Change Pattern Detection for Optimising Incremental Static Analysis

Cindy Wauters*, Jens Van der Plas*, Quentin Stiévenart†, Coen De Roover*

*Vrije Universiteit Brussel, Brussels, Belgium
†Université du Québec à Montréal, Montréal, Canada

Abstract—Static analyses can be used by developers to compute properties of a program, enabling e.g., bug detection and program verification. However, reanalysing a program from scratch upon every change is time-consuming, especially in settings where code changes often, such as within IDEs. To avoid such full reanalyses, incremental analyses instead reuse parts of the previous analysis result, and reanalyse the changed code as necessary.

While incrementality improves the analysis time, we introduce a complementary approach that further reduces the analysis time. A traditional incremental analysis updates previous analysis results without domain-specific knowledge. However, the effect of particular source code changes on analysis results can be predicted. Performing a traditional incremental analysis of the changed code might therefore be unnecessary. Instead, we propose to detect code change patterns of which the effect on analysis results can be predicted and to update these results accordingly, saving potentially expensive computations.

In this paper, we explore the idea of adapting the analysis results for behaviour-preserving change patterns. In particular, we consider consistent renamings, inverted conditionals, and moved function definitions within Scheme programs. We implemented our approach and evaluated it on 30 programs. We show decreases in incremental analysis time between 3% and 99% on 25 programs that contain at least one behaviour-preserving change pattern.

Index Terms—Static Program Analysis, Incremental Analysis, Modular Analysis, Refactoring

I. INTRODUCTION

Static analysis is a useful tool for developers as it computes program properties without the need for running the program. It can be used for bug detection and program verification. Unfortunately, performing a static analysis can be very time-consuming. A code base might also change often, in which case performing an analysis of the entire program upon every change might not be preferred. Incremental analyses, therefore, reuse parts of the results of the previous static analysis of that program to speed up the process.

We build on top of previous work by Van der Plas et al. [1], [2], which introduces an approach to incrementalise effect-driven modular analyses [3]. Their idea is to reanalyse changed code, and to make use of dependencies to reanalyse dependent code if an analysis result did change. While this approach reduces the analysis time for most of their benchmarks, the incremental analysis can still take longer than expected, especially when there are many dependencies on the changed component(s). Additionally, this approach does not employ domain-specific knowledge. However, changes with a predictable effect on the analysis results exist, and these can be processed prior to the incremental analysis.

As an example, consider a static analysis for the Scheme program where Listing 1 represents a program before a change and Listing 2 represents the same program after a change.

As an example, consider a static analysis for the Scheme program where Listing 1 represents a program before a change and Listing 2 represents the same program after a change. In this example, a renaming is performed: the parameter x of the function f is renamed to y. During the incremental analysis, every reference to x will eventually be updated to y. This happens by performing a reanalysis of the changed code. Table I shows the analysis results before and after this reanalysis. We will discuss this example in more detail in Section IV.

Because we know how a renaming affects the analysis results, we can instead perform the result updates immediately, avoiding the more expensive incremental analysis by means of abstract interpretation. In this work, we introduce a novel approach to make an incremental analysis more efficient, by detecting change patterns that have predictable effects on existing analysis results in advance, and by updating the analysis results accordingly. Our approach is lightweight and ensures that only changes not following known patterns will need to be reanalysed. Concretely, we make the following contributions:

- We propose three change patterns with a predictable effect on the analysis result. We focus on behaviour-preserving change patterns, namely:
 - **Consistent renamings**: renaming a variable or function and updating all references to it,
 - **Inverted conditionals**: negating the condition of an if expression and switching its then and else branches,
 - **Moved function definitions**: moving a function definition up or down (one or more) scope level(s), to make the definition more local or global;
- After the detection of change patterns, the results of the initial modular analysis are updated accordingly;
- We evaluate our approach and find a decrease in running time between 3% and 99% on 25 out of 30 programs that contain at least one of these refactoring (with some programs also containing other changes).

1Without loss of generality, we present our approach for this famous Lisp dialect. It is representative of other dynamically-typed, higher-order programming languages such as Python or JavaScript, for which no static call graph can be computed and to which our approach can be ported.
Our contributions aim to make static analysis within IDEs more efficient so it becomes within reach of every developer. In doing so, bugs will be easier to detect and understand, allowing for easier bug fixes.

