows a fragment of the data distribution
for the three most and three least frequent types out of the 39,643 unique FQNs
in the dataset.
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Figure 7: The three most and least frequent FQNs in the gathered dataset.

In this highly unbalanced setting, we decided to sample the previously ex-
tracted dataset to balance the training data and, thus, not to introduce a bias
towards any particular FQN to be predicted. We selected a threshold of 50 oc-
currences, as this threshold was previously selected in COSTER [5]. The FQNs
with fewer occurrences than the defined threshold are not considered for the
training phase and are therefore excluded. Those records with more FQNs than
the threshold are randomly sampled into 50 instances. The resulting balanced
dataset consists of 4,860 unique FQNs with 50 instances per FQN, amounting
to 243,000 records. The new balanced dataset constitutes the internal training
dataset, and it will be also used for the internal evaluation of both approaches.

5.1.2. External Datasets
Three external datasets are used to increase the generalisability of the results

and to answer RQ2. Table 4 shows the characteristics of the datasets considered
for the evaluation. Eclipse JDT can parse and compile the snippets in these
datasets to (i) extract the referenced API types and their surrounding contexts
and (ii) use their FQNs as ground truth.

Two of the datasets COSTER-SO [5] and StatType-SO [4] contain 401 and
245 code snippets respectively (col. Snippets), which have been previously used
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Dataset Snippets Fs I-Fs E-Fs U-Fs UI-Fs UE-Fs
COSTER-SO 401 1,373 1,330 43 30 20 10
StatType-SO 245 1,827 431 1,396 167 39 128
RESICO-SO 371 1,741 596 1,145 215 47 168

Table 4: Datasets used for the external evaluation of COSTER and RESICO.

to assess COSTER.13 After processing the code snippets, the number of records
extracted from COSTER-SO and StatType-SO were 1,373 and 1,827 respectively
(col.Fs), including API references, their contexts and FQNs.

A closer look at the FQNs of COSTER-SO raises concerns about their dis-
tribution in the dataset. 1,330 out of the 1,373 references (96.7%) belong to the
Java standard library (col.I-Fs) (i.e., the default Java Runtime Environment).
Simple names with FQN prefixes starting with java.lang or java.io are con-
sidered as always observable14 and thus, less significant for the potential users
of the approaches. Therefore, a more diverse dataset with a prevalent number
of non-default FQNs is desirable.

Alternatively, the StatType-SO dataset contains an increased number of ex-
ternal FQNs (76.4%) (col.E-Fs) w.r.t COSTER-SO. Such a behaviour is also
reflected in the number of unique external FQNs (col.UE-Fs) with only 10 for
COSTER-SO and 128 for StatType-SO. To further increase the evaluation setup,
we created another dataset (RESICO-SO) that replicates the distribution of
FQNs in the StatType-SO dataset and possibly improves the number of unique
external FQNs compared to previous datasets. This new dataset represents the
third dataset considered to verify the generalisability of the results.

We randomly selected 371 code snippets from Stack Overflow referencing
the same 11 libraries as COSTER-SO and StatType-SO. The 371 code snippets
represent a statistically significant sample from the 11,047 Java code snippets
with import statements in the SOTorrent dataset [34] dated March 15th, 2020
(95% Confidence Level and 5% Confidence Interval). We manually ensured that
the snippets could be parsed and compiled using Eclipse JDT. The new dataset,
named RESICO-SO, comprises 1,741 API references, their contexts, and FQNs.
Most records (1,145 i.e., 65.8%) are references to external FQNs. At the same
time, RESICO-SO exhibits a more extensive number of unique FQNs (215) with
a larger number of unique internal (47) and external (168) FQNs. These aspects
make the new dataset more challenging to predict than previous ones and might
reinforce the results obtained for the StatType-SO with which it shares a similar
FQN distribution.

13. https://zenodo.org/record/7244690
14. https://docs.oracle.com/javase/specs/jls/se8/html/jls-7.html#jls-7.4.3
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5.2. RQ1. What are the best hyperparameter combinations for the classifiers
used within RESICO?

Design. This research question investigates the best hyperparameter configura-
tion on the selected machine learning classifiers for the RESICO approach (cf.
Section 3).

All considered classifiers have default hyperparameters in their implementa-
tion. These default parameters should have an average performance in various
applications and are not optimised for any particular task or dataset. Each
classifier has a different set of hyperparameters with a range of possible values
to choose from, representing a search space.

The search space for some hyperparameters is strictly limited to a group
of options in a list, e.g., the hyperparameter weights for the KNN classifier
restricts the possibilities to ’uniform’ and ’distance’ to calculate the space be-
tween neighbours.15 In other cases, this limitation does not exist; therefore,
the search space for such hyperparameters could be infinite. For instance, the
parameter alpha of the Ridge linear classifier16 can take any possible float as
value. Additionally, a set of hyperparameters usually consists of more than
one parameter, rendering searching for the best parameters a multi-objective
optimisation problem.

We relied on the optimisation libraries Optuna17 and HyperOpt18 to per-
form the multi-objective search. Optuna was used for those machine learning
algorithms that do not heavily demand computer resources, such as KNN, the
Ridge linear classifier (RL) and the linear Support Vector Classifier (SVC). We
took advantage of the distributed hyperparameter optimisation of HyperOpt to
search for the best parameters for the Random Forest classifier without incur-
ring memory overflow issues. The setup of the two libraries was similar, with
200 trials for each classifier and using the Tree of Parzen Estimators (TPE) [35].
Using TPE is recommended over other search space algorithms such as Random
Search [36].

In addition to the similar setup, we also defined a similar goal for each
search. More specifically, the goal was to minimise a loss function defined as
1−F1. In other words, the search for the best hyperparameter tried to minimise
the difference between the maximum F1 score (e.g., 1) and the obtained score.
When the difference reached a minimum, the optimal parameters were found.

Table 5 shows the selected machine learning classifiers, their hyperparame-
ters, a brief description, and their configured search space.

Note that we had to bound some hyperparameters with unbounded limits
to sufficiently large limits when tuning the classifiers. Also, note that some
intervals are floating point ranges while others consist of integer numbers. When

15. https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsCl
assifier.html

16. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClas
sifier.html

17. https://optuna.org/
18. https://hyperopt.github.io/hyperopt/
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Classifier Hyperparameter Brief description Search Space

K-Nearest Neighbors (KNN)

n_neighbours Number of neigh-
bours.

2 ≤ x ≤ 1E3

weights Weight function. [’uniform’, ’distance’]

algorithm Algorithm to com-
pute the nearest
neighbours.

[’ball_tree’, ’kd_tree’,
’brute’]

leaf_size Leaf size passed
to BallTree or
KDTree.

2 ≤ x ≤ 1E3

Random Forest (RF)

n_estimators Number of trees in
the forest.

10 ≤ x ≤ 200

criterion Function to mea-
sure the quality of a
split.

[’gini’, ’entropy’]

min_samples_leaf Minimum number
of samples to be at
a leaf node.

1 ≤ x ≤ 20

min_samples_split Minimum number
of samples to split
an internal node.

0.0 ≤ x ≤ 1.0

Ridge Linear (RL) alpha Regularization
strength.

1.0 ≤ x ≤ 1E10

solver Solver to use to
compute the Ridge
coefficients.

[’auto’, ’svd’, ’cholesky’,
’lsqr’, ’sparse_cg’,

’sag’, ’saga’]

Support Vector Classifier (SVC) C Regularization pa-
rameter.

1.0 ≤ x ≤ 1E10

Table 5: Hyperparameters of the classifiers and their search space configuration

the limits are shown as floats in Table 5, the range of possible values belongs to
the former case, whereas integer values indicate the latter case.

Results. The overview of the hyperparameter optimisation process for the clas-
sifiers is shown in Figure 8. Categorical parameters are encoded as numbers.

