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ABSTRACT
Progress has recently been made on specifying instruction set ar-
chitectures (ISAs) in executable formalisms rather than through
prose. However, to date, those formal specifications are limited
to the functional aspects of the ISA and do not cover its security
guarantees. We present a novel, general method for formally speci-
fying an ISA’s security guarantees to (1) balance the needs of ISA
implementations (hardware) and clients (software), (2) can be semi-
automatically verified to hold for the ISA operational semantics,
producing a high-assurance mechanically-verifiable proof, and (3)
support informal and formal reasoning about security-critical soft-
ware in the presence of adversarial code. Our method leverages
universal contracts: software contracts that express bounds on the
authority of arbitrary untrusted code. Universal contracts can be
kept agnostic of software abstractions, and strike the right balance
between requiring sufficient detail for reasoning about software
and preserving implementation freedom of ISA designers and CPU
implementers. We semi-automatically verify universal contracts
against Sail implementations of ISA semantics using our Kata-
maran tool; a semi-automatic separation logic verifier for Sail
which produces machine-checked proofs for successfully verified
contracts. We demonstrate the generality of our method by ap-
plying it to two ISAs that offer very different security primitives:
(1) MinimalCaps: a custom-built capability machine ISA and (2)
a (somewhat simplified) version of RISC-V with PMP. We verify a
femtokernel using the security guarantee we have formalized for
RISC-V with PMP.

ACM Reference Format:
Sander Huyghebaert, Steven Keuchel, Coen De Roover, and Dominique De-
vriese. 2023. Formalizing, Verifying and Applying ISA Security Guarantees
as Universal Contracts. In Proceedings of ACM Conference on Computer and
Communications Security (CCS’23). ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’23, 2023, Copenhagen
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
An instruction set architecture (ISA) is a contract between software
and hardware designers, defining the syntax, semantics, and prop-
erties of machine code. Architecture manuals have traditionally
specified the ISA informally through prose. Such ISA specifications
can be imprecise, omit details, and offer no means to test or verify
advertised guarantees, which is particularly important for the ISA’s
security features. In support of disambiguation, testability, experi-
mentation, and formal study, a recent trend is to instead use formal
and executable ISA specifications [4, 10, 17, 20, 21, 27, 42].

For instance, the Sail programming language [4] was designed
specifically for specifying ISAs. It is accompanied by a tool that can
produce emulators, documentation, and proof assistant definitions
from a Sail specification. Sail has been adopted by the RISC-V
Foundation for the official formal specification of RISC-V, an open
ISA based on established reduced instruction set computing (RISC)
principles [5], and is used for the development of the CHERI ex-
tensions [54]. Furthermore, mature Sail specifications for Armv8a
(mechanically translated from authoritative definitions) and RISC-V
are available. Such formal specifications are necessary for formally
verifying hardware (processors) and software (compilers, programs
written in assembly).

In addition to defining the semantics of instructions, ISA speci-
fications also make statements about the guarantees they uphold.
For example, ISAs offering virtual memory typically guarantee
that user-mode code can only access memory that is reachable
through the page tables. Importantly, such guarantees are not just
descriptive statements that happen to hold for the current version
of the ISA, but prescriptive statements which are part of the ISA
contract; they must continue to hold for extensions, future versions,
and implementations of the ISA. Similar to the ISA’s functional
specification, formalizing its security guarantees (rather than just
informally specifying them in prose) is vital to support reasoning
about security-critical code and validating ISA extensions.

Formalizing ISA security guarantees requires balancing require-
ments of various stakeholders. On the one hand, ISA designers
and CPU manufacturers require specifications that are abstract and
agnostic of software abstractions. They need to be able to easily
validate ISAs and their extensions or updates against the specifi-
cations, with maximum assurance. On the other hand, authors of
low-level software need specifications that are sufficiently precise
for reasoning about the security properties of code. They should be
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able to combine ISA security guarantees, which restrict the author-
ity of untrusted code, with manual reasoning about security-critical,
trusted code to obtain full-system security guarantees.

Themain contribution of this paper is a general and tool-supported
method for formalizing ISA security guarantees, resulting in spec-
ifications that are sufficiently abstract to facilitate validating ex-
tensions and updates of the ISA, but still sufficiently precise for
reasoning about code. The method is based on so-called universal
contracts (UCs), which start from the observation that the ultimate
goal of security primitives is to reason about trusted code inter-
acting with untrusted code. Essentially, the idea is to work in a
program logic for assembly code and formulate ISA security guar-
antees as a universal contract: one that does not just apply to some
specific code (as usual in software verification) but a contract that
applies to arbitrary—including untrusted— code. This universal con-
tract expresses the restrictions that the ISA enforces on untrusted
programs. When an ISA specification includes a formalization of
security guarantees as a UC, it can be used to reason formally about
security-critical software. Manually verified contracts for trusted
code can be combined with the universal contract for untrusted
code, in order to prove properties about the combined program.

It is essential to verify that the ISA functional specification and
security specification are consistent. In fact, whenever the ISA is
extended with additional instructions or behavior, it is important
that these changes do not break the specified security guarantees,
to avoid breaking security of software that relies on them. This
means continuously verifying during the evolution of the ISA, that
its semantics actually uphold the security properties expressed by
the universal contract.

Using universal contracts for generally specifying ISA security
guarantees requires (1) a program logic that is sufficiently expres-
sive to express guarantees of a broad range of ISAs, and (2) a verifica-
tion methodology that can verify the contracts in a semi-automated
way against authoritative, engineer-friendly ISA definitions, which
are typically implemented as definitional interpreters [e.g., 4, 10].
Universal contracts for ISAs have already been used for capturing
the capability safety property of capability machine ISAs [26, 48, 52],
and integrity and confidentiality properties of Armv7 [16, 33], but
neither approach reconciles these two essential requirements. In
the capability machine setting, the universal contracts have a very
specific shape: a logical relation is used to define the authority rep-
resented by a capability and the universal contract is presented as
the fundamental property of the logical relation. Formulating this
logical relation requires a logic that is sufficiently expressive, and as
a result, these universal contracts have so far only been proven for
theoretical ISAs in a custom-defined but non-authoritative small-
step operational semantics, with relatively limited automation. In
the Armv7 setting, the universal contracts are defined using a pro-
gram logic that is simpler but supports more automation, for a real,
authoritative ISA. However, the more basic program logic used
there does not support the reasoning currently done for capability
machines and similar work for capability machines has only been
able to establish weaker properties [7, 41]. In this paper, we are
the first to reconcile the two requirements: logic expressiveness
and verification automation for authoritative, engineer-friendly
interpreter-style ISA definitions. More generally, we are the first to

propose a general approach to formalizing, verifying and applying
the guarantees of more general ISA security primitives.

To achieve this, we use a program logic that allows concise,
compositional but expressive proofs and we provide a powerful ver-
ification tool called Katamaran to support this: a semi-automatic
separation logic verifier for Sail that automates most boilerplate
reasoning in the proofs, and allows focusing on the more interesting
parts. Katamaran symbolically executes code in µSail (a core cal-
culus of Sail) to verify general program logic contracts and includes
a generic solver for pruning unreachable branches and discharging
pure verification conditions (VCs). It is implemented in the Coq proof
assistant and comes with a full soundness proof following a general
approach [32]. This Coq soundness proof provides very high assur-
ance directly against the µSail operational semantics. Additionally,
taking inspiration from related work [46], Katamaran doubles as
a verification tool for the ISA’s assembly language, essentially by
treating a contract for an assembly program 𝑃 as a contract for the
ISA semantics under the assumption that it is executing program
𝑃 , following related work [46]. Compared to other foundational
verifiers like Diaframe [39], Lithium [45], MoSeL [34] or Bedrock
[15], Katamaran is in a sense a verified verification tool rather
than a verifying one, meaning that it is implemented in Gallina and
does not rely on Coq and meta-programming tactics to manage and
manipulate intermediate assumptions and VCs. This approach has
benefits for performance and allows extracting the verifier from
Gallina to OCaml. Only a few other tools in the literature take the
same approach [3, 30] and they are significantly less practical and
mature than Katamaran.

