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Abstract—Static analyses can be used by developers to compute
properties of a program, enabling e.g., bug detection and program
verification. However, reanalysing a program from scratch upon
every change is time-consuming, especially in settings where code
changes often, such as within IDEs. To avoid such full reanalyses,
incremental analyses instead reuse parts of the previous analysis
result, and reanalyse the changed code as necessary.

While incrementality improves the analysis time, we introduce
a complementary approach that further reduces the analysis
time. A traditional incremental analysis updates previous analysis
results without domain-specific knowledge. However, the effect
of particular source code changes on analysis results can be
predicted. Performing a traditional incremental analysis of the
changed code might therefore be unnecessary. Instead, we pro-
pose to detect code change patterns of which the effect on analysis
results can be predicted and to update these results accordingly,
saving potentially expensive computations.

In this paper, we explore the idea of adapting the analysis
results for behaviour-preserving change patterns. In particular,
we consider consistent renamings, inverted conditionals, and
moved function definitions within Scheme programs. We imple-
mented our approach and evaluated it on 30 programs. We show
decreases in incremental analysis time between 3% and 99%
on 25 programs that contain at least one behaviour-preserving
change pattern.

Index Terms—Static Program Analysis, Incremental Analysis,
Modular Analysis, Refactoring

I. INTRODUCTION

Static analysis is a useful tool for developers as it computes
program properties without the need for running the program.
It can be used for bug detection and program verification.
Unfortunately, performing a static analysis can be very time-
consuming. A code base might also change often, in which
case performing an analysis of the entire program upon every
change might not be preferred. Incremental analyses, therefore,
reuse parts of the results of the previous static analysis of that
program to speed up the process.

We build on top of previous work by Van der Plas et
al. [1], [2], which introduces an approach to incrementalise
effect-driven modular analyses [3]. Their idea is to reanalyse
changed code, and to make use of dependencies to reanal-
yse dependent code if an analysis result did change. While
this approach reduces the analysis time for most of their
benchmarks, the incremental analysis can still take longer than
expected, especially when there are many dependencies on the
changed component(s). Additionally, this approach does not

employ domain-specific knowledge. However, changes with a
predictable effect on the analysis results exist, and these can
be processed prior to the incremental analysis.

As an example, consider a static analysis for the Scheme1

program where Listing 1 represents a program before a change
and Listing 2 represents the same program after a change. In
this example, a renaming is performed: the parameter x of the
function f is renamed to y. During the incremental analysis,
every reference to x will eventually be updated to y. This
happens by performing a reanalysis of the changed code. Table
I shows the analysis results before and after this reanalysis.
We will discuss this example in more detail in Section IV.

Because we know how a renaming affects the analysis
results, we can instead perform the result updates immediately,
avoiding the more expensive incremental analysis by means
of abstract interpretation. In this work, we introduce a novel
approach to make an incremental analysis more efficient,
by detecting change patterns that have predictable effects
on existing analysis results in advance, and by updating the
analysis results accordingly. Our approach is lightweight and
ensures that only changes not following known patterns will
need to be reanalysed. Concretely, we make the following
contributions:

• We propose three change patterns with a predictable
effect on the analysis result. We focus on behaviour-
preserving change patterns, namely:

– Consistent renamings: renaming a variable or func-
tion and updating all references to it,

– Inverted conditionals: negating the condition of an if
expression and switching its then and else branches,

– Moved function definitions: moving a function defi-
nition up or down (one or more) scope level(s), to
make the definition more local or global;

• After the detection of change patterns, the results of the
initial modular analysis are updated accordingly;

• We evaluate our approach and find a decrease in running
time between 3% and 99% on 25 out of 30 programs
that contain at least one of these refactorings (with some
programs also containing other changes).

1Without loss of generality, we present our approach for this famous
Lisp dialect. It is representative of other dynamically-typed, higher-order
programming languages such as Python or JavaScript, for which no static
call graph can be computed and to which our approach can be ported.



Listing 1
OLD VERSION OF THE CODE

1(define f (lambda (x)
2(define g (lambda() x))
3(g)))
4(f 5)

Listing 2
NEW VERSION OF THE CODE

1(define f (lambda (y)
2(define g (lambda() y))
3(g)))
4(f 5)

TABLE I
STORE OF AN ANALYSIS AFTER THE INITIAL ANALYSIS (LEFT) AND AFTER UPDATING ACCORDING TO THE CONSISTENT RENAMING (RIGHT).

Address Abstract value

Return ((λ () x)@1:22, {x@0:19}) Int
Return ((λ (x) ... (g))@0:10, {}) Int
Variable x@0:19 Int
Variable f@0:8 ((λ (x) ... (g))@1:22, {})
Variable g@1:20 ((λ () x)@1:22, {x@0:19})
... ...

Address Abstract value

Return ((λ () y)@1:22, {y@0:19}) Int
Return ((λ (y) ... (g))@0:10, {}) Int
Variable y@0:19 Int
Variable f@0:8 ((λ (y) ... (g))@1:22, {})
Variable g@1:20 ((λ () y)@1:22, {y@0:19})
... ...

Our contributions aim to make static analysis within IDEs
more efficient so it becomes within reach of every developer.
In doing so, bugs will be easier to detect and understand,
allowing for easier bug fixes.

In this paper, we first provide an overview of the required
background. Afterwards, we describe our approach, going into
both the detection of behaviour-preserving change patterns and
into the updating the analysis results, which we illustrate in
Section IV using the previous example containing a renaming.
Then, we evaluate our approach and discuss the results, future
work, and related work.

II. BACKGROUND

This paper consists of two main topics: incremental modular
static analysis, and detecting behaviour-preserving change
patterns (refactorings).