For example, for KNN, the values of the hyperparameter algorithm are trans-
formed as follows ball_tree → 0, brute → 1, kd_tree → 2 and the values of the
hyperparameter weights are converted as distance → 0, uniform → 1. For the
RidgeLinear classifier the values of solver are changed to auto → 0, cholesky →
1, lsqr → 2, sag → 3, saga → 4, sparse_cg → 5, svd → 6. Lastly, the values of
the RF hyperparameter criterion are transformed to gini → 0, entropy → 1.

Figure 8 highlights in blue those parameter values resulting in the lowest and
therefore most optimal loss after 200 trials. In some cases, the figure indicates a
convergence towards a particular parameter for the best result, such as weights
for the value 0 (i.e.,’distance’) in the K-Nearest Neighbors classifier. Other best
hyperparameters have a majority indicating the likely best selection as is for the
value 2 (i.e., kd_tree) for the parameter algorithm in KNN. Nonetheless, there
are some cases where value changes in the parameter do not seem to influence
the loss. Examples of the former are solver in the Ridge Linear classifier, where
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Figure 8: Hyperparameter optimisation for the classifiers considered in RESICO.

all optimal losses contain values from all possible solvers and C in the Support
Vector Classifier, where the loss does not improve significantly regardless of the
selected hyperparameter value.

The best hyperparameter configuration overall for each classifier is:

KNN n_neighbours = 2, weights = distance, algorithm = kd_tree, leaf -
_size = 63.

RF n_estimators = 173, criterion = gini, min_samples_leaf = 14, min-
_samples_split = 3E − 4.

RL alpha = 6473.18, solver = sag.

SVC C = 11.14.

We will use the optimal values for each hyperparameter for training the
models that will be evaluated in the next research questions. The optimised
parameters allow us to obtain models tailored to predict FQNs from incomplete
code snippets.
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The machine learning algorithms employed within RESICO provide de-
fault values for hyperparameters that might be suboptimal for the prob-
lem at hand. However, several parameters can be tuned effectively, while
the values for others do not influence the loss minimisation. The optimal
values resulting from the hyperparameter optimisation are used to train
the models used in the remaining research questions.

5.3. RQ2. How well do COSTER and the RESICO classifiers perform on in-
stances extracted from the dataset used for training?

Design. This research question investigates the performance of COSTER and
each of the RESICO classifiers on the internal dataset described in Section 5.1.

To this end, we trained and evaluated the approaches using a 10-fold cross-
validation technique [37], where nine folds are considered for training, and the
remaining fold is considered for evaluation. This process iterates over each of
the folds until they are all evaluated. Furthermore, we adopted a more reliable
partition technique called stratified cross-fold validation [38]. This technique
improves the folding partition of the data by ensuring that each fold contains
approximately the same distribution of labels to predict. In such a way, the
training and evaluation processes avoid (i) training a label without an evaluation
and (ii) evaluating a label not part of the training data. We use the implemen-
tation of the stratified cross-validation technique provided by the Scikit-learn
library of Python.19

In the case of COSTER, we use its implementation for training and evalu-
ation. We kept the configuration of COSTER’s parameters as provided, only
disabling the parameter concerning the minimum number of required contexts
(named fqnThreshold in the command-line options). This parameter is set to
50 by default and heavily influences the selection of FQNs, establishing a high
mark many FQNs cannot reach. These instances would be consequently ex-
cluded from the training and evaluation processes; therefore, we set COSTER
to consider all FQNs in the balanced dataset described in Section 5.1. We
configure RESICO to use the machine learning classifiers described in previous
sections with the optimised hyperparameters obtained in Section 5.2.

For each evaluated fold, we queried the Top-K predictions related to the
most likely FQN with K equals to 1, 3, and 5. If the actual value is among
the Top-K predictions, we counted the prediction as a success; otherwise, as a
failure. This process allowed us to build sets of actual and predicted instances
for all top predictions per fold.

Once the prediction data is gathered for each fold, we evaluate the perfor-
mance of COSTER and each RESICO-trained model using Precision, Recall and
F1-Score for each Top-K. For each FQNA, we define precision as the number of
correctly predicted FQNs out of the number of predicted FQNA (Equation (5)).

19. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.Strati
fiedKFold.html
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Similarly, we define recall as the number of correctly predicted FQNA out of the
number of actual FQNA (Equation (2)). Lastly, for each FQNA, its F1-Score
is the harmonic mean of both Precision and Recall defined in Equation (3).

Precision =
# correctly predicted FQNA

total # predicted FQNA
(1)

Recall =
# correctly predicted FQNA

total # actual FQNA
(2)

F1-Score = 2 · Precision ·Recall

Precision+Recall
(3)

Since our labels are multi-class, we adopted the “micro” averaging approach,
which is recommended for multi-class problems when the focus is on the general
performance instead of rare classes [39]. Micro-average precision and recall are
computed as follows, whereas the micro-average F1-Score is computed similarly
to Equation (3) but taking into account micro-average precision and recall.

Micro-average Precision =

∑k
i=1 # correctly predicted FQNi

total # predicted FQNs
(4)

Micro-average Recall =
∑k

i=1 # correctly predicted FQNi

total # actual FQNs
(5)

Finally, we average the metrics for all folds and report them.

Results. Figure 9 shows the averaged results for the trained models on the inter-
nal dataset for the Top-1, 3, and 5 predictions. Each row of bar charts represents
the Top-K evaluation on the internal dataset for a particular value of K. The
individual bars within a bar chart depict the performance of the particular clas-
sifier denoted on the horizontal axis. A cell (i, j) on the intersection of row i and
column j denotes the performance of the classifier j considering the Top-K in i.
We selected F1-Scores as performance comparison metric as they represent the
harmonic mean between precision and recall; thus, we can observe the average
performance of classifiers.

The performance of the two approaches increases along with the number of
provided recommendations (i.e., K). In the specific case of COSTER, it starts
with a reported Top-1 performance of 58% according to the F1-Score. This
performance increases substantially (11% more) for the Top-3, whereas it grows
only a 4% from the Top-3 to the Top-5 recommendations. Nonetheless, we
note that overall, COSTER performs well, predicting most of the FQNs for this
internal dataset.

Most RESICO classifiers (3 out of 4) outperform COSTER in all Top-K
configurations. The KNN classifier performs best in all three Top-K, starting
with an excellent performance of 90% for the Top-1 and slightly improving
2% in the remaining cases. The RF classifier ranked second with good scores,
especially in Top-3 and Top-5, where it can correctly predict 88% and 90%
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Figure 9: Performance of the models on the internal dataset.

of the FQNs, respectively. In the case of SVC, lower scores were achieved
w.r.t. the previous classifiers but still superior to COSTER’s scores. Lastly,
the RL classifier was the least performing classifier of all considered approaches.
However, it is worth noting that the slight F1-Score differences compared to
COSTER are due to the low precision of the RL since it performs similarly to
SVC in terms of recall.

We conclude that the best classifier of our approach (i.e., KNN) is more effec-
tive than COSTER on this dataset. The API references and their surrounding
contexts were correctly captured and learned by the Word2Vec and classification
processes allowing to improve the prediction results of the RESICO classifiers.
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COSTER achieves good performance on the balanced internal dataset
with a maximum of 73% for the Top-5 recommendations. RESICO
presents excellent results, with the best Top-1 recommendations of 90%
and Top-5 of 92% for the KNN classifier, thus, outperforming COSTER
on the internal dataset.

5.4. RQ3. What are the performance of COSTER and RESICO classifiers when
evaluated on unseen datasets?

Design. This research question investigates the performance of COSTER and
all RESICO models previously trained on the internal dataset and applied to
external and unseen datasets.