We demonstrate our approach by formalizing the intended secu-
rity properties for two quite different security primitives: capability
safety of a minimalistic capability machine, and memory protec-
tion for a version of RISC-V with the Physical Memory Protection
(PMP) extension and synchronous interrupts (i.e., exceptions). We
prove that the universal contracts hold for the Sail-implemented
semantics, the official formal semantics in the case of RISC-V, us-
ing Katamaran in a semi-automated approach that improves over
the more manual efforts employed so far. For now, we manually
translate the Sail semantics to our internal core calculus µSail
and we still somewhat simplify the ISA, but the simplifications
are minor. In particular, we now fully support bounded integers
and byte-addressed memory. The remaining restrictions include
assumptions on the amount of PMP configuration registers, the
allowed modes for PMP configurations and similar, that would prob-
ably not take more than a few weeks to remove. The verification
tool itself is fully verified, so we obtain high-assurance guarantees
in terms of the µSail semantics.

Note that, for now, we only formalize ISA security guarantees
about integrity through direct channels, as a first step towards
broader guarantees. In that sense, our work is closely related to
recent work on validating security guarantees of capability machine
ISAs [7, 41] (see Section 7 for a comparison). Thus, we solve a
different problem than recent proposals to make ISAs explicit about
side-channel leakage [24, 28], for which no guarantees are offered
by current ISA specifications, formal or informal.

To summarize, the contributions of this paper are:
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• A novel, general method based on universal contracts for formal-
izing security guarantees of ISAs w.r.t. the operational semantics
of the specification language.
• Katamaran: a new semi-automatic tool for verifying separation
logic contracts on code in µSail (a new core language for Sail).
Katamaran supports user-defined abstract predicates, lemma
invocations, and heuristics and includes an automatic solver for
pure VCs. It is implemented and verified in Coq, based on a gen-
eral approach described elsewhere [32]. Successful verifications
produce machine-checked proofs in an Iris-based program logic
that is itself proven sound against µSail’s operational semantics.
• A demonstration of the method for two case studies: (1) a minimal
capability machine that is a subset of CHERI-RISC-V [54] and
(2) the official formal Sail semantics of RISC-V with the PMP
extension, with minor simplifications.
• An evaluation of the required effort to validate a UC security
guarantee against the operational semantics of an ISA, based
on statistics about our two case studies. We measure the effort
required to validate the addition of an extra instruction. To assess
the effectiveness of Katamaran’s (semi-)automation, we com-
pare the MinimalCaps verification against a related but more
manual proof in Cerise [26].
• An end-to-end verification demonstrating the usefulness of con-
tracts resulting from our method for reasoning about security-
critical code. For this purpose we verify an example RISC-V pro-
gram (called the Femtokernel) that relies on the PMP security
guarantees for securing its internal state. The verification relies
solely on the RISC-V PMP universal contract to reason about the
invocation of untrusted code.
The remainder of the paper is structured as follows: Section 2 ex-

plains the security primitives used in our case studies. In Section 3
we introduce universal contracts by formalizing universal contracts
for two ISAs. In Section 4 we discuss our new semi-automatic logic
verifier, Katamaran. We outline and evaluate the verification effort
of our universal contracts in Section 5. In Section 6 we demonstrate
the verification of a femtokernel relying on our RISC-V PMP uni-
versal contract. Finally, we discuss related work in Section 7 and
conclude in Section 8.

2 BACKGROUND
In this section we give a brief introduction to separation logic and
cover the security primitives we use in our case studies: capabilities
and physical memory protection.

2.1 Separation Logic
Program logics are formal frameworks for proving properties about
programs. Hoare logic uses Hoare triples { PRE } P { POST } to ex-
press a contract for program P. The logical predicate PRE expresses
a precondition on the initial state of the system (e.g., local variables,
heap memory, etc.). If this precondition is satisfied, then program
P is guaranteed to run correctly (e.g., does not get stuck or crash)
and if it terminates, the final machine state will satisfy postcondi-
tion POST. If program P returns a result, the postcondition can be
written as {𝑟 . POST } to express guarantees about the result value 𝑟 ,
e.g. { True } return 42 {𝑟 . isEven(𝑟 ) }. Separation logic is similar to

Figure 1: Concept of a capability

Hoare logic, but pre- and postconditions are not expressed in stan-
dard propositional logic, but in a logic where assertions may also
express exclusive ownership of (or authority over) shared mutable
state of the system, such as the heap. This enables more modular
reasoning, i.e. contracts for program components can more easily
be combined. In separation logic, the points-to predicate 𝑙 ↦→ 𝑣

represents ownership of a resource 𝑙 and knowledge of its current
value 𝑣 . In this paper we will use the points-to predicate for memory
locations and registers. Assertions like 𝑙 ↦→ 𝑣 can be combined by
separating conjunction, denoted as 𝑃 ∗ 𝑄 , expressing that 𝑃 and
𝑄 are both true and that they claim ownership of disjoint subsets
of the shared state. The separating implication operator 𝑃 −∗ 𝑄
(affectionately referred to as the magic wand) requires that 𝑄 holds
when authority for the premise 𝑃 is presented. The separation logic
we use in Katamaran is based on Iris [31], which makes the logic
particularly expressive. For example, predicates can be defined re-
cursively (under the restriction of guardedness), they can express
authoritative knowledge over advanced forms of so-called ghost
state and invariants shared between multiple threads. Also, a con-
tract { PRE } P { POST } additionally expresses that invariants
remain true at every atomic step of execution.

2.2 Capability Machines
Capability machines are a special type of processors that offer
capabilities. CHERI is a recent family of capability machine ISA
extensions, and includes the Morello ARM extension which is being
evaluated in realistic settings by a consortium involving academia
and industry [53, 54]. Conceptually, capabilities are tokens that
carry authority to access memory or an object. On CHERI, a mem-
ory capability extends a traditional pointer with more information
such as, amongst others, the bounds and permissions.

Capabilities can be represented as a quadruple, (𝑝, 𝑏, 𝑒, 𝑎), con-
sisting of the permission 𝑝 of the capability, the begin and end
addresses 𝑏 and 𝑒 , and a cursor 𝑎. Permissions on a capability ma-
chine can include: the null permission 𝑂 , the read permission 𝑅,
and the read and write permission 𝑅𝑊 . Figure 1 illustrates a capa-
bility’s range of authority [𝑏, 𝑒] and cursor 𝑎, pointing to a current
memory location. A special case is the permission 𝐸, which models
enter capabilities1 [12]. A capability with this permission cannot be
used to access memory but can only be jumped to, in which case its
permission will change to 𝑅. When given to untrusted code, enter
capabilities represent a form of encapsulated closures: they can be
invoked, but the caller cannot access their private data and capabil-
ities. As such, they set up a security boundary and can represent
a form of software-defined authority and as such they constitute
what is generally called an object capability.

1Also known as sentry capabilities in the context of CHERI [54]
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The first case studied in this paper is a custom-built capability
machine we call MinimalCaps. It contains a subset of instructions
from CHERI-RISC-V [54], including branching, jumping, and arith-
metic instructions. A word on the machine is either an integer or
a capability and these can be stored in general-purpose registers
(GPRs) and in memory.MinimalCaps supports memory and object
capabilities, a superset of what is supported in Cerise [25, 26, 52].

2.3 RISC-V PMP
The Physical Memory Protection (PMP) extension of RISC-V allows
to restrict access to physical address regions [44]. RISC-V defines
three privilege levels: User, Supervisor and Machine (the first two
are optional). PMP allows configuring a memory access policy on
16 or 64 contiguous regions of memory by setting special regis-
ters, which are only accessible from the most privileged protection
level (machine mode). PMP has been used to implement a trusted
execution environment called Keystone [35].

We illustrate RISC-V PMP policy configuration in Figure 2, where
we limit ourselves to four PMP entries. PMP memory regions are
specified by a single address register, which is interpreted accord-
ing to one of several address-matching modes, but for brevity, we
restrict ourselves to Top of Range (TOR). In TOR mode, the ad-
dress register of a PMP entry forms the top of the range and the
preceding address register (or 0) forms the bottom of the range. In
other words, for PMP entry 𝑖 , the range of the entry is defined as
[pmpaddri−1, pmpaddri), with pmpaddr−1 equal to 0.

In addition to the address, a PMP entry specifies a configuration,
which for our purposes consists of 4 bits 𝐿𝑅𝑊𝑋 , where 𝐿 defines
whether the PMP entry is locked and 𝑅𝑊𝑋 stands for Read, Write
and Execute respectively. The policy in Figure 2 grants read-only
access to User and Supervisor mode (U- and S-mode) in PMP entry
1 and read-write access in entry 3. PMP entry 2 is locked, indicating
that its read-only permission applies to M-mode (machine mode)
as well. Entry 0 grants no permissions and is not locked, so only
M-mode can access this range of memory.