A. Incremental Modular Static Analysis

A modular analysis [4] divides the program under analysis
into different parts (e.g., function definitions), called modules,
each of which can have multiple runtime instantiations (e.g.,
function calls). The reification of such an instantiation in
the analysis is called a component, and a modular analysis
analyses its components in isolation. Modular analyses are
scalable [5] and lend themselves well to programs written in
highly dynamic languages with support for higher-order func-
tions. We focus on a function-modular effect-driven analysis
as proposed by Nicolay et al. [3], as this is built upon by
Van der Plas et al. [1]. The analysis of Nicolay et al. divides
the program into function definitions, but the concepts we
introduce generalise to other modular analyses as well.

Although analysed in isolation, components may interact
with each other, meaning that the analysis result of one
component can depend on the analysis result of another. For
example, when a function is called, it receives argument values
from its caller. A component therefore might have to be re-
analysed when another component updated an analysis result.
An effect-driven modular analysis is therefore composed of
two interleaved fixed-point computations: an intra-component
analysis and an inter-component analysis. The former analyses

one component at a time, while the latter takes care of which
components have to be analysed next.

Van der Plas et al. [1] propose an incremental analysis
that uses this modularity by scheduling the components that
correspond to changed modules for analysis. Due to the
dependencies between the components, other components can
still be scheduled for reanalysis later, when it is inferred that
they are also affected by the changes. Their approach is applied
to both a function-modular and a thread-modular analysis, and
their results show a 6% to 99% decrease in analysis time on 14
out of 16 benchmark programs. In this paper, we only focus
on function-modular analysis. In a function-modular analysis,
components correspond to function calls: each function call
is analysed in isolation during the intra-component analyses.
Functions can be dependent on each other (a function can
call another function), which creates dependencies between
the different components. Therefore, when the analysis results
of one function call is updated, every component that is
dependent on that result will be reanalysed accordingly.

In this paper, we use a type analyses performed using
abstract interpretation [6]. However, our approach is also
applicable to other static analyses that do not use abstract
interpretation, as well as to static analyses through abstract
interpretation with other abstract domains.

B. Behaviour-preserving Change Patterns

Code bases are constantly updated and changed throughout
their lifespan. Sometimes, the code base is updated only struc-
turally, which does not change the actual program behaviour.
This is known as refactoring [7]. Many developers perform
refactorings to improve the readability and usability of their
code bases. Besides improving the quality of the software, it
can also lead to better development productivity [8]. In fact,
up to 16% of all changes in code bases may be refactorings
[9]. Additionally, Murphy-Hill [10] found that up to 41%
programming sessions contained refactorings, with multiple
refactorings being performed at once.

III. APPROACH

In this section, we discuss the detection of specific change
patterns and the corresponding updating of the analysis results.



A. Detecting Behaviour-preserving Change Patterns
Before we can update the initial analysis result, we must

first detect the changes that follow a specific pattern, i.e.,
the changes with known effects on the analysis results. Un-
fortunately, refactorings might be performed incorrectly [11],
[12], thereby changing the behaviour of the program and
leaving the effect on the analysis results unpredictable. Such
errors can occur even when automated refactoring tools are
available [13], due to bugs in the automated tools themselves
[14]. To update the analysis results correctly, we only want to
detect refactorings that are applied correctly.

In order to focus only on the refactorings, rather than on
change detection as a whole, we assume that there is already a
mechanism in place to detect changes in source code; we focus
on detecting whether those changes indeed follow a specific
change pattern. Detecting changes can be done by using tools
or annotations in the code base. Our approach follows an
extended version of the change annotations used by Van der
Plas et al. [1]. Programs are pre-annotated with the changes,
containing both the old and the new version of the code in one
file. Annotations may indicate updates, insertions or deletions.

To avoid false positives in the detection of patterns, cur-
rently, our approach does not always detect nested refactorings
(such as a moved function definition that has also been
renamed). The incremental static analysis by Van der Plas
et al. [1] is sound, i.e., there are no false negatives in its
results. To preserve soundness, it is important to avoid false
positives during the pattern-detection phase: a change that does
not follow a particular change pattern should never be flagged
as one that does. A change pattern that is not detected (false
negative) will simply be subject to reanalysis without updating.
This means that the incremental analysis will not be faster than
before, but it preserves its soundness. False positives in the
pattern-detection phase can, however, lead to incorrect updates,
which can make the analysis unsound.

This paper focusses on three change patterns in particular.
We decided on consistent renamings and moved function
definitions due to their popularity in real-life systems. While
inverted conditionals occur less frequently in real-world code,
this pattern poses interesting challenges for our approach.
Together, these patterns provide new insights that can be used
when implementing other change patterns in the future.

1) Consistent Renaming: One of the most frequently per-
formed refactorings is the renaming of an identifier [10], with
many IDEs providing automated tools to perform this refac-
toring. A renaming is consistent if it does not cause variable
capturing, and if every reference to the renamed identifier is
updated. A renaming that is consistent is behaviour-preserving,
whereas a renaming that is not consistent may have an effect
on the behaviour of the program. For example, forgetting to
update a reference to a renamed function might lead to an
error, as there now is a call to a function that no longer exists.

In order to detect consistent renamings, we use a locally
nameless representation [15] of the piece of code before and
after the change. To this end, every bound variable in an
updated expression is replaced by its De Bruijn index, whereas

free variables are kept as-is. If the two versions of the code are
different in their locally nameless representation, they cannot
be a consistent renaming of each other. If the two locally
nameless representations are the same, we need to check that
the free variables in the expression are unchanged in the
expression’s environment. That is, free variables still need to
reference the same variable and function definitions. This can
only be violated if there were multiple changes in the file other
than the (potential) consistent renaming. While this can lead
to some false negatives, especially when multiple functions or
variables have been renamed across the program (as free vari-
ables within an expression that contains a consistent renaming
may then also be updated, yielding unequal locally nameless
representations), we avoid false positives.

2) Inverted Conditional: A conditional (e.g., an if expres-
sion) is inverted in a behaviour-preserving way when its
condition is negated (for example, by adding not or by
changing a relational operator) and its branches are swapped.
Detecting this change can be done by textually comparing the
old else branch and new then branch (as well as the other way
around), and the old and new conditions.

