
Symbolic Execution to Detect Semantic Merge
Conflicts

Ward Muylaert
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
ward.muylaert@vub.be

Johannes Härtel
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
johannes.hartel@vub.be

Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Abstract—Collaborative software development depends on
managing multiple versions of a program which requires mech-
anisms to merge program versions to eventually deploy a single
executable. Merging program versions can be challenging as
conflicts can arise. The most challenging form is a semantic
conflict, which introduces unintended behaviour in the resulting
executable while merging.

In this paper, we develop an approach that detects such seman-
tic merge conflicts by symbolic execution. We define the program
semantics as path conditions, produced by a symbolic executor,
and check whether the conditions satisfy established rules that
reflect a merge conflict. Our usage of symbolic execution to check
these rules is novel. We evaluate the correctness of our approach
through mutation testing, and evaluate it empirically by applying
the approach to real-world merges sampled from GitHub. We
also discuss what challenges arise in the empirical evaluation,
including the problems i) that semantic merge conflicts are rare in
the wild, ii) and, even in retrospection, hard to find using standard
search mechanisms. Our evaluation shows that in specific cases,
our approach using symbolic execution is a promising extension
to existing mechanisms to merge conflict detection.

Index Terms—semantic merge conflict, symbolic execution

I. INTRODUCTION

When a team of software developers collaboratively works
on a program, there typically exist several program versions
in parallel [3], [35], [36]. This enables one developer to
work on a version with a new feature, and another developer
to implement a fix [3]. The versions are stored in version
control systems (VCS) [11]. However, the team eventually
needs to merge the program versions to deploy a single
executable. Merging is a challenge since conflicts between
program versions can occur [4], [38].

The most challenging form is a semantic conflict, which
introduces unintended behaviour in the resulting executable
while merging (see [24], which distinguishes textual, syntactic,
and semantic conflicts).

A. Semantic Merge Conflict

We introduce an example of a semantic merge conflict that
cannot be detected on a textual or syntactic level. It can be
detected by our approach using symbolic execution.

1 p u b l i c i n t myAdd (i n t x , i n t y) {
2 i n t z = x + y ; / / Updated t o ‘ x + y + 1 ’ i n v e r s i o n A
3 re turn z ; / / Updated t o ‘ z + 1 ’ i n v e r s i o n B
4}

The example shows an original program version where the
myAdd method returns the sum of x and y. One developer
notices that there is an ‘off-by-one’ error and changes line 2
to int z = x + y + 1 in program version A. Another
developer resolves the same problem, but changes line 3 to
return z + 1 in program version B.

The merged version M includes the changes done in pro-
gram version A and B and returns the sum of x and y plus
two. The behaviour of the program has changed by resolving
an ‘off-by-two’ and not an ‘off-by-one’ error. Behavioural
differences between branches are often intentional. However,
changing the behaviour of the same method in such a coun-
terintuitive way, is likely to be a semantic conflict. Such a
semantic merge conflict cannot be detected by Git’s merge
or by a compiler.

B. Detecting Semantic Merge Conflicts by Symbolic Execution

In this paper, we present an approach to detecting semantic
merge conflicts by symbolic execution (see [8], [23] for sym-
bolic execution). Our approach classifies the previous example
as a semantic merge conflict.

To this end, our approach defines the program semantics as
path conditions, produced by a symbolic executor, and checks
whether the conditions satisfy established rules that reflect a
merge conflict. Our usage of symbolic execution to check these
rules is novel.

We develop an automated prototype that warns in such
cases and thereby helps developers to avoid semantic merge
conflicts.

C. Evaluation

Semantic merge conflicts are rare in the wild, and standard-
ized datasets for benchmarking are missing. This complicates
the evaluation. To evaluate our approach, we investigate the
following two research questions:

• RQ1: Can we classify semantic merge conflicts retroac-
tively by heuristics computed on the full revision history?

• RQ2: Can we classify semantic merge conflicts proac-
tively by symbolic execution?

We use the retroactive classification (RQ1) to get a pool of
candidates with a realistic chance of being a semantic merge
conflict. The pool is used for the evaluation of our proactive

approach by symbolic execution (RQ2). Using a random
sample from GitHub is unrealistic due to the vanishingly small
number of true semantic merge conflicts on GitHub.

Our evaluation shows that in specific cases, our approach
using symbolic execution is a promising extension to existing
mechanisms to merge conflict detection.

D. Contributions

• We present an approach to detect semantic merge con-
flicts by symbolic execution.

• We implement a prototype for detecting Java merge
conflicts that is used for the evaluation of our approach
on synthetic and empirical data.

• We present an alternative retroactive approach to detect
semantic merge conflict on the full revision history.

E. Roadmap

Section II starts with the necessary background for intro-
ducing our approach; Section III discusses the related work;
Section IV explains our approach that uses symbolic execution
to detect semantic merge conflicts; Section V describes a
prototype implementation of our approach, listing technical
details and limitations; Section VI evaluates the prototype;
Section VII concludes the paper.

II. BACKGROUND

A semantic merge conflict is a conflict in the program
behaviour that happens during merging. In this paper, we
focus on an abstraction of the program behaviour produced
by symbolic execution (see [8], [23]).

We start with an introduction to symbolic execution and
merge conflicts. The background is required for the description
of our approach in Section IV.

A. Symbolic Execution

Symbolic execution is a static analysis technique in which
the input values of a program are replaced by symbolic
variables. While executing the program, different constraints
are placed on the symbolic variables (e.g., by branching
conditions or variable assignments). The constraints relate the
program input and output values and are gathered in a path
condition.

Path conditions are abstractions of the program behaviour.
To give an example, we consider the myAdd function from
Sec. I again. In its original program version (without any
changes) there is one path condition, i.e., z = x + y where
variable z is the program output and variables x and y are the
program inputs.

Path conditions can be used in subsequent analysis steps
by constraint solvers, making them relevant to our approach.
In our case, such an analysis step classifies a merge conflict
using the path conditions.

Fig. 1. The four parts involved in a merge. Branches A and B share a common
ancestor commit O. The changes are combined into the merge commit M.

B. Version Control Systems

Version control systems (VCS) help to develop and maintain
programs as a team by managing different program versions
and keeping track of the evolution [11]. VCS such as Git,
SVN, and Mercurial, describe the evolution of the software as
a directed acyclic graph (DAG). Nodes represent snapshots
of the software. They are also called versions, commits,
or revisions. Edges reflect actions by developers, such as,
committing, branching, or merging.

C. Merging

Diverging program versions lead to branches in the directed
acyclic graph. Branching may be used for many reasons,
for instance, to separate the development of certain program
features [3]. Such separation is crucial to develop and maintain
the program as a team.