We trained the approaches on the full version of the balanced internal dataset
to answer this research question. Once the models are trained on the data, we
use them to predict the extracted types from the external datasets COSTER-SO,
StatType-SO, and RESICO-SO. Please note that the snippets in the datasets
must be compilable because a ground truth of FQNs is needed to verify the
effectiveness of the trained models. FQNs of API references are challenging to
determine in incomplete code snippets, hindering obtaining the ground truth
needed for an accurate evaluation of the models.

All snippets in the three datasets are compilable; hence, information about
API references, their surrounding contexts, and FQNs can be extracted using
Eclipse JDT. For each API reference, their specific context is extracted either
using the configuration of COSTER (cf. Saifullah et al. [5]) or RESICO (cf.
Section 4). When leveraging RESICO, the extracted information has to be
transformed into a vector (cf. Section 4.3) before sending it as input to the
trained model.

We match the predicted FQNs to the true FQNs, similarly to the previous
research question. For each API reference and context (e.g., 1, 3, or 5), the
likely FQNs are predicted and checked against the true FQN. The prediction
is successful when the actual value is present; otherwise, it represents a failure.
Finally, we compute the Top-K micro Precision, Recall, and F1-Score for each
external dataset and report them.

Results. Figure 10 depicts the results of COSTER and the RESICO trained
models on the external datasets. Here, each row corresponds to one external
dataset. Each bar chart within a row corresponds to the particular Top-K being
considered denoted at the top. Each bar within a bar chart corresponds to the
precision, recall, or F1-score for the approach denoted on the horizontal axis.

RESICO outperforms COSTER on all three datasets. The difference in
F1-Score is considerable for some configurations. For example, there is a 71%
performance difference between the F1-Scores of COSTER and RESICO-KNN
when analysing the first predictions (i.e., Top-1) on the COSTER-SO dataset.

The best performance overall was RESICO-KNN, as in the previous research
question (cf. Figure 9). This model showed a relevant performance starting
with 87% F1-Score for the Top-1 recommendations in the COSTER-SO dataset.
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Figure 10: Performance of the models on the three external datasets.

Although inferior to the COSTER-SO performance, RESICO-KNN still predicts
with good accuracy the FQNs in the StatType-SO and RESICO-SO datasets.
The F1-Score metrics are above 70% for the last two datasets considering all
Top-K s.

The performance difference of the models across the three external datasets
can be explained by the number of records per FQN (e.g., 50) and the balancing
of the training dataset. In the data balancing step (cf. Section 5.1), we limited
the number of records per FQN to 50. The results in Figure 10 show that
COSTER might need more occurrences to improve its performance. On the
other hand, most of the RESICO classifiers have good generalisability with
this limited number of examples per FQN. Additionally, data balancing allowed
us to harmonise the importance of each FQN, hence, widespread types such
as java.lang.String have the same relevance as other less frequent FQNs. In
such a way, the trained models are not biased towards any FQN, enabling better
performance than other methods, such as COSTER, without this feature.
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In the three external datasets considered to evaluate the generalisability
of the performance, RESICO-trained models outperform COSTER with
a notable difference in some cases. Some decisions made when designing
the machine learning models, such as data balancing and hyperparame-
ter optimisation, allow RESICO to achieve better predictive capabilities
than the COSTER approach.

5.5. RQ4. How much time is needed to train COSTER and the RESICO clas-
sifiers?

Design. This research question investigates the computational cost of COSTER
and RESICO. The experiments were conducted on a Dell PowerEdge R730 with
2 Intel Xeon 2637 CPUs, each with four cores at 3.5 GHz with HyperThreading
and 256 GB of RAM.

For each approach, we measured the time employed to extract the infor-
mation from the projects in the initial corpus [33] and the time to train the
model in the balanced internal dataset (cf. RQ2 ). Additionally, for RESICO,
we measure the embedding time, i.e., the time required to transform the API
references and contexts into vectors suitable for a machine learning algorithm.
We do not consider the encoding time of FQNs to label numbers since it is a
simple mapping whose execution time is negligible.

Results. Table 6 depicts the time measurements for all experiments.

Approach Token Extraction Context Embedding Model Training Total
COSTER

11h 49m 4s

- 25s 11h 49m 29s
RESICO-KNN

3m 43s

671ms 11h 52m 48s
RESICO-RF 29m 6s 12h 21m 53s
RESICO-RL 52m 16s 12h 45m 3s
RESICO-SVC 4m 43s 11h 57m 30s

Table 6: Computational cost of the approaches. Time is measured in hours (h), minutes (m),
seconds (s) and milliseconds (ms).

The extraction time (col. Extraction) is the same for the two approaches.
As COSTER and RESICO rely on the same extraction procedure built on top
of Eclipse JDT with slight differences related to the handling of contexts, for
every processed FQN, two outputs were written to two different datasets.

The total time (col. Total) required by COSTER is lower than that required
by RESICO. In Table 6, we show the time needed to extract the tokens, the
time needed to embed the contexts, if any, and the time needed to train the
models using the sampled data. COSTER does not need embeddings, saving
the time needed to craft them.

Fact extraction takes the longest, with nearly 12 hours for processing the
data of 50K projects. After sampling and balancing the dataset, the remaining
training data consists of 243,000 records. Please consider that embedding the
API references takes less than a second, whereas embedding their contexts takes
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almost 4 minutes. These running times can be considered efficient for the spec-
ified dataset, however, with a more complex dataset, embedding times could
increase drastically. The learned embeddings for the API references and their
surrounding contexts allowed most RESICO classifiers to outperform COSTER
both on the internal dataset (cf. Figure 9) and the three external datasets (cf.
Figure 10).

Finally, concerning the training times for the RESICO classifiers and the
COSTER approach, the fastest overall is RESICO-KNN with less than a second
used for its training on the balanced dataset. COSTER also trained quickly with
only 25 seconds, followed by RESICO-SVC, requiring almost 5 minutes. The
slowest approaches are RESICO-SVC, with nearly 30 minutes and RESICO-RL,
with more than 50 minutes to complete their respective training. For SVC, its
training time agrees with its design since it is not an easy task to search for
an optimal hyperplane in high-dimensional data. A hypothesis for why the RL
model takes the longest to train might be the challenges in linearly differentiating
the classes in a multi-class data scenario.

The fact extraction times of COSTER and RESICO are the same as
they both rely on the same Eclipse JDT Core extension. On the dataset
considered for training, embedding the tokens does not take considerable
time while it does improve the predictions, as shown in the results of RQ2
and RQ3. The classifiers that take the longest to train are those of which
characteristics of our internal dataset pose challenges to their design and
implementation (e.g., multi-class and high-dimensional data).

5.6. RQ5. To what extent do ambiguities in simple names influence the perfor-
mance of the approaches?

Design. Name ambiguities affect the type resolution made by COSTER and
RESICO. This research question analyses the resolution failures and how am-
biguities could have impacted them. Consider an incomplete code snippet
having the simple name Element. It could resolve to org.jdom.Element or
org.jsoup.nodes.Element within an incomplete code snippet. There are 17
FQN candidates in the internal balanced dataset for this simple name alone.
The more ambiguous a simple name is, the more challenging it is for a resolver
to predict its exact FQN effectively.

We analyse the erroneous type resolutions made by the COSTER and RESI-
CO models, which were trained on the internal balanced dataset, by investigat-
ing whether the root cause for their incorrect resolutions produced on the exter-
nal datasets is an ambiguous simple name. Specifically, we consider the models
of COSTER and RESICO-KNN for this research question, the former being the
approach to compare with and the latter the best RESICO model overall. We
only consider the Top-1 predictions from the models on the external datasets
since they have the majority of failures compared to the other two (i.e., Top-3
and Top-5).
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Model Dataset # Uniq. Mis. # Mis. # Amb. % Amb.

COSTER
COSTER-SO 27 1,173 4 0.34
StatType-SO 155 1,355 37 2.73
RESICO-SO 197 1,412 16 1.13

RESICO-KNN
COSTER-SO 18 205 31 15.12
StatType-SO 96 458 108 23.58
RESICO-SO 112 553 73 13.2

Table 7: Ambiguity analysis for COSTER and RESICO-KNN trained models on the external
datasets.

