
Dynamic Slicing of WebAssembly Binaries
Quentin Stiévenart

Université du Québec à Montréal
Montreal, Canada

stievenart.quentin@uqam.ca

David Binkley
Loyola University Maryland

Baltimore, MD, USA
binkley@cs.loyola.edu

Coen De Roover
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Abstract—The recently introduced WebAssembly standard
aims to form a portable compilation target, enabling the cross-
platform distribution of programs written in a variety of lan-
guages. In this paper, we propose and investigate the first dynamic
slicing approaches for WebAssembly. Given a program and a
location in that program, a program slice is a reduced version
of the program that preserves the behavior at the given location.
Slicing has numerous applications in software maintenance and
evolution, including reverse engineering, code comprehension,
and quality assurance.

Our dynamic approaches are built on Observational-Based
Slicing (ORBS). We explore the design space for instantiating
ORBS for WebAssembly: for example, it can be applied to
the whole program or to only the function containing the
slicing criterion, and it can be applied before compilation to
WebAssembly or afterwards. We evaluate the slices produced
quantitatively and qualitatively, and compare them to those
obtained by a state-of-the-art static slicer for WebAssembly. Our
evaluation reveals that dynamic slicing at the level of a function
from a WebAssembly binary finds a sweet spot in terms of slice
time and slice size.

Index Terms—Dynamic program slicing, WebAssembly, Binary
analysis

I. INTRODUCTION

WebAssembly is a recent binary format [28] with many
diverse use cases [32] both on the Web and beyond such as
in desktop applications [66] and smart contracts [22]. The
academic literature has focused on the security aspects of Web-
Assembly [47], [40], [27], [60], [61], [46], [15] and on tools
and techniques for analyzing WebAssembly binaries [41], [58],
[59], [45], [15]. The rise in its use brings a growing need for
tools to support the maintenance of WebAssembly code.

Program slicing [68], [14] provides a basis for such tools.
Given a program point called the slicing criterion, pro-
gram slicing identifies a reduced program that preserves the
computation at the slicing criterion. Program slicing has
numerous applications such as debugging [69], [35], [39],
program comprehension [13], [33], [19], [38], [62], software
maintenance [26], [29], re-engineering [17], refactoring [23],
testing [30], [8], [31], reverse engineering [4], [2], tierless
or multi-tier programming [49], [48], and vulnerability detec-
tion [53].

Program slicers exist along multiple dimensions [54] includ-
ing static vs. dynamic, executable vs. closure, and backward
vs. forward. To date, the only existing slicer for WebAssembly

is a static backward closure slicer, which we refer to as SWS ,
Static Webassembly Slicer [57].

This paper introduces and studies the first dynamic slicers
for WebAssembly. Such slicers might be applied, for example,
to a bug report consisting of hundreds of WebAssembly
instructions that cause the web browser’s WebAssembly virtual
machine to crash. Reducing this code to tens of instructions
is a win. The design space for dynamic slicers that can
slice WebAssembly is vast and until now unexplored. We
consider options involving three key slicing phases: compiling
the program to WebAssembly (W), extracting the function
containing the slicing criterion (E), and removing (slicing out)
irrelevant code (S). For example, given a program P , one
possible arrangement is to slice P at the source level, convert
the reduced program to WebAssembly, and then extract the
function that contains the slicing criterion. Mathematically, we
have E(W(S(P))), which we denote EWS for short.

As a second example, S(E(W(P))), which we denote
SEW , first compiles the source to WebAssembly then ex-
tracts the function containing the slicing criterion, and finally
removes irrelevant instructions from this function. Comparing
these two, we expect slicing after compilation to enable the
slicer to remove boilerplate code that compilers include at
the start and end of each function. Compared with the option
ESW , we expect slicing before extraction to be slower because
more code is considered but more precise because it can
remove code from called and calling functions.

This paper introduces the first dynamic slicers for Web-
Assembly, exploring the design space of applying ORBS [9]
to WebAssembly and providing insights into the advantages
and limitations of three dynamic WebAssembly slicers by
empirically comparing them with each other and with SWS
using 57 C programs and a total of 1643 slicing criteria.

The paper makes the following contributions:
• From the design space we identify, implement, and study

the first dynamic slicers for WebAssembly.
• We quantitatively and qualitatively compare the slices

produced by three promising options.
• We compare the dynamic approaches to the static Web-

Assembly slicer SWS to both study the relative cost
of each slicing approach and because we hope that the
dynamic slicers will suggest improvements to the static
slicer.

In addition to an understanding of the design space, our
study suggests that SEW sits in a design sweet spot. SEW
provides good performance and small, comprehensible, slices.
Our dataset and empirical evaluation scripts are available in a
replication package1.

II. BACKGROUND

This section provides background on WebAssembly and
SWS , the only known static slicer for WebAssembly. We also
briefly describe ORBS, a language-agnostic dynamic slicing
approach which we instantiate to produce the three dynamic
slicing algorithms for WebAssembly.

A. A Brief Tour of WebAssembly

This tour of WebAssembly is adapted from our previous
work with SWS [57]. WebAssembly programs are bundled
as modules, which contain one or more function declarations,
along with other elements which are less relevant for the
present paper (type declarations, data segments, tables, ...)
WebAssembly modules manipulate primitive types that can
be 32-bit or 64-bit integers and floating point numbers (i32,
i64, f32, f64). Functions are typed: they take zero, one, or
more parameters of one of the primitive types, and return zero,
one, or more values also of the primitive types. Functions
declare the types of their local variables. Parameters and local
variables can be accessed through an index. For example, a
function with one formal parameter and two local variables
accesses the formal parameter at index 0 and the local variables
at indices 1 and 2. The remainder of a function definition is
the sequence of instructions that form the function’s body.

Broadly speaking, there are two kinds of instructions. Con-
trol instructions (e.g., block, loop, if, and call) structure
the program’s control flow, while data instructions manipu-
late the stack (drop, i32.const), locals (local.get and
local.set), and globals (global.get and global.set).
Blocks act as delimiters inside functions for identifying jump
targets. Loops are blocks whose semantics capture the iterative
behavior.

1) The SCAM Mug in WebAssembly: To illustrate program-
ming in WebAssembly, we consider the “SCAM Mug” [64]
C program, which is heavily used in the slicing literature.
The program, which featured on the souvenir mug given to
attendees at the first SCAM workshop, shown in Figure 1,
is designed to challenge static analysis tools, especially those
making use of transitive dependence analysis. For example,
the minimal slice at the end of the code taken with respect to
the variable x does not include Line 8 despite the transitive
dependence.

The equivalent function in WebAssembly is given in Fig-
ure 2, where, for convenience, we annotate function calls with
the type of the target function.

1https://doi.org/10.5281/zenodo.8157269

1 int main() {
2 int i = 0;
3 int x = 0;
4 int c = 0;
5 while (p(i)) {
6 if (q(c)) {
7 x = f();
8 c = g();
9 }

10 i = h(i);
11 }
12 }

Fig. 1. The SCAM Mug program in C. All called functions are side-effects
free.

1 (func (type 0) ;; int main()
2 (local i32 i32 i32) ;; declare i, x, c
3 local.get 0 ;; push local i
4 calli32→i32 $p ;; p(i)
5 if
6 loop
7 local.get 2 ;; push local c
8 calli32→i32 $q ;; q(c)
9 if

10 call→i32 $f ;; f()
11 local.set 1 ;; x = result of f()
12 call→i32 $g ;; g()
13 local.set 2 ;; c = result of g()
14 end
15 local.get 0
16 calli32→i32 $h ;; h(i)
17 local.set 0 ;; i = result of h(i)
18 local.get 0
19 calli32→i32 $p ;; p(i)
20 br_if 0 ;; loop if stack top
21 end ;; is true
22 end)

Fig. 2. The SCAM Mug in WebAssembly.