However, branching introduces the problem of merging.
Here, different program versions need to be combined again
into one single version. Fig. 1 shows such a situation, where
two branches with the same origin are merged into one single
program version.

In particular, the relevant nodes in the acyclic graph, reflect-
ing program versions, are:

• The Origin (O): The origin is the program version that
both branches base their work on.

• Branch A and B: The two branches evolve from O
by individual efforts. They can consist of one or more
program versions. The last version in each branch is the
one relevant to our approach. We label them as A and B.

• The Merge (M): Both branches are merged into a single
program version M.

The scenario depicted in Fig. 1 is called a three-way merge
because it considers the origin and the (last version of the) two
branches. It was introduced with the Unix diff3 program in
the late 1970s. It is the current standard merge strategy for Git.
Combining more than two branches at once (n-way merge) is
uncommon, so we exclude it from the following discussion.

D. Merge Resolution and Merge Conflicts

Merging the different versions of a program is not trivial
and cannot always be automated [4], [6], [26].

In this background section, we will explain the typical
process of merging in Git. We will discuss different forms of

Git’s Default Textual Merge
(detects conflict)

conflict

Compiler
(detects conflict)

conflict

Our Prototype
(detects potential conflict)

no

no

Manual
Resolution

no

Accept

conflictNEW

resolved

resolved

resolved

Fig. 2. The semi-automated process to check the conflict freedom of merge
commits. The process eventually leads to an accepted merge.

conflicts that may arise before a merge can be accepted. We
depict this process in Fig. 2. The diagram already contains our
prototype that we will discuss in Sec. IV.

1) Textual Merge (Git’s Default): Merging is often done
using a textual representation of the program (typically the
source code). We focus on this textual merge strategy because
it is the default for Git. Git uses the diff3 algorithm. Other
textual approaches are discussed in [5], [28], [43].

An automatic textual merge may not always be possible.
For example, if both branches changed the same part of the
text in different ways, there is no way of knowing which one
to prioritise. This requires a manual resolution of a textual
merge conflict. Git, for instance, detects and forces the user to
resolve the conflict.

In this paper, we use the terms detecting and classifying a
conflict interchangeably.

2) Compiler: When the textual conflict is resolved, a syn-
tactic conflict may remain. The compiler typically catches such
conflicts. For example, a conflict with an extra opening (or
closing) brace in the code, can be detected by a compiler, but
not by a textual method.

While the compiler provides an accurate classification of
syntactic conflicts, the resolution is typically done manually
when working with Git’s default merge.

There are also syntactic merge approaches (typically work-
ing on ASTs) that may automatically resolve (or prevent)
syntactic conflicts (see [1], [7], [46]).

3) Semantic Conflicts: What remains are the semantic
conflicts, where a classification of a conflict depends on the

behaviour of the program. Semantic conflicts are challenging
because the programs in branches often differ in the behaviour
by intention. In this paper, we focus on how to detect
semantic merge conflicts within parts of the program. We
use symbolic execution for the detection.

III. RELATED WORK

We continue with an in-depth discussion of the related
approaches. We position this paper as the first that classifies
(or detects) semantic merge conflicts by symbolic execution.

We focus on approaches dedicated to three-way-merging.
We do not discuss related work that compares two versions of
a program, but list some instances here (see [29], [30], [34]).

We introduce the following three dimensions to structure
the related work discussion. The first two reflect the structure
of this section.

Program analysis vs. data-driven: We see differences
in how approaches classify or resolve conflicts. Approaches
can be based on program analysis. This is the case for our
approach. Other approaches are ‘empirically’ motivated using
collected data or existing knowledge on merges.

Classification vs. resolution: This section distinguishes
between approaches that: i) classify merge conflicts for a sub-
sequent manual resolution (i.e., detection), and ii) approaches
that automatically resolve (or prevent) conflicts. Approaches
for classification and resolution apply related techniques. Our
approach provides a classification.

Semantic vs. non-semantic: Aspects of ‘merge conflict
types’ have already been discussed in Sec. II-D.

We will focus on semantic merge conflicts in this section,
but we will mention alternatives, if they are part of relevant
related work.

A. Program Analysis Approaches

We start with a discussion of approaches that do a classifi-
cation of conflicts based on a program analysis. Our approach
falls into this category.

1) Classification of Conflicts: The authors of [40] define
semantic conflicts as the introduction of unwanted behaviour.
This is comparable to our definition. They introduce Safe-
Merge, a tool that considers a merge as four modifications to a
common base. They apply a lightweight analysis to the shared
parts, and verify modifications (in particular the return values
of a program). SafeMerge is evaluated on real-world code,
but the authors note that a semantic conflict is hard to define
objectively. They evaluate against their own definition of a
semantic merge conflict, inherent to their approach (Definition
4.4, page 7, in [40]). Our qualitative evaluation attempts to
mitigate this by judging a conflict through the presence of bug
fixes for a merge. Our definition of a conflict is closely related
to the definition used by SafeMerge. They compare returned
variables similarly to our definition (see Sec. IV-B). However,
we use symbolic execution to instantiate the definition.

Da Silva et al. [10] consider static analysis tools (like
symbolic execution) as too heavyweight. Instead, they use test
generation. Tests are generated using the program versions A

and B to capture the behaviour. The tests are then executed on
versions O and M. When a test fails in O and M, but succeeds
in A (or B), then there is a possible conflict. We generalise
this definition further in Sec. IV-B. Da Silva et al. report on
many false negatives produced by their approach. This reflects
the complexity of classifying semantic merge conflicts.

Wuensche et al. [47] classify build and test conflicts. Their
approach creates a directed call graph of the code and its
modifications to detect a conflict if: i) changes are made on the
same call graph node, ii) there is a path from one change to
another, or iii) there is a path from an unchanged node to two
changed nodes. This is clearly different to symbolic execution
and more on the syntactic level. In an evaluation, Wuensche
et al. show that the approach helps to catch build conflicts.
However, test conflicts are rare in the sample that Wuensche
et al. use for the evaluation. Hence, statements on whether the
approach detects test conflicts are not possible. This reflects a
challenge of our evaluation that shows that semantic conflicts
are rare. We resolve this by producing a pool of promising
semantic conflict candidates by a retroactive search method
which operates on the full revision history. We use this sample
of candidates in the evaluation of our approach.