Results. The results of the ambiguity analysis are depicted in Table 7. The
number of unique misclassifications (col. Uniq. Mis.) for the COSTER-SO
dataset is lower compared to the other datasets. However, those numbers in-
crease when counting the total number of misclassifications regardless of their
uniqueness (col. # Mis.). The COSTER model produces more misclassifications
than RESICO-KNN on all datasets, as previously reported in RQ3.

Interestingly, only a minority of the type resolution failures are due to am-
biguous simple names. Column # Amb. of Table 7 demonstrates that in all
datasets but one, less than 100 misclassifications correspond to such cases.
Only a tiny percentage (col. % Amb.) of FQNs could have been misclassified
because other FQNs share the same simple name. The StatType-SO dataset
with the RESICO-KNN model combination has the highest percentage of am-
biguous misclassifications compared to other combinations. A closer look in-
dicates that only 31 unique misclassifications occurred but were repeated mul-
tiple times. For example, the FQN org.hibernate.Session is predicted as
org.hibernate.classic.Session and as javax.websocket.Session, 35 and
3 times respectively.

These findings indicate that the main reason for failures from the models
is not the presence of ambiguous simple names. A likely reason for the mis-
predictions might be the close similarity of the contexts around different API
references. The closer the contexts around API references are, the more prone
the models might be to recommend distinct FQNs as similar.

The number of unique mispredicted FQNs is the highest for both mod-
els on the StatType-SO and the RESICO-SO datasets, illustrating their
challenging nature. Only a tiny percentage of incorrect type resolutions
is due to ambiguous simple names. The main reason for the mispredic-
tions might not be ambiguous simple names, but closer contexts could
mislead the trained models towards failures.
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6. Discussion

This section discusses the results, limitations, and potential impact of RESI-
CO.

6.1. Context-based Approaches to API Type Resolution
The approaches considered in the evaluation section (cf. Section 5) are based

on the contexts surrounding API references to resolve API types. Indeed, both
RESICO and COSTER capture the contexts around the usage of APIs. Then,
they recommend a FQN based on similar contexts in incomplete code snippets.
Despite this similarity between the approaches, they have many differences, such
as their context definitions and the usage of machine learning versus information
retrieval techniques.

COSTER captures the API references, their surrounding contexts, and the
FQNs of the referenced API element, and stores them into a Lucene20 database
to be queried later on. RESICO, in contrast, starts three learning processes
after a similar extraction process to improve its final prediction (cf. Section 4).
After the learning processes, a classifier uses the learned embeddings in the form
of vectors to learn to distinguish different contexts corresponding to FQNs. The
embeddings and classifier models are stored in files for posterior use at resolution
time.

We noticed that even though our approach takes slightly more time (around
3 minutes) and thus more computational resources than COSTER (cf. Table 6),
it can resolve API types more effectively (cf. Figure 9, Figure 10).

Figure 11: Similar FQNs by their context vectors.

Concerning type resolution failures, our experiments found that most are
due to the contexts in which the same or different simple names occur being

20. https://lucene.apache.org/
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overly similar. For example, Figure 11 depicts different FQNs close to each
other because of the similarity of their contexts. The figure was built by ex-
tracting the averaged vectors between API references and contexts of 14 ran-
domly selected misclassified FQNs by RESICO. Afterwards, we reduced the
dimensions of these vectors to 2 using TSNE21 to facilitate their plotting. Fig-
ure 11 shows the context similarity of different FQNs. The colours and the
text on the points identify each FQN in the 2-dimensional cartesian space.
The points corresponding to the vectors of org.joda.time.DateTimeZone and
org.joda.time.DateTime are close to each other since they might be used in
a similar environment. The same happens to the points of the Apache and
Java collections, such as MultiMap from the former and List and Map from the
latter. Lastly, PeriodFormatterBuilder, PeriodFormatter, and PeriodType
from the joda library share context similarities and the trained models struggle
to distinguish them in some cases effectively.

In addition, we made an analysis based on the effectiveness of the approaches
at the library level for the external datasets evaluated on RQ3. Table 8 shows
how COSTER and RESICO-KNN (our best model) perform per library for the
StatType-SO dataset. The analysis for the remaining datasets can be found in
our online repository.1

Library Total COSTER RESICO-KNN
Success Failure Success Failure

JDK 665 46 619 453 212
GWT 350 149 201 303 47
Hibernate 319 65 254 242 77
Joda-Time 250 56 194 170 80
XStream 173 139 34 144 29
Apache-Http 29 1 28 26 3
Apache-Commons 15 10 5 14 1
Apache-Struts 7 0 7 7 0
Org-JSON 7 0 7 0 7
Dom4J 5 1 4 4 1
KSoap2 5 5 0 5 0
Apache-Log4J 2 0 2 1 1

Table 8: The accuracy of the best models per approach shown per library in the StatType-SO
dataset. Highlighted in green and red are the largest successes and failures, respectively.

For a total of 12 libraries in the StatType-SO dataset, the green entries in
Table 8 show that RESICO-KNN outperforms COSTER on 10 libraries. For
only 2 libraries, the approaches achieved the same score. In the case of the
Org-JSON library, no approach could correctly resolve any of the seven API

21. https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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types. In the case of KSoap2, the approaches successfully predicted all five
types.

Table 8 also shows RESICO-KNN scores more success than failure cases in
all but two libraries (Org-JSON and Apache-Log4J). COSTER, in contrast, has
a majority of failures instead of successes except for XStream, Apache-Commons
and KSoap2. Interestingly, most failures for both approaches are located in the
JDK library, with a very low success rate for COSTER (7%) and a relatively
low one for RESICO (32%).

6.2. Limitations
RESICO cannot handle multiple versions of the same library, just like pre-

vious approaches (e.g., COSTER). They recommend the old and the new FQNs
when a class is moved to another package.

The approach should be equally applicable to other languages with explicit
import statements (e.g., Python). Some relatively small extensions will be re-
quired to support import statements with wildcards, which import several API
types simultaneously without analysing the corresponding library files.

To support languages featuring import statements that load a library def-
inition at run time will require more extensive work. For such languages, we
envision run-time analysis of the libraries. Note that we are not gauging the
modifications required based on whether the language is dynamically or stati-
cally typed but on the type of import statements that would occur in its snippets.

Finally, RESICO is based on word embeddings. Like other approaches rely-
ing on this technique, it suffers from Out-Of-Vocabulary errors when the model
must predict a term that is not in the training set. RESICO will fail to re-
solve the API type for such a term. Nonetheless, the NLP community has
proposed mitigation strategies such as enriching the vectors with subword in-
formation [40, 41], which are not currently included in the implementation and
are part of our future agenda.

6.3. Potential Impact
As revealed by our experiments, RESICO scores high on all considered

datasets. Researchers and practitioners can use our approach to design and
implement tools that analyse SO posts, e.g., API usages and the natural lan-
guage around the code. Our approach and trained model provide type resolution
to client analyses and tools requiring type information, even for syntactically
incorrect and incomplete code snippets. One example tool could, for instance,
help developers who rely on SO solutions and frequently copy their code into
an IDE by providing import statements for all referenced library types.

7. Threats to Validity

We now discuss the threats that might affect the validity of our study.
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7.1. Threats to Construct Validity
RESICO relies upon a Word2Vec implementation provided by the Golang

programming language to obtain the word embeddings and four classifiers from
the Scikit-Learn framework for building and evaluating the machine learning
models. RESICO uses these libraries extensively, so their inclusion constitutes
a threat to validity. Nevertheless, they are among the most popular open-source
machine-learning libraries.