We now give a broader explanation of the policy enforced by
PMP entries. By default, M-mode has full permissions over memory
while U-mode and S-mode have no permissions. Non-locked PMP
entries grant permissions to U-mode and S-mode. A locked PMP
entry revokes permissions in all modes including M-mode. Such an
entry can only be modified by resetting the system, i.e., one cannot
write to the associated configuration and address register (and in
the case of TOR, the preceding address register).

The PMP check algorithm statically prioritizes the lowest-numbered
PMP entries. For a PMP entry to match an address, all bytes (in the

Figure 2: An example RISC-V PMP policy in Top-of-Range
mode (TOR).

function fdeCycle() = { function fdeStep() =
fdeStep(); let w = fetch(PC) in
fdeCycle() let i = decode(w) in
} execute(i)

Figure 3: fdeCycle and fdeStep definitions as found in Sail
specifications.

case of multi-byte memory accesses) must match the PMP entry
address range. When a PMP entry matches an address, the LRWX
bits determine whether the access succeeds or fails, otherwise the
access will succeed in M-mode but fail in other modes.

In our case study we focus on RV32I, the 32-bit base integer
instruction set, with the PMP extension. The case itself is a man-
ual translation from the Sail code to µSail, with some additional
simplifications: only two (rather than 16 or 64) PMP configura-
tion entries in top-of-range (TOR) mode are supported, there is no
virtual memory, and we only support M-mode and U-mode.

2.4 ISA specifications in Sail
When using Sail an ISA semantics is defined through a definitional
interpreter for the ISA’s assembly language. This includes the Fetch-
Decode-Execute cycle of the ISA. In the remainder of this paper, we
will use the function name fdeCycle to refer to the Sail function
implementing this cycle, although it may be named differently in a
practical Sail specification. Furthermore, Sail specifications model
memory as part of the global state, as well the ISA’s registers. In
Figure 3 we sketch a typical implementation of fdeCycle: it indef-
initely recurses on invoking the fdeStep function, which fetches,
decodes and executes the current instruction.

To give a better intuition for the execute function, we show
the specification of the store instruction in Figure 4. Sail models
typically define execute as a scattered definition that pattern matches
on its first argument, the instruction to be executed. Figure 4 shows
such a clause for store. The store instruction carries a source register
containing the value we want to write into memory, a base register
containing the capability to write to memory, and an immediate
offset. The clause performs the write to memory by first reading
the capability from register rb and deriving a capability c from bc
with its cursor incremented by the immediate. We assert that the
capability has the write permission and then continue by reading
the contents of rs and writing it to memory. Finally, the program
counter gets updated.

3 SECURITY GUARANTEES AS UNIVERSAL
CONTRACTS

In this section, we explain our novel, general method based on
universal contracts in more detail by considering the examples of
our capability machine,MinimalCaps and RISC-V PMP.

In our approach, UCs are formulated using separation logic, as
introduced in Section 2. Thanks to separation logic, the UCs only
have to consider the part of the state an adversary has access to,
and can be expected to scale to concurrency which we want to take
advantage of in the future. A contract {Pre} code {𝑟 . Post} usually
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function clause execute(store(rs, rb, immediate)) = {
let bc = read_reg_cap(rb);
let c = {bc with cap_cursor = bc.cap_cursor

+ sail_sign_extend (immediate, integer_size)};
assert (writeAllowed (c.cap_permission));
let w = read_reg(rs);
write_mem(c,w);
update_pc();
}

Figure 4: Sail specification of the store instruction of our
capability machine (simplified).

applies only to specific code. What we call a universal contract, is
one that applies to any choice of code, rather than only specific
ones. Such a contract specifies guarantees that are enforced by the
semantics for arbitrary or untrusted code.

While universal contracts apply to arbitrary assembly code, they
take a slightly different form in our setting. The arbitrary programs
that our contract applies to take the form of arbitrary instructions
encoded in memory. Our universal contract is thus defined as a
Hoare triple over the fdeCycle.

3.1 Capability Safety forMinimalCaps
The security guarantee offered by a capability machine is capability
safety, a property which expresses bounds on the authority of ar-
bitrary untrusted code. More intuitively, capability safety ensures
that arbitrary code can only access the resources and operations for
which it has been granted explicit access. Syntactic properties like
capability monotonicity [37], which expresses that the transitively
available authority cannot increase during execution, have been
shown insufficient in the presence of object capabilities [18]. There-
fore, we use a semantic formulation of capability safety based on
logical relations [18, 25, 26, 48, 50, 52] and formulate the property
as a contract over the fdeCycle, following Cerise [25, 26, 52]. The
contract states that if we start from a configuration of safe values,
arbitrary code will not be able to exceed the authority of those
values.

Figure 5 shows the logical relationV which defines the author-
ity of words (i.e., integers and capabilities). The logical relation is
defined using separation logic [43], where the notation ∗

𝑎∈[𝑏,𝑒 ]
𝑃

indicates that 𝑃 holds separately for all addresses 𝑎 ∈ [𝑏, 𝑒].
Authority of a value or capability is defined as separation logic

predicates that must hold for safely passing the value or capabil-
ity to untrusted code. Memory capabilities are thus safe when the
addressable locations 𝑎 are owned by an invariant. This invari-
ant must require exactly that the word stored at address 𝑎 always
remains safe. For simplicity, the definition treats read-only capa-
bilities as read-write. Note that the definition assumes a form of
shared invariants, as available in Iris, indicated by a box. The au-
thority represented by an enter capability is software-defined and
therefore non-trivial to define. Our definition follows previous

V(𝑤)



V(z) = True (𝑧 ∈ Z)
V(O, –, –, –) = True
V(R, b, e, –) = ∗

𝑎∈[𝑏,𝑒 ]
∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤)

V(RW, b, e, –) = ∗
𝑎∈[𝑏,𝑒 ]

∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤)

V(E, b, e, a) = ⊲□ E(R,b,e,a)

E(𝑤) =


(
pc ↩→ 𝑤 ∗ ∗

𝑟 ∈GPR
(∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))

)
−∗

wp fdeCycle() { True }

Figure 5: Logical relations for capability safety

{(∃𝑐. (𝑝𝑐 ↦→ 𝑐) ∗ V(𝑐))∗
∗𝑟 ∈GPR (∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))

}
fdeCycle()

{
True

}
Figure 6: Universal Contract for Capability Safety for Mini-
malCaps.

work and requires that jumping to the capability with its permis-
sion changed to 𝑅 and the general-purpose registers (GPRs) filled
with safe words, will execute correctly and will not break any
invariants – that is, wp fdeCycle() { True }. The standard Iris pred-
icate wp fdeCycle() { True } represents the weakest precondition for
fdeCycle() to execute correctly without breaking any invariants.
It can be alternatively interpreted as ∃Pre, Pre ∗ {Pre} code {Post}:
some precondition Pre needs to hold that is sufficient to guarantee
postcondition Post after executing code [13].

First-time readers may ignore Iris’s always modality (□), which
requires that the authority does not depend on exclusive ownership
of resources, and Iris’s later modality (⊲), which justifies the cycle
in the definition ofV . We refer to prior work for more explanation
[e.g., 26].

The universal contract for MinimalCaps is a contract for the
fetch-decode-execute cycle, depicted in Figure 6. It asserts that if the
machine is executed (i.e., fdeCycle() is invoked) with authoritized
capabilities in pc and general-purpose registers, then it will execute
correctly and not break any invariants. The postcondition True
is trivial, as before when we used wp fdeCycle() { True }. Indeed,
fdeCycle() is an infinite loop, so the postcondition is not very rele-
vant anyway. Nevertheless, even with an irrelevant postcondition,
our contracts still express the preservation of invariants during
execution (as we will see in Section 6).

As demonstrated before [25, 26, 52], such a UC is agnostic of
software abstractions but supports reasoning about untrusted code.
Essentially, one can register integrity properties of trusted code as
invariants2, and then use the UC for justifying jumps to untrusted
code. Applying the UC requires proving that authority is available
for all words that the untrusted code gets access to, directly (in a reg-
ister) or indirectly (in memory reachable from register capabilities).
This includes proving that enter capabilities passed to the adversary
can be invoked freely but never break established invariants.