In this paper, we first provide an overview of the required background. Afterwards, we describe our approach, going into both the detection of behaviour-preserving change patterns and into the updating the analysis results, which we illustrate in Section IV using the previous example containing a renaming. Then, we evaluate our approach and discuss the results, future work, and related work.

II. BACKGROUND

This paper consists of two main topics: incremental modular static analysis, and detecting behaviour-preserving change patterns (refactorings).

A. Incremental Modular Static Analysis

A modular analysis [4] divides the program under analysis into different parts (e.g., function definitions), called modules, each of which can have multiple runtime instantiations (e.g., function calls). The reification of such an instantiation in the analysis is called a component, and a modular analysis analyses its components in isolation. Modular analyses are scalable [5] and lend themselves well to programs written in highly dynamic languages with support for higher-order functions. We focus on a function-modular effect-driven analysis as proposed by Nicolay et al. [3], as this is built upon by Van der Plas et al. [1]. The analysis of Nicolay et al. divides the program into function definitions, but the concepts we introduce generalise to other modular analyses as well.

Although analysed in isolation, components may interact with each other, meaning that the analysis result of one component can depend on the analysis result of another. For example, when a function is called, it receives argument values from its caller. A component therefore might have to be reanalysed when another component updated an analysis result. An effect-driven modular analysis is therefore composed of two interleaved fixed-point computations: an intra-component analysis and an inter-component analysis. The former analyses one component at a time, while the latter takes care of which components have to be analysed next.

Van der Plas et al. [1] propose an incremental analysis that uses this modularity by scheduling the components that correspond to changed modules for analysis. Due to the dependencies between the components, other components can still be scheduled for reanalysis later, when it is inferred that they are also affected by the changes. Their approach is applied to both a function-modular and a thread-modular analysis, and their results show a 6% to 99% decrease in analysis time on 14 out of 16 benchmark programs. In this paper, we only focus on function-modular analysis. In a function-modular analysis, components correspond to function calls: each function call is analysed in isolation during the intra-component analyses. Functions can be dependent on each other (a function can call another function), which creates dependencies between the different components. Therefore, when the analysis results of one function call is updated, every component that is dependent on that result will be reanalysed accordingly.

In this paper, we use a type analyses performed using abstract interpretation [6]. However, our approach is also applicable to other static analyses that do not use abstract interpretation, as well as to static analyses through abstract interpretation with other abstract domains.

B. Behaviour-preserving Change Patterns

Code bases are constantly updated and changed throughout their lifespan. Sometimes, the code base is updated only structurally, which does not change the actual program behaviour. This is known as refactoring [7]. Many developers perform refactorings to improve the readability and usability of their code bases. Besides improving the quality of the software, it can also lead to better development productivity [8]. In fact, up to 16% of all changes in code bases may be refactorings [9]. Additionally, Murphy-Hill [10] found that up to 41% programming sessions contained refactorings, with multiple refactorings being performed at once.

III. APPROACH

In this section, we discuss the detection of specific change patterns and the corresponding updating of the analysis results.
A. Detecting Behaviour-preserving Change Patterns

Before we can update the initial analysis result, we must first detect the changes that follow a specific pattern, i.e., the changes with known effects on the analysis results. Unfortunately, refactorings might be performed incorrectly [11], [12], thereby changing the behaviour of the program and leaving the effect on the analysis results unpredictable. Such errors can occur even when automated refactoring tools are available [13], due to bugs in the automated tools themselves [14]. To update the analysis results correctly, we only want to detect refactorings that are applied correctly.

In order to focus only on the refactorings, rather than on change detection as a whole, we assume that there is already a mechanism in place to detect changes in source code; we focus on detecting whether those changes indeed follow a specific change pattern. Detecting changes can be done by using tools or annotations in the code base. Our approach follows an extended version of the change annotations used by Van der Plas et al. [1]. Programs are pre-annotated with the changes, containing both the old and the new version of the code in one file. Annotations may indicate updates, insertions or deletions.