3) Moved Function Definition: A function definition can be
moved elsewhere in the program, thereby possibly changing its
scope. This change is behaviour-preserving if (1) the function
has not moved outside the scope of any of its callers, which
will lead to errors, (2) the free variables used in the function
body are all still in scope and reference the same definitions
as before, and (3) no variable capturing has occurred. This
variable capturing is possible if, e.g., there already existed
a variable or function with the same name as the moved
function definition within its new scope. If the function is
moved outside of the scope of its callers, for example, violating
criterion (1), the program will yield an error which might not
have existed before (meaning there is a change in behaviour).

We can detect this type of change by comparing all function
definitions that have been removed from the code against all
of those that have been added to the code. If two function
definitions are textually identical, this may indicate a moved
function definition. Then, we need to check whether all their
free variables still refer to the same function and variable
definitions as before the move. If this is the case, we check
if all callers of the removed function now call the inserted
function. However, note that in the case of a recursive function,
the recursive call will now call a different function (i.e., the
inserted one).

B. Updating the Analysis Results

Once we detect that a change matches a particular
behaviour-preserving change pattern, the analysis results can
be updated accordingly. We now look into the constituents
of these analysis results that require updating once a pattern
is detected. These constituents stem from the analysis state
space depicted in Table II, based on the state space defined
by Nicolay et al. [3]. One of the most important parts is the
store of the analysis, σ, which maps addresses in the heap
(e.g., return addresses or variable addresses) to their abstract



TABLE II
SIMPLIFIED STATE SPACE OF THE INTER-COMPONENT ANALYSIS.

s ∈ σ = (Addr + K) → V al
dep ∈ Deps = AddrDep → Cmp

mapping ∈ TrackMap = Exp → Set(Cmp)
v ∈ Visited ::= cmp : v | ϵ

AddrDep ::= addrDep(a)
cmp ∈ Cmp ::= cmp(clos(λ, ρ), κ)

ρ ∈ Env = Var → Addr
a ∈ Addr ::= retAdd(cmp) | varAdd(var, κ) | ...
val ∈ Val ::= clos(λ, ρ) | type

var ∈ Var ::= identifier(string, pos)
exp ∈ Exp ::= var | expr(e, pos) | λ

λ ∈ Lambda ::= expr(lam(args, exp), pos)
pos ∈ Positions ::= line:column

κ ∈ K a finite set of contexts
type ∈ Type a finite set of types
args ∈ Args a finite set of variables

value (i.e., the computed type of a value for our type analysis).
Note that expressions from the analysed program can occur
at various levels in the analysis results. For instance, return
addresses in the store contain the component (i.e., function
call) the analysis returned from. Components in turn consist
of a lambda expression from the source code, its definition
environment, and the calling context for which it was analysed.
Environments in turn contain variables from the source code.
Thus, the state space of the analysis consists of highly nested
parts that also require updating.

1) General updating: First, we look into the updating that
is the same across all change patterns. Every element in
the state space eventually contains either variables and/or
expressions. For example, an address dependency (AddrDep)
could contain a return address containing a component. This
component, in turn, is a closure with a lambda (an expression),
an environment ρ (a map of variables to addresses, which in
turn can contain expressions etc.) and a context κ (although
we do not go into details of contexts here, context-sensitive
analyses can be supported).

We use two sets to keep track of what updating is required.
First, ReExp: (Exp, Exp) keeps track of replaced expressions
in the program. The set consists of tuples where the first
element is an expression before a change, and the second
element is the corresponding expression after the change.
Second, ReVar: (Var, Var) keeps track of replaced variables; it
contains variable definitions before and after the change. Our
approach constructs these sets upon the detection of behaviour-
preserving change patterns, i.e., during the detection phase.

Using ReExp, an expression at any level in the analysis
results can be updated using the following case-based function:

updateExp(e) =


ne if (e, ne) ∈ ReExp
e if (e, ) /∈ ReExp

∧ ¬hasSubExpressions(e)
usub(e) otherwise

where usub(e) maps updateExp to each of e’s subexpressions.
The updateExp function takes an expression and has three

possible outcomes. If the given expression e exists as the first
element of a tuple in ReExp, the expression has been changed

and the second element of that tuple (i.e., the new expression)
will be returned. If e does not have any subexpression, and
e itself is not present as the first element in the ReExp
set, the expression has not changed and can therefore be
returned itself. Finally, if the expression is not present as the
first element of a tuple in the ReExp set, but it does have
subexpressions, each of the subexpressions should be checked
for required updating. This happens in case a change is nested
somewhere deep inside an expression.

Afterwards, variables in environments can be updated sim-
ilarly, making use of the ReVar set as follows:

updateEnv(ρ) =


ρ[nv 7→ a]\{v} if (v, nv) ∈ ReVar

∧ v ∈ ρ

ρ otherwise

where a = varAddr(nv, κ′).
If an environment contains a variable which exists as the

first element in a tuple of ReVar, that variable should be
replaced in the environment by the second element of the
tuple in the ReVar set. Because environments map variables
to variable addresses, this new variable should be mapped to
a variable address containing the new variable, as well as an
updated version of the context of the old variable address, κ
(κ′), in the case of a context-sensitive analysis.

Depending on the change pattern, additional updates might
be required. These are be described below.

2) Consistent Renaming: In the case of a consistent renam-
ing, there exists a one-to-one mapping for every expression
and variable in the analysis results from before the change to
after. Therefore, no special updating is required in this case,
and the changes can be performed as described above.

3) Inverted Conditional: Inverted conditionals require some
additional updating next to the updating process described
above. While many expressions do have a one-to-one mapping
(for example, a mapping from the old then branch to the new
else branch), new expressions may be introduced. For example,
a not can be introduced around the condition. In this case,
the not expression has never been analysed in this context
before, meaning there are no analysis results for it yet (and
therefore it cannot be updated). Similarly, a relational operator
can be changed, e.g., > may be replaced by <=.