Pastore et al. [33] use specification mining to generate
behavioural program models for versions O, A, and B. They
run a program’s tests to collect values for variables, after which
pre- and post-conditions are derived from the observed values.
If changed conditions differ between A and B, according to
a constraint solver, a conflict is reported. We generalise this
definition further in Sec. IV-B. Our approach does not require
an existing test suite and also takes into account the behaviour
of version M.

2) Resolution of Conflicts: Another branch of related work
focuses on automatically resolving conflicts.

MrgBldBrkFixer [42] is a tool that aims to automatically
resolve conflicts, such as inconsistent symbol renaming. When
identifying a renamed symbol that causes the build to break,
it filters the commits after the last correct build and uses them
to generate patches to resolve the inconsistency.

Horwitz et al. [21] use program dependency graphs and
program slicing to create graphs representing the changed code
in both branches. If the graphs do not overlap, there is no
conflict. Merge conflicts are automatically resolved by merging
overlapping graphs, deriving the merged code from the merged
graphs. This is a more syntactic resolution of a conflict.

B. Data-driven Approaches

Other approaches are ‘empirically’ motivated, using col-
lected data or existing knowledge on merges, to classify or
resolve conflicts.

1) Classification of Conflicts: The Bucond tool, presented
in [44], creates a program entity graph for version O, A, and B.
The program entity graph contains standard AST information
but also def-use relations. A comparison of the different
graphs is searched for predefined conflict patterns. Conflict
patterns reflect very specific information that we consider as
empirically motivated. A merge conflict is reported if a pattern

matches. Compared to our approach using symbolic execution,
Bucond is limited to predefined patterns.

Somewhat related is the classification of pull requests.
Models that predict the acceptance of pull requests are trained
on empirical data. An example can be found in [45]. However,
non-acceptance of pull requests may not necessarily be caused
by a merge conflict.

2) Resolution of Conflicts: DeepMerge [14] uses a machine
learning model to suggest resolutions for a textual merge
conflict. MergeBERT [43] improves on this approach, also
targeting textual merge conflicts. Learning from existing data
on resolutions is also employed by, for example, Pan et al. [31]
and by Almost Rerere [20].

Our approach does not rely on data. However, we assume
the combination of ML with symbolic execution to be promis-
ing future work.

IV. DETECTING MERGE CONFLICTS BY SYMBOLIC
EXECUTION

This section describes our approach to detecting merge
conflicts by symbolic execution. We structure this section as
follows:

• Sec. IV-A describes a merge conflict in terms of a
property P . The property is a placeholder. We later
define the property such that it reflects the semantics of
a program version.

• Sec. IV-B formulates basic rules that describe the merge
conflict given a property P . This leads to a classification
as merge conflict. The rules are inspired by the related
work.

• Sec. IV-C instantiates the property P using symbolic ex-
ecution. This results in a classification as a merge conflict
based on the semantic notion of symbolic execution.

• Sec. IV-D describes how to decompose a merge conflict
that arises from such a definition, into a more fine-grained
notion of a conflict.

A. Property P

Our definition of a conflict is based on a property that we
denote as P . The property P is a placeholder. It is specific to
the four program versions involved in a merge. This can be
described as a 4-tuple: (PO, PA, PB , PM).

For illustration, we consider a concrete example in which
we analyse the presence of a particular line of code. We define
P as a boolean function, checking whether the line is present
in the origin O, the branches A and B, and the merge M. An
example is a program where branch A adds a line which is not
present in the origin O or in branch B. If the line also shows
up in the merge, then the tuple is (False,True,False,True).

In Sec. IV-C, we switch to a semantic notion of such a
property, created by symbolic execution.

B. Merge Conflict of Property P

We now define a merge conflict as a function of the 4-
tuple for property P . We also report on the intuition why a
violation, by our definition, might be a conflict. In Sec. VI,

we evaluate this definition. Our definition comes close to work
which compares other properties in a related manner [10], [21],
[33], [40].

A merge conflict arises if one of the following three
constraints is violated:

• Conflict Freedom A (CF-A): We face a merge conflict
if (PO ̸= PA) → (PA = PM) is violated. The intuition
is that if the property differs between the common origin
O and the branch A, i.e., PO ̸= PA, then we expect
the merge property PM to reflect this, by being equal to
property PA. This is PA = PM .

• Conflict Freedom B (CF-B): Analogous to CF-A.
• Conflict Freedom A and B (CF-AB): We face a merge

conflict if (PA = PB) → (PA = PB = PM) is
violated. The intuition is that if the property is the
same in both branches, i.e., PA = PB , then we also
expect this property to be present in the merge M, i.e.,
PA = PB = PM .

The definition of equality (=) and inequality (̸=) depends
on the way we define the property P . The arrow → denotes
a logical implication.

In our concrete example of a line of code, where the
property is defined as a boolean function, the equality (=)
is the standard boolean operator.

One reason for a violation of CF-A is that a line is added
in branch A, but the line is not present in the merge M. One
reason for a violation of CF-AB is that a line is added by both
branches, but it is not present in the merge M.

Version control systems, like Git, already apply comparable
rules when performing a merge requested by the developer. A
merge is constructed in a manner that the above rules are not
violated.

In the following, we switch from our basic example to a
semantic property of the program and thereby to a semantic
conflict.

C. Semantic Merge Conflict

We start with a simplified discussion of a program with a
single method that is changed independently in two branches.
Both versions are eventually merged. In Sec. IV-D, we explain
how to extend this idea to make statements about different
structural elements of the program and thereby decompose a
semantic conflict.

Symbolic execution typically results in multiple path con-
ditions, due to the controls structures in a program. We avoid
this detail in this section and consider a program with just
one path condition. We then extend it to multiple paths in
Sec. IV-D.

Our approach uses a symbolic execution engine to define
the property P as a path condition. A constraint solver is used
to define equality between path conditions. The property P
thereby captures the behaviour of the method.

Equality and inequality, previously denoted as = and ̸=,
are now defined using a constraint solver. To emphasise the
difference, we denote the equality proven by the constraint

solver as ⇔ and ⇎. The symbol → still denotes a logical
implication.

Our rules thereby instantiate as follows:
• CF-A: (PO ⇎ PA) → (PA ⇔ PM)
• CF-B: Analogous to CF-A.
• CF-AB: (PA ⇔ PB) → (PA ⇔ PB ⇔ PM)

In essence, the rules state that if we face a semantic change
in one of both branches, we expect the new behaviour to be
present in the merge too (CF-A or CF-B). If both branches are
semantically equivalent, we expect them to be semantically
equivalent to the merge (CF-AB).

If we go back to our semantic example from the introduction
in Sec. I, we have the following path conditions as properties
for O, A, B, and M.