2In fact, Iris invariants can also express protocols on private state [31].
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Normal(𝑙, ℎ,mpp, entries)
∗ ⊲(CSR Modified (𝑙, entries) −∗ wp fdeCycle() { True })
∗ ⊲(Trap(𝑙, ℎ, entries) −∗ wp fdeCycle() { True })
∗ ⊲(Recover (𝑙, ℎ,mpp, entries) −∗ wp fdeCycle() { True })


fdeCycle() { True }

Normal(𝑙, ℎ,mpp, entries) =

(∃𝑖 . pc ↦→ 𝑖) ∗ cur_privilege ↦→ 𝑙 ∗mtvec ↦→ ℎ ∗
(∃𝑐.mcause ↦→ 𝑐) ∗mstatus ↦→ [𝑚𝑝𝑝] ∗
mepc ↦→ mepc ∗ PMP_entries entries ∗∗
𝑟 ∈GPR

(∃𝑤. 𝑟 ↦→ 𝑤) ∗ PMP_addr_access entries l

Trap(𝑙, ℎ, entries) =

pc ↦→ ℎ ∗ cur_privilege ↦→ Machine ∗mtvec ↦→ ℎ ∗
(∃𝑐.mcause ↦→ 𝑐) ∗mstatus ↦→ [𝑙] ∗
(∃𝑐.mepc ↦→ 𝑐) ∗ PMP_entries entries ∗∗
𝑟 ∈GPR

(∃𝑤. 𝑟 ↦→ 𝑤) ∗ PMP_addr_access entries l

Figure 7: Universal Contract for Memory Integrity for RISC-
V with PMP.

3.2 Memory Integrity for RISC-V PMP
Universal contracts can be applied beyond the specific setting of ca-
pability machines. While other work has already employed univer-
sal contracts for specific non-capability machines, namely Armv7
[16, 33], we provide evidence that our method and our tool Kata-
maran are general and can be used to capture security guarantees
of different security primitives. To this end we apply our approach
to RISC-V with support for exceptions (synchronous interrupts)
and the PMP extension, as explained in Section 2. The universal
contract captures the memory integrity guarantee offered by the
ISA when invoking untrusted code.

Our model of RISC-V is translated to µSail from the ISA’s canon-
ical Sail semantics with some minor simplifications (which will be
easy to remove): only two (rather than 16 or 64) PMP configura-
tion entries in top-of-range (TOR) mode are supported, no virtual
memory, and only M-mode and U-mode (no S-mode).

We define the universal contract for this machine, over the fetch-
decode-execute cycle as shown in Figure 7. In this contract the
machine starts from a Normal state, which requires ownership
(and knowledge of the current values) of the architectural regis-
ters pc, cur_privilege,mtvec,mcause,mstatus andmepc, containing
respectively the program counter, current privilege level, config-
ured exception handler address, cause of the last interrupt, and the
privilege level and program counter before the last interrupt. Addi-
tionally, the state requires ownership of the general-purpose regis-
ters and the current PMP configuration entries. Finally and perhaps
most importantly,Normal requires ownership of PMP_addr_access
entries l, a predicate that represents ownership of memory accessi-
ble according to the PMP policy entries at the current privilege l
(discussed further below).

Given this authority, the contract states that the ISA will execute
correctly, provided that three extra conditions are fulfilled. All three
require that the machine continues executing correctly in a specific
situation: (1) when CSRs are modified, (2) when a trap occurs to
the exception handler, and (3) when an MRET is used to return to a
lower privilege level (Recover).

For brevity, we only show the definition of Trap, arguably the
most important case, as the other two cases can only be reached if
the original privilege level l was Machine, i.e., the UC is used to
reason about untrusted Machine code. PMP can be used to encap-
sulate Machine code (by locking some PMP entries) but it is more
typically used for encapsulating lower-privilege code. Trap requires
ownership of the same ISA registers and memory as Normal above.
However, it additionally requires that the program counter is set
to the configured exception handler, that cur_privilege is set to
Machine mode, and that mstatus correctly stores l as the previous
privilege level. Under these conditions, the user of the UC needs
to prove that the machine will execute correctly. This reflects the
intuition that trusted code can rely on PMP to encapsulate un-
trusted lower-privilege code, but only if it ensures security of the
configured exception handler.

A crucial predicate in the universal contract is PMP_addr_access,
which captures the semantics of the PMP check algorithm and is
shown in Figure 8. It is defined as a separating conjunction over all
addresses of the machine. The predicate allows obtaining a pointsto
predicate for an address 𝑎, if the PMP policy specifies a permission
𝑝 (e.g. Read or Write) for it at privilege level l. Importantly, this
means that ownership of other memory locations is not required
for using the universal contract, so it cannot be accessed.

3.3 Verifying and applying a Universal Contract
Formalizing security guarantees is useful for two purposes.

First, it can be used to verify whether the security guarantees are
consistent with the ISA’s operational semantics, e.g., whether all
instructions correctly check the (PMP or capability-based) policy
before accessing memory. This verification is a non-trivial effort
that should be repeatable during the evolution of the ISA, so we
provide tool support in the form of Katamaran, a semi-automatic
verification tool for Sail, discussed in Section 4. We discuss verify-
ing the UCs for MinimalCaps and RISC-V PMP in Section 5.

Secondly, the UC can be used to verify the security of trusted
software interacting with untrusted software. If such software is
verified against the UC, its security will hold in any implementation
of the ISA that respects the UC. Such a verification entails verifying
trusted code using the ISA operational semantics and invoking the
UC when a jump to untrusted code happens. We demonstrate in
Section 6 that our UC supports this using the femtokernel case study:
a minimal RISC-V PMP machine mode kernel that interacts with
untrusted user-mode code over a simple system call. Interestingly,
this verification reuses Katamaran as a verification tool for RISC-V
assembly, by reusing an idea from previous work [46].

PMP_addr_access entries m =

∗𝑎∈𝑎𝑑𝑑𝑟𝑠 ((∃𝑝, 𝑃𝑀𝑃_𝑎𝑐𝑐𝑒𝑠𝑠 𝑎 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑚 𝑝) −∗ ∃𝑤, 𝑎 ↦→ 𝑤)

Figure 8: PMP_addr_access predicate implementation
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4 KATAMARAN
Verifying that the semantics upholds security properties is a signif-
icant endeavor which involves manual reasoning. For instance, the
Coq formalization of Georges et al. [25]’s capability safety proof
for a simple capability machine with 19 instructions requires about
7kloc of Coq proofs. Real-world ISAs can of course be much larger.
Consequently, scaling up verification of ISA properties raises impor-
tant proof engineering challenges. Furthermore, if the ISA changes
(because of minor updates, new features, or for experimentation),
the proofs have to be updated as well. For manual proofs, this can
result in a prohibitive amount of work.

In a nutshell, proof automation is mission-critical for the veri-
fication effort to scale in terms of the size and complexity of the
specification of the instruction sets and of the specification of the
security guarantee itself, and for proofs to be robust to changes in
the specification.

Proof automation means that uninteresting or repetitive parts of
the proof are dealt with automatically using a tool, library, script
etc. The goal is for a human to steer the automation by providing
heuristics, and she should also be able to intervene directly and
prove certain cases manually where full automation fails. In other
words, verifying security properties of ISAs should at least be semi-
automatic.

To this end, we have developedKatamaran, a new semi-automatic
separation logic verifier, implemented and proven sound using
Kripke specification monads [32]. Katamaran is developed as a
library for the Coq proof assistant, and works with µSail, a new
core calculus for Sail deeply embedded in Coq, offering many of
Sail’s features.3 For the time being, the translation from Sail to
µSail has to be performed manually, but we intend to automate it
in the future.

Much like Sail, µSail specifications also leave the definition
of memory out of the functional specification and require a (user-
provided) runtime system to define what constitutes the machine’s
memory and to provide access to it. To this end, Katamaran relies
on foreign functions – that is, functions implemented in Coq of
which the signature has been declared in µSail so they are callable.
Additionally, µSail allows invoking lemmas (sometimes referred
to as ghost statements), which instructs the verifier to take a non-
trivial proof step that is verified separately.

The security properties are specified by means of separation
logic-based contracts consisting of pre- and postconditions for all
functions, including foreign ones. For this, Katamaran contains
its own deeply embedded assertion language.
3Sail’s existing Coq backend only translates to a shallow embedding.

Figure 9: Structure of Katamaran

Verifying that functions adhere to their contracts is done via
preconditioned forward static symbolic execution [6, 8] of the function
bodies. During the execution, Katamaran tries to discharge proof
obligations automatically using solvers and leaves residual VCs for
the user where this fails. The library contains a generic solver for
some of µSail’s background theory, which can be complemented
by a user solver for user-defined predicates. To bound the burden,
we require that all spatial proof obligations – that is, those related
to registers and memory, are dealt with during symbolic execution,
potentially with the help of the user in terms of ghost statements
and heuristics, and thus only pure proof obligations remain. Hence,
the produced residual VCs will be in first-order predicate logic,
which the user can discharge using Coq’s built-in proof automation.