To avoid false positives in the detection of patterns, currently, our approach does not always detect nested refactorings (such as a moved function definition that has also been renamed). The incremental static analysis by Van der Plas et al. [1] is sound, i.e., there are no false negatives in its results. To preserve soundness, it is important to avoid false positives during the pattern-detection phase: a change that does not follow a particular change pattern should never be flagged as one that does. A change pattern that is not detected (false negative) will simply be subject to reanalysis without updating. This means that the incremental analysis will not be faster than before, but it preserves its soundness. False positives in the pattern-detection phase can, however, lead to incorrect updates, which can make the analysis unsound.

This paper focuses on three change patterns in particular. We decided on consistent renamings and moved function definitions due to their popularity in real-life systems. While inverted conditionals occur less frequently in real-world code, this pattern poses interesting challenges for our approach. Together, these patterns provide new insights that can be used when implementing other change patterns in the future.

1) Consistent Renaming: One of the most frequently performed refactorings is the renaming of an identifier [10], with many IDEs providing automated tools to perform this refactoring. A renaming is consistent if it does not cause variable capturing, and if every reference to the renamed identifier is updated. A renaming that is consistent is behaviour-preserving, whereas a renaming that is not consistent may have an effect on the behaviour of the program. For example, forgetting to update a reference to a renamed function might lead to an error, as there now is a call to a function that no longer exists.

In order to detect consistent renamings, we use a locally nameless representation [15] of the piece of code before and after the change. To this end, every bound variable in an updated expression is replaced by its De Bruijn index, whereas free variables are kept as-is. If the two versions of the code are different in their locally nameless representation, they cannot be a consistent renaming of each other. If the two locally nameless representations are the same, we need to check that the free variables in the expression are unchanged in the expression’s environment. That is, free variables still need to reference the same variable and function definitions. This can only be violated if there were multiple changes in the file other than the (potential) consistent renaming. While this can lead to some false negatives, especially when multiple functions or variables have been renamed across the program (as free variables within an expression that contains a consistent renaming may then also be updated, yielding unequal locally nameless representations), we avoid false positives.

2) Inverted Conditional: A conditional (e.g., an if expression) is inverted in a behaviour-preserving way when its condition is negated (for example, by adding not or by changing a relational operator) and its branches are swapped. Detecting this change can be done by textually comparing the old else branch and new then branch (as well as the other way around), and the old and new conditions.

3) Moved Function Definition: A function definition can be moved elsewhere in the program, thereby possibly changing its scope. This change is behaviour-preserving if (1) the function has not moved outside the scope of any of its callers, which will lead to errors, (2) the free variables used in the function body are all still in scope and reference the same definitions as before, and (3) no variable capturing has occurred. This variable capturing is possible if, e.g., there already existed a variable or function with the same name as the moved function definition within its new scope. If the function is moved outside of the scope of its callers, for example, violating criterion (1), the program will yield an error which might not have existed before (meaning there is a change in behaviour).

We can detect this type of change by comparing all function definitions that have been removed from the code against all of those that have been added to the code. If two function definitions are textually identical, this may indicate a moved function definition. Then, we need to check whether all their free variables still refer to the same function and variable definitions as before the move. If this is the case, we check if all callers of the removed function now call the inserted function. However, note that in the case of a recursive function, the recursive call will now call a different function (i.e., the inserted one).

B. Updating the Analysis Results

Once we detect that a change matches a particular behaviour-preserving change pattern, the analysis results can be updated accordingly. We now look into the constituents of these analysis results that require updating once a pattern is detected. These constituents stem from the analysis state space depicted in Table II, based on the state space defined by Nicolay et al. [3]. One of the most important parts is the store of the analysis, σ, which maps addresses in the heap (e.g., return addresses or variable addresses) to their abstract
preserving change patterns, i.e., during the detection phase. Our ReVar element is the corresponding expression after the change. Second, analyses can be supported.

Thus, the state space of the analysis consists of highly nested Environments in turn contain variables from the source code. Components in turn consist of a lambda expression from the source code, its definition environment, and the calling context for which it was analysed. Environments in turn contain variables from the source code. Thus, the state space of the analysis consists of highly nested parts that also require updating.

1) General updating: First, we look into the updating that is the same across all change patterns. Every element in the state space eventually contains either variables and/or expressions. For example, an address dependency (AddrDep) could contain a return address containing a component. This component, in turn, is a closure with a lambda (an expression), an environment ρ (a map of variables to addresses, which in turn can contain expressions etc.) and a context κ (although we do not go into details of contexts here, context-sensitive analyses can be supported).