On Line 2, the function declares the equivalent of local
variables i (with index 0), x (index 1), and c (index 2). All
local variables are initialized to zero in WebAssembly. These
first two lines and those containing end are non-executable
lines. All remaining lines represent WebAssembly instructions.
Line 3 retrieves and pushes the value of the first local variable
on the stack. The next line calls function f, which expects its
single argument to be on the top of the stack (in this case
local 0). The if-instruction on Line 5 checks whether the
top of the stack (the function’s return value) is true (differs
from 0) and if so executes its then branch, which captures
the body of the loop. An optional else branch is unnecessary
here. This instruction should not be confused with br_if n,
which breaks n nested blocks if the value on the top of the
stack is true. The loop instruction on Line 6 denotes the start
of a loop. When execution encounters a break, it re-executes
the loop from the start. In WebAssembly, the “breaking” of a
loop behaves like a continue statement in C. In the example,
br_if 0 starts the next iteration if the value on the top
of the stack is true. The “0” signifies which loop, in this

https://doi.org/10.5281/zenodo.8157269

case, the immediately enclosing loop (Line 6). If no breaks
are encountered, execution continues with the instruction that
follows the loop’s matching end keyword. Thus Lines 5,
6, and 20 combine to implement the while loop of the C
program.

The body of the loop first calls the function q with local
variable 2 (c) on Line 8. If the result of this call is non-zero, it
calls function f and assigns the result to local variable 1 (x) on
Line 11, and does the same with function g and local variable
2 (c). Finally, near the end of the loop body on Line 17, local
variable 0 (i) is assigned the result of calling h(i). The loop
ends with the br_if instruction on Line 20 which checks the
loop condition (the value on the top of the stack) and jumps
back to the beginning of the loop if the value is non-zero.

2) WebAssembly Validation Requirement: WebAssembly
programs have to be well formed according to Section 3
of the WebAssembly standard [52]. This includes a stack
validation requirement that is checked by the host environment
when compiling and before executing a program. In brief,
each instruction has a specific stack type t∗1 → t∗2, where
t∗1 is the expected sequence of types for the values on top
of the stack before the execution of the instruction, and
t∗2 is the sequence of types for the values on top of the
stack after its execution. For example, the i32.const 0

instruction has type “ → i32”, meaning that it does not
need anything from the stack and pushes one value of type
i32. Typing extends to sequences of instructions. For example,
the sequence local.get 0; local.get 1; i32.const 1;
i32.add has type “ → i32 i32”.

Validation poses a challenge to program slicing in that
the body of a function has to be well formed [57]. Thus
only deletions that leave the code well typed are permitted,
which can prevent the removal of otherwise superfluous code.
For example, in the following WebAssembly fragment, both
branches of the if push one value on the stack and therefore
have the same type “ → i32”. Removing the else branch
(Line 5) because it never gets executed (as the condition of
the if is always true) would result in a WebAssembly program
that fails the validation requirement.

1 i32.const 1
2 if
3 local.get 0
4 else
5 local.get 1
6 end

B. Static Slicing of WebAssembly

The static WebAssembly slicer SWS [57] has three phases:
1) First, a data-gathering phase computes the dependencies

of each instruction in a function. It computes the layout
of the stack after each instruction using a stack specifi-
cation analysis [58], identifies data dependences through
use-definition chains, identifies control-dependences us-
ing Ferrante’s exact algorithm [24], and performs a

WebAssembly-specific over-approximation for memory-
specific data dependencies [57].

2) Second, the slicing phase identifies the WebAssembly
instructions of the closure slice relying on the depen-
dencies identified in the first phase, taking inspiration
from traditional approaches to slicing [69], and adding
instructions for structured control flow [1].

3) Third, a reconstruction phase includes additional instruc-
tions to ensure that the slice satisfies the validation
requirement and is thus a valid WebAssembly program.

Given a module and an instruction as the slicing criterion,
SWS produces a reduced module where the function con-
taining the slicing criterion has been replaced by a smaller
function that preserves the semantics of the slicing criterion.

C. Observation-Based Slicing

Observation-Based Slicing (ORBS) [9] is a language-
agnostic slicing approach that can in theory be applied to
WebAssembly. It takes as input a source program P to slice, a
slicing criterion identified by a program variable ν, a program
location l, a set of inputs I, and a maximum window size
δ. The slice computed by ORBS compiles and preserves the
semantics of ν at l for the set of inputs I. ORBS is language
agnostic so it considers the program as a sequence of lines of
text.

The tracked values are captured in V , which is used as an
oracle for the expected output.

ORBS first instruments the program by inserting a side-
effect free line that tracks the value of variable ν immediately
before line l. This insertion enables the algorithm to detect
changes to the value of the variable at the slicing location. The
instrumented program is then run on each input in I and the
tracked values are used as an oracle for the expected output.

The rest of the algorithm iterates over the program ten-
tatively removing lines until no more lines can be deleted.
Each iteration over the program attempts to remove up to
δ consecutive lines starting with the current line. After each
removal, the program is compiled, and if it compiles, it is
executed and the output is compared with the oracle. If this
output matches the oracle then the current removal is made
permanent. When a fixed point is reached the result is the
dynamic observation-based slice.

III. STUDY DESIGN AND METHODOLOGY

This section describes our study’s design and methodology,
starting with the four slicers studied and then the four research
questions considered. The section then describes the subject
program studied, their preparation, and the two metrics used
to evaluate slicer performance. Finally, it provides some im-
plementation details.

A. The Four Slicers Studied

The design space for instantiating observation-based slicing
(ORBS) to slice WebAssembly includes a range of options.

We consider three possibilities: ORBS can be applied to the
C source code before its compilation to WebAssembly (EWS
below), or to the corresponding WebAssembly binary after
compilation. In the latter case, it can be applied to the whole
WebAssembly file (ESW below) or to only the function
that contains the slicing criterion (SEW below). We do not
consider computing the slice of only the C function and then
compiling that to WebAssembly because doing so would tell
us more about slicing C than WebAssembly.

More precisely, using slice to denote the application of
ORBS, extract to denote the extraction of the function that
contains the slicing criterion, and wasm to denote the com-
pilation of C code into WebAssembly by clang, the slicers
operate as follows:

• SEW– slice(extract(wasm(P))) – run clang, extract the
function that contains the slicing criterion, then slice only
that function.

• ESW– extract(slice(wasm(P))) – run clang, slice the
entire file, then extract the function that contains the
slicing criterion.

• EWS– extract(wasm(slice(P))) – slice the C code, com-
pile the sliced C code using clang, then extract the
function containing the slicing criterion.

• SWS– static-slice(wasm(P)) – run clang and then apply
the static WebAssembly slicer.

We compare the three dynamic slicers, ESW , SEW , and
EWS to each other and with the static slicer, SWS . It is worth
noting that in contrast to EWS, the slicers SEW , ESW , and
SWS have the advantage that they do not require access to
the source code and thus can slice deployed binaries.

A key concern when applying ORBS to WebAssembly
is that to be accepted a speculative deletion needs to not
only leave the desired semantics preserved but also must
satisfy the stack validation requirement. The latter might
prove too restrictive because our dynamic slicers incorporate
WebAssembly’s validation requirement as part of the slicing
process.

We consider the dynamic slicers inter-procedural slicers
because each takes into account the calling context provided
by the code external to the function that contains the slicing
criteria. In contrast, an intra-procedural slicer would only
consider the code of a single function while ignoring the
code’s context. When computing an inter-procedural slice
using ORBS it is possible to focus the slicer on only removing
code associated with a given, function, class, file, etc., but the
resulting slice is still considered inter-procedural.

B. Research Questions

We evaluate our slicers using the following research ques-
tions.

RQ1: How practical is applying ORBS directly to Web-
Assembly programs? ORBS involves repetitive execution of

the program being sliced. Applying it to a low-level representa-
tion such as WebAssembly has not been tried before and might
prove prohibitively expensive. We investigate the time taken to
slice the original C code (EWS), the entire WebAssembly file
(ESW), and finally only the function that contains the slicing
criterion (SEW). In doing so, we consider practicality at two
levels: first, is slicing fast enough for real time use within an
IDE and second, is it sufficiently fast for infrequent use, which
we characterize as the time it takes to get a cup of coffee.

RQ2: Which of EWS, ESW , and SEW best balances speed
and precision?

Because the source provides a higher-level representation
of the code, we expect EWS to be the fastest of the three.
However, it is unclear whether the precision will suffer because
EWS is slicing at a higher level of abstraction. At the other
end of the spectrum, ESW is expected to be the most precise,
but also the slowest. The big question is does SEW represent
a sweet spot.