7.2. Threats to Internal Validity
We chose the Continuous Bag of Words (CBOW) architecture for the Word2-

Vec algorithm instead of the alternative Skip-gram. Our selection was motivated
by the faster processing times of the former approach compared to the latter.
CBOW tries to infer a word given its context, whereas Skip-gram attempts to
infer a context given a word. Skip-gram might produce slightly different results;
however, as reported by Mikolov et al. [13], CBOW can also produce reliable
vector representations while reducing the learning time.

Data balancing was used to equalise internal dataset extracted from the
50K-C corpus, thereby avoiding bias training towards imbalanced classes. Data
balancing should in general be applied to the training dataset and not to the
testing dataset. In RQ2, we balanced the full dataset before the stratification
and posterior training and testing, to verify whether our model could detect
FQNs from a dataset similar to the training one. The possible implications of
this decision are minimal for a two-fold reason. On the one hand, all evaluated
methods (e.g., COSTER and all RESICO classifiers) use the same balanced
dataset for training and testing, making the evaluation fair. On the other hand,
we conducted a second evaluation on external datasets, showing similar results.

7.3. Threats to External Validity
An external threat might be due to the comparisons between both ap-

proaches, COSTER [5] and RESICO. For an unbiased comparison, we first
extracted information from the same API references in the 50K-C dataset [33].
Second, the training dataset is balanced to avoid bias towards any particular
label, and the approaches are trained on this balanced dataset. Third, we evalu-
ated both approaches on the datasets initially employed for assessing the quality
of COSTER (e.g., COSTER-SO and StatType-SO). Lastly, we created a third
external dataset (e.g., RESICO-SO) of code snippets that reference the same
set of libraries present in the previous datasets.

Another external threat concerns the classifiers and the word embedding
algorithm (i.e., Word2Vec) used in RESICO. We chose four different classi-
fiers as instantiations of RESICO which have been used in ML-based soft-
ware engineering solutions [42, 43] as well as in previous text classification
works [23, 26, 27, 31]. Likewise, Word2Vec has been successfully used in other
studies [14, 17, 44].
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7.4. Threats to Conclusion Validity
The metrics used to evaluate our approach (i.e., Precision, Recall, and F1-

Score) are widely used among recommenders, including the reference work (i.e.,
COSTER). To evaluate to what extent programs in the 50K-C dataset can be
used to predict fully-qualified names with similar context, we adopted a 10-
fold stratified cross-validation [37] after a previous balancing of the dataset.
For datasets which are not completely balanced, the number of instances per
fold will correspond to a similar distribution of the full dataset. Since we have
a balanced dataset, it is not only ensured that each fold follows the general
distribution but also that each of them contains the same number of instances
per class.

8. Related Work

We discuss tools that leverage Stack Overflow, program analysis methods
concerning the code snippets available there, approaches that employ type infer-
ence to improve certain aspects of programming languages, and other program
analysis applications of word embeddings.

8.1. Development Tools Incorporating SO Information
Several tools have been proposed that use SO posts as a source of infor-

mation. RecoDoc [45], for instance, identifies API references within textual
information in sources such as documentation and Q&A websites. Prompter [46]
proactively retrieves posts related to developers’ context within the IDE. SISE [1]
augments library documentation with insightful sentences found in posts. Git-
Search [47] consults Q&A posts to enrich free-from code search queries against
code repositories with API-specific terminology. CodeTube [48] enables query-
ing the contents of software development video tutorials and complements the re-
sults with relevant discussions. BIKER [49] takes a natural language query as in-
put and returns related posts and example API methods. POME [2] analyses SO
posts to synthesise the community’s opinion about a library. PostFinder [50] rec-
ommends SO posts based on the development context in an IDE (e.g., Eclipse)
by constructing improved queries to a formerly constructed Lucene database.

To link code snippets to libraries and their API elements, several of the men-
tioned works use regular expressions (e.g., Treude and Robillard [1] and Lin et
al. [2]) or a sequence of candidate eliminating conditions (e.g., Linares-Vásquez
et al. [51]). Approaches to resolving incomplete declarations have also been
proposed. In particular, PostFinder [50] tries to resolve API types by parsing a
code snippet using Eclipse JDT and then querying likely FQNs from the Maven
Dependency Graph [52] based on the unresolved simple names of declarations.
For those cases with multiple candidates sharing the same simple name (i.e.,
ambiguous cases), PostFinder computes the Levenshtein distance between the
candidates and the SO post title, the question body and the answer. However,
this heuristic does not ensure a near-accurate resolution for an ambiguous sim-
ple name for the following reasons. First, The Levenshtein distance calculates
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the number of changes needed to transform a text sequence into another at the
character level.22. Second, PostFinder takes the maximum distance (cf. Line
163 - Line 178 in its GitHub source code23), meaning that the selected FQN is
the most dissimilar to the post text corpus. We did not find a rationale behind
this decision. Finally, SO code snippets contain API types that are not related
to the topic under discussion, yet are entangled with those types that are.

Therefore, our trained machine learning models could be used to perform
API-type resolution and improve the mentioned approaches and tools.

8.2. Program Analyses for SO Code Snippets
Algorithms dedicated to API type resolution of code snippets have been

proposed. Baker [53, 3] traverses a best-effort Abstract Syntax Tree (AST)
constructed by the Eclipse JDT parser or the Esprima parser for JavaScript to
collect type information at variable declaration nodes. It then associates a list
of candidate FQNs for these nodes by consulting a database populated from the
JAR files of candidate libraries in the case of Java code snippets. These lists are
iteratively refined for every method invocation of which the receiver expression is
a known variable reference or method invocation. The computed lists satisfy the
semantic constraints imposed by using the API-related variables in the snippet.
The deductive reasoning approach taken by Baker is therefore limited by (i)
the syntactical correctness of the snippet, (ii) the extent to which it contains
candidate-reducing API usages, and (iii) the library implementations for which
its database has been populated. RESICO also has limitations concerning the
vocabulary sizes for which the Word2Vec models were trained (i.e., similar to
(iii)). However, RESICO does not rely on the correctness of the code snippet
(i.e., (i)), nor has a candidate-reducing API list (i.e., (ii)), but it relies on the
wisdom of the crowd to resolve API types.

Yang et al. [54] investigate how usable code snippets are in Stack Overflow
for four programming languages: C#, Java, Python and JavaScript. Usability,
in this case, is defined as whether a code snippet passes the steps of parsing,
compiling and running from standard tools in the mentioned programming lan-
guages. Their findings indicate that few snippets are usable as they are in the
posts, especially in the case of Java, with less than 4% parsing and 1% com-
piling success rates. Including heuristics to repair code snippets (e.g., addition
of wrapping classes, methods and semicolons) slightly improves previous scores,
but still, a large percentage (more than 80%) remains unusable. As pointed out
by Yang et al. [54], almost 63% of errors are due to unfound symbols, which
reinforces the need for tools such as RESICO to deal with incomplete code
snippets.

CSnippEx [55] is an Eclipse plugin to repair Java code snippets and convert
them into compilable source code files. The design of CSnippEx is mainly based

22. https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/si
milarity/LevenshteinDistance.html

23. https://github.com/MDEGroup/PostFinder/blob/master/tools/src/main/java/soRec/Uti
ls/Jdt.java
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on a feedback approach where the Java compiler is continuously queried for
possible errors. First, the tool discovers the likely merging of multiple code
snippets in a post. Second, it resolves the import dependencies by relying on
extracted pairs of FQNs to their latest version of JARs and exploiting their
clustering hypothesis. Third, CSnippEx considers the compilation errors of the
Eclipse Quick Fix tool to identify the solutions that could finally convert the
code into a compilable source. Terragni et al. [55] reported a successful synthesis
of 40,410 code snippets from a total of 242,175 for a success rate of around 17%,
which is still testament to the difficulty of the problem. RESICO does not go
beyond API-type resolution to form a compilable unit, although this is part of
our future work. Additionally, our approach is based on the context around
simple names and not on heuristics, as is the case for CSnippEx.