We use two sets to keep track of what updating is required. First, ReExp: (Exp, Exp) keeps track of replaced expressions in the program. The set consists of tuples where the first element is an expression before a change, and the second element is the corresponding expression after the change. Second, ReVar: (Var, Var) keeps track of replaced variables; it contains variable definitions before and after the change. Our approach constructs these sets upon the detection of behaviour-preserving change patterns, i.e., during the detection phase.

Using ReExp, an expression at any level in the analysis results can be updated using the following case-based function:

\[
\text{updateExp}(e) = \begin{cases}
\text{ne} & \text{if } (e, \text{ne}) \in \text{ReExp} \\
\text{e} & \text{if } (e, \bot) \notin \text{ReExp} \\
\text{else if } -\text{hasSubExpressions}(e) & \text{otherwise}
\end{cases}
\]

where \text{ne} maps \text{updateExp} to each of \text{e}'s subexpressions.

The \text{updateExp} function takes an expression and has three possible outcomes. If the given expression e exists as the first element of a tuple in ReExp, the expression has been changed and the second element of that tuple (i.e., the new expression) will be returned. If e does not have any subexpression, and e itself is \textit{not} present as the first element in the ReExp set, the expression has not changed and can therefore be returned itself. Finally, if the expression is not present as the first element of a tuple in the ReExp set, but it does have subexpressions, each of the subexpressions should be checked for required updating. This happens in case a change is nested somewhere deep inside an expression.

Afterwards, variables in environments can be updated similarly, making use of the ReVar set as follows:

\[
\text{updateEnv}(\rho) = \begin{cases}
\rho[vv \mapsto v] \{v\} & \text{if } (v, vv) \in \text{ReVar} \\
\rho & \text{otherwise}
\end{cases}
\]

where $a = \text{varAddr}(v, \kappa')$.

If an environment contains a variable which exists as the first element in a tuple of ReVar, that variable should be replaced in the environment by the second element of the tuple in the ReVar set. Because environments map variables to variable addresses, this new variable should be mapped to a variable address containing the new variable, as well as an updated version of the context of the old variable address, κ (κ'), in the case of a context-sensitive analysis.

Depending on the change pattern, additional updates might be required. These are be described below.

2) Consistent Renaming: In the case of a consistent renaming, there exists a one-to-one mapping for every expression and variable in the analysis results from before the change to after. Therefore, no special updating is required in this case, and the changes can be performed as described above.

3) Inverted Conditional: Inverted conditionals require some additional updating next to the updating process described above. While many expressions do have a one-to-one mapping (for example, a mapping from the old then branch to the new else branch), new expressions may be introduced. For example, a \textit{not} can be introduced around the condition. In this case, the \textit{not} expression has never been analysed in this context before, meaning there are no analysis results for it yet (and therefore it cannot be updated). Similarly, a relational operator can be changed, e.g., $>$ may be replaced by \leq.

To remedy this, we only allow changes where a \textit{not} expression is removed. For relational operators, we use the fact that the analysis framework we are extending defines some relational operators in terms of others. For example, $>$ can be defined using \textit{not} and \leq as follows: \textit{(define ($>$ x y) (not (\leq x y)))}. Therefore, the “negated” conditional ($>$ to \leq) might already have an analysis result. It is important that this result already exists (e.g., in the case of a type analysis, this would mean that the abstract value returned by \leq is a boolean). Otherwise, it will be missing from the analysis results, thereby making them unsound. If this result does \textit{not} yet exist, it is important to perform the analysis of the component regardless of it being a behaviour-preserving change pattern. Therefore, we also restrict some of the negated
relational operators. Thus, to guarantee soundness, we under-
detect this pattern, reanalysing it in some cases despite being a
behaviour-preserving change pattern. In other cases, we update
the analysis results as described.

In the case a not expression is removed, we have to remove
the component (and its analysis results related to it) as well,
unless not is still used elsewhere in the program.