PO : r = x+ y

PA : r = x+ y + 1

PB : r = x+ y + 1

PM : r = x+ y + 2

Substitution of the properties into the rules produces a
semantic merge conflict because all rules are violated.

D. Decompose the Conflict

When applying the previous approach to the program as a
whole — this can be imagined as applying it to the single
main method — we will almost always detect a conflict.
Such a semantic conflict lies in the nature of branching, since
both branches are intended to make semantic changes to the
program.

Based on the idea of locality of behaviour, we try to solve
this by decomposing the program into its parts. This enables
us to get a more meaningful insight into a semantic conflict,
by reporting on the number and locations of violations for the
parts.

To this end, we change our rules to operate on 4-tuples of
sets. The set needs to respect the definition of the equality that
we plug into our approach. The rules are adjusted as follows:

• CF-A: If PA \ PO ⊆ PM is violated, we face a conflict.
All elements that are added by A, that are not previously
present in O, need to be contained in M.

• CF-B: Analogous to CF-A.
• CF-AB: If PA∩PB ⊆ PM is violated, we face a conflict.

All elements that are contained in both A and B need to
be part of M.

For a single element set, the rules correspond to the rules
we defined in Sec. IV-B. This set notation can be transferred
into statements on which elements are missing in the merge,
giving the locations, and quantifying violations.

For completeness, we list the set operations with the ad-
justed equality defined by a constraint solver.

A \B := {a ∈ A | ∄b ∈ B : b ⇔ a} [Set Difference]

A ∩B := {a ∈ A | ∃b ∈ B : b ⇔ a} [Set Intersection]

1 i n t d i v (i n t x , i n t y) {
2 i f (y == 0) / / Removed i n A
3 re turn 0 ; / / Removed i n A
4

5 i f (y != 0) / / Removed i n B
6 re turn x / y ;
7 e l s e / / Removed i n B
8 re turn 0 ; / / Removed i n B
9}

Listing 1. The original version O has a redundant safety checks (in particular
divide-by-zero). Branches A and B remove one check. However, they do not
agree on which check is removed. In M, both checks are missing, so the
safety check semantics is missing.

1 i n t d i v (i n t x , i n t y) {
2 i f (y != 0)
3 re turn x / y ;
4 e l s e
5 re turn 0 ;
6}

Listing 2. Branch A removes lines
2–4 from O.

1 i n t d i v (i n t x , i n t y) {
2 i f (y == 0)
3 re turn 0 ;
4

5 re turn x / y ;
6}

Listing 3. Branch B removes lines
5, 7, and 8 from O.

1 i n t d i v (i n t x , i n t y) {
2 re turn x / y ;
3}

Listing 4. In version M, both checks are missing, so the safety check
semantics are missing.

A ⊆ B iff ∀a ∈ A ∃b ∈ B : a ⇔ b [Subset]

For our semantic approach to detect conflicts, we partition
the behaviour of the program. This is done by a partitioning
of the input space of the program that is specific to symbolic
execution.

Consider the example in Listings 1 to 4 with control struc-
tures and more than one path condition given by a symbolic
executor. The code includes two checks for a divide-by-zero
error. Branch A and B do not agree on which check to remove
to avoid this redundancy. Hence, the result is missing a check
for the divide-by-zero error after merging, i.e., a semantic
conflict.

Symbolic execution handles the control structures by adding
new path conditions (e.g., one for the ‘then’ and another of
the ‘else’ of an ‘if’). Thus, it partitions the input space of the
method. The 4-tuple of sets of path conditions for the program
versions look as follows for this example:

PO = {y = 0 ∧ r = 0, y ̸= 0 ∧ r = x/y}
PA = {y = 0 ∧ r = 0, y ̸= 0 ∧ r = x/y}
PB = {y = 0 ∧ r = 0, y ̸= 0 ∧ r = x/y}
PM = {r = x/y}

Applying the conflict freedom rules to these sets results
in the following: For CF-A PA \ PO = ∅ ⊆ PM , so CF-A
is not violated (analogous for CF-B). For CF-AB, however,
PA = PB = (PA ∩ PB) ̸⊆ PM , so CF-AB is violated. The
path condition y = 0 ∧ r = 0 reflects that the check for a
divide-by-zero error is missing. We report a semantic conflict.

In the following section, we will discuss the technical details
of our prototype implementation of this approach to detecting

semantic conflicts. In Sec. VI, we will evaluate our definition
of a semantic conflict on synthetic and real-world examples.
Some examples will be discussed in depth.

V. TECHNICAL DETAILS

We implement a prototype of the approach that we need for
the evaluation in Sec. VI. This section describes the technical
details of the prototype and its limitations. We separate such
details from the description of our approach, since they can be
ignored on a conceptual level. However, they impose technical
limitations on the following-up evaluation that is based on the
prototype.

Symbolic execution is technically challenging and strongly
dependent on existing technology. We reuse a combination of
Symbolic PathFinder [32], Gumtree [16], and Z3 [12]. We
adapt Symbolic PathFinder and Gumtree as described in this
section.

A. Aligning Variables in Path Conditions

The path conditions for each program version result from
different runs of a symbolic executor. However, there is no
clear relationship between symbolic variables created in the
different runs. To show an equivalency between the path con-
ditions, we create a mapping between the symbolic variables
for path conditions for different program versions.

Consider the example of two path conditions, xO < 10 and
xA < 10, resulting from an analysis of O and A. Variables
xO and xA are symbolic and created during analysis. Without
further information on the equivalence of variables, one cannot
show the equivalence xO < 10 ⇔ xA < 10. An extra conjunct
xO = xA is needed.

We use a syntactical analysis as a preprocessing step in our
approach that resolves this problem. The step finds matches
between AST nodes across different program versions. When
using the constraint solver to find an equivalence, our pro-
totype uses this mapping to add equalities between symbolic
variables like xO = xA.

Our prototype uses Gumtree [16] for this step. Gumtree
finds mappings between nodes of the ASTs. Our prototype
runs Gumtree on every combination of the ASTs of program
version O, A, B, and M.

B. Symbolic Execution Engine

For the symbolic execution, we use Symbolic PathFinder
(SPF) [32], an extension to the Java PathFinder (JPF) [19].
SPF is still used in recent research, for example in HyDiff [29].

SPF does have some shortcomings. At the time we started
using SPF, it supported Java 8. New language features have
been added to Java since then. SPF also does not support all
Java constructs. It does not model the entire standard library
and misses some language features, such as try-catch.
Where required by SPF, we simplify the code under analysis.