RQ3: What qualitative differences are there between the
slices produced by the three dynamic slicers? One expected
difference is that slicing the code after compilation will enable
the slicer to remove boilerplate code that most compilers
include at function entry and exit. Slicing at the source level
cannot remove this code. At the other end of the spectrum,
slicing the entire compiled file may enable removing code that
slicing only one function cannot because the code is required
by an unnecessary computation found in another function.

RQ4: For a given binary, what are the pros and cons of
static slicing versus dynamic slicing?

We expect the static slicer to be notably faster but lacking
in two ways. First, it is forced to make conservative data-flow
assumptions and second, unlike ORBS, it does not guarantee
that its slices are executable.

C. Subjects

We consider 57 C programs as the subjects of our study.
These subjects are listed in Table I along with their respective
sizes. Code sizes are given in source lines of code (SLoC),
which excludes blank and comment lines. The subjects consid-
ered include classical programs from the slicing literature [68],
[64], [18], [26], programs from the Mälardalen WCET re-
search group [43], programs from the Benchmarks Game [25],
and the multi-file system bc. These subjects have all been used
in previous slicing studies [5], [57].

We limit the complexity of the programs considered to facil-
itate comparison. This does not mean that our approach cannot
handle more complex situations, only that such complexity
makes patterns harder to identify. As an example, we consider
one multi-file program, bc. Including this program allows us to
illustrate that larger programs do not have any material effect
on the analysis.

TABLE I
SUBJECTS USED IN OUR EVALUATION. SOURCE LINES OF CODE (SLOC), COMPUTED USING SLOC COUNT C, INCLUDE ONLY NON-COMMENT,

NON-BLANK LINES OF CODE. WE REPORT THE MEAN SLOC ACROSS ALL SLICED VERSIONS OF EACH PROGRAM BECAUSE THE INSTRUMENTATION USED
TO PERFORM SLICING ADDS ONE OR TWO LINES DEPENDING ON THE SLICING CRITERION.

C WASM C WASM C WASM
program SLoC SLoC program SLoC SLoC program SLoC SLoC

adpcm 585 10 275 fasta8 150 14 903 nbody6 93 14 754
bc bc 8007 40 499 fasta9 161 15 007 nbody7 137 15 005
binary-trees1 91 14 663 fdct 138 8 531 ndes 196 9 009
bs 46 8 130 fft1 128 11 004 ns 30 8 387
bsort100 61 8 221 fibcall 27 8 135 nsichneu 2989 17 277
cnt 76 8 511 fir 54 8 277 prime 51 8 176
compress 357 9 000 insertsort 33 8 141 qsort-exam 124 8 407
cover 625 8 847 janne complex 38 8 131 qurt 120 8 285
crc 94 8 409 jfdctint 119 8 506 reverse-complement5 83 14 917
duff 44 8 296 lcdnum 62 8 227 reverse-complement6 96 14 770
edn 170 9 027 lms 172 8 759 scam 63 15 633
expint 73 8 268 ludcmp 109 9 022 select 131 8 307
fac 23 8 199 mandelbrot9 66 14 764 spectral-norm1 57 14 725
fankuchredux1 79 14 843 matmult 54 8 328 st 98 8 337
fankuchredux5 115 15 047 mbe 63 15 622 statemate 1354 10 613
fasta1 126 21 028 minver 201 9 074 sumprod 18 14 355
fasta2 264 15 236 nbody1 92 14 756 ud 81 8 933
fasta3 90 14 586 nbody2 107 14 819 wc 49 20 615
fasta5 109 14 797 nbody3 90 14 757 fasta7 231 15 041

D. Subject Preparation

ORBS captures the slicing criterion by annotating the pro-
gram with a statement that prints the variable of interest. The
static slicer also uses this print statement to identify the slicing
criterion. For each program, we annotate the use of each
scalar variable in the program. In addition, for the classical
slicing examples, we consider slices with respect to pointers
such as argv, which is possible because we instrument these
programs by hand. This process yields 1646 slicing criteria.
We subsequently removed three criteria whose slices exhibited
non-deterministic behavior, leaving 1643 slicing criteria.

The slices taken with respect to 60 of the criteria are
impacted by the execution environment. For example, printing
argv[0] of scam argv 18 (the slice of scam taken with
respect to argv at Line 18) outputs scam.c.wasm when run
by wasmer but ./scam when run as a compiled binary. The
other causes include the use of a different implementation of
read by Wasmer and WebAssembly’s use of 32-bit long ints in
contrast to the native machine’s 64-bit long ints. The discussion
section considers the impact of this final difference.

E. Metrics

We collect time and size metrics for each slice on a 676-core
computing cluster using 2.20GHz Xeon(R) E5-2650 CPUs.
The cluster has 256GB RAM per node and runs Centos 7.

a) Time: We measure the time taken to compute each
slice using the “real” or wall-clock time. We also gathered the
CPU (“user”) time, which mirrored the real-time so strongly
that for clarity of presentation, we report only the real-time.

b) Size: When reporting sizes we report the number of
non-comment, non-blank lines of code as reported by the tool
sloc count c applied to the C code and to the WebAssembly
code of the function containing the slicing criterion. For
WebAssembly code we first omit the function’s declaration, its
declaration of local variables, and all end lines. For compiled
WebAssembly code this is the same as non-blank lines because
the code is devoid of comments, except that we exclude end

which marks the end of the block but is not executable.

F. Implementation

This subsection provides implementation details regarding
the configuration of the experiments. First, to create a Web-
Assembly module from C source code we use clang with the
target wasm32-unknown-wasi and then convert the binary to its
textual representation using wasm2wat2. We use the compiler
options -O2 -lm -fno-inline-functions, the latter prevents the
compiler from inlining the function that contains the slicing
criterion. We then prepend the closing parenthesis of each
function in WebAssembly by a newline in order to enable
ORBS to remove the last instruction of a function without
breaking the syntax of the WebAssembly code.

Second, to slice a single function of a WebAssembly file we
split the file into three parts: prog.wat.prefix, prog.wat.function,
and prog.wat.postfix. ORBS is then applied to the lines of
prog.wat.function only. To compile and execute the program,
the three parts, including the reduced prog.wat.function, are
concatenated together. One motivation here is that the Web-
Assembly compiler includes a lot of library code (e.g., code

2https://github.com/WebAssembly/wabt

https://github.com/WebAssembly/wabt

for all functions required from libc). Slicing this code impacts
ORBS’ running time, which is proportional to the number
of lines considered. As discussed in RQ1, slicing a single
function reduces the amount of work by almost two orders
of magnitude.

When configuring ORBS, prior empirical work has found
that the window-size value δ = 4 does a good job at
balancing slice size and slice computation time [9], [34], [55].
Future work will consider if this value is still optimal at the
WebAssembly level.

Most of the code we analyze is from compiler benchmarks
that include a single prescribed input. The exception to this is
the classic slicing examples, where we use sufficient inputs to
cause the dynamic slice to be equivalent to the static slice.

Finally, we consider slices based on a single slicing crite-
rion. While it would require some engineering work, creating a
single slice based on multiple slicing criteria would not impact
the slicing algorithms nor should it impact our insights.

IV. EVALUATION

This section empirically investigates each of our four re-
search questions. All source programs and the slices computed
by each slicer, as well as the scripts used in this evaluation,
are available in our replication package3.

A. RQ1: How Practical is Applying ORBS Directly to Web-
Assembly Programs?

For RQ1 we consider the time taken by each slicer. Of
particular interest here is the performance of applying ORBS
to WebAssembly functions. Because the average function size
is reasonably constant and much smaller than the average
program size, slicing only the code of a specific function is
hoped to prove practical. For the evaluation, we define our
“time to get a cup of coffee” practical time as 1000 seconds
or approximately 15 minutes.

Figure 3 summarizes the times taken by each slicer. As ex-
pected SWS is consistently the fastest with an average slicing
time of 0.67 seconds. At the other end of the spectrum, ESW
is the slowest slicer because it needs to consider the deletion of
lines from the entire WebAssembly file. With a mean slicing
time of 95 minutes, ESW’s times do not fit within either
of our definitions of “practical”. Our average C program has
331 SLoC, while our average compiled WASM program has
12 108 SLoC. In other words, ORBS must consider 36.6 more
possible deletions, resulting in an average slowdown factor of
7.0 when comparing ESW to EWS.