StatType [4] uses statistical machine translation to resolve FQNs. The ap-
proach translates sentences from a source language (i.e., of partially-qualified
API names) to a target language (i.e., of FQNs). It requires training a lan-
guage model and a separate mapping model on a corpus of projects that use
the API of the targeted libraries. These projects are simultaneously translated
into StatType’s source and target language by traversing their methods’ ASTs.
Sentences in the source language capture information about the simple name
of each referenced API element. In contrast, sentences in the target language
convey the corresponding FQN and the syntactic construct through which the
API element was referenced. Extracting this information requires the input
projects to compile. However, the approach is entirely data-driven because it
is agnostic to program semantics. Resolutions learned by combining the lan-
guage and mapping model are refined based on the local context surrounding
the name to be resolved. StatType achieved higher accuracy than Baker [53, 3];
however, training its models may be computationally expensive. In contrast
to StatType, RESICO handles the incompleteness problem as a classification
procedure where a learned context will influence the label to be predicted (i.e.,
the FQN of the API reference in analysis).

Saifullah et al. [5] presented COSTER, which takes an information retrieval
approach to the problem of resolving FQNs in incomplete code snippets. As
StatType, it relies on the obtained wisdom of the crowd from a corpus of com-
pilable projects. Extracted information from the corpus is used to compute the
likelihood that the textual tokens surrounding the non-qualified API reference
co-occur in the project corpus when the reference resolves to the corresponding
FQN. The immediately surrounding tokens are referred to as the local context
of the API reference. The local context is extended with its global context. It
relies on the names of methods called on the variable to which the reference
is assigned or the names of methods to which this variable is passed as an ar-
gument. In a snippet, context and name similarities are subsequently used to
refine the candidates returned from this so-called occurrence likelihood dictio-
nary for the queried name and context. COSTER has outperformed StatType
and Baker in many aspects of the evaluation conducted in Saifullah et al. [5].
Therefore, we compared our approach against COSTER, which constitutes the
state-of-the-art method. RESICO leverages the same datasets and the contexts
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surrounding the API references as COSTER, allowing RESICO to analyse many
libraries. The training phase represents a distinctive feature of RESICO com-
pared to previous approaches (e.g., Baker, StatType and COSTER). After the
learning phase, a classification algorithm (e.g., Random Forest in this case) tries
to associate FQNs to the learned contexts.

Dong et al. [56] propose SnR as an approach to infer FQNs based on the
constraints in SO code snippets. SnR constructs a knowledge base from libraries
consisting of relations between types belonging to constructs, such as fields and
methods. As in the case of CSnippEx [55], SnR tries first to repair a code snippet
and form a compilation unit to extract an AST from which to infer API types.
The type inference uses Datalog, given the current code snippet constraints
and the knowledge base, to provide reachable nodes in a dependency graph.
Lastly, SnR ranks type candidates and selects those on the top to finally create
import statements and include them in the transformed code solution. SnR is
compared against COSTER [5] using the StatType-SO dataset as we did in this
work. There are some relevant differences between SnR and RESICO:

1. SnR is constraint-based, whereas RESICO is context-based.

2. To evaluate COSTER against SnR, Dong et al. [56] did not consider
that COSTER was trained on a highly imbalanced dataset and used that
trained model; we did consider it and retrained COSTER on balanced
data.

3. SnR has only been evaluated on the external StatType-SO dataset. RESICO,
additionally, has, in this paper, been evaluated on the same balanced
internal dataset as COSTER, and on two more external datasets (e.g.,
COSTER-SO and RESICO-SO), outperforming COSTER in all cases.

A more in-depth comparison between the tools in particular and context-based
and constraint-based approaches in general is required to evaluate the impact
of these differences. Moreover, a hybrid technique combining the strong points
of each could lead to a very effective and improved approach overall.

8.3. Type Inference for Programs
Type inference for programs written in dynamically-typed languages (e.g.,

Python and JavaScript) has enjoyed attention in the programming language
research community. Raychev et al. [57] propose an approach for predicting
names of identifiers and type annotations of variables in JavaScript programs.
Their tool, JSNice, can indicate the mentioned properties for unseen programs
based on a trained Conditional Random Field model. Xu et al. [58] rely on
incomplete type hints (e.g., the names and usages of variables) to make a prob-
abilistic inference on the types of Python programs. Hellendoorn et al. [59]
proposed to use Deep Learning (DL) to tackle this problem with DeepTyper, a
model that infers types in JavaScript based on the learning capabilities of the
Recurrent Neural Networks. They laid the foundation for using DL techniques
for type inference. Malik et al. [60] leverage natural language information in the
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source code (e.g., comments and function names) and train an LSTM neural
network to assist in the type inference of JavaScript programs. Wei et al. [61]
propose LambdaNet as a Graph Neural Network approach to probabilistically
infer types in TypeScript. LambdaNet relies upon a type dependency graph
(TDG) which includes additional hints such as variable names and usages in
the graph itself. Peng et al. [62] leverage models from previous approaches and
developed HiTyper, a hybrid approach that condenses static and AI-based type
inferences. Type inference was also applied to recover information from binaries
by Lehmann and Pradel [63] and Wang et al. [64] for WebAssembly and C++
binaries, respectively.

RESICO aims not to infer types for programs implemented in dynamically-
typed languages but to resolve the FQNs of API references for which the dec-
laration or import statement is missing from an incomplete and possibly syn-
tactically incorrect SO code snippet. Furthermore, RESICO resolves the simple
names in a snippet without ensuring that all of the produced resolutions for the
snippet together satisfy the programming language’s type constraints. RESICO
is agnostic of the semantics of the programming language. In the semantic sense,
our approach could therefore be considered unsound, although our evaluation
(cf. Section 5) demonstrates its effectiveness in practice. Type constraint checks
on RESICO’s predictions for a snippet could be added as a post-processing step,
which is part of our future research agenda.

8.4. Word Embeddings for Source Code Analysis
Our approach uses word embeddings [12, 13] to transform API references and

their contexts into a format suitable as input to machine learning algorithms.
Such applications are increasingly prevalent in the literature. code2vec [19] is
a machine learning approach to predicting source code properties (e.g., method
names provided their bodies). It uses a neural network for learning embeddings
that effectively model the correspondence between the code in the method body
and its associated label. The networks learn to aggregate syntactic paths from
the AST of the snippet into a vector. Similarly, code2seq [16] uses AST paths
and an encoder-decoder architecture to learn code snippet representations which
are subsequently used in tasks such as code summarisation and code captioning.
Our approach relies on the embeddings of the API references and terms in
their surrounding context. These references are extracted from the complete
programs rather than the paths in the ASTs.

The machine learning approach proposed by Henkel et al. [17] attempts to
learn trace-oriented embeddings for source code. These are obtained by applying
abstracting transformations to a lightweight form of intra-procedural symbolic
execution. The resulting embeddings capture behavioural aspects of the code
and outperform more syntactic embeddings on a series of tasks. Similarly, Wang
and Su [65] propose LiGer, a neural network that can learn from a mixture of
symbolic and concrete traces. The mixture (or blended) trace represents the
input to an encoder-decoder neural network architecture which outperforms
code2seq in the task of predicting method names. We consider the use of sym-
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bolic execution for the embedding part of our approach infeasible given the sheer
amount of libraries and library usages on SO.

The import2vec [18] framework takes a word embedding approach to learning
library representations based on the co-occurrence of the corresponding import
statements in client projects. The learned embeddings are suitable for recom-
mending imports with usage context similar to the queried one and have been
shown to capture meaningful semantic relations, such as which library packages
are often used together in particular problem domains. RESICO does not focus
on the used import statements alone, but it goes one step further and learns the
similarities of the API usages and their surrounding contexts.