Symbolic execution has limitations, such as path explosion,
that lead to some paths not getting analysed. This negatively
affects conclusions drawn by our tool. Improving symbolic
execution is outside the scope of this work. We minimize the

impact of limitations by decomposing the program into simpler
parts (see Section IV-D).

1) Symbolic Variable for Output: To detect equivalent path
conditions (previously denoted as ⇔), we are interested in
constraints on the symbolic input and output variables of
a program. SPF does not create constraints on the output,
however. We modified SPF to create an extra symbolic variable
for the output returned by a method.

2) Source Code Information: Section V-A motivates the
need to add equalities between symbolic variables to show
equivalence of path conditions from different program ver-
sions. To achieve this, we modified SPF to track this additional
source code information.

We need to link the symbolic variable back to the cor-
responding point in the source code. However, symbolic
PathFinder works on Java bytecode and does not maintain
such information. We modify SPF to intercept and adapt the
creation of symbolic variables. Upon creation of a symbolic
variable, our modified Symbolic PathFinder saves any line
number and original name information.

C. Constraint Solver

We use the Z3 constraint solver [12]. We extend SPF’s built-
in translation of path conditions to queries. Eventually, the
queries are processable by Z3.

Passing constraints and path conditions to Z3, and to other
constraint solvers, is already built into SPF. We extend the
existing SPF implementation to fit our needs. We patched
support for implies and or, which was missing, and support
for not, which was limited.

To check for equivalence between path conditions, our tool
aligns the links discovered by Gumtree in the AST with the
source code information of the symbolic variables in SPF. Note
that some discrepancies between line numbers can occur due
to the Java compilation process. Our tool applies a heuristic
looking for lines close enough, within a threshold of three
lines.

D. Prototype

Our prototype combines the previous technical aspects. It
performs a syntactical analysis of O, A, B, and M. It ensures
that each version is symbolically executed. It finds equivalent
path constraints. Finally, it checks whether any violations of
CF-A, CF-B, or CF-AB occur.

Results are shown by listing path conditions, their equiva-
lencies, and flagging those that break CF-A, CF-B, or CF-AB.
A further improvement would be to link these path conditions
back to the relevant parts of the code, for example, by using
the source code information our prototype already keeps track
of.

Our prototype requires a user to explicitly state the method
and inputs of the program that need to be analysed symbol-
ically. We also need to inject a main method into the code
that is subject to analysis. This custom main guides symbolic
execution to the relevant part of the code. This is relevant
to the decomposition of the program. We assume that future

work can automate and resolve these limiting factors of our
prototype.

We avoid an evaluation of the time our approach needs
because it is very sensitive to the technical details listed
in this section. Due to our decomposition of the problem
(Section IV-D), possible simplifications (Section V-B), and
adding a main method, the time taken for the actual analysis
in our experiments is short (typically under 10 seconds).
However, we do not know how such performance generalizes
to more realistic cases.

E. Future Automation

We envision our prototype to warn developers of potential
problems in merges and pull requests when working with stan-
dard version control systems. However, applying our current
prototype still requires high manual efforts.

We envision the following more automated sketch of a
workflow to remove most manual efforts.

• Configuring the build and compilation of the program
will remain manual work. It can be set up once for a
repository if the build process does not change.

• From this point on, a merge can automatically trigger the
following steps.

• We can produce possible decompositions of the merged
program. This step may consider dependencies between
code and use program slicing [27]. The decomposition
needs to be matched over the involved program versions
of a merge.

• Code can be generated with a main method that calls one
or all methods in a component.

• Conflicts can be identified by our approach and warnings
are reported.

VI. EVALUATION

We evaluate our approach on synthetic and empirical data.
The synthetic data is used to show the technical validity of
our prototype. We use data generated by mutation testing. The
empirical data is used to show the empirical relevance of our
approach. This data is gathered from GitHub. The data and
prototype can be found online 1.

A. Technical Validation

This section evaluates the technical validity of our prototype
on synthetic data.

1) Method: We generate a dataset using software mutation
testing [13]. The original program version O is defined to be a
Java program. We run the mutation testing tool Major [22] on
the program to generate a set of mutations U of O. We form
the Cartesian product of set U with itself, and define branches
A and B accordingly. Finally, we use Git’s default merge to
produce merge M.

Most program versions O, A and B merge without
problems. However, Git’s textual merge potentially pro-
duces semantically conflicting program versions M. Our
approach should detect such semantic conflicts.

1https://github.com/ward/semantic-merge-conflicts-scam2023

https://github.com/ward/semantic-merge-conflicts-scam2023

TABLE I
OVERVIEW OF THE CASES STUDIED IN RQ2

Real vs. Violated PCs . . .
Synthetic Project Merge Description at merge after fix
R google/j2objc 79781f8 In our first case, the branches A and B add the same behaviour. In

branch A, the behaviour is added through a method call, protected
by a boolean flag. In branch B, the behaviour is directly added to
the method’s body, and not protected by a boolean flag. The merge
combines both modifications, which is a clear semantic conflict.
In the fix, the code added in branch A is removed. This real-
world example is comparable to our example in the introduction.
However, the code of branch A includes a boolean flag, but the
fix does not. Hence, our prototype still reports on some violations
after the fix, but fewer violations compared to the merge M.

6 / 6 4 / 6

R tcurdt/jdeb e9ceff5 In the second case, branch A and B move code around and make
some other changes. The result is code duplication in the merge M,
and renders the code added by branch A as unreachable. The fix
removes the unreachable code. Our tool warns about the behaviour
from branch A disappearing for the merge M and after the fix.
However, after the fix, the behaviour is still missing, so the number
of violations does not change. This is a case where our prototype
does not work as expected.

3 / 15 3 / 15

R welovecoding/
editorconfig-netbeans

99578c4 In the third case, a bug is present in the origin O. In branch A,
the method is fixed that contains the bug. In branch B, the call to
the method is commented out. In merge M, the method was thus
fixed, but not called. The fix uncomments the method call. Our
tool reports about the missing changes from A disappearing. In the
fixed version, the tool reports that the effect of B’s commenting
out of code has disappeared. The fix decreases the conflicts.

2 / 11 1 / 11

R larsga/Duke 7c65f5e In case four, the changes causing a semantic merge conflict involve
a try-catch and the exception being raised within it. Our
prototype cannot analyse this due to the technical limitations of
Symbolic PathFinder that does not handle try-catch. We see
no obvious way to simplify this case into something that can
be analysed in the context of our prototype. We assume that
our approach can spot this conflict if a try-catch is being
supported by the Symbolic PathFinder.