4) Moved function definition: Moved function definitions
impact the analysis results in more than one way. While there
exists a one-to-one mapping from every (sub-)expression of
the moved function definition before and after the move, the
surrounding expressions should also be updated:

- Due to the change in the function definition’s scope, the
 function definition will now belong to a different (set of)
 component(s), as it is moved elsewhere;
- If the function is moved, it is no longer a subexpression
 of where it was previously defined, but a subexpression
 of where it is defined now. In the state space, TrackMap
 keeps track of which components contain a given expres-
 sion;
- This change pattern can affect many environments within
 the analysis result. A function moved down, outside of
 the scope of other functions, therefore leaves those
 environments. A function moved up, causes it to be in
 the scope of more functions than before. In both cases,
 closures in the analysis results need to be updated to
 reflect their new environments.

In the framework we are extending, the environments do not
contain all variables in scope, but only those that are used by
the lambda expression the environments belong to. We will
use this knowledge when updating the environments, as this
allows us to reason in terms of the free variables.

Thus, in addition to applying the updating rules updateExp
and updateEnv described before, we also apply the updateMv
rule. updateMv is applied to all environments that exist within
the analysis results, as all may be affected. fv is a function
that takes a lambda expression and returns its free variables
(both the names and definition sites are returned to ensure the
correct variable is referenced). mv is the name and definition
site of the moved function definition after the move, whereas
v is the name and position of the moved function definition
before the move. As every environment in the analysis result
is located within a closure, there is always a lambda expression
that corresponds to a given environment that is being updated
by updateMv. e is the lambda expression that belongs to the
environment that is currently being updated, and ne is the
corresponding lambda expression in the updated program.

\[
\text{updateMv}(\rho) = \begin{cases}
\rho[mv \mapsto a] \setminus \{v\} & \text{if } mv \in \text{fv(ne)} \land v \in \text{fv(e)} \\
\rho[mv \mapsto a] & \text{if } mv \in \text{fv(ne)} \land v \notin \text{fv(e)} \\
\rho \setminus \{v\} & \text{if } mv \notin \text{fv(ne)} \land v \in \text{fv(e)} \\
\rho & \text{otherwise}
\end{cases}
\]

where \(a = \text{varAddr}(mv, \kappa)\) as before.

In the first case, the moved function is called by another
function both before and after the move. Here, it is important
that the moved function is not defined within the body of the
calling function. Therefore, when looking at the body of the
calling function in isolation, the name of the moved function
is a free variable (nv \in \text{fv(ne)} \land v \in \text{fv(e)}). The environment
of the calling function must be updated: \(mv\) is inserted into
the environment, mapping to its new variable address \(a\), and
the old mapping of \(v\) is removed. Note that in this case, the
variable referencing the moved function remains a free variable
within the body of the calling function (mv \in \text{fv(ne)}), i.e., the
function did not move into the body of the calling function.

If there is a function in which the moved function definition
was nested initially (so \(v\) was bound in \(e\) due to its definition
site within: \(e: v \notin \text{fv(e)}\)), but due to the move the function is no
longer nested within the former, then the definition no longer
exists within the body of the enclosing lambda and references
to it within the body of this lambda become free variables (mv
\in \text{fv(ne)}). Therefore, mv must be added to the environment, so
that calling function can still use it.

Third, if there is a function of which the old version did
reference the moved function using a free variable (v \in \text{fv(e)}),
but it does not after the move (nv \notin \text{fv(ne)}), it means that
the function definition was moved into the body of this function.
In this case, the moved function definition can be removed
from the environment of the now enclosing function, as the
moved function is now defined within its body.

Finally, if no of the above cases apply (nv \notin \text{fv(ne)} \land v \notin
\text{fv(e)}), that means the lambda associated with the environment
that is being updated does not make use of the moved function
definition, and nothing should be updated.

Note that, if we were to keep track of all variables in scope,
rather than only those that are referenced, updateMv would be
slightly different: in this case it would be necessary to add or
remove the variable to which the moved function is bound
more often as it would appear in more environments.

Finally, to update TrackMap correctly, the main component
is scheduled for reanalysis. This will trigger no additional
reanalyses as it does not update the store (due to it being
updated according to the rules described above), and will
therefore still be faster than performing a full incremental
reanalysis. We discuss this further in Section VI.