9. Conclusion

This paper proposes a new learning-based approach to resolving the fully-
qualified name of API types referenced by their simple name in code snip-
pets from online Q&A platforms such as Stack Overflow. The approach, called
RESICO, extracts API references, their surrounding contexts and their associ-
ated FQNs from a dataset of 50K compilable GitHub projects. A data balancing
technique is applied to balance the dataset from where COSTER and RESICO
train and learn to distinguish API types in incomplete code. RESICO uses
Word2Vec to transform API references and their contexts into vector represen-
tations and class categorisation to convert FQNs into numbers. The vectors
of the API references and contexts are combined into the input of machine
learning classifiers, whereas the numbered FQNs are the labels to predict. The
approach is instantiated with four machine learning classifiers, namely KNN,
Random Forests, Ridge Linear, and Support Vector Machines. Before evalu-
ating the resulting models, hyperparameter optimisation is applied to find an
optimal configuration for these classifiers.

We have compared the RESICO machine learning models in depth to the
state-of-the-art approach, COSTER, which is based on information retrieval.
The setup of our approach is more computationally intensive than that of
COSTER, as it involves training two Word2Vec models to learn embeddings
and one classification algorithm per RESICO instantiation. Our best classi-
fier (KNN) is slightly slower to train than COSTER. However, once deployed,
most of the RESICO-trained models outperform COSTER in the 10-fold cross-
validation on an internal dataset and on three external datasets. Finally, we
showed that incorrect type resolutions produced by RESICO and COSTER
might not be due to ambiguous simple names but mainly to similar contexts
around usages.

Acknowledgements

We would like to thank the authors of COSTER [5] for sharing their tool and
data. This research was partially funded by the Excellence of Science project
EOS 30446992 SECO-ASSIST financed by FWO-Vlaanderen and F.R.S.-FNRS.

39



References

[1] C. Treude, M. P. Robillard, Augmenting API Documentation with Insights
from Stack Overflow, in: Proceedings of the 38th International Conference
on Software Engineering (ICSE16), 2016, pp. 392–403.

[2] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, Pattern-based
Mining of Opinions in Q&A Websites, in: Proceedings of the 41st Interna-
tional Conference on Software Engineering (ICSE19), 2019, pp. 548–559.

[3] S. Subramanian, L. Inozemtseva, R. Holmes, Live API Documentation, in:
Proceedings of the 36th International Conference on Software Engineering
(ICSE14), 2014, pp. 643–652. doi:10.1145/2568225.2568313.

[4] H. Phan, H. A. Nguyen, N. M. Tran, L. H. Truong, A. T. Nguyen, T. N.
Nguyen, Statistical Learning of API Fully Qualified Names in Code Snip-
pets of Online Forums, in: Proceedings of the 40th International Conference
on Software Engineering (ICSE18), IEEE, 2018, pp. 632–642.

[5] C. K. Saifullah, M. Asaduzzaman, C. K. Roy, Learning from Examples to
Find Fully Qualified Names of API Elements in Code Snippets, in: Pro-
ceedings of the 34th International Conference on Automated Software En-
gineering (ASE19), 2019, pp. 243–254.

[6] M. Bates, Models of natural language understanding, Proceedings of the
National Academy of Sciences 92 (22) (1995) 9977–9982.

[7] Z. S. Harris, Distributional structure, Word 10 (2-3) (1954) 146–162.

[8] K. Sparck Jones, A statistical interpretation of term specificity and its
application in retrieval, Journal of documentation 28 (1) (1972) 11–21.

[9] Y. Sakakibara, K. Misue, T. Koshiba, Text classification and keyword ex-
traction by learning decision trees, in: Proceedings of 9th Conference on
Artificial Intelligence for Applications (AIAI93), 1993, p. 466.

[10] A. Bouaziz, C. Dartigues-Pallez, C. da Costa Pereira, F. Precioso, P. Lloret,
Short Text Classification Using Semantic Random Forest, in: International
Conference on Data Warehousing and Knowledge Discovery, 2014, pp. 288–
299.

[11] B. Xu, X. Guo, Y. Ye, J. Cheng, An Improved Random Forest Classifier
for Text Categorization, JCP 7 (12) (2012) 2913–2920.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
Representations of Words and Phrases and their Compositionality, in: Pro-
ceedings of the 27th Annual Conference on Neural Information Processing
Systems (NIPS13), 2013.

[13] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word
Representations in Vector Space, arXiv preprint arXiv:1301.3781 (2013).

40



[14] T. D. Nguyen, A. T. Nguyen, T. N. Nguyen, Mapping API Elements
for Code Migration with Vector Representations, in: Companion to the
Proceedings of the 38th International Conference on Software Engineering
(ICSE-C16), IEEE, 2016, pp. 756–758.

[15] T. D. Nguyen, A. T. Nguyen, H. D. Phan, T. N. Nguyen, Exploring API
Embedding for API Usages and Applications, in: 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE), 2017, pp. 438–
449.

[16] U. Alon, S. Brody, O. Levy, E. Yahav, code2seq: Generating Sequences
from Structured Representations of Code, arXiv preprint arXiv:1808.01400
(2018).

[17] J. Henkel, S. K. Lahiri, B. Liblit, T. Reps, Code Vectors: Understand-
ing Programs Through Embedded Abstracted Symbolic Traces, in: Pro-
ceedings of the 26th Joint Meeting of European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE18), 2018, pp. 163–174.

[18] B. Theeten, F. Vandeputte, T. Van Cutsem, Import2vec Learning Em-
beddings for Software Libraries, in: Proceedings of the 16th International
Conference on Mining Software Repositories (MSR19), 2019, pp. 18–28.

[19] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec: Learning Distributed
Representations of Code, Proceedings of the ACM on Programming Lan-
guages 3 (POPL) (2019) 40.

[20] B. V. Dasarathy, Nearest neighbor (NN) norms: NN pattern classification
techniques, IEEE Computer Society Tutorial (1991).

[21] P. Soucy, G. W. Mineau, A Simple KNN Algorithm for Text Categoriza-
tion, Proceedings - IEEE International Conference on Data Mining, ICDM
(2001) 647–648doi:10.1109/icdm.2001.989592.

[22] V. Bijalwan, V. Kumar, P. Kumari, J. Pascual, KNN based Machine Learn-
ing Approach for Text and Document Mining, International Journal of
Database Theory and Application 7 (1) (2014) 61–70.

[23] K. Shah, H. Patel, D. Sanghvi, M. Shah, A Comparative Analysis of Logis-
tic Regression, Random Forest and KNN Models for the Text Classification,
Augmented Human Research 5 (1) (2020) 1–16.

[24] T. K. Ho, Random Decision Forests, in: Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1, IEEE, 1995, pp.
278–282.

[25] L. Breiman, Random Forests, Machine learning 45 (1) (2001) 5–32.

41



[26] H. Chen, L. Wu, J. Chen, W. Lu, J. Ding, A Comparative Study of Auto-
mated Legal Text Classification using Random Forests and Deep Learning,
Information Processing & Management 59 (2) (2022) 102798.

[27] T. Zhang, F. J. Oles, Text Categorization based on Regularized Linear
Classification Methods, Information retrieval 4 (1) (2001) 5–31.

[28] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes 3rd edition: The Art of Scientific Computing, Cambridge Univer-
sity Press, 2007.

[29] C. Cortes, V. Vapnik, Support-vector Networks, Machine learning 20 (3)
(1995) 273–297.

[30] T. Joachims, Learning to Classify Text using Support Vector Machines,
Vol. 668, Springer Science & Business Media, 2002.

[31] J. Lilleberg, Y. Zhu, Y. Zhang, Support Vector Machines and Word2vec for
Text Classification with Semantic Features, in: 2015 IEEE 14th Interna-
tional Conference on Cognitive Informatics & Cognitive Computing (ICCI*
CC), IEEE, 2015, pp. 136–140.

[32] L. Moonen, Generating Robust Parsers using Island Grammars, Proceed-
ings of the Eighth Working Conference on Reverse Engineering (2001) 13–
22doi:10.1109/wcre.2001.957806.