SEW and EWS are close in terms of time. SEW’s slicing
times range from 14 seconds to 130 minutes with a mean
of 11.1 minutes, while EWS’s slicing times range from 14
seconds to 64 minutes with a mean of 13.5 minutes. That
SEW and EWS’s times are so close is surprising, given that
SEW considers only the WebAssembly instructions of a single

3https://doi.org/10.5281/zenodo.8157269

ESW SEW EWS SWS

10 1

101

103

105

Se
co

nd
s

Time to Compute Slice

Fig. 3. Slice times for each slicer.

function, while EWS considers the C source code of the entire
program. Finally, we note a preference for SEW because its
slicing times are more stable, with a standard deviation of
±16.9 minutes compared to ±78.4 minutes and ±21.6 minutes
for ESW and EWS, respectively.

Looking at our “cup of coffee” practicality threshold, ESW
fails to produce a single slice within the allotted time. SEW
and EWS are more successful, producing respectively 1341
(82%) and 1362 (83%) of the 1643 slices within the time limit.

RQ1: Applying ORBS to an entire WebAssembly file
(ESW) is not practical. Focusing ORBS on the function
containing the slicing criterion (SEW) reduces this time
to an average of 11.1 minutes, which is similar to the
average time taken for ORBS to slice the C programs
(EWS). Therefore SEW and EWS both fit within our
definition of practical.

B. RQ2: Which of EWS, ESW , and SEW Best Balances
Speed and Precision?

Building on RQ1, RQ2 factors in slice size. We first
consider the slices of ESW and SEW . By focusing ORBS
deletion on the lines within a given function, SEW is notably
faster than ESW . The question is, does faster come at the
expense of slice size? For example, when the slicer has access
to the entire file the removal of code outside a function can
enable the removal of code within the function. Figure 4 shows
a source-level illustration of this phenomenon.

Figure 5 depicts the distribution of slice sizes relative to the
original size of the function being sliced. Table II provides
descriptive statistics for the slice sizes. The mid-point lines of
Figure 5 show the median. That the median is less than the
mean indicates the presence of a small number of very large
slices and makes the median the better representative of the
expected size.

The slice size distribution of ESW and SEW are nearly
identical. Numerically, the median slice size for ESW is
13.05% of the original code, which is essentially equivalent
to SEW’s median of 13.17%. Surprisingly, in contract to our
expectation, 438 slices are larger for ESW than SEW . The

https://doi.org/10.5281/zenodo.8157269

1 int g, *p;
2

3 foo()
4 {
5 bar();
6 *p = 42;
7 }
8

9 bar()
10 {
11 p = &g;
12 }

Fig. 4. The slice of bar has to retain p = &g when slicing just bar.
However, when slicing the entire program, if the slicer can remove *p = 42
then it can subsequently safely remove p = &g.

ESW SEW EWS SWS
0

25

50

75

100

125

150

%
 o

f O
rig

in
al

 Fu
nc

tio
n

Si
ze

Size of Function After Slicing

Fig. 5. Size in SLoC of the function being sliced as a percentage of the
original function size. Values higher than 100% indicate that the slice is larger
than the original function. A typical cause for this is compiler loop unrolling.

cause of this unexpected result is investigated as part of RQ3’s
qualitative investigation.

TABLE II
SLICE SIZE STATISTICS MEASURED IN TERMS OF SLOC.

Slicer Median Mean Min Max Std. Dev.
ESW 13.05% 22.25% 0.12% 92.93% ± 22.39
SEW 13.17% 22.82% 0.19% 92.12% ± 22.84
EWS 17.34% 29.57% 0.21% 267.00% ± 33.14
SWS 44.47% 52.15% 0.19% 99.91% ± 36.99

We expect EWS to produce larger slices than ESW and
SEW when, for example, the latter two remove parts of the
standard function entry and exit boilerplate code. Empirically,
the EWS slice is larger than the corresponding ESW slice
79% of the time and larger than the corresponding SEW slice
the same 79% of the time.

There are more interesting causes. For example, when the
sliced C code is reduced to the point where the compiler opts
to perform loop unrolling. Such optimizations trade compiled
function size for performance and can result in larger slices.
This also explains why the size of some EWS slices is more
than 100% of the sliced function. The most extreme case is
a slice of adpcm that is almost three times larger than the
original function. We investigate this effect as part of RQ3’s
qualitative look at the slices.

Finally, we consider the performance of the static SWS
slicer. By its very nature SWS produces larger slices because
of the need to make safe static approximations. Compared to
ESW and SEW , the average static slice size shown in Table II
is 52.15%, or approximately 2.2 times as large as its dynamic
counterpart.

RQ2: EWS produces notably larger slices than the other
dynamic approaches. While at present only SWS is
practical as a real-time tool, SEW satisfies our looser
practicality requirement and produces slices that are less
than one third the size of those produced by SWS . Thus
we find that SEW best balances speed and precision.

C. RQ3: What Qualitative Differences are there Between the
Slices Produced by the Three Slicers?

RQ3 takes a qualitative look at the slices. To do so, we
compute the size difference for each slicing criterion and then
sort the differences. We then inspected the largest differences,
both positive and negative, and report representative examples.
We first compare ESW and SEW and then EWS and SEW .
We omit the direct comparison between ESW and EWS
because it is similar to that of EWS and SEW .

1) Comparison of ESW and SEW: ESW produces a
smaller slice in 467 cases, the same size in 738 cases, and sur-
prisingly SEW produces the smaller slice in 438 cases. None
of the differences are large, with size(ESW) - size(SEW)
ranging from -126 to +195 instructions. The median difference
is 0 and 74% of the slices differ by five or fewer instructions.
We consider four representative examples, two from each end
of the spectrum.

The first example are the slices taken with respect to
sumprod i 10 and illustrates the situation where ESW re-
moving code from outside the function containing the slicing
criterion enables it to remove code from within the function. In
this example, the compiler reuses the stack location of main’s
first parameter, argc, to hold the value of index variable i. In
a C program argc is always at least one because the count of
the arguments includes the name of the program. The SEW
slice does not slice outside of main and thus the counting
code is retained and the location initially holds a non-zero
value. Therefore, in the compiled version of for(i=0; ...) the
initialization of i on Lines 81 and 82 of the following code
must be retained:
37 (func $main (type 3) (param i32 i32)

...

81 i32.const 0
82 local.set 0 ;; i = 0

However, in the ESW slice the argument counting code gets
sliced out leaving argc with the value zero. Thus in the EWS
slice, there is no need to initialize variable i. Consequently,
Lines 81 and 82 are omitted from the EWS slice.

Another interesting example is the slices taken with respect
to fasta2 offset 49. The SEW slice includes the following
code while the ESW slice includes only the final instruction.

i32.const 61
i32.mul
i32.const 1
i32.add
global.set $__stack_pointer

Here the SEW slice has co-opted the first four instructions
from the size computation found in the following C code (for
typesetting reasons the names have been shortened).

need = string_length * 60;
buffer = malloc(((need + (need / 60)) + 1);

The co-opting is safe because the required activation-record
size is less than the amount allocated. While the changes are
intricate, in brief, the ESW slice omits from each function
all of the standard entry code for creating a stack activation
record. Doing so causes all functions to share a common
activation record. For this particular slice, doing so is safe
because each function call is the final instruction of its function
body (a situation similar to tail recursion). In contrast, because
an SEW slice removes nothing from other functions, it must
maintain the stack discipline and allocate stack space for its
local variables.

Reflecting on these two representative examples, in the first
retaining the initialization of i makes the slice larger but more
straightforward to understand. In the second slice, the co-opted
code is not the standard stack allocation code but its presence
is better than the absence of any such code. Thus, in both
cases SEW produced the preferred slice.

Turning to criteria for which the SEW slice is smaller, we
first consider the slice taken with respect to adpcm inc 170,
where the ESW slice is three instructions longer than the
SEW slice. The three instructions initialize local 0 with a
copy of the stack pointer.

global.get $__stack_pointer
local.tee 0
global.set $__stack_pointer

The reason that the ESW slice can’t remove these instruc-
tions is twofold. First, the printing functions of the ESW slice
have become specialized to print the particular location used
in the code as the slicing criterion. Copying the stack pointer
to local 0 ensures that these specialized functions continue
to find the value where they expect it. Second, the call to
printf is the last instruction in the function being sliced which
precludes the need to maintain a separate activation record for
this function.