To remedy this, we only allow changes where a not
expression is removed. For relational operators, we use the
fact that the analysis framework we are extending defines some
relational operators in terms of others. For example, > can be
defined using not and <= as follows: (define (> x y)
(not (<= x y))) Therefore, the “negated” conditional (>
to <=) might already have an analysis result. It is important
that this result already exists (e.g., in the case of a type
analysis, this would mean that the abstract value returned by
<= is a boolean). Otherwise, it will be missing from the
analysis results, thereby making them unsound. If this result
does not yet exist, it is important to perform the analysis of
the component regardless of it being a behaviour-preserving
change pattern. Therefore, we also restrict some of the negated



relational operators. Thus, to guarantee soundness, we under-
detect this pattern, reanalysing it in some cases despite being a
behaviour-preserving change pattern. In other cases, we update
the analysis results as described.

In the case a not expression is removed, we have to remove
the component (and its analysis results related to it) as well,
unless not is still used elsewhere in the program.

4) Moved function definition: Moved function definitions
impact the analysis results in more than one way. While there
exists a one-to-one mapping from every (sub-)expression of
the moved function definition before and after the move, the
surrounding expressions should also be updated:

• Due to the change in the function definition’s scope, the
function definition will now belong to a different (set of)
component(s), as it is moved elsewhere;

• If the function is moved, it is no longer a subexpression
of where it was previously defined, but a subexpression
of where it is defined now. In the state space, TrackMap
keeps track of which components contain a given expres-
sion;

• This change pattern can affect many environments within
the analysis result. A function moved down, outside
of the scope of other functions, therefore leaves those
environments. A function moved up, causes it to be in
the scope of more functions than before. In both cases,
closures in the analysis results need to be updated to
reflect their new environments.

In the framework we are extending, the environments do not
contain all variables in scope, but only those that are used by
the lambda expression the environments belong to. We will
use this knowledge when updating the environments, as this
allows us to reason in terms of the free variables.

Thus, in addition to applying the updating rules updateExp
and updateEnv described before, we also apply the updateMv
rule. updateMv is applied to all environments that exist within
the analysis results, as all may be affected. fv is a function
that takes a lambda expression and returns its free variables
(both the names and definition sites are returned to ensure the
correct variable is referenced). nv is the name and definition
site of the moved function definition after the move, whereas
v is the name and position of the moved function definition
before the move. As every environment in the analysis result is
located within a closure, there is always a lambda expression
that corresponds to a given environment that is being updated
by updateMv. e is the lambda expression that belongs to the
environment that is currently being updated, and ne is the
corresponding lambda expression in the updated program.

updateMv(ρ) =


ρ[nv 7→ a]\{v} if nv ∈ fv(ne) ∧ v ∈ fv(e)
ρ[nv 7→ a] if nv ∈ fv(ne) ∧ v /∈ fv(e)
ρ\{v} if nv /∈ fv(ne) ∧ v ∈ fv(e)
ρ otherwise

where a = varAddr(nv, κ′) as before.
In the first case, the moved function is called by another

function both before and after the move. Here, it is important

that the moved function is not defined within the body of the
calling function. Therefore, when looking at the body of the
calling function in isolation, the name of the moved function
is a free variable (nv ∈ fv(ne) ∧ v ∈ fv(e)). The environment
of the calling function must be updated: nv is inserted into
the environment, mapping to its new variable address a, and
the old mapping of v is removed. Note that in this case, the
variable referencing the moved function remains a free variable
within the body of the calling function (nv ∈ fv(ne)), i.e., the
function did not move into the body of the calling function.

If there is a function in which the moved function definition
was nested initially (so v was bound in e due to its definition
site within e: v /∈ fv(e)), but due to the move the function is no
longer nested within the former, then the definition no longer
exists within the body of the enclosing lambda and references
to it within the body of this lambda become free variables (nv
∈ fv(ne)). Therefore, nv must be added to the environment, so
that calling function can still use it.

Third, if there is a function of which the old version did
reference the moved function using a free variable (v ∈ fv(e)),
but it does not after the move (nv /∈ fv(ne)), it means that the
function definition was moved into the body of this function.
In this case, the moved function definition can be removed
from the environment of the now enclosing function, as the
moved function is now defined within its body.

Finally, if no of the above cases apply (nv /∈ fv(ne) ∧ v /∈
fv(e)), that means the lambda associated with the environment
that is being updated does not make use of the moved function
definition, and nothing should be updated.

Note that, if we were to keep track of all variables in scope,
rather than only those that are referenced, updateMv would be
slightly different: in this case it would be necessary to add or
remove the variable to which to the moved function is bound
more often as it would appear in more environments.

Finally, to update TrackMap correctly, the main component
is scheduled for reanalysis. This will trigger no additional
reanalyses as it does not update the store (due to it being
updated according to the rules described above), and will
therefore still be faster than performing a full incremental
reanalysis. We discuss this further in Section VI.

IV. EXAMPLE

We illustrate the updating phase described in Section III-B
on the example program from Section I2, in which x is
consistently renamed to y. For a consistent renaming, the most
basic form of the updating is required: there is a one-to-one
mapping of the expressions before and after the renaming.

The sets ReExp and ReVar were computed during the
detection phase, based on the detection of the renaming. In this
case, the only (sub)expressions that have been changed are the
two references to x. For this program, ReExp is as follows:
{(x@0:19, y@0:19), (x@1:32, y@1:32)} while ReVar is
{(x@0:19, y@0:19)}. Recall that @line:column denotes the

2To improve readability, we omit part of the state space for simplic-
ity. For instance, we use ‘Return ((λ (x) x)@0:10, {})’ rather than
‘retAddr(cmp(clos((λ (x) x), 0:10, {}), ϵ))’.



line number and column of the expression. This position is
important, as two expressions that are textually the same might
exist in the program, but that does not mean both should be
updated (they could, e.g., be in a different scope which makes
that they may not yield the same result).