- -

R spotify-web-api-java/
spotify-web-api-java

675a0d2 In case five, branch A modifies the method’s return type. In branch
B, a method with the same name is added, overloading the old
method by adding a new parameter. The return type of this method
in branch B is the same return type as in the original method
before the change of branch A. In merge M, there is both, the
method from A with the new return type and the method from B
with both, the old return type and the added parameter. The fix
updates the return type of the method of branch B to match the
return type of branch A. This is something our approach is unable
to spot. There are no path conditions to compare, and calling it a
bug relies on guessing whether the developer intended to do have
different return types or not.

- -

R/S google/j2objc 79781f8’ Case six is an adaptation of google/j2objc merge 79781f8 (our
first case). The boolean flag that was added in version A of the
original case, is not added here. Instead, the added method is
always called. Thus, A and B behave entirely the same, while
the behaviour is duplicated in M. The fix removes the method
call from A. The fix behaves exactly like A and B. We detect no
more violations after the fix.

2 / 2 0 / 2

S - - Case seven is synthetic. Consider branch A and B, which add
a parse and a sanitise function, respectively. The plan of
the developers is that, once merged, parse will make use of
sanitise to clean up its input. When merging, however, this
call is not added to parse. Our tool reports no violations. In
the fix, parse does call sanitise. Our tool reports a conflict:
the behaviour of parse changes in M (the “fix” here) compared
to its behaviour in branch A. We add this synthetic case to our
dataset for our evaluation to show the limitation of our prototype.

0 not 0

For the resulting 4-tuples that we have generated, we
manually classified the merge M as a conflict or not. We run
our prototype and compare the output to this manually tagged
baseline.

2) Results: For the input program O, we use code from
Project Euler, a website centred around mathematical pro-
gramming challenges [15].

We generate a set U with 34 different mutants of the original
program. The Cartesian product results in 561 combinations
for pairs of A and B with corresponding merge M. We exclude
symmetric pairs. We also exclude 123 pairs being reported as
a trivial textual conflict by Git’s default merge. We randomly
sample ten pairs from the remaining 438 for a manual analysis.

We manually classify 3 of the corresponding merges as
semantic conflicts and 7 as valid. Our tool classifies all
merges correctly.

The chance of labelling 10 merges correctly using a random
classifier is smaller than 0.2%. We refer to a small simulation
showing this, which is part of the online material. We also
refer to [17], [18].

3) Threats to Validity: The low complexity of the input
program is a threat to validity for this technical evaluation.
We used an existing program instead of creating an input
program as part of this evaluation. This makes the results
more realistic. However, the technical limitations, described
in Sec. V, constrain the selection of our input program.

Our manual classification of semantic conflicts may be
influenced by our understanding of our approach. This threat
is hard to mitigate. We deploy our dataset online to enable the
replication and revision of our approach.

The mutation generation is limited in that every mutation
introduces exactly one change to the program. However, both
changes affect the same parts of the program which is still a
challenging situation.

B. Empirical Validation

The empirical evaluation of our approach is challenging
because real semantic merge conflicts are rare. There is no
standard dataset that can be used for benchmarking. Our
empirical evaluation is thereby split into two parts.

• In a first part, we aim to classify semantic merge conflicts
retroactively. We use heuristics on the revision history
following a merge. We do this to get promising merge
candidates that are interesting for an in-depth discussion.
We need this alternative to a regular sample from GitHub,
since semantic merge conflicts are rare. Manually tagging
a rare class on a regular sample is unrealistic due to the
vanishingly small number of positive (or negative) cases.

• In a second part, we apply our tool to such candidates and
check if we can identify the conflicts proactively using
our approach. This is done without having the subsequent
commit history that indicates a conflict. We discuss such
cases in-depth in TABLE I.

We structure this part of the evaluation accordingly.

1) Retroactive Method: We use a dataset of Java projects
with Maven, introduced by Cavalcanti et al. [9]. The dataset
lists merges, their parents, and metadata on the build and
test success for the merge commits. However, Cavalcanti et
al. study syntactic merge conflicts by comparing structured
and semi-structured approaches to merging. Hence, this dataset
does not immediately work for the evaluation of our approach.
We use the same projects as Cavalcanti et al., but deviate in
how we classify the merges.

For the Java projects, we collect all merges M, the corre-
sponding parents A, B, and the first common ancestor O. We
ignored rare situations where there are more than two parent
commits. We also ignored trivial merges where A is a parent of
B (or vice versa). To identify O, we use Git’s built-in common
base finding algorithm.

We apply the following heuristics to filter for interesting
candidates that can potentially be classified as a semantic
merge conflict.

• We filter for merges with an overlap in the modifica-
tions. We apply stratification (or group-by) to diversify.
For one half of the merges, we require that versions A
and B change the same file. For the other half, we require
that the same line was changed.

• We filter for merges with a suspicious commit history
following the merge. We apply a light-weight version
of the SZZ algorithm [39] (also used in [25], [37]) to
classify the commit after the merge as a bug fix.
We do not go for the alternative of considering bug
fixing commits further down in the tree of descendants.
In previous experiments, we noticed that this introduces
noise both due to an overlap between merges and due to
a general increase in the number of unrelated fixes.

• The bug fix following the merge does not always relate
to a bug introduced in the merge. Hence, the changes by
the fix and the merge need to overlap, too. We filter
for bug fixing commits that at least change one line or
file (see earlier discussion on stratifications) of the lines
or files changed between versions O and M.

The heuristics are relevant to reduce the candidates subject
to our subsequent manual tagging of conflicts. They produce a
pool of candidates with a realistic chance of being a semantic
merge conflict. Executing a manual analysis on a random
sample of merges on GitHub would be unrealistic. Our method
corresponds to a standard practice in evaluating information re-
trieval systems, referred to as relevance judgement or pooling
method (see [41], page 13, or more recently [2], page 158).

2) Retroactive Results: We manually examined 500 merges
in 152 projects identified by our retroactive method. We
identified 55 semantic merge conflicts, where 50 were caught
by the compiler. The five remaining cases are the interesting
ones for our approach. The conflicts can be found in TABLE I.

All five conflicts were identified by the heuristic of overlap-
ping changes to files (not to lines). All five conflicts include
a bug fixing commit message using the keyword fix. Two
of the messages also use the keyword merge. The following

up discussion also includes another five commits that are not
followed by a fix. We chose them randomly.

3) Proactive Method: In the following part, we evaluate
our proactive approach using symbolic execution empirically
by running it on the pool of candidates that we have identified
in the previous part of the evaluation.

To get a more exhaustive discussion, we complement the
candidates by i) one adaptation that simplifies the control flow
and ii) another synthetic case where our approach does not
work as expected.