Katamaran’s symbolic executor is implemented as a monadic
interpreter in a specification monad [2, 38, 49]. Such specification
monads allow angelic and demonic non-determinism which we
use to explore the execution paths of Sail programs. The specifi-
cation monad is implemented as a predicate transformer, which
combines assertions and assumptions encountered on different exe-
cution paths into a verification condition. The resulting verification
conditions are not regular Coq propositions but rather ASTs in
a syntactically represented language of propositions, allowing us
to simplify them and prune unreachable paths during verification.
Additionally, we use Kripke indexing techniques to track logical
variables in scope and path constraints [32]. This enforces that path
constraints are monotonically increasing along execution paths and
hides the plumbing.

A question that arises is whether the generated VCs suffice to
verify the function contracts. The user does not have to take the
output of the symbolic executor at face value: Katamaran comes
with a full soundness proof against the µSail operational semantics.
The structure is depicted in Figure 9. The contracts of both kinds
of functions and the code of the µSail functions are inputs to the
symbolic executor fromwhich it produces VCs. Following the recipe
proposed by [30, 32], we first reduce the soundness of the symbolic
executor to a shallow executor: a monadic interpreter with the same
structure as the symbolic executor but written in a specification
monad over propositions of the meta-logic. A binary Kripke logical
relation [32] links the constituents of both interpreters, and allows
us to conclude that symbolic VCs imply shallow VCs. A second
soundness proof connects this to an axiomatic program logic: given
proofs of the shallow VCs the function bodies are also verifiable in
the program logic.

The program logic consists of separation logic contracts
{ PRE } 𝑐 {𝑟 . POST }. We assign meaning to these contracts using the
Iris separation logic framework [31]. This requires user-provided
proofs that foreign functions adhere to their contracts and that
lemmas used in ghost statements are sound. We kept the axiomatic
program logic separate from its instantiation using Iris, and in
principle, other logics than Iris can be used. However, we provide
the Iris model as the default choice with full soundness proofs and
hooks for the user to extend it.

A last adequacy proof connects the Iris contracts to the oper-
ational semantics: every contract that holds semantically implies
partial correctness. This is sufficient for us; we assume it is verified
separately that the machine cannot get stuck.
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Table 1: Katamaran lines of code calculated by coqwc.

Component Spec Proof

µSail syntax and semantics 1939 547
Symbolic executor 3102 2396
Background theory solver 786 410
Shallow executor 536 762
Program logic 1226 1058
Iris model 596 679
Other 2609 1325
Total 10794 7177

An overview of the sizes of different parts of Katamaran can
be found in Table 1. Even though we run Katamaran within Coq’s
typechecker4, it is fast enough for interactive experimentation with
definitions in our case studies, with immediate verification of the
corresponding contracts. For instance, the longest runs of the sym-
bolic executor are the verification of the femtokernel blocks that
we describe in Section 6, where we symbolically execute µSail
code to derive a symbolic executor for assembly code. Both blocks
combined take 1.77s to symbolically execute (on an Intel i7-12700)
and in total 247 calls of µSail and foreign functions are executed
of which 105 calls are executed by interpreting function contracts
and 142 are executed by interpreting function bodies.

5 VERIFICATION OF UNIVERSAL
CONTRACTS USING KATAMARAN

Using Katamaran, we have verified that the two universal con-
tracts from Section 3 are consistent with the operational semantics
of the ISAs. In this section, we explain the two verifications and
evaluate the proof effort involved.

5.1 MinimalCaps
The verification of capability safety in the literature so far has
required significant manual effort [26, 48, 52]. In this section, we
demonstrate our semi-automatic approach.

The contract for fdeCycle() iterates the following contract for
fdeStep(), which executes a single FDE cycle.

{(∃𝑐. (𝑝𝑐 ↦→ 𝑐) ∗ V(𝑐)) ∗ ∗𝑟 ∈GPR (∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤)) ∗ IH }
fdeStep()

{(∃𝑐. (𝑝𝑐 ↦→ 𝑐) ∗ V(𝑐) ∨ E(𝑐)) ∗ ∗𝑟 ∈GPR (∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))}
This internal contract requires an induction hypothesis IH:

IH := □ ⊲(∀𝑐. 𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)∗∗
𝑟 ∈GPR

(∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤)) −∗ wp fdeCycle() { True })

Note how the postcondition allows the pc to contain a safe capability
or one that satisfies the expression relation E above. The latter is
necessary because after invoking an enter capability, the pc may
contain a value that would not be safe to hand to an adversary but is
nevertheless safe to execute. We apply the same contract to helper
4Extracting or natively compiling the code is possible in theory, but currently the
overhead outweighs the benefits.

{(∃𝑐. 𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)) ∗
𝑟 ∈GPR

(∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))}

store(rs : GPR, rb : GPR, immediate : int) : bool :=
let bc := call read_reg_cap 𝑟𝑏 in

let (perm, beg, end, cursor) := bc in

let 𝑐 := (perm, beg, end, cursor + immediate) in
let 𝑝 := call write_allowed perm in
assert 𝑝;
let𝑤 := call read_reg 𝑟𝑠 in
lemma subperm_not_E RW perm;
{𝑟0 ↦→ bc ∗ V(bc) ∗ 𝑟1 ↦→ 𝑤1 ∗ V(𝑤1) ∗ perm ≠ E . . .}
lemma move_cursor bc 𝑐;
{𝑟0 ↦→ bc ∗ V(bc) ∗ 𝑟1 ↦→ 𝑤1 ∗ V(𝑤1) ∗ perm ≠ E ∗ V(𝑐) ∗ . . .}
call write_mem 𝑐 𝑤 ;
call update_pc;

{(∃𝑐. 𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)) ∗ ∗
𝑟 ∈GPR

(∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))}

Figure 10: Capability safety for the store instruction (slightly
simplified).

functions used by fdeStep() to execute individual instructions. Some
other helper functions are given more specific contracts.

Consider, for example, the read_mem(𝑐) function, which reads
the word in memory denoted by the cursor of the given capabil-
ity. The contract of read_mem requires authority for capability
(𝑝, 𝑏, 𝑒, 𝑎) before executing read_mem(𝑐) with permission 𝑝 at least
read permission, and guarantees that the capability is still safe
afterwards, as well as the word read from memory:{
V(𝑝,𝑏, 𝑒, 𝑎) ∗ 𝑅 ≤𝑝 𝑝

}
read_mem (p, b, e, a)

{𝑤.V(𝑤) ∗ V(𝑝,𝑏, 𝑒, 𝑎)}

{
V(𝑝, 𝑏, 𝑒, 𝑎) ∗ 𝑅 ≤𝑝 𝑝

}
read_mem (p, b, e, a) ←↪

{𝑤.V(𝑤) ∗ V(𝑝, 𝑏, 𝑒, 𝑎)}
{V(𝑐)} read_mem c {𝑣 .V(𝑣) ∗ V(𝑐)}
{𝑟 ↦→ 𝑤} read_reg r {𝑣 . 𝑣 = 𝑤 ∗ 𝑟 ↦→ 𝑤}
{𝑟 ↦→ 𝑤} read_reg_cap r {𝑐. 𝑐 = 𝑤 ∗ 𝑟 ↦→ 𝑤}

{V(𝑐) ∗ V(𝑤)}write_mem c v {V(𝑐)}
{𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)} update_pc {∃𝑐.𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)}

{V(𝑝, 𝑏, 𝑒, 𝑎) ∗ 𝑝 ≠ E}move_cursor (p, b, e, a) (p, b, e, a′) ←↪{
V(𝑝, 𝑏, 𝑒, 𝑎) ∗ V(𝑝,𝑏, 𝑒, 𝑎′)

}{(𝑝 = R ∨ 𝑝 = RW)
∗ 𝑝 ≤𝑝 𝑝′

}
subperm_not_E p p′

{
𝑝′ ≠ E

}
Figure 11: Contracts for functions and lemmas used in
exec_sd (for registers r, values v and w and capabilities c)
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To give an idea of how these contracts are verified using Katama-
ran, Figure 10 shows the µSail implementation of MinimalCaps’
store instruction, with verification annotations in red (not part
of the code itself), and Figure 11 displays the contracts for the
functions used in the implementation. This instruction takes 3 argu-
ments: source and target GPRs rs and rb and an integer immediate.
The instruction will write the value of rs to cursor + immediate, if
register rb contains a capability with this cursor .