ReExp and ReVar will then be used to update every part
of the analysis result. First we go over the addresses in the
store and loop over each one. Imagine we want to update
the first element in the store, namely the return address of
the function g, which contains the body expression of g,
(λ () x)@1:22, and its definition environment {x@0:19}.
As (λ () x)@1:22 is absent from ReExp, each of its
subexpressions is considered. This causes the subexpression
x@1:32 to be updated to y@1:32, yielding (λ () y)@1:22
for the new body of g.

To update the environment of g, i.e., {x@0:19}, each
element is considered. As ReVar contains the tuple (x@0:19,
y@0:19), the variable is replaced by y@0:19, yielding the
updated environment {y@0:19}. This process is repeated for
every element in the analysis result, so that all necessary
expressions and environments are updated.

This differs from the incremental analysis by Van der Plas
et al. [1], where the component corresponding to the call of
g on line 3 and eventually also the component corresponding
to the call of f on line 5 would be scheduled for reanalysis
using abstract interpretation.

Note that the store is not the only place where updating
might be necessary: it is also required to loop over the Deps
map (which keeps track of dependencies), TrackMap (which
keeps track of which expression belongs to which component),
and Visited (the set of analysed components). Recall that
this example only talks about a consistent renaming, which
has no additional updating required other than the one-to-
one mapping. If a moved function definition or an inverted
conditional is detected, it will also require additional updating,
as explained in Section III-B1.

V. EVALUATION

We compare our approach to the incremental analysis pro-
posed by Van der Plas et al. [1], henceforth referred to as
the baseline incremental analysis, or simply the baseline. We
answer the following research questions:

RQ1 Upon a source code change, what is the impact of
our approach on the running time of an incremental
analysis?

RQ2 What are the differences in impact between the three
different behaviour-preserving change patterns?

RQ3 What is the overhead of detecting changes and
updating the analysis results?

Additionally, to confirm the soundness of our results, we
conducted soundness tests [16] on a total of 90 programs
to ensure that our implementation is sound, i.e., by ensuring
that there are no false negatives in the analysis results (false
positives are allowed). This means that the analysis correctly
over-approximates the program behaviour.

A. Experimental Setup
We extended the incremental context-insensitive function-

modular type analysis of the baseline [1] with pattern detection
rules for verifying whether the source code under analysis
has been changed according to one of three supported change
patterns (cf. Section III-A). We also extended the baseline with
the machinery needed to update the existing analysis results
according to a detected change pattern (cf. Section III-B).
Changes in the program that do not follow a change pattern
are reanalysed as before using the baseline.

To evaluate our approach, we manually created three mu-
tations of 10 different Scheme programs, each mutation con-
taining a different behaviour-preserving change pattern. The
10 original Scheme programs are summarised in Table III.
Thus, in total, we obtain 30 programs containing different
change patterns. We also include additional changes that are
not behaviour-preserving in 12 of the 30 resulting programs.
These changes can be found in the three mutations of the
freeze, leval, machine-sim, and multiple-dw pro-
grams. Some of the non-behaviour-preserving changes origi-
nate from the benchmark suite of Van der Plas et al. [1]. As
mentioned before, these are not handled by our approach but
will be reanalysed using the baseline incremental analysis.

To exemplify the modified programs containing the man-
ually added refactorings, we show an excerpt of the three
mutations of the nbody program in Listing 3, Listing 4,
and Listing 5. Listing 3 shows the rand function with an
inverted conditional. In this case, we changed the relational
operator of the if expression and swapped its branches. Listing
4 shows the same rand procedure, but this time consistent
renamings have been applied to the let-bindings (h becomes
high and l becomes low) and all references are also updated.
Finally, Listing 5 shows the nbody program but with a moved
function definition. As random is the only function that calls
rand, rand does not have to be a global function and can
be moved down: rand is deleted on the top level and inserted
locally in the body of random.

For the experiments where we measured running times,
we ran both the baseline and the proposed approach for 10
warm-up runs, followed by measured 25 runs to calculate
the average running time on each benchmark program. All
benchmarks were run on a machine with 8GB RAM and
an Intel Core i5-7200U processor with 2 physical and 4
logical cores. We measured both the full running time and
the running times of each individual phase (detecting the
changes, updating the analysis results, and reanalysing where
necessary). Additionally, we also look into the number of intra-
component analyses performed during the reanalysis phase (if
any) during a separate run, as a different way to quantify
the amount of work performed by the resulting incremental
analysis phase.

VI. RESULTS

A. RQ 1: Impact on Total Running Time
In RQ1, we look at the difference in total running time

between our new approach and the baseline. Table IV shows



TABLE III
USED BENCHMARK PROGRAMS, THEIR LINES OF CODE AND

DESCRIPTION. MUTATIONS OF THE BOTTOM 4 PROGRAMS CONTAIN
OTHER CHANGES ALONGSIDE A REFACTORING.

name LOC description

browse 161 Creates and browses through a data base
matrix 617 Computes maximal matrices
mceval 239 Meta-circular evaluator for Scheme
nbody 1 205 Performs calculations related to n-body problem
nboyer 625 Logic program evaluator
peval 497 Partial evaluator for Scheme
freeze 325 Adds “freeze” to meta-circular evaluator
leval 379 Lazy evaluator for Scheme
machine-sim 964 Compiles to machine code and simulates
multiple-dw 404 non-deterministic evaluator

that on our 30 programs, the running time of the incremental
analysis decreased for 25 programs but increased for 5 others.

For 4 of the 5 programs with an increase in time, the
increase is less than 35 milliseconds, with the exception of
machine-sim with a renaming. This could mean that for
small programs, the overhead of detecting and updating might
be too high compared to simply performing an incremental
analysis. At the same time, we see decreases in running time as
well, on both big and small programs. While some benchmarks
only have a decrease of a couple of milliseconds, the program
multiple-dw sees a decrease of multiple seconds for all
three of the introduced change patterns. The program peval
with a moved function definition has the highest decrease,
going from almost 12 seconds to under a second. This is due
to the fact that the baseline incremental approach scheduled
several expensive component reanalyses for this benchmark.