4) Proactive Results: The results are described in Table I.
The table only includes the merges that are followed by a
fix and that we have manually tagged as a conflict. The
online dataset contains all candidates. We structure the table
as follows:

• The first column (Real vs. Synthetic) indicates a discus-
sion of a real-world or synthetic case. The majority of
the cases are real. Synthetic cases are added to make the
discussion exhaustive.

• The second column (Project) reports on the GitHub
project name.

• The third column (Merge) lists the abbreviated SHA of
the merge.

• Column four (Description) explains the semantic conflict
in depth and discusses the pros and cons of the classifi-
cation done by our approach.

• Column five and six (Violated PCs at the merge or after
the fix) give the actual classification in terms of violated
path conditions. This number is either given for the merge
or for after the fix. Eventually, we expect this number to
decrease after a fix if our approach works correctly. The
number of violations can be derived from our definition
in set semantics (see IV-D).

To sum up the insight of the table: Our approach using
symbolic execution correctly detects the decrease in vi-
olation (by fixes) for three merges. The violations of one
merge disappear (by the fix). For one merge, our approach
reports on no change in violation (by the fix). In one
synthetic case, violations increase (by the fix). For one
of the five candidates not followed by a fix, our approach
warns incorrectly. Two merges cannot be processed due to
technical limitations, see the description of rows four and five
in the table.

This shows that in specific cases, our approach using
symbolic execution is a promising extension to existing mech-
anisms to merge conflict detection. However, there are some
cases for which the approach does not work as expected. These
are detailed in the table.

5) Threats to Validity: Comparable to the technical part
of this evaluation section, our manual classification of merge
conflicts may be biased by our expectations. We mitigate
this by the explicit discussion in the table. We also deploy
our dataset online to allow replication and revisions of our
approach.

Different to the technical part of the evaluation that uses
mutations, we cannot make any objective statements on the

developer’s original intention in the real-world cases. In our
evaluation, we try to mitigate this problem by manually
inspecting all involved commits and the commit messages in
depth. In real-world usage, we believe that a developer will
easily be able to judge warnings by our approach due to their
familiarity with the code.

While we examined 500 merges, the low size of positive
cases is another threat to this analysis and illustrates the rare
nature of semantic merge conflicts. We are not computing any
confidence intervals for which such sample size matters. We
try to mitigate the problem of a low number of positives by
favouring a qualitative and exhaustive discussion of real cases,
including synthetic cases that logically follow from the real
cases we have spotted.

VII. CONCLUSION

In this paper, we develop an approach that detects semantic
merge conflicts by symbolic execution. We define the program
semantics as path conditions, produced by a symbolic execu-
tor, and check whether the conditions satisfy established rules
that reflect a merge conflict. Our usage of symbolic execution
to check these rules is novel. We implement a prototype for
the evaluation of our approach.

We evaluate the technical validity of our prototype using
synthetic data. We generate the synthetic data through muta-
tion testing.

We evaluate our approach empirically by following our
research questions:

• RQ1: We need empirical data from GitHub to show
the empirical relevance of our approach, but semantic
merge conflicts are rare and hard to spot manually. Hence,
we define a retroactive method to do an approximate
classification of semantic merge conflicts that scales. The
method is based on the commit history following the
merge. We use the method to compute a pool of potential
semantic merge conflict, which we examine manually and
use for answering RQ2.

• RQ2: We use the pool of manually classified semantic
merge conflicts to evaluate our approach to detect seman-
tic merge conflicts by symbolic execution. We discuss the
application of our prototype qualitatively for five cases
from our pool of real-world semantic merge conflicts.

Our approach using symbolic execution correctly detects
changes in semantic violations in three out of five semantic
merge conflicts. The evaluation shows that in specific cases,
our approach using symbolic execution is a promising exten-
sion to existing mechanisms to merge conflict detection.

Our prototype is limited within the technical constraints of
the symbolic executor we used. Future work needs to focus
on automation and the integration of the approach into the
continuous integration pipeline. We also consider the com-
bination of symbolic execution and data-driven approaches,
such as deep-learning, as promising future work. This may
overcome validity related limitations of data-driven approach
by a more formal approach to symbolic execution.

REFERENCES

[1] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistruc-
tured merge: rethinking merge in revision control systems,” in 19th
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE) and 13th European Software Engineering Conference (ESEC),
T. Gyimóthy and A. Zeller, Eds. ACM, 2011, pp. 190–200.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval.
Pearson Education, 2011, vol. 463.

[3] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M. Germán, and P. T.
Devanbu, “Cohesive and isolated development with branches,” in FASE,
ser. Lecture Notes in Computer Science, vol. 7212. Springer, 2012, pp.
316–331.

[4] C. Brindescu, I. Ahmed, C. Jensen, and A. Sarma, “An empirical
investigation into merge conflicts and their effect on software quality,”
Empirical Software Engineering, vol. 25, no. 1, pp. 562–590, sep 2019.

[5] C. Brindescu, I. Ahmed, R. Leano, and A. Sarma, “Planning for
untangling: Predicting the difficulty of merge conflicts,” in ICSE 2020,
2020.

[6] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European Conference on Foundations of
Software Engineering (ESEC/FSE), 2011.

[7] J. Buffenbarger, “Syntactic software merging,” in Software Configuration
Management, ICSE SCM-4 and SCM-5 Workshops, Selected Papers,
ser. Lecture Notes in Computer Science, J. Estublier, Ed., vol. 1005.
Springer, 1995, pp. 153–172.

[8] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
February 2013.

[9] G. Cavalcanti, P. Borba, G. Seibt, and S. Apel, “The impact of struc-
ture on software merging: Semistructured versus structured merge,” in
Automated Software Engineering (ASE), 2019.

[10] L. Da Silva, P. Borba, W. Mahmood, T. Berger, and J. Moisakis,
“Detecting semantic conflicts via automated behavior change detection,”
in International Conference on Software Maintenance and Evolution
(ICSME), 2020.

[11] B. de Alwis and J. Sillito, “Why are software projects moving from
centralized to decentralized version control systems?” in CHASE. IEEE
Computer Society, 2009, pp. 36–39.

[12] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008.

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, 1978.

[14] E. Dinella, T. Mytkowicz, A. Svyatkovskiy, C. Bird, M. Naik, and S. K.
Lahiri, “Deepmerge: Learning to merge programs,” IEEE Transactions
on Software Engineering, vol. 49, no. 4, pp. 1599–1614, 2023.

[15] P. Euler. Problem 1: Multiples of 3 or 5. [Online]. Available:
https://projecteuler.net/problem=1

[16] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, I. Crnkovic, M. Chechik,
and P. Grünbacher, Eds. ACM, 2014, pp. 313–324.