In the function body, a new capability 𝑐 is derived from bc with
the immediate added to the cursor, and this capability is used to
write word 𝑤 to memory. We use a few lemmas to modify the
precondition in order to satisfy the precondition of write_mem,
which requires authority for destination capability 𝑐 and word𝑤 .
Note that lemmas are proven sound in the Iris model for the case
study using Iris Proof Mode. For simplicity, we assume that rb =

𝑅0, rs = 𝑅1 and ignore the non-relevant parts of the precondition
for this discussion.

The move_cursor lemma produces aV predicate for 𝑐 based on
the one for bc, which differs only in the cursor field. Remember
that the authority of memory capabilities requires that all addresses
between [𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑] are owned and point to words whose author-
ity is available, i.e., it does not mention the cursor of the capabil-
ity. Because move_cursor only works for non-E capabilities, we
use another lemma subperm_not_E to derive that perm ≠ E from
RW ≤𝑝 perm.

The write_mem 𝑐 𝑤 call checks that 𝑐’s cursor is within bounds
but assumes it has the write permission. If all checks pass, word𝑤
will be written to this address. The checks are critical for capability
safety of MinimalCaps and the machine will go into a failed state
if they are not satisfied. The actual write to memory is performed
through a foreign function, calledwM , which takes an address and a
word to be written to memory. wM is provided by the Sail standard
library for the Sail specification and in the runtime system for its
µSail counterpart.

The update_pc function is quite simple and utilizes the
move_cursor lemma again to generate a V predicate for the up-
dated pc.

Arriving at the end of the exec_sd function, we can verify that
its contract holds, i.e., safety of register values is preserved when
executing this instruction. Together with the verification of other
functions, we derive the contract for fdeCycle(). The contract for
the fdeCycle() itself is proven manually due to the use of Iris’s
later modality and Löb induction, which Katamaran does not (yet)
support. Note that in the proof of the contract of fdeCycle(), we can
use the semi-automatically proven contracts, i.e., we don’t need
to reason about fdeStep() manually in the body of fdeCycle(). The
fdeCycle() contract is a universal contract of the ISA, as it expresses
an authority boundary on (untrusted) code. It allows us to conclude
that ourMinimalCaps ISA actually satisfies the intended capability
safety property.

5.2 RISC-V PMP
As forMinimalCaps, we verify that our universal contract holds
for the functional specification of RISC-V. This verification is done
assuming contracts for reading from and writing to memory, shown
in Figure 12. The contracts require read or write access, respectively


Read ⊑ 𝑡

∗ cur_privilege ↦→ 𝑝

∗ PMP_entries entries
∗ PMP_access a entries p t
∗𝑎 ↦→ 𝑤


read_ram a

{ cur_privilege ↦→ 𝑝

∗ PMP_entries entries
∗𝑎 ↦→ 𝑤

}


Write ⊑ 𝑡

∗ cur_privilege ↦→ 𝑝

∗ PMP_entries entries
∗ PMP_access a entries p t
∗ ∃𝑤,𝑎 ↦→ 𝑤


write_ram a v

{ cur_privilege ↦→ 𝑝

∗ PMP_entries entries
∗𝑎 ↦→ 𝑣

}

Figure 12: Contracts for functions interacting directly with
memory

in the form of the PMP_access predicate encountered above. We
also require that we have ownership of the address that we want to
read from or write to, 𝑎 ↦→ 𝑤 . The postconditions of these functions
return the resources used, updated in the case of write_ram to point
to the newly written value.

Like for MinimalCaps, the universal contract proof iterates a
contract for the single-cycle fdeStep(), depicted in Figure 13. It
specifies that executing an instruction will leave the CPU in one
of the states Normal, CSRModified, Trap or Recover, mentioned
earlier, with specific values for the ISA registers. Not shown are
the predicates for ownership over the general-purpose registers,
i.e.,∗𝑟 ∈GPR (∃𝑤. 𝑟 ↦→ 𝑤), and the PMP entries, PMP_entries, and
PMP_addr_access, representing ownership of the PMP-authorized
memory. All these predicates are preserved as-is upon a state
change, except PMP_entries which may be modified in the CSR
Modified state. The CSRModified and Recover states can only be
reached when executing in Machine mode, i.e., 𝑝 = Machine. Trap
transfers into Machine mode and Recover returns to the privilege
level stored in mpp.

To verify the memory integrity property for RISC-V with PMP,
we use some interesting lemmas shown in Figure 14. The first lemma
open_PMP_entries and a dual lemma called close_PMP_entries, open
resp. close the PMP_entries predicate, to allow direct access to the
PMP CSRs in parts of the ISA semantics that access them, par-
ticularly the PMP check algorithm. We use the same scheme for
reasoning about GPRs, i.e., we pack them in a predicate and open
and close it when appropriate. The two lemmas needed for inter-
acting with memory are extract_PMP_ptsto and return_PMP_ptsto.
extract_PMP_ptsto trades ownership of PMP-authorized memory,
given by PMP_addr_access for a points-to predicate for an autho-
rized, in-range address 𝑎 and a magic wand that allows to recover
PMP_addr_access using return_PMP_ptsto if we return the points-
to predicate. All these lemmas are proven correct in the Iris model
and are explicitly invoked in its function definitions using ghost
statements that aid the semi-automatic verification of the contracts
of these functions by Katamaran.

These lemma invocations suffice to let Katamaran verify most of
the contracts in the codebase. As forMinimalCaps, we only need
to prove the contract for the fdeCycle() and the lemmas used in the
case study manually.

5.3 Evaluation
In this section we evaluate our semi-automatic approach to uni-
versal contract verification. Our aims for the approach are that
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Figure 13: Contract for taking a step on RISC-V (i.e., executing an instruction). New existentially quantified logic variables are
shown in red, modified registers are shown in bold. Constraints on the Start of Iteration logic variables are indicated on the
arrows (we require for CSR Modified and Recover state transitions that we started from a state running in Machine mode, i.e.,
𝑝 = Machine).

{PMP_entries entries} open_PMP_entries


∃cfg0, addr0, cfg1, addr1,
(pmp0cfg ↦→ cfg0 ∗ pmpaddr0 ↦→ addr0 ∗
pmp1cfg ↦→ cfg1 ∗ pmpaddr1 ↦→ addr1 ∗
entries = [ (cfg0, addr0 ) ; (cfg1, addr1 ) ] )

{
PMP_addr_access entries p ∗
0 ≤ addr ≤ maxAddr ∗ PMP_access addr entries p acc

}
extract_PMP_ptsto {∃𝑤. addr ↦→ 𝑤 ∗(addr ↦→ 𝑤 −∗ PMP_addr_access entries p) }

{∃𝑤. addr ↦→ 𝑤 ∗(addr ↦→ 𝑤 −∗ PMP_addr_access entries p) } return_PMP_ptsto {PMP_addr_access entries p}

Figure 14: Contracts for lemmas used in RISC-V PMP case study.

universal contracts should be agnostic of software abstractions and
verified against the operational semantics of ISAs. Furthermore, we
want to minimize the effort to re-verify a universal contract for
a modified ISA. We evaluate the proof effort required in our case
study absolutely as well as relatively to Cerise [25, 26, 52].

Cerise is close to our MinimalCaps case study because it estab-
lishes a very similar formulation of capability safety in an expres-
sive, Iris-based program logic. However, they work for a simpler
but otherwise similar capability machine ISA with a small-step
operational semantics. In addition to the universal contract which
is formulated as a logical relation and associated "fundamental
theorem", they also prove functional specifications for instructions
which they use to verify example software. The lines of code in both
developments should be interpreted and compared with caution,
because the approaches are quite different (e.g. different style of
defining semantics) and because Cerise’s functional specifications
and verified examples do not have analogues in the MinimalCaps
case study. The Cerise proofs are large manual Iris Proof Mode
proofs, with limited automation.

Table 2 presents statistics on our two case studies and some
relevant statistics for Cerise [25, 26, 52]. We will first focus on the
MinimalCaps and RISC-V PMP rows of the table and discuss the
comparison with Cerise at the end of this section.