We can also look at the number of intra-component analyses
performed by both the baseline algorithm and the new method.
These results can be found in Table V. In terms of intra-
component analyses, we see a decrease for all of the 30
benchmarks, meaning that the fixed-point of the reanalysis
phase is obtained in fewer analysis steps. If the only change
present in the program is either a renaming or an inverted
conditional, we can bring the number of intra-component
analyses to zero. In some cases however, the baseline analysis
also performs few reanalyses. The number of components that
will be reanalysed depends on how many components are
dependent on the one that has changed. For example, if the
parameter of a small function with no side effects that is called
only once is renamed, it will have little impact on the analysis
results of all the other components, and few will be triggered
for reanalysis. If, on the other hand, something that has a larger
impact on the program is renamed, more components will be
triggered for analysis. For a moved function definition, we
often still have one or two reanalyses to ensure the soundness
of the results. As discussed in section III-B1, this is to ensure
the correctness of TrackMap. However, this is still a significant
decrease in the number of intra-component analyses for each
of the programs, even ones containing other changes.

Our results thus show that an increase in running time is not
always due to more intra-component reanalyses. The increase
in running time can also be caused by, e.g., the overhead

Listing 3. nbody benchmark with an inverted conditional
1...
2(define (rand)
3(let* ((hi (quotient (car *seed*) 127773))
4(lo (modulo (car *seed*) 127773))
5(test (- (* 16807 lo) (* 2836 hi))))
6(<update>
7(if (> test 0)
8(set-car! *seed* test)
9(set-car! *seed* (+ test 2147483647)))
10(if (<= test 0)
11(set-car! *seed* (+ test 2147483647))
12(set-car! *seed* test)))
13(car *seed*)))
14
15(define random (lambda (n) (modulo (abs (rand)) n)))
16...

Listing 4. nbody benchmark with a consistent renaming
1...
2(define (rand)
3(let* (((<update> h high)
4(quotient (car *seed*) 127773))
5((<update> l low)
6(modulo (car *seed*) 127773))
7(test (- (* 16807 (<update> l low))
8(* 2836 (<update> h high)))))
9(if (> test 0)
10(set-car! *seed* test)
11(set-car! *seed* (+ test 2147483647)))
12(car *seed*)))
13
14(define random (lambda (n) (modulo (abs (rand)) n)))
15...

Listing 5. nbody benchmark with a moved function definition
1...
2(<delete>
3(define (rand)
4(let* ((hi (quotient (car *seed*) 127773))
5(lo (modulo (car *seed*) 127773))
6(test (- (* 16807 lo) (* 2836 hi))))
7(if (> test 0)
8(set-car! *seed* test)
9(set-car! *seed* (+ test 2147483647)))
10(car *seed*))))
11
12(define random
13(let (<insert> (rand (lambda ()
14(let* ((hi (quotient (car *seed*) 127773))
15(lo (modulo (car *seed*) 127773))
16(test (- (* 16807 lo) (* 2836 hi))))
17(if (> test 0)
18(set-car! *seed* test)
19(set-car! *seed* (+ test 2147483647)))
20(car *seed*))))))
21(lambda (n)
22(modulo (abs (rand)) n)))
23...

created by the detection of the change patterns or by the
updating of the analysis results; we discuss this in more detail
in RQ3. Some components can also take longer to analyse
than others, which means that even if there are fewer intra-
component analyses performed, they may take a longer time.

B. RQ 2: Comparison of the Change Patterns

We also look at each of the change patterns separately to
investigate whether our approach is more effective for specific
change patterns. Table IV shows that for 2 of the benchmarks



TABLE IV
AVERAGE RUNNING TIMES FOR EACH OF THE BENCHMARK PROGRAMS EXPRESSED IN MILLISECONDS. RUNNING TIME CALCULATED ON 25 RUNS,

AFTER 10 WARM-UP ROUNDS. ∆ SHOWS THE DIFFERENCE IN TOTAL TIME.

Inverted conditional Consistent renaming Moved function definition

baseline new ∆ baseline new ∆ baseline new ∆

browse 186 18 -90,32% 175 9 -94,86% 203 44 -78,33%
matrix 33 27 -18,18% 33 29 -12,12% 47 48 2,13%
mceval 22 19 -13,64% 22 21 -4,55% 26 29 11,54%
nbody 64 60 -6,25% 65 57 -12,31% 65 96 47,69%
nboyer 923 149 -83,86% 945 161 -82,96% 813 166 -79,58%
peval 150 70 -53,33% 170 39 -77,06% 11751 99 -99,16%
freeze 6547 6561 0,21% 4743 4467 -5,82% 5110 4681 -8,40%
leval 2368 2279 -3,76% 3530 3404 -3,57% 2310 2213 -4,20%
machine-sim 12140 12927 6,48% 9974 9367 -6,09% 15512 12833 -17,27%
multiple-dw 15119 11329 -25,07% 18285 12898 -29,46% 17338 11021 -36,43%

TABLE V
NUMBER OF INTRA-COMPONENT ANALYSES PERFORMED BY THE BASELINE AND THE NEW APPROACH, I.E., THE NUMBER OF COMPONENTS THAT ARE

EVENTUALLY (RE)ANALYSED IN BOTH APPROACHES. ∆ REFERS TO THE DIFFERENCE BETWEEN THE BASELINE AND THE NEW APPROACH.