As a final example, the ESW slice taken with respect to
expint fact 57 includes the following eight instructions not
present in the SEW slice.

loop ;; label = @2 ;; L0 0
local.get 3 ;; L1 +1
i32.const 1 ;; L2 +1
i32.add ;; L3 -1
local.tee 3 ;; L4 0
i32.const 102 ;; L5 +1
i32.ne ;; L6 -1
br_if 0 (;@2;) ;; L7 -1

end

We have annotated each instruction with its impact on the
stack (end is not an instruction). Mandating that each deletion
satisfies the WebAssembly validation requirement renders the
deletion of this loop impossible using a window size of four
or less. One might say that the ESW slicer has “painted itself
into a corner.” SEW removes code in a different order, which
enables it to avoid painting itself into the same corner. Thus,
it omits the loop.

Summarizing the four examples from a qualitative perspec-
tive, SEW seems the better approach. Despite it producing
slightly larger slices, the differences are never large. On the
plus side, its slices are often more easily understood.

2) Comparison of EWS and SEW: We next compare the
slices of SEW and EWS. Comparing sizes, the SEW slice is
smaller for 1294 slices, the same for only 13 slices, and larger
for 336 slices. This is in line with the expectation that EWS
produces the largest of the dynamic slices and agrees with the
quantitative data of RQ2.

Looking at examples where the EWS slice is smaller,
the largest difference is for the slices taken with respect to
cover c 484 for which the SEW slice includes 610 instruc-
tions while the EWS slice is only 21. Looking at the resulting
WebAssembly code, slicing simplifies the control structure of
the C code to the point where additional compiler optimiza-
tions become viable. Specifically constant propagation, which
obviates the need for any compiled code in the EWS slice.

As a final illuminating example the EWS slice taken with
respect to lms x 160 includes 51 instructions while the SEW
slice 93. The C code includes two loops that ORBS can fuse
together because none of the intervening code is in the slice.
In contrast, up against a window size of four and the stack
validation requirements, SEW is unable to merge the two
loops. Its efforts are in part thwarted by its inability to remove
a call to a function with six arguments because the call requires
six push instructions followed by the call, which pops the six
elements from the stack. Satisfying the validation requirement
necessitates removing the six pushes and the call in a single
deletion, which is not possible using a window size of four.
Slicing at the C level this call is a single line, and thus easily
removed.

We next turn to the dominant case where SEW produces
the smaller slices. The most extreme case is for edn j 140
where the SEW slice includes 55 instruction while the EWS
slice 585. This is an example where the comiler faced with
the simplified C code opted to unroll a nested loop pro-
ducing 64 copies of the simplified loop body. This pattern

dominates the larger differences. For example, unrolling leads
matmult Index 56’s EWS slice to include 208 instructions
while the SEW slice includes only 38.

As a second example, an interesting pattern occurs in the
EWS slice takeen with respect to adpcm wd 402. In the C
slice ORBS merges the function containing the criterion with
the function proceeding it in the source code. The merged
function involves considerably more code than the original
function. As a result, the EWS slice contains instructions that
are attributable to the statements of the other function, making
it larger than the SEW slice.

Unlike the comparison of ESW and SEW , the qualitative
comparison of EWS and SEW is less one sided. In EWS’s
favor, slicing the higher-level source enables EWS to remove
code that is more difficult to remove at the finer level gran-
ularity of WebAssembly code. Furthermore, in some cases,
slicing before compilation also enables additional compiler
optimizations. However, at times enabled optimizations are
not benificial, at least in terms of slice size. An example is
the slices taken with respect to edn j 140. Some of the EWS
slices also included merged functions, which make the slice
harder to understand, and some, such as the slices taken with
respect to lms x 160, includes merged loops. This suggests
future work with hybrid techniques such as first slicing the C
code and then the compiled WebAssembly code.

RQ3: Three patterns emerge from our qualitative exam-
ination of the slices. First, as with RQ2, SEW is often
the preferred approach. Second, this preference is, in part,
because slicing at a level of abstraction different from that
of the final slice (EWS) and slicing multiple functions
(ESW) leads to structural changes that make it hard to
tie the slice back to the original source. WebAssembly
level and slicing of a single function (SEW), reduces the
number of structural changes in the code making it easier
to tie the slice back to the original source.

D. RQ4: For a Given Binary, what are the Pros and Cons of
Static Slicing Versus Dynamic Slicing.

RQ1 tells us that SWS is on average three orders of
magnitude faster than the faster dynamic slicers, while RQ2
tells us that its slices are on average over three times as large
as the better dynamic slicers. These differences are in line
with related work [12]. This section qualitatively investigates
the differences in the slices produced by SWS .

First, when checking for agreement in executability of the
slices produced by each slicer, we noticed that our choice of
slicing criterion resulted in common disagreements between
the static slice and the dynamic slices. Specifically, the slicing
criterion used in SWS is the second argument to printf,
which is called as printf("ORBS: %x\n", v). However,
when inspecting the WebAssembly binary, we notice that the
compiler stores v in the linear memory, and calls printf

with a pointer to the memory location of v. Hence, our choice

of slicing criterion renders the static slices inaccurate: while
the slice is correct for the task asked of SWS (it preserves
the value of the second argument to printf), it does not
preserve the observed behavior (printing the value pointed
by the second argument to printf). We reproduced all of
the static slices after changing the slicing criterion to be
the printf call instruction. This results in larger slices,
as SWS needs to resort to more over-approximations when
a function call is part of the slice. However, it does not
invalidate the conclusions of the past research questions: SWS
remains as fast with this new criterion and still produces larger
slices than the dynamic slicers. However, in the following
comparison we focus on the slices produced using the more
accurate slicing criterion.

Comparing SWS to EWS, 92% of the static slices are
larger while comparing it to SEW , 98% are larger. With
the previous choice for slicing criterion, these numbers were
respectively 59% and 72%.

A common pattern involves the function prologue and
epilogue. Figure 6 demonstrates this for the slice taken with
respect to nbody1_e_51. The SWS slice on the right includes
the function prologue introduced by the C compiler. The SEW
and EWS slices on the left omit this code.

SEW / EWS SWS

1 ;; prologue: ;; prologue: move
2 ;; empty ;; stack pointer
3 global.get 0
4 i32.const 16
5 i32.sub
6 local.tee 2
7 global.set 0
8 ;; body of the function
9 ;; write 0 to local 2

10 local.get 2
11 i64.const 0
12 i64.store
13 i32.const 1030 i32.const 1030
14 local.get 2 local.get 2
15 ;; slicing criterion ;; slicing criterion
16 call $printf call $printf
17 drop drop
18 ;; epilogue: ;; epilogue: restore
19 ;; empty ;; stack pointer
20 local.get 2
21 i32.const 16
22 i32.add
23 global.set 0
24 ;; return value ;; return value
25 local.get 3

f64.const 0

Fig. 6. SEW and EWS remove the function prologue and epilogue, while
SWS preserves it.

The difference is impacted by the conservative over-
approximations made by SWS when performing data-flow
analysis. In this case, it considers all globals as dependencies.
On the other hand SEW and EWS can remove those parts of
the prologue and epilogue that do not impact the execution.

Notice also that the SWS slice preserves the writing of 0 to
local 2. It turns out that during execution, local 2 is always 0,
so the write has no effect. A dynamic slicer can take advantage
of this fact to remove the code.

Manual inspection of the ESW slices finds that they pre-
serve the function prologue only 1% of the time. We also
noticed several cases where the prologue is partially removed.
All are similar to the following ESW slice taken with respect
to cover_c_112 where the stack pointer is saved in a local
and later used to store a value in the linear memory. This may
overwrite data used later in the original computation but that
is not required by this specific slice. In general, a static slicer
is unable to model memory dependencies precisely, whereas a
dynamic slicer, by its very nature, can precisely characterize
them.

1 global.get $sp
2 local.tee 1
3 global.set $sp
4 ...
5 local.get 1
6 local.get 0
7 i32.const 1
8 i32.add
9 i32.store

10 ...