The first column in the table shows the Sail LoC for theMini-
malCaps case study. ForMinimalCaps we started with our own
Sail specification and gradually extended it until it became a subset
of CHERI-RISC-V. We took the opposite direction for the RISC-V
PMP case study, starting from the RISC-V Sail specification and
simplifying it during the translation step from Sail to µSail into a
minimal subset with the PMP extension. This means we do not have

a simplified, minimal RISC-V PMP Sail codebase and therefore do
not report on the Sail LoC for this case study.

The next part of the table is data about our case studies them-
selves. Our case studies are based on Sail codebases, which we
currently manually translate into µSail code, but we are confident
that this translation can be automated. The µSail code is twice the
size of the Sail code, this due to some configuration that we need
to provide for Katamaran and the required derivation of typeclass
instances. Next, we present the number of µSail functions, foreign
functions, lemmas, and lemma invocations. The lemmas aid Kata-
maran in its verification endeavor and the invocations of these
lemmas need to be manually added in the µSail functions. The
contract proof LoC for the µSail specification of our case study are
indicative of how well Katamaranwas able to automate the boring
parts. For theMinimalCaps case study, the majority of the 122 LoC
for the µSail specification proofs consists of tactic invocations to
discharge trivial proof obligations. This is similar for the RISC-V
PMP case study, but Katamaran left a few residual VCs that re-
quired manual discharging. The proofs for the foreign functions
and lemmas — the interesting part of our case studies — that reason
about capability safety and memory interactions, require manual
proof effort. Katamaran distinguishes between spatial and pure
abstract predicates and provides hooks for a user-defined solver
for pure predicates. We specified a few pure predicates and report
on the LoC for the solver. Finally, we were able to validate our
universal contracts in 171 LoC (i.e., reasoning about the contract for
the fdeCycle) forMinimalCaps and 272 LoC for RISC-V PMP. We
end Table 2 with the total LoC for the case studies, not including
the µSail specification (or operational semantics for Cerise), as the
µSail specification should in principle be generatable.
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MinimalCaps 571 - 1115 53 3 11 39 407 49 134 122 65 79 354 3 82 171 1572
RISC-V PMP - - 2025 66 4 8 16 883 61 89 226 150 390 184 9 178 272 2536
Cerise - 1190 - - - 142 - - - 2318 - - 2918 1351 - - - 6729

Table 2: Detailed statistics for the MinimalCaps and RISC-V PMP case studies and some comparative statistics (where relevant)
with Cerise (the base version without uninitialized, local capabilities or I/O [25]), giving the lines of code (LoC) without
comments for different parts of the case study as well as some numbers on how many µSail functions, foreign functions,
lemmas, lemma invocations and pure predicates each case study defined. There is no direct mapping of our approach to the
approach taken for Cerise so the comparison is not entirely fair, for example, the Iris model LoC for Cerise also contains code
for verifying concrete code. We view the Sail LoC as separate from our case studies and therefore do not include it the total at
the right of the table.

To further demonstrate the robustness of our approach to univer-
sal contracts, we have added an instruction to each case study that
doesn’t introduce any complexity regarding the proven universal
contract, i.e., we are adding a boring case to each case study. We
have chosen to duplicate the integer addition instruction for this
purpose, which takes three registers, a destination register to write
the result to and two source registers. In RISC-V this means adding
a new operation for the RTYPE instructions, while for Minimal-
Caps we define a completely new instruction. The increase in the
µSail LoC specification is only two lines for the RISC-V case and 17
for MinimalCaps. No further changes are required for the RISC-V
case, i.e., we do not need to modify any proofs. ForMinimalCaps
we need to add a lemma invocation in the execute clause for the in-
struction and we need to specify a contract for the new instruction
execution clause, which needs 3 LoC for the contract specification.
Furthermore, we add two lines of contract proof code to include
this new instruction. Due to the added lemma invocations, Katama-
ran was able to verify the proof without further manual effort. We
conclude that adding a boring instruction (i.e., an instruction that
is not relevant for the universal contract) requires only minimal
changes to both of our case studies.

The categories for which we provide statistics forMinimalCaps
have no direct mapping to Cerise, so for a meaningful discussion,
we tried to gather statistics in a way that is maximally fair, but the
reader should keep in mind that this comparison is not entirely
fair. For example, although we do not count Cerise proofs that
are unrelated to the universal contract, the proofs do not separate
lemmas and proofs that are intended for verifying concrete code
from those that are used to prove the universal contract. The opera-
tional semantics for the capability machine of Cerise is comparable
to our µSail specification. More interesting are the statistics for
lemmas and the lines of code for the specification and proofs of
these lemmas, where Cerise requires significantly more proof effort.
For MinimalCaps, we use Katamaran to automate uninteresting
parts, leaving us with a smaller amount of proof code for lemmas
that are directly related to capability safety. The Iris model is al-
ready partially instantiated in the Katamaran codebase, making
the MinimalCaps LoC for this part smaller than that of Cerise.

6 APPLYING THE UNIVERSAL CONTRACT:
FEMTOKERNEL VERIFICATION

Thus far, we have focused on the verification of the security guar-
antees of our universal contracts. In this section, we demonstrate
that our universal contracts are strong enough to support the veri-
fication of properties of programs running on top of an ISA. The
MinimalCaps UC is close to the Cerise model, for which this has
arguably already been demonstrated [25, 52]. Therefore, we focus
on our RISC-V case, where, to the best of our knowledge, such a ver-
ification using universal contracts has not yet been demonstrated.

To illustrate the technique, consider the minimal femtokernel in
Figure 15, which configures the PMP extension to protect itself,
including its interrupt handler (ih) and a private data field (data),
from adversarial user mode code (adv). More specifically, the fem-
tokernel configures the PMP address registers to create the memory
regions [0, adv) and [adv,max) (lines 1–4), where themax variable
refers to the maximum size of memory available on the machine,
then revokes all permissions for user mode from the first region
and grants read, write and execute permissions to user mode to the
second region (lines 5–6). Both entries are unlocked so machine
mode code can also access the first region. The kernel then installs
its handler (lines 7–8) and jumps to the adversary in user mode
(lines 9–12) by loading the adversary address into themepc register
(lines 9–10), clearing the mstatus register (line 11), i.e., setting the
MPP field to user mode, and performing the jump (line 12). The
handler will read the private data field into the ra register before
returning, but leaves the value in memory unchanged.

The integrity property we wish to verify is that the private
data field, which is initialized with value 42, will always contain
the value 42 — that is, code running in user mode cannot modify
(or even directly read) the internal state of the kernel. Our Iris
model supports a general notion of invariants, so we can register
this property as an invariant (and in fact, we do the same for the
memory storing the femtokernel instructions):

invfemto = data ↦→word 42 for data the label from Fig. 15.

Ownership of the remaining memory is sufficient to establish
PMP_addr_access entries User for the PMP configuration (entries)
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1: kernel: la ra, adv
2: csrrw pmpaddr0, ra, t0
3: li ra, max
4: csrrw x0, pmpaddr1, ra
5: li ra, 0xf00
6: csrrw x0, pmp0cfg, ra
7: la ra, ih
8: csrrw x0, mtvec, ra
9: la ra, adv
10: csrrw x0, mepc, ra
11: csrrw x0, mstatus, x0
12: mret
13: ih: auipc ra, 0
14: lw ra, 12(ra)
15: mret
16: data: 42
17: adv: . . .

Figure 15: The femtokernel sets up the PMP entries to protect
itself, the interrupt handler and its internal state.

set by the femtokernel initialization code. As a result, we can invoke
the universal contract to establish safety of the jumps to unknown
user-mode code at the end of the initialization and exception han-
dler. It then remains to prove contracts for the kernel and interrupt
handler, establishing that they jump to user-mode code in a correct
state (i.e., in user-mode, with the intended PMP configuration) and
use but don’t break the registered invariants.

Inspired by Islaris [46], we can largely automate the remaining
verification, by reusing existing components and proofs of Kata-
maran to derive a sound verifier for known assembly code. Essen-
tially, the idea is that a contract for {Pre}B{Post} for a basic block
of assembly code can also be regarded as a contract for the ISA
semantics, under the assumption that it is looking at basic block
𝐵. Essentially, to verify a contract for a basic block of assembly
instructions {Pre0} instr0..𝑛 {Post𝑛}, we iteratively verify fdeStep()
contracts that look roughly like this:

{Pre𝑖 ∗ pc ↦→ 𝑎 ∗ 𝑎 ↦→ 𝑐 ∗ 𝑑𝑒𝑐𝑜𝑑𝑒 (𝑐) = instr𝑖 } fdeStep()
{Post𝑖 ∗ pc ↦→ 𝑎 ∗ 𝑎 ↦→ 𝑐}

We are thus able to verify the contracts for the basic blocks of
the femtokernel, i.e., the initialization and handler code, leaving
only some manual proofs to register invariants for code, data, and
adversarial memory and invoke the universal contract.