IV. Example

We illustrate the updating phase described in Section III-B
on the example program from Section I, in which \(x\) is
consistently renamed to \(y\). For a consistent renaming, the most
basic form of the updating is required: there is a one-to-one
mapping of the expressions before and after the renaming.

The sets \(\text{ReExp}\) and \(\text{ReVar}\) were computed during the
detection phase, based on the detection of the renaming. In this
case, the only (sub)expressions that have been changed are the
two references to \(x\). For this program, \(\text{ReExp}\) is as follows:
\[
\{(x@0:19, y@0:19), (x@1:32, y@1:32)\}
\]
while \(\text{ReVar}\) is \[
\{(x@0:19, y@0:19)\}.
\]

Recall that \(\text{line:column}\) denotes the

\(^2\)To improve readability, we omit part of the state space for simplic-
ity. For instance, we use ‘Return ((\(\lambda\) (\(x\) \(x\)) \(x\))@0:10, \{\}, \{\})’
rather than ‘\text{retAddr_mpc}_clos((\(\lambda\) (\(x\) \(x\)) \(x\)) \(x\), 0:10, \{\}, \{\})’.
line number and column of the expression. This position is important, as two expressions that are textually the same might exist in the program, but that does not mean both should be updated (they could, e.g., be in a different scope which makes that they may not yield the same result).

ReExp and ReVar will then be used to update every part of the analysis result. First we go over the addresses in the store and loop over each one. Imagine we want to update the first element in the store, namely the return address of the function \(g\), which contains the body expression of \(g\), \((\lambda()x)@1:22\), and its definition environment \(\{x@0:19\}\). As \((\lambda()x)@1:22\) is absent from ReExp, each of its subexpressions is considered. This causes the subexpression \(x@1:32\) to be updated to \(y@1:32\), yielding \((\lambda()y)@1:22\) for the new body of \(g\).

To update the environment of \(g\), i.e., \(\{x@0:19\}\), each element is considered. As ReVar contains the tuple \((x@0:19, y@0:19)\), the variable is replaced by \(y@0:19\), yielding the updated environment \(\{y@0:19\}\). This process is repeated for every element in the analysis result, so that all necessary expressions and environments are updated.

This differs from the incremental analysis by Van der Plas et al. [1], where the component corresponding to the call of \(g\) on line 3 and eventually also the component corresponding to the call of \(f\) on line 5 would be scheduled for reanalysis using abstract interpretation.

Note that the store is not the only place where updating might be necessary: it is also required to loop over the Deps map (which keeps track of dependencies), TrackMap (which keeps track of which expression belongs to which component), and Visited (the set of analysed components). Recall that this example only talks about a consistent renaming, which has no additional updating required other than the one-to-one mapping. If a moved function definition or an inverted conditional is detected, it will also require additional updating, as explained in Section III-B1.

V. Evaluation

We compare our approach to the incremental analysis proposed by Van der Plas et al. [1], henceforth referred to as the baseline incremental analysis, or simply the baseline. We answer the following research questions:

- **RQ1** Upon a source code change, what is the impact of our approach on the running time of an incremental analysis?
- **RQ2** What are the differences in impact between the three different behaviour-preserving change patterns?
- **RQ3** What is the overhead of detecting changes and updating the analysis results?

Additionally, to confirm the soundness of our results, we conducted soundness tests [16] on a total of 90 programs to ensure that our implementation is sound, i.e., by ensuring that there are no false negatives in the analysis results (false positives are allowed). This means that the analysis correctly over-approximates the program behaviour.

A. Experimental Setup

We extended the incremental context-insensitive function-modular type analysis of the baseline [1] with pattern detection rules for verifying whether the source code under analysis has been changed according to one of three supported change patterns (cf. Section III-A). We also extended the baseline with the machinery needed to update the existing analysis results according to a detected change pattern (cf. Section III-B). Changes in the program that do not follow a change pattern are reanalysed as before using the baseline.

To evaluate our approach, we manually created three mutations of 10 different Scheme programs, each mutation containing a different behaviour-preserving change pattern. The 10 original Scheme programs are summarised in Table III. Thus, in total, we obtain 30 programs containing different change patterns. We also include additional changes that are not behaviour-preserving in 12 of the 30 resulting programs. These changes can be found in the three mutations of the freeze, leval, machine-sim, and multiple-dw programs. Some of the non-behaviour-preserving changes originate from the benchmark suite of Van der Plas et al. [1]. As mentioned before, these are not handled by our approach but will be reanalysed using the baseline incremental analysis.