[17] J. Härtel and R. Lämmel, “Operationalizing threats to MSR studies
by simulation-based testing,” in International Conference on Mining
Software Repositories (MSR). ACM, 2022, pp. 86–97.

[18] ——, “Operationalizing validity of empirical software engineering stud-
ies,” Empirical Software Engineering, 2023, to appear.

[19] K. Havelund and T. Pressburger, “Model checking java programs using
java pathfinder,” International Journal on Software Tools for Technology
Transfer, 2000.

[20] S. L. Herrera Gonzalez and P. Fraternali, “Almost rerere: Learning to
resolve conflicts in distributed projects,” IEEE Transactions on Software
Engineering, pp. 1–18, 2022.

[21] S. Horwitz, J. Prins, and T. Reps, “Integrating noninterfering versions of
programs,” ACM Transactions on Programming Languages and Systems,
1989.

[22] R. Just, “The major mutation framework: efficient and scalable mutation
analysis for java,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis - ISSTA 2014. ACM Press, 2014.

[23] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, 1976.

[24] T. Mens, “A state-of-the-art survey on software merging,” IEEE Trans-
actions on Software Engineering, vol. 28, no. 5, pp. 449–462, May 2002.

[25] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in International Conference on Software
Maintenance (ICSM), 2000.

[26] W. Muylaert and C. De Roover, “Prevalence of botched code integra-
tions,” in International Conference on Mining Software Repositories
(MSR), 2017.

[27] ——, “Untangling composite commits using program slicing,” in 18th
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2018.

[28] N. Nelson, C. Brindescu, S. McKee, A. Sarma, and D. Dig, “The life-
cycle of merge conflicts: processes, barriers, and strategies,” Empirical
Software Engineering, vol. 24, no. 5, pp. 2863–2906, feb 2019.

[29] Y. Noller, C. Pasareanu, M. Bohme, Y. Sun, H. L. Nguyen, and
L. Grunske, “Hydiff: Hybrid differential software analysis,” in ICSE
2020, 2020.

[30] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a doubt: Testing for
divergences between software versions,” in International Conference on
Software Engineering (ICSE), 2016.

[31] R. Pan, V. Le, N. Nagappan, S. Gulwani, S. Lahiri, and M. Kaufman,
“Can program synthesis be used to learn merge conflict resolutions? an
empirical analysis,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, may 2021.

[32] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level symbolic
execution and system-level concrete execution for testing nasa software,”
in International Symposium on Software Testing and Analysis (ISSTA),
2008.

[33] F. Pastore, L. Mariani, and D. Micucci, “BDCI: behavioral driven
conflict identification,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, E. Bodden, W. Schäfer, A. van Deursen,
and A. Zisman, Eds. ACM, 2017, pp. 570–581.

[34] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasareanu, “Differential
symbolic execution,” in ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), November 2008, pp. 226–237.

[35] S. Phillips, J. Sillito, and R. Walker, “Branching and merging: An
investigation into current version control practices,” in International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2011.

[36] R. Premraj, A. Tang, N. Linssen, H. Geraats, and H. van Vliet, “To
branch or not to branch?” in International Conference on Software and
Systems Process (ICSSP), 2011.

[37] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the ”naturalness” of buggy code,” in International Confer-
ence on Software Engineering (ICSE). ACM Press, 2016.

[38] E. Shihab, C. Bird, and T. Zimmermann, “The effect of branching strate-
gies on software quality,” in 2012 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2012.

[39] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes? (on fridays.),” in International Workshop on Mining Software
Repositories (MSR), 2005.

[40] M. Sousa, I. Dillig, and S. K. Lahiri, “Verified three-way program
merge,” PACMPL, vol. 2, no. OOPSLA, pp. 165:1–165:29, 2018.

[41] K. Spärck Jones and C. J. van Rijsbergen, “Report on the need for and
provision of an “ideal” information retrieval test collection,” Computer
Laboratory, University of Cambridge, Tech. Rep., 1975.

[42] C. Sung, S. K. Lahiri, M. Kaufman, P. Choudhury, and C. Wang,
“Towards understanding and fixing upstream merge induced conflicts in
divergent forks: An industrial case study,” in International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2020.

[43] A. Svyatkovskiy, S. Fakhoury, N. Ghorbani, T. Mytkowicz, E. Dinella,
C. Bird, J. Jang, N. Sundaresan, and S. K. Lahiri, “Program merge
conflict resolution via neural transformers,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, nov 2022.

[44] S. S. Towqir, B. Shen, M. A. Gulzar, and N. Meng, “Detecting build
conflicts in software merge for java programs via static analysis,” in
International Conference on Automated Software Engineering (ASE),
2022.

https://projecteuler.net/problem=1

[45] J. Tsay, L. Dabbish, and J. D. Herbsleb, “Influence of social and
technical factors for evaluating contribution in github,” in ICSE. ACM,
2014, pp. 356–366.

[46] B. Westfechtel, “Structure-oriented merging of revisions of software
documents,” in Proceedings of the 3rd International Workshop on
Software Configuration Management, Trondheim, Norway, June 12-14,
1991, P. H. Feiler, Ed. ACM Press, 1991, pp. 68–79.

[47] T. Wuensche, A. Andrzejak, and S. Schwedes, “Detecting higher-order
merge conflicts in large software projects,” in International Conference
on Software Testing, Validation and Verification (ICST). IEEE, oct
2020.

	Introduction
	Semantic Merge Conflict
	Detecting Semantic Merge Conflicts by Symbolic Execution
	Evaluation
	Contributions
	Roadmap

	Background
	Symbolic Execution
	Version Control Systems
	Merging
	Merge Resolution and Merge Conflicts
	Textual Merge (Git's Default)
	Compiler
	Semantic Conflicts

	Related Work
	Program Analysis Approaches
	Classification of Conflicts
	Resolution of Conflicts

	Data-driven Approaches
	Classification of Conflicts
	Resolution of Conflicts

	Detecting Merge Conflicts by Symbolic Execution
	Property P
	Merge Conflict of Property P
	Semantic Merge Conflict
	Decompose the Conflict

	Technical Details
	Aligning Variables in Path Conditions
	Symbolic Execution Engine
	Symbolic Variable for Output
	Source Code Information

	Constraint Solver
	Prototype
	Future Automation

	Evaluation
	Technical Validation
	Method
	Results
	Threats to Validity

	Empirical Validation
	Retroactive Method
	Retroactive Results
	Proactive Method
	Proactive Results
	Threats to Validity

	Conclusion
	References