Inverted conditional Consistent renaming Moved function definition

baseline new ∆ baseline new ∆ baseline new ∆

browse 118 0 -118 115 0 -115 143 1 -142
matrix 4 0 -4 4 0 -4 20 1 -19
mceval 6 0 -6 6 0 -6 19 1 -18
nbody 3 0 -3 4 0 -4 7 1 -6
nboyer 37 0 -37 39 0 -39 44 2 -42
peval 4 0 -4 5 0 -5 181 1 -180
freeze 1564 1553 -11 1564 1549 -15 1620 1673 -53
leval 797 795 -2 782 779 -3 805 791 -14
machine-sim 1035 1027 -8 932 924 -8 949 933 -16
multiple-dw 1111 1003 -108 1121 1119 -2 1364 988 -366

with inverted conditionals and 3 of the benchmarks with a
moved function definition, the new approach is slower than
the baseline incremental analysis. The new approach proposed
in this paper is faster than the baseline for all the benchmark
programs with a consistent renaming. At the same time, we
see the biggest improvement in running time for peval with
a moved function definition. This could be due to the fact that
inverted conditionals and consistent renamings of variables
can be local to a specific component, meaning very few
components will be scheduled for reanalysis in the baseline
incremental analysis. In these cases, detecting change patterns
and updating existing analysis results might create too much
overhead for smaller programs. Moved function definitions
can, in contrast, affect multiple components due to changes
in environments, leading the baseline to schedule several
component reanalyses.

C. RQ3: Overhead Created by Detecting Changes

In order to investigate the overhead created by the updating
of the analysis results, we look at each individual phase of our
approach, namely detecting changes and refactorings, updating
the analysis results, and reanalysing any other changes that
may exist. These results can be found in Table VI. As inverted
conditionals and renamed identifiers lead to no reanalyses
being performed if they are the only changes present, programs
that contain these refactorings spend 0ms in the reanalysis

phase. For all of our benchmark programs, both detecting the
refactorings and updating the analysis results take only a few
milliseconds.

For inverted conditionals, we see that freeze and
machine-simulator do not spend a lot of time in the
detecting and updating phase. However in RQ1, we saw
that both of these benchmarks are slower than the baseline
algorithm, despite having fewer intra-component analyses (as
seen in RQ2). One possible reason for this is that, despite
the fewer intra-component analyses being performed, the ones
that are reanalysed are more difficult. The order in which
components are added to the worklist can also influence
the running time of the analysis [17], and while both the
new approach and the baseline use the same LIFO worklist
algorithm, the baseline approach also has to reanalyse the
inverted conditional, meaning it will add an extra component
to the worklist, which can lead to a different order.

For programs such as freeze that do have other changes
present, we see that the time spent on the detection of patterns
and on the updating of results takes only a few milliseconds,
whereas the reanalysis of all the other changes present is
more expensive. Moved function definitions always lead to
some reanalysis. However, in these cases, the reanalysis that
is performed also only takes a few milliseconds, whereas
reanalysing other changes takes a longer time. Therefore, in



these programs, we see that the reanalysis of the changes takes
longer than the detecting and updating of the analysis results.

Additionally, we see little difference in the detection and up-
dating phases across refactorings. This is because all possible
refactorings are tested for when a change is found during the
detection phase. The updating phase also does not differ a lot
between the different behaviour-preserving change patterns.
This is due to the fact that all analysis results need to be
traversed during the updating phase regardless of which pattern
is detected, meaning that each pattern will cause looping over
the store σ, the Deps map, the Visited set and TrackMap, to
inspect and potentially update each item.

We also do not see a connection between lines of code
and time to update the analysis results for our benchmark
programs. nbody is the largest program in terms of lines of
code, however, nboyer, with almost half the lines of code,
spends the most time in the updating phase across refactorings.
The time needed to update the analysis results does therefore
not correspond to lines of code, but to the number of entries in
the store, and to the number of dependencies in the program.
When there are more entries in the store or more dependencies,
more analysis results require checking and updating.

VII. LIMITATIONS AND FUTURE WORK

We leverage domain-specific knowledge about the impact of
change patterns on analysis results to speed up an incremental
modular analysis that did not employ such knowledge. The
expertise required to add support for additional change pat-
terns might hinder the applicability of our approach at large.
However, designers of static analyses are likely to already
posses this knowledge. Our approach can be ported to other
dynamically-typed languages such as Python or JavaScript, but
this may require insights about the analysed language.

We limited ourselves to context-insensitive type analyses
in this work, although the approach supports context-sensitive
analyses too. For the consistent renaming and inverted con-
ditional change patterns, we have already implemented the
required context updates for argument sensitivity and call-
site sensitivity. A preliminary evaluation revealed that this
increases the time required for the updating phase. On the
other hand, the baseline incremental analysis is also more
expensive for context-sensitive analyses. Therefore, a more
detailed evaluation is required.

We only evaluated our work on programs that contain at
least one of the three behaviour-preserving change patterns.
Programs that do not contain any of these changes will incur
the overhead of change pattern detection, which cannot be
regained by saving on component reanalyses. However, for
most of our benchmarks, the time spent in the detection
phase is much shorter than the time spent reanalysing the
components, keeping the overhead minimal.

Furthermore, we use annotations to find changes in the
program, rather than compare commits.

Finally, our evaluation is limited to the three behaviour-
preserving change patterns presented in this work. However,
it can be extended as many other behaviour-changing patterns

or refactorings exist [7], as well as other changes that might
have a predictable effect on the analysis results. An example
of such a change is adding a print statement at the very end
of a function definition. When performing a type analysis, we
know that this addition has the predictable effect of changing
the return type of that function to void. While there might be
some additional updates required for these other patterns (as
with the moved function definitions and inverted conditionals),
the approach stays the same: every expression or variable that
has been changed according to a pattern should be updated in
the analysis results accordingly.

VIII. RELATED WORK

Our work builds on top of the work on incremental static
analysis of Van der Plas et al. [1]. Our work does not
change the incremental analysis itself, but adds a step at the
beginning of an incremental update, which detects specific
change patterns and updates the analysis results accordingly.
We look into the related work of both refactoring detection as
well as incremental static analysis.