Another limitation of SWS is that memory dependencies
can’t be tracked precisely. Hence, as soon as one memory-
related instruction (load, store) is part of the slice, all
preceding memory-related instructions are included in the
slice. This is not the case for the dynamic slices, which only
include the required memory-related instructions. For example,
comparing the EWS and SWS slice taken with respect to
nsichneu_b_2188, we observed that both slices include a
necessary store instruction but that the SWS slice includes
9224 instructions in total while ESW includes only 22 in-
structions. This is due to SWS’s static over-approximations.
Such examples are valuable because they inform future work
on static slicing where there is a trade-off between the quality
of the static approximation and the effort spent.

Finally, we investigated the executability of the slices pro-
duced by each slicer, taking the call instruction to printf

as the slicing criterion for SWS . In all but one case, all slicers
agree. In the remaining case, for fasta5_i_89, the static
slice does not execute the slicing criterion. This indicates that
SWS has broken the control structure of the program. Such
issues with static slicers are common [6]. One useful outcome
of our comparison to dynamic slicers is that we can better
characterize the prevalence of this problem.

RQ4: Dynamic approaches can perform more aggressive
removals than SWS . A classic example is the removal of
the function prologue and epilogue. Moreover, dynamic
approaches can uncover hidden memory dependencies
that the static slicer misses. Looking forward, the short-
comings identified by our experiments can be used to
inform future work on static slicing techniques.

E. Discussion

Our experiments show that overall SEW is the preferred
approach. Along with EWS, it satisfies our “cup of coffee”
definition of practical. EWS however produces larger slices
than SEW (and ESW). Furthermore, our qualitative com-
parison finds the SEW slices preferable. There are however
several issues worthy of consideration. The rest of this section
considers the four most important.

a) Environment impact: We observed during our ex-
periments that the slice characteristics can be influenced by
the environment. Notably, the optimization setting of the C
compiler has an important impact on the WebAssembly code.
More work needs to be done to better characterize the impact
of the environment. There is a link here with recent work that
studied how the execution environment impacts slicing [7].

b) Window size: We identified multiple cases where
further reductions could be applied if a larger window size
was used. The window size influences how many lines can be
removed in a single deletion. As assembly languages contain
less semantic information per line than higher-level source
code, some common patterns could not be removed. On the
other hand, a larger window size might not be practical as it
increases the slicing time [9], [34].

c) Validation requirement: Key to slicing WebAssembly
programs is maintaining the validity of the slice. We do this
by requiring the slice to be valid and executable after each
removal. This prevents ORBS from removing certain patterns,
which would temporarily violate validity but preserve the se-
mantics. The static slicer includes a reconstruction phase [57],
which might be used to reconstruct a valid program from an
invalid slice. Improving the dynamic slicer with such a phase
could potentially enable the slicer to produce smaller slices.

d) Under-approximations of the static slice: Our exper-
iments have revealed that there are cases where the SWS
slices clearly under-approximate the true dependence. Further
comparisons between SWS and the dynamic slicers should
help us understand this dependence under-approximation and
consequently lead to improvements in the static slicer.

F. Threats to Validity

We identify threats to validity according to the classification
of Wohlin et al. [70]. We instrument each subject of our
evaluation for each use of a scalar variable in the program.
As a threat to internal validity, we did not consider the use
of pointer variables as slicing criterion. We leave this for
future work. To enable comparing the different slices, we
have removed criteria whose slices exhibited non-deterministic
behavior, and for which the EWS slice does not contain the
criterion because it was removed during the optimization phase
of the C compiler.

A threat to external validity is our selection of subjects.
These are all C programs, and our results may not generalize
to other source languages. We selected our subjects from

various sources, given that there is no standard benchmark
of C programs that compile to WebAssembly.

V. RELATED WORK

a) WebAssembly: There has been interest from the re-
search community in WebAssembly on aspects such as secu-
rity [47], [40], [27], [60], [61], [46], [15], extensions to the
language [20], [50], [3], tooling [51], program analysis [41],
[67], [58], [59], [45], [42], and optimizations [16]. Web-
Assembly being an assembly language, has been compared
to other assembly languages such as x86 [28], [60], [61]. We
compare our approach to SWS , the only existing slicer for
WebAssembly [57]. To date, no other slicers for WebAssembly
exist. Relying on existing dynamic analysis frameworks [41]
to implement a dynamic slicer remains to be investigated.

b) Binary Slicing: The ability to slice at the binary
level is required for tasks involving binaries for which the
original source code is not available. This is the case for re-
engineering, program comprehension, or analyses for security.
A web browser may, for example, run an analysis against a
WebAssembly binary before running the binary. Another use
case is debugging WebAssembly virtual machines, where a
bug report containing hundreds of WebAssembly instructions
could be reduced to tens of instructions through program
slicing.

Slicing approaches for binary executables, including stack-
based assembly languages such as JVM Bytecode, have fo-
cused on static approaches [17], [36], [57], [63], [21], [71],
[44]. Kiss et al. [37] rely on dynamic information during
static slicing to approximate possible target of function calls.
Conditioned slicing [65] is another approach that combines
dynamic and static slicing, by first computing a dynamic slice
before augmenting it with information from a static slice.

c) Language-Independent Slicing: Our work relies on
ORBS, a language-independent slicing approach that observes
the program output in order to build an executable slice [9],
which works at the line level [10], [11]. QSES is a variant of
ORBS that protects all lines of a static slice during dynamic
slicing, which has been applied to C programs [56], [55], but
not at the assembly level. It would be more beneficial for
binary slicing to first apply static slice to quickly eliminate a
large portion of the code, before applying dynamic slicing to
further remove instructions.

VI. CONCLUSION

We introduce three dynamic slicing approaches for Web-
Assembly binaries, namely SEW , EWS, and ESW . We
compared the three and the static WebAssembly slicer SWS
using four research questions.

Our evaluation shows that ESW requires much more time
than the other approaches, while not reducing slice size as
much as expected. EWS itself may result in slices that grow
in size and have a different structure, due to the compilation
phase happening after slicing, which leaves room for extra

optimization. A static approach is favorable in terms of run-
ning time but results in the largest slices. In summary, our
evaluation finds that SEW yields the best trade-off in terms
of running time, slice size, and inspectability of the resulting
slices.

Our empirical investigation suggests several avenues for fu-
ture work. The validation requirement could be lifted to create
smaller slices as long as the slices are later reconstructed using
an algorithm akin to the one used by the static slicer. This
should enable the dynamic slicers to produce smaller slices.
Another interesting avenue is to combine multiple slicing
approaches. For example, one could first run the static slicer
to quickly remove a portion of the code, then run SEW to
dynamically remove the rest. Such static/dynamic hybrids have
proven successful in the past at other levels of abstraction [56].
Combining multiple dynamic slicers is also interesting, for
example first slicing the original source, then compiling the
slice to WebAssembly, before finally slicing the compiled
code.

REFERENCES

[1] Agrawal, H.: On slicing programs with jump statements. In:
Sarkar, V., Ryder, B.G., Soffa, M.L. (eds.) Proceedings of the
ACM SIGPLAN’94 Conference on Programming Language De-
sign and Implementation (PLDI). pp. 302–312. ACM (1994).
https://doi.org/10.1145/178243.178456

[2] Akgul, T., III, V.J.M., Pande, S.: A fast assembly level reverse execution
method via dynamic slicing. In: 26th International Conference on
Software Engineering (ICSE 2004). pp. 522–531 (2004)

[3] Bastys, I., Algehed, M., Sjösten, A., Sabelfeld, A.: Secwasm: In-
formation flow control for webassembly. In: Singh, G., Urban, C.
(eds.) Static Analysis - 29th International Symposium, SAS 2022,
Auckland, New Zealand, December 5-7, 2022, Proceedings. Lecture
Notes in Computer Science, vol. 13790, pp. 74–103. Springer (2022).
https://doi.org/10.1007/978-3-031-22308-2 5

[4] Beck, J., Eichmann, D.: Program and interface slicing for reverse
engineering. In: 15th International Conference on Software Engineering.
pp. 509–518 (1993)

[5] Binkley, D., Gold, N., Harman, M.: An empirical study of static program
slice size. ACM Transactions on Software Engineering and Methodology
16(2), 1–32 (2007)