Taken together, our femtokernel case study demonstrates that
our UC for RISC-V can be directly applied for verifying security
properties of trusted code relying on PMP to interact with untrusted
code. All parts of the verification are fully verified in Coq, yielding
a rigorous proof about ISA execution, directly in terms of µSail’s
operational semantics, which we list for reference in Appendix A.

7 RELATEDWORK
Universal contracts have been used to capture security properties of
capability-based high-level languages [18, 50] and capability-based
ISAs [25, 25, 26, 48, 51]. Our formalization of capability safety for

MinimalCaps is close to the one in Cerise [25, 25, 26]. Some ver-
sions of Cerise support additional features like local or uninitialized
capabilities. They use a verification approach that requires signifi-
cant effort to prove that the universal contracts hold, in contrast to
our semi-automatic verification approach enabled by Katamaran.

Nienhuis et al. [41] prove reachable capability monotonicy up to
security domain transitions and intra-domain memory invariant
properties for the entire CHERI-MIPS ISA, based on the L3 specifica-
tion instead of the Sail specification, where their security property
is based on the ISA specification and does not take a hardware imple-
mentation or software running on the ISA into account. There are
some differences between their work and ours: first, we have demon-
strated that the capability safety security property we formulate as
a universal contract can be used in the verification of programs to
be executed on the ISA. It has not been shown yet that capability
monotonicity up to security domain transitions is a strong enough
property to perform such full-system proofs. Second, the approach
taken differs from ours in that they express their security property
in the meta-logic directly and automate the boring parts of the proof
away with standard automation, like tactics and auto-generated
proof scripts, whereas we use an embedded separation logic and
provide our semi-automatic logic verifier, Katamaran, based on
symbolic execution. Our more abstract description of the security
property should be more future proof against ISA modifications
and extensions. For example, in our universal contracts it does not
matter whether a capability machine has a merged or split register
file for capability registers, whereas Nienhuis et al. mention that
such a change required refactoring of the properties and proofs
in their approach. Finally, we demonstrate the generality of our
universal contracts approach by verifying security properties of
non-capability machines.

Similar work to that of Nienhuis et al. is done by Bauereiss et al.
[7] on a full-scale industry architecture, Morello, implementing
the CHERI extension. To reason about the ISA, a translation from
the Arm ASL specification to Sail occurs first, and from the Sail
specification it is possible to generate code for proof assistants
such as Isabelle and Coq. To verify the reachable capability mono-
tonicity property (up to domain transitions), the authors define
four properties of arbitrary CHERI instruction execution and use
that to verify a concrete implementation, i.e. Morello. In compari-
son to Nienhuis et al., this more abstract definition of the security
property allows more automation and thereby reach the scale of
Morello. Bauereiss et al. mention that proving stronger properties,
such as capability safety, requires proof techniques that do not scale
up to full-scale industry architectures. Part of the reason is that
current automation techniques for separation logics in a founda-
tional setting [11, 13, 15, 34, 39, 45] are still insufficient. This is
the issue that we are addressing with our proposed universal con-
tract methodology and Katamaran to semi-automatically verify
universal contracts.

Gao and Melham [22] formally verify the correct execution of
CHERI-instructions and liveness properties for CHERI-Flute [2022]:
a concrete implementation of CHERI-RISC-V. Their results apply
only to this specific ISA implementation, making their work very
different from ours. Similarly, Cheang et al. [14] prove functional
correctness of RISC-V PMP for the Rocket Chip implementation, as
a step towards verifying the Keystone [35] framework.
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Dam et al. and Khakpour et al. use a basic Hoare logic to for-
mulate ISA security primitives for Armv7. This suffices for their
security primitive, where the CPU transitions only from untrusted
code to trusted code on interrupt or syscall, making it easy to de-
fine the scenarios for which trusted code needs to ensure secure
behavior. Capability safety exemplifies a more complicated secu-
rity property because arbitrarily many security boundaries can be
crossed: any enter capability that is directly or indirectly accessible
from current architectural registers. Because of this, phrasing such
guarantees requires a sufficiently expressive logic. Other security
primitives can be expected to similarly require or benefit from
advanced logic features like ghost state, invariant, ownerhsip etc.

Guarnieri et al. [28] propose hardware/software contracts to
formalize security guarantees in a minimal ISA setting that takes
side-channel attacks into account. A similar approach is taken by
Ge et al. [23], who propose adding guarantees about side-channel
leakage to the ISA in an augmented ISA (aISA). Both proposals ad-
dress a different problem than we do: while we leave confidentiality
guarantees, microarchitectural aspects and side-channel leakage
out of scope, they do the same with security boundaries, architec-
tural security primitives and direct-channel protections. In that
sense, they are formalizing a different aspect of ISA security guar-
antees, which should ultimately be combined with direct-channel
guarantees like ours to obtain a complete ISA security specifica-
tion. In future work, we intend to add support for confidentiality
guarantees and side channels.

The conventional way to reason about separation logic in proof
assistants is to use a shallow embedding of propositions and provide
meta-programming facilities, like tactics or plugins, which can be
used to implement proof steps that interactive forward symbolic exe-
cution [11] of program fragments at themeta-level [13, 15, 34, 39, 45].
In the background a proof term is constructed which has to be
checked by the system for each run. In contrast, Katamaran is
not interactive and uses a deep embedding of propositions and is
implemented at the object-level language of Coq called Gallina
and we verified once and for all that each run of the symbolic
executor is sound. As a consequence, the usage and implemen-
tation of Katamaran is closer to standalone verifiers and frame-
works [19, 29, 36, 40, 47]. A downside of the approach is that existing
meta-level machinery cannot be used during symbolic execution
for automation including simple symbolic evaluation, which in-
stead have to be specifically implemented. The deep embedding
also incurs an increased complexity in terms of explicitly dealing
with logic variable allocation. VeriSmall [3] and Mechanized Feath-
erweight VeriFast [30] are to the best of our knowledge the only
other mechanized symbolic executors for separation logic based on
deep embeddings. However, both largely serve as a proof of con-
cept mechanizations for practical systems [9, 29] while Katamaran
aspires to be a practical mechanized implementation in itself.

8 CONCLUSION
Our work shows that universal contracts, together with Katama-
ran, form a compelling, tool-supported method for formalizing,
verifying and applying the security guarantees of ISAs. We have
demonstrated that the approach applies to ISAs with very differ-
ent security primitives (capabilities versus PMP+exceptions), to

industrially relevant ISAs like RISC-V PMP (now with only mi-
nor simplifications remaining) and that the approach balances the
requirements of ISA designers and authors of security-critical soft-
ware. We have demonstrated how we can check the consistency of
universal contracts with functional ISA semantics and how they
can be applied to reason about security-critical software. Finally, we
have shown that Katamaran is able to effectively semi-automate
the verification of universal contracts as well as the verification
of security-critical software, offering convenient ways for users to
inject manually proven lemmas in an automatic verification.

In otherwords, our current results already demonstrate the viabil-
ity and generality of the approach to verify ISA security properties
using universal contracts and Katamaran. In the future, we intend
to scale up our approach by applying it to larger ISAs, supporting
complex semantic features (such as asynchronous interrupts, con-
currency etc) and other security properties (e.g. confidentiality).
We also intend to automate the translation from Sail to µSail and
improve Katamaran automation further.
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A END-TO-END SECURITY STATEMENT
ABOUT FEMTOKERNEL

Lemma femtokernel_endToEnd :
mem_has_instrs 𝜇 0 femtokernel_init →
mem_has_instrs 𝜇 72 femtokernel_handler →
mem_has_word 𝜇 84 42→
read_register 𝛾 cur_privilege = Machine→
read_register 𝛾 pmp0cfg = femtokernel_default_pmpcfg →
read_register 𝛾 pmpaddr0 = 0→
read_register 𝛾 pmp1cfg = femtokernel_default_pmpcfg →
read_register 𝛾 pmpaddr1 = 0→
read_register 𝛾 pc = 0→
⟨𝛾, 𝜇, 𝛿, fdeCycle()⟩ −→∗ ⟨𝛾 ′, 𝜇′, 𝛿 ′, 𝑠′⟩ →
𝜇′ 84 = 42.
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