A. Refactoring Detection

Over the years, many studies [18]–[37] have been conducted
on refactorings [7] and their detection. However, some ap-
proaches are prone to more false positives [38], e.g., due to
reliance on similarity thresholds, which we avoid as mentioned
in Section III-A.

Over the years, many techniques relying on detecting sim-
ilarity between two program versions have been proposed.
One of the earliest refactoring detection strategies was created
by Demeyer et al. [18], who use a set of change metrics.
Weissgerber and Diehl [25] use a set of rules in combination
with clone detection. For example, for a method to be renamed,
it must exist in the same class and have the same return type.
Ref-finder [20], [39] also uses a set of rules in combination
with a similarity threshold that is based on the longest com-
mon subsequence. However, this technique is also not ideal
for renamed function definitions of recursive functions, for
example, as references within the body of the function will
also have to be updated, hampering similarity detection. The
RefactoringCrawler [19] tool first renders a lightweight AST
of the program and then uses Shingles encoding [40]. It uses a
user-provided similarity threshold. Refdiff [26], [27] is a tool
that works on multiple programming languages, and uses rela-
tions between entities, together with a similarity threshold. To
find similarities, they use Term Frequency–Inverse Document
Frequency (TF-IDF). RefDetect [22] also works on multiple
languages and uses a string alignment algorithm, and also
allows for detecting, for example, a function definition that
has moved and that has another change in its body as well.
All these techniques that rely on similarity are unfortunately
vulnerable to false positives. If the similarity threshold is too
low, many false negatives will occur. At the same time, if
the threshold is too high, there will be more false positives.
Therefore, such similarity thresholds are not sufficient in our



TABLE VI
TIME IN MILLISECONDS SPENT BY THE ANALYSIS IN EACH OF THE PHASES.

Inverted conditional Consistent renaming Moved function definition

Detection Updating Reanalysis Detection Updating Reanalysis Detection Updating Reanalysis

browse 3 13 0 1 7 0 5 27 8
matrix 3 22 0 3 24 0 4 32 9
mceval 3 14 0 4 15 0 3 19 3
nbody 13 45 0 12 42 0 16 69 7
nboyer 18 129 0 12 147 0 19 132 11
peval 8 60 0 4 33 0 4 35 58
freeze 5 19 6535 3 13 4448 3 17 4659
leval 4 14 2259 6 20 3375 4 16 2190
machine-sim 12 46 12866 11 40 9313 13 50 12766
multiple-dw 5 20 11302 4 17 12873 5 25 10988

setting as we avoid false positives to ensure soundness of the
analysis results.

RefactoringMiner [23], [41] uses a bottom-up approach
using the AST of the program. While their approach leaves
less room for errors than the ones using similarity threshold,
in our approach we made use of the fact that the code has
change annotations. Hence, we know where changes are and
we can focus on pattern matching.

Stroggylos and Spinellis [31] as well as Ratzinger et al. [32]
analyse commit messages to detect refactorings in code bases.
However, this technique is not ideal in our setting, as we do
not know which refactorings have been performed in this case,
users do not always say they have refactored, and refactorings
might have been performed incorrectly.

Additionally, there are also techniques that detect refactor-
ings in the IDE as they are occurring [33], [34], [42], [43].
However, the static incremental analysis we build upon is not
yet integrated into an IDE.

B. Incremental Static Analysis
Our work does not propose a new technique to perform

incremental static analysis. Rather, we build on top of an
existing incremental static analysis and make it more efficient
when refactorings are present. There have been multiple
studies on performing incremental static program analysis.
Not all are applicable to dynamic, higher-order languages
however, and many have different approaches to how the
incremental analysis is performed. Nichols et al. [44] propose
an incremental analysis for JavaScript. Their approach requires
a mapping from old program points to new program points,
which is similar to what we use when performing the updating.
However, every program point has to be reanalysed at least
once, whereas we try to avoid reanalysis as much as possible.
In addition, the incremental analysis of Van der Plas et al. [1],
only reanalyses the affected program parts.

IncA [45]–[48] uses Datalog-based graph patterns. Domain-
specific knowledge about these graph patterns might be used
to implement our approach in their setting.

Andromeda [49] uses a support graph to perform specifi-
cally incremental demand-driven taint analysis. Another tech-
nique using support graphs is proposed by Saha and Ra-
makrishnan [50]. Programs need to be specified as Horn

clauses, a requirement that is not needed by the approach we
built upon. Also, our approach can also be applied to other
analyses than taint analysis. Garcia-Contreras et al. [51], [52]
also require Horn clauses for a context-sensitive incremental
modular analysis. However, the approach uses programmer-
defined lexical modules, and thus does not allow for thread-
modular analyses, for example.

Unlike the technique of Van der Plas et al. [1], many
incremental static analysis techniques require a static call
graph [53]–[59]. Liu et al. [60] do not require a statically
known call graph, and preserve precision in their incremental
analysis. However, their approach is limited to flow-insensitive
analyses.

IX. CONCLUSION

In this work, we propose a method to decrease the running
time of an incremental static analysis by updating previous
analysis results according to change patterns detected in the
code change. As change patterns have a predictable effect
on the analysis results, the results can be updated directly,
thereby avoiding a more expensive reanalysis of the changes.
We find that for 25 of our 30 benchmarks, there is indeed
a decrease in running time between 3% and 99% (RQ1).
For consistent renamings, all of the benchmarks were faster,
while for inverted conditionals 2 of the 10 benchmarks were
slower. For moved function definitions, 3 of the 10 benchmarks
were slower, though we also see our best result in a program
with a moved function definition (RQ2). From RQ3, we can
also conclude that for our benchmark programs, there is little
overhead created by our approach to detect refactorings and
to update the analysis results. Especially in bigger programs
with many dependencies for which reanalysing components
can be expensive, and for change patterns that may otherwise
schedule many components for reanalysis, our approach can
speed up existing incremental analyses.
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