[6] Binkley, D., Gold, N., Harman, M., Islam, S., Krinke, J., Yoo, S.: Orbs
and the limits of static slicing. In: 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM). pp.
1–10 (2015)

[7] Binkley, D., Moonen, L.: Assessing the impact of execution environment
on observation-based slicing. In: 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM). pp.
40–44. IEEE (2022)

[8] Binkley, D.W.: The application of program slicing to regression testing.
Inf. Softw. Technol. 40(11-12), 583–594 (1998)

[9] Binkley, D.W., Gold, N., Harman, M., Islam, S.S., Krinke, J., Yoo, S.:
ORBS: language-independent program slicing. In: Cheung, S., Orso, A.,
Storey, M.D. (eds.) Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, (FSE-22).
pp. 109–120. ACM (2014). https://doi.org/10.1145/2635868.2635893

[10] Binkley, D.W., Gold, N., Islam, S.S., Krinke, J., Yoo, S.: Tree-
oriented vs. line-oriented observation-based slicing. In: 17th IEEE
International Working Conference on Source Code Analysis and Ma-
nipulation, SCAM 2017. pp. 21–30. IEEE Computer Society (2017).
https://doi.org/10.1109/SCAM.2017.11

[11] Binkley, D.W., Gold, N., Islam, S.S., Krinke, J., Yoo, S.: A comparison
of tree- and line-oriented observational slicing. Empir. Softw. Eng. 24(5),
3077–3113 (2019). https://doi.org/10.1007/s10664-018-9675-9

[12] Binkley, D.W., Harman, M.: A survey of empirical results
on program slicing. Adv. Comput. 62, 105–178 (2004).
https://doi.org/10.1016/S0065-2458(03)62003-6

[13] Binkley, D.W., Raszewski, L.R., Smith, C., Harman, M.: An empirical
study of amorphous slicing as a program comprehension support tool. In:
8th International Workshop on Program Comprehension (IWPC 2000).
pp. 161–170 (2000)

[14] Binkley, D.W., Harman, M.: A survey of empirical results on program
slicing. Advances in Computers 62, 105–178 (2004)

[15] Brito, T., Lopes, P., Santos, N., Santos, J.F.: Wasmati: An efficient static
vulnerability scanner for webassembly. Comput. Secur. 118, 102745
(2022). https://doi.org/10.1016/j.cose.2022.102745

[16] Cabrera-Arteaga, J., Donde, S., Gu, J., Floros, O., Satabin, L., Baudry,
B., Monperrus, M.: Superoptimization of WebAssembly bytecode. In:
Aguiar, A., Chiba, S., Boix, E.G. (eds.) Programming’20: 4th Interna-
tional Conference on the Art, Science, and Engineering of Programming.
pp. 36–40. ACM (2020). https://doi.org/10.1145/3397537.3397567

[17] Cifuentes, C., Fraboulet, A.: Intraprocedural static slicing of bi-
nary executables. In: 1997 International Conference on Software
Maintenance (ICSM ’97). p. 188. IEEE Computer Society (1997).
https://doi.org/10.1109/ICSM.1997.624245

[18] Danicic, S., Howroyd, J.: Montréal boat example. In: Source Code
Analysis and Manipulation (SCAM 2002) conference resources website
(2002)

[19] De Lucia, A., Fasolino, A.R., Munro, M.: Understanding function
behaviours through program slicing. In: 4th Intl. Workshop on Program
Comprehension (1996)

[20] Disselkoen, C., Renner, J., Watt, C., Garfinkel, T., Levy, A., Stefan,
D.: Position paper: Progressive memory safety for WebAssembly. In:
Proceedings of the 8th International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, HASP@ISCA 2019. pp.
4:1–4:8 (2019)

[21] D’Ursi, A.C., Cavallaro, L., Monga, M.: On bytecode slicing and aspectj
interferences. In: Harrison, W. (ed.) Proceedings of the 6th Workshop
on Foundations of Aspect-Oriented Languages, FOAL 2007. ACM
International Conference Proceeding Series, vol. 268, pp. 35–43. ACM
(2007). https://doi.org/10.1145/1233833.1233839

[22] Ellul, J., Pace, G.J.: Alkylvm: A virtual machine for smart contract
blockchain connected internet of things. In: 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS).
pp. 1–4. IEEE (2018)

[23] Ettinger, R., Verbaere, M.: Untangling: a slice extraction refactoring. In:
Proc. of the 3rd Intl. Conf. on Aspect-Oriented Software Development
(AOSD) (2004)

[24] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst.
9(3), 319–349 (1987). https://doi.org/10.1145/24039.24041

[25] Fulgham, B., Gouy, I.: The computer language benchmarks game. https:
//benchmarksgame-team.pages.debian.net/benchmarksgame/

[26] Gallagher, K.B., Lyle, J.R.: Using program slicing in software
maintenance. IEEE Trans. Software Eng. 17(8), 751–761 (1991).
https://doi.org/10.1109/32.83912

[27] Goltzsche, D., Nieke, M., Knauth, T., Kapitza, R.: AccTEE: A
WebAssembly-based two-way sandbox for trusted resource accounting.
In: Proceedings of the 20th International Middleware Conference, Mid-
dleware 2019. pp. 123–135 (2019)

[28] Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman,
D., Wagner, L., Zakai, A., Bastien, J.F.: Bringing the web up to
speed with WebAssembly. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2017. pp. 185–200 (2017)

[29] Hajnal, Á., Forgács, I.: A demand-driven approach to slicing legacy
COBOL systems. Journal of Software: Evolution and Process 24(1)
(2011)

[30] Harman, M., Danicic, S.: Using program slicing to simplify testing.
Softw. Test. Verification Reliab. 5(3), 143–162 (1995)

[31] Hierons, R.M., Harman, M., Fox, C., Ouarbya, L., Daoudi, M.: Condi-
tioned slicing supports partition testing. Software Testing, Verification
and Reliability 12 (2002)

[32] Hilbig, A., Lehmann, D., Pradel, M.: An empirical study of real-world
WebAssembly binaries: Security, languages, use cases. In: Leskovec,
J., Grobelnik, M., Najork, M., Tang, J., Zia, L. (eds.) WWW ’21:
The Web Conference 2021. pp. 2696–2708. ACM / IW3C2 (2021).
https://doi.org/10.1145/3442381.3450138

[33] Hosnieh, E., Haga, H.: A novel approach to program comprehension
process using slicing techniques. J. Comput. 11(5), 353–364 (2016)

[34] Islam, S., Binkley, D.: Porbs: A parallel observation-based slicer. In:
2016 IEEE 24th International Conference on Program Comprehension
(ICPC). pp. 1–3 (2016)

[35] Kamkar, M., Shahmehri, N., Fritzson, P.: Bug localization by algo-
rithmic debugging and program slicing. In: 2nd International Work-
shop Programming Language Implementation and Logic Programming,
PLILP’90. vol. 456, pp. 60–74 (1990)

[36] Kiss, Á., Jász, J., Gyimóthy, T.: Using dynamic information in the
interprocedural static slicing of binary executables. Softw. Qual. J. 13(3),
227–245 (2005). https://doi.org/10.1007/s11219-005-1751-x

[37] Kiss, Á., Jász, J., Gyimóthy, T.: Using dynamic information in the
interprocedural static slicing of binary executables. Softw. Qual. J. 13(3),
227–245 (2005). https://doi.org/10.1007/s11219-005-1751-x

[38] Korel, B., Rilling, J.: Dynamic program slicing in understanding of
program execution. In: Proc. of the 5th Intl. Workshop on Program
Comprehension (IWPC) (1997)

[39] Kusumoto, S., Nishimatsu, A., Nishie, K., Inoue, K.: Experimental
evaluation of program slicing for fault localization. Empirical Software
Engineering 7 (2002)

[40] Lehmann, D., Kinder, J., Pradel, M.: Everything old is new again: Binary
security of WebAssembly. In: 29th USENIX Security Symposium,
USENIX Security 2020 (2020)

[41] Lehmann, D., Pradel, M.: Wasabi: A framework for dynamically analyz-
ing WebAssembly. In: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019. pp. 1045–1058 (2019)