[33] P. Martins, R. Achar, C. V. Lopes, 50K-C: A dataset of compilable, and
compiled, Java projects, in: 2018 IEEE/ACM 15th International Confer-
ence on Mining Software Repositories (MSR), IEEE, 2018, pp. 1–5.

[34] S. Baltes, L. Dumani, C. Treude, S. Diehl, SOTorrent: Reconstructing
and Analyzing the Evolution of Stack Overflow Posts, in: Proceedings of
the 15th international conference on Mining Software Repositories (MSR),
2018, pp. 319–330. arXiv:1803.07311, doi:10.1145/3196398.3196430.

[35] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for Hyper-
Parameter Optimization, Advances in neural information processing sys-
tems 24 (2011).

[36] J. Bergstra, D. Yamins, D. Cox, Making a Science of Model Search: Hy-
perparameter Optimization in Hundreds of Dimensions for Vision Archi-
tectures, in: International Conference on Machine Learning, PMLR, 2013,
pp. 115–123.

[37] M. Stone, Cross-validatory Choice and Assessment of Statistical Predic-
tions, Journal of the royal statistical society. Series B (Methodological)
(1974) 111–147.

[38] K. Sechidis, G. Tsoumakas, I. Vlahavas, On the Stratification of Multi-label
Data, Machine Learning and Knowledge Discovery in Databases (2011)
145–158.

42



[39] Z. C. Lipton, C. Elkan, B. Naryanaswamy, Optimal Thresholding of Classi-
fiers to Maximize F1 Measure, in: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2014, pp. 225–
239.

[40] M.-T. Luong, C. D. Manning, Achieving Open Vocabulary Neural Ma-
chine Translation with Hybrid Word-Character Models, arXiv preprint
arXiv:1604.00788 (2016).

[41] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching Word Vectors
with Subword Information, Transactions of the Association for Computa-
tional Linguistics 5 (2017) 135–146.

[42] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, A. De Lucia,
Detecting Code Smells using Machine Learning Techniques: Are We There
Yet?, in: 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, 2018, pp. 612–621.

[43] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic litera-
ture review on fault prediction performance in software engineering, IEEE
Transactions on Software Engineering 38 (6) (2011) 1276–1304.

[44] X. Ye, H. Shen, X. Ma, R. Bunescu, C. Liu, From Word Embeddings To
Document Similarities for Improved Information Retrieval in Software En-
gineering, in: Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 404–415.

[45] B. Dagenais, M. P. Robillard, Recovering Traceability Links between an
API and Its Learning Resources, in: Proceedings - International Conference
on Software Engineering, 2012, pp. 47–57. doi:10.1109/ICSE.2012.6227207.

[46] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, M. Lanza, Mining Stack-
Overflow to Turn the IDE into a Self-Confident Programming Prompter,
11th Working Conference on Mining Software Repositories, MSR 2014 -
Proceedings (2014) 102–111doi:10.1145/2597073.2597077.

[47] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim, Y. L. Traon,
Augmenting and structuring user queries to support efficient free-form code
search, Empirical Software Engineering (EMSE) 23 (5) (2018).

[48] L. Ponzanelli, G. Bavota, A. Mocci, R. Oliveto, M. D. Penta, S. Haiduc,
B. Russo, M. Lanza, Automatic Identification and Classification of Software
Development Video Tutorial Fragments, IEEE Transactions on Software
Engineering 45 (5) (2019) 464–488. doi:10.1109/TSE.2017.2779479.

[49] L. Cai, H. Wang, Q. Huang, X. Xia, Z. Xing, D. Lo, BIKER: A Tool
for Bi-information Source Based API Method Recommendation, in: Pro-
ceedings of the 27th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE19), 2019, pp. 1075–1079.

43



[50] R. Rubei, C. Di Sipio, P. T. Nguyen, J. Di Rocco, D. Di Ruscio, PostFinder:
Mining Stack Overflow posts to support software developers, Information
and Software Technology 127 (2020) 106367.

[51] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk,
How Do API Changes Trigger Stack Overflow Discussions? A Study on the
Android SDK, 22nd International Conference on Program Comprehension,
ICPC 2014 - Proceedings (2014) 83–94doi:10.1145/2597008.2597155.

[52] A. Benelallam, N. Harrand, C. S. Valero, B. Baudry, O. Barais,
Maven central dependency graph, The Maven dependency graph is
the fruit of a collaboration between the DiverSE team (Inria Rennes,
France) and CASTOR project (KTH, Sweden). Instructions on how to
use and reproduce the dataset can be found in the dataset’s repos-
itory on [Github](https://github.com/diverse-project /maven-miner). A
complete description of the dataset and usages can be found in the
accompanying [paper] (https://arxiv.org/abs/1901.05392). (Nov. 2018).
doi:10.5281/zenodo.1489120.
URL https://doi.org/10.5281/zenodo.1489120

[53] S. Subramanian, R. Holmes, Making Sense of Online Code Snippets, IEEE
International Working Conference on Mining Software Repositories (2013)
85–88doi:10.1109/MSR.2013.6624012.

[54] D. Yang, A. Hussain, C. V. Lopes, From Query to Usable Code: An Anal-
ysis of Stack Overflow Code Snippets, in: 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR), IEEE, 2016, pp. 391–
401.

[55] V. Terragni, Y. Liu, S.-C. Cheung, CSnippEx: Automated Synthesis of
Compilable Code Snippets from Q&A Sites, in: Proceedings of the 25th
international symposium on software testing and analysis, 2016, pp. 118–
129.

[56] Y. Dong, T. Gu, Y. Tian, C. Sun, SnR: Constraint-Based Type Inference for
Incomplete Java Code Snippets, in: Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 1982–1993.

[57] V. Raychev, M. Vechev, A. Krause, Predicting Program Properties
from "Big Code", ACM SIGPLAN Notices 50 (1) (2015) 111–124.
doi:10.1145/2775051.2677009.

[58] Z. Xu, X. Zhang, L. Chen, K. Pei, B. Xu, Python Probabilistic Type In-
ference with Natural Language Support, in: Proceedings of the 2016 24th
ACM SIGSOFT international symposium on foundations of software engi-
neering, 2016, pp. 607–618.

[59] V. J. Hellendoorn, C. Bird, E. T. Barr, M. Allamanis, Deep Learning Type
Inference, Proceedings of the 2018 26th ACM Joint Meeting on European

44



Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2018) 152–162doi:10.1145/3236024.3236051.

[60] R. S. Malik, J. Patra, M. Pradel, NL2Type: Inferring JavaScript Function
Types from Natural Language Information, 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE) 00 (2019) 304–315.
doi:10.1109/icse.2019.00045.

[61] J. Wei, M. Goyal, G. Durrett, I. Dillig, LambdaNet: Probabilistic Type
Inference using Graph Neural Networks, 2020 8th International Conference
on Learning Representations (2020). arXiv:2005.02161.

[62] Y. Peng, C. Gao, Z. Li, B. Gao, D. Lo, Q. Zhang, M. Lyu, Static Inference
Meets Deep Learning: A Hybrid Type Inference Approach for Python,
2022 IEEE/ACM 44th International Conference on Software Engineering
(ICSE) (2022). arXiv:2105.03595, doi:10.1145/3510003.3510038.

[63] D. Lehmann, M. Pradel, Finding the Dwarf: Recovering Precise Types
from WebAssembly Binaries, 2022 43rd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2022).

[64] X. Wang, X. Xu, Q. Li, M. Yuan, J. Xue, Recovering Container
Class Types in C++ Binaries, 2022 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO) 00 (2022) 131–143.
doi:10.1109/cgo53902.2022.9741274.

[65] K. Wang, Z. Su, Blended, Precise Semantic Program Embeddings, in: Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2020, pp. 121–134.

45