[42] Lehmann, D., Pradel, M.: Finding the dwarf: recovering precise types
from webassembly binaries. In: Jhala, R., Dillig, I. (eds.) PLDI ’22: 43rd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022.
pp. 410–425. ACM (2022). https://doi.org/10.1145/3519939.3523449

[43] Mälardalen WCET research group: Mälardalen WCET research group’s
benchmarks. https://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[44] Mangean, A., Béchennec, J., Briday, M., Faucou, S.: BEST: a binary
executable slicing tool. In: Schoeberl, M. (ed.) 16th International Work-
shop on Worst-Case Execution Time Analysis, WCET 2016. OASICS,
vol. 55, pp. 7:1–7:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016). https://doi.org/10.4230/OASIcs.WCET.2016.7

[45] Marques, F., Santos, J.F., Santos, N., Adão, P.: Concolic execu-
tion for webassembly. In: Ali, K., Vitek, J. (eds.) 36th Euro-
pean Conference on Object-Oriented Programming, ECOOP 2022,
June 6-10, 2022, Berlin, Germany. LIPIcs, vol. 222, pp. 11:1–
11:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11

[46] Mazaheri, M.E., Sarmadi, S.B., Ardakani, F.T.: A study of
timing side-channel attacks and countermeasures on javascript
and webassembly. ISC Int. J. Inf. Secur. 14(1), 27–46 (2022).
https://doi.org/10.22042/isecure.2021.263565.599

[47] Ménétrey, J., Pasin, M., Felber, P., Schiavoni, V.: Twine: An embedded
trusted runtime for WebAssembly. In: 37th IEEE International Con-
ference on Data Engineering, ICDE 2021. pp. 205–216. IEEE (2021).
https://doi.org/10.1109/ICDE51399.2021.00025

[48] Philips, L., De Koster, J., De Meuter, W., De Roover, C.: Search-
based tier assignment for optimising offline availability in multi-tier web
applications. The Art, Science, and Engineering of Programming 2(2)
(2018)

[49] Philips, L., De Roover, C., Van Cutsem, T., De Meuter, W.: Towards
tierless web development without tierless languages. In: ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (SPLASH/OnWard!14) (2014)

[50] Pinckney, D., Guha, A., Brun, Y.: Wasm/k: delimited continuations for
WebAssembly. In: Flat, M. (ed.) DLS 2020: Proceedings of the 16th

https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://www.mrtc.mdh.se/projects/wcet/benchmarks.html

ACM SIGPLAN International Symposium on Dynamic Languages. pp.
16–28. ACM (2020). https://doi.org/10.1145/3426422.3426978

[51] Romano, A., Wang, W.: WasmView: visual testing for WebAssembly
applications. In: Rothermel, G., Bae, D. (eds.) ICSE ’20: 42nd Inter-
national Conference on Software Engineering, Companion Volume. pp.
13–16. ACM (2020). https://doi.org/10.1145/3377812.3382155

[52] Rossberg, A.: WebAssembly Core Specification. Tech. rep., W3C
(2019), https://www.w3.org/TR/wasm-core-1/

[53] Salimi, S., Ebrahimzadeh, M., Kharrazi, M.: Improving real-world
vulnerability characterization with vulnerable slices. In: 16th ACM
International Conference on Predictive Models and Data Analytics in
Software Engineering (PROMISE). pp. 11–20 (2020)

[54] Silva, J.: A vocabulary of program slicing-based techniques. ACM Com-
put. Surv. 44(3) (Jun 2012). https://doi.org/10.1145/2187671.2187674

[55] Stiévenart, Q., Binkley, D., De Roover, C.: An empirical evaluation
of quasi-static executable slices. Journal of Systems and Software 200,
111666 (2023)

[56] Stiévenart, Q., Binkley, D.W., De Roover, C.: QSES: quasi-static ex-
ecutable slices. In: 21st IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2021. pp. 209–213.
IEEE (2021). https://doi.org/10.1109/SCAM52516.2021.00033

[57] Stiévenart, Q., Binkley, D.W., De Roover, C.: Static stack-preserving
intra-procedural slicing of webassembly binaries. In: 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. pp. 2031–2042. ACM (2022).
https://doi.org/10.1145/3510003.3510070

[58] Stiévenart, Q., De Roover, C.: Compositional information flow analysis
for WebAssembly programs. In: 20th IEEE International Working Con-
ference on Source Code Analysis and Manipulation, SCAM 2020. pp.
13–24. IEEE (2020). https://doi.org/10.1109/SCAM51674.2020.00007

[59] Stiévenart, Q., De Roover, C.: Wassail: a WebAssembly static analysis
library. In: Fifth International Workshop on Programming Technology
for the Future Web (2021)

[60] Stiévenart, Q., De Roover, C., Ghafari, M.: The security risk of lack-
ing compiler protection in WebAssembly. In: 21st IEEE International
Conference on Software Quality, Reliability, and Security. IEEE (2021)

[61] Stiévenart, Q., De Roover, C., Ghafari, M.: Security risks of porting c
programs to WebAssembly. In: The 37th ACM/SIGAPP Symposium On
Applied Computing. ACM (2022)

[62] Tonella, P.: Using a concept lattice of decomposition slices for program
understanding and impact analysis. IEEE Transactions on Software
Engineering 29(6) (2003)

[63] Umemori, F., Konda, K., Yokomori, R., Inoue, K.: Design and im-
plementation of bytecode-based Java slicing system. In: 3rd IEEE
International Workshop on Source Code Analysis and Manipula-
tion (SCAM 2003). pp. 108–117. IEEE Computer Society (2003).
https://doi.org/10.1109/SCAM.2003.1238037

[64] Ward, M.P.: Slicing the SCAM mug: A case study in semantic slicing.
In: 3rd IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM 2003). pp. 88–97. IEEE Computer Society (2003).
https://doi.org/10.1109/SCAM.2003.1238035

[65] Ward, M.P., Zedan, H.: Combining dynamic and static slicing for
analysing assembler. Sci. Comput. Program. 75(3), 134–175 (2010)

[66] Wasmer: The leading WebAssembly runtime supporting wasi and em-
scripten. https://github.com/wasmerio/wasmer

[67] Watt, C., Maksimovic, P., Krishnaswami, N.R., Gardner, P.: A program
logic for first-order encapsulated WebAssembly. In: 33rd European
Conference on Object-Oriented Programming, ECOOP 2019. pp. 9:1–
9:30 (2019)

[68] Weiser, M.: Program slicing. In: 5th International Conference on Soft-
ware Engineering. pp. 439–449 (1981)

[69] Weiser, M.: Program slicing. In: Jeffrey, S., Stucki, L.G. (eds.) Pro-
ceedings of the 5th International Conference on Software Engineering.
pp. 439–449. IEEE Computer Society (1981), http://dl.acm.org/citation.
cfm?id=802557

[70] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell,
B.: Experimentation in Software Engineering. Springer (2012).
https://doi.org/10.1007/978-3-642-29044-2

[71] Zhao, J.: Dependence analysis of Java bytecode. In: 24th
International Computer Software and Applications Conference

(COMPSAC 2000). pp. 486–491. IEEE Computer Society (2000).
https://doi.org/10.1109/CMPSAC.2000.884771

https://www.w3.org/TR/wasm-core-1/
https://github.com/wasmerio/wasmer
http://dl.acm.org/citation.cfm?id=802557
http://dl.acm.org/citation.cfm?id=802557

	Introduction
	Background
	A Brief Tour of WebAssembly
	The SCAM Mug in WebAssembly
	WebAssembly Validation Requirement

	Static Slicing of WebAssembly
	Observation-Based Slicing

	Study Design and Methodology
	The Four Slicers Studied
	Research Questions
	Subjects
	Subject Preparation
	Metrics
	Implementation

	Evaluation
	RQ1: How Practical is Applying ORBS Directly to WebAssembly Programs?
	RQ2: Which of EWS, ESW, and SEW Best Balances Speed and Precision?
	RQ3: What Qualitative Differences are there Between the Slices Produced by the Three Slicers?
	Comparison of ESW and SEW
	Comparison of EWS and SEW

	RQ4: For a Given Binary, what are the Pros and Cons of Static Slicing Versus Dynamic Slicing.
	Discussion
	Threats to Validity

	Related Work
	Conclusion
	References