To exemplify the modified programs containing the manually added refactorings, we show an excerpt of the three mutations of the nbody program in Listing 3, Listing 4, and Listing 5. Listing 3 shows the rand function with an inverted conditional. In this case, we changed the relational operator of the if expression and swapped its branches. Listing 4 shows the same rand procedure, but this time consistent renamings have been applied to the let-bindings (h becomes high and l becomes low) and all references are also updated. Finally, Listing 5 shows the nbody program but with a moved function definition. As random is the only function that calls rand, rand does not have to be a global function and can be moved down: rand is deleted on the top level and inserted locally in the body of random.

For the experiments where we measured running times, we ran both the baseline and the proposed approach for 10 warm-up runs, followed by measured 25 runs to calculate the average running time on each benchmark program. All benchmarks were run on a machine with 8GB RAM and an Intel Core i5-7200U processor with 2 physical and 4 logical cores. We measured both the full running time and the running times of each individual phase (detecting the changes, updating the analysis results, and reanalysing where necessary). Additionally, we also look into the number of intra-component analyses performed during the reanalysis phase (if any) during a separate run, as a different way to quantify the amount of work performed by the resulting incremental analysis phase.

VI. Results

A. RQ 1: Impact on Total Running Time

In RQ1, we look at the difference in total running time between our new approach and the baseline. Table IV shows
that on our 30 programs, the running time of the incremental analysis decreased for 25 programs but increased for 5 others. For 4 of the 5 programs with an increase in time, the increase is less than 35 milliseconds, with the exception of machine-sim with a renaming. This could mean that for small programs, the overhead of detecting and updating might be too high compared to simply performing an incremental analysis. At the same time, we see decreases in running time as well, on both big and small programs. While some benchmarks only have a decrease of a couple of milliseconds, the program multiple-dw sees a decrease of multiple seconds for all three of the introduced change patterns. The program peval with a moved function definition has the highest decrease, going from almost 12 seconds to under a second. This is due to the fact that the baseline incremental approach scheduled several expensive component reanalyses for this benchmark.

We can also look at the number of intra-component analyses performed by both the baseline algorithm and the new method. These results can be found in Table V. In terms of intra-component analyses, we see a decrease for all of the 30 benchmarks, meaning that the fixed-point of the reanalysis phase is obtained in fewer analysis steps. If the only change present in the program is either a renaming or an inverted conditional, we can bring the number of intra-component analyses to zero. In some cases however, the baseline analysis also performs few reanalyses. The number of components that will be reanalysed depends on how many components are dependent on the one that has changed. For example, if the parameter of a small function with no side effects that is called only once is renamed, it will have little impact on the analysis results of all the other components, and few will be triggered for reanalysis. If, on the other hand, something that has a larger impact on the program is renamed, more components will be triggered for analysis. For a moved function definition, we often still have one or two reanalyses to ensure the soundness of the results. As discussed in section III-B1, this is to ensure the correctness of TrackMap. However, this is still a significant decrease in the number of intra-component analyses for each of the programs, even ones containing other changes.

Our results thus show that an increase in running time is not always due to more intra-component reanalyses. The increase in running time can also be caused by, e.g., the overhead created by the detection of the change patterns or by the updating of the analysis results; we discuss this in more detail in RQ3. Some components can also take longer to analyse than others, which means that even if there are fewer intra-component analyses performed, they may take a longer time.

B. RQ 2: Comparison of the Change Patterns

We also look at each of the change patterns separately to investigate whether our approach is more effective for specific change patterns. Table IV shows that for 2 of the benchmarks

```
<table>
<thead>
<tr>
<th>name</th>
<th>LOC</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>browse</td>
<td>161</td>
<td>Creates and browses through a data base</td>
</tr>
<tr>
<td>matrix</td>
<td>617</td>
<td>Computes maximal matrices</td>
</tr>
<tr>
<td>mceval</td>
<td>239</td>
<td>Meta-circular evaluator for Scheme</td>
</tr>
<tr>
<td>nbody</td>
<td>1205</td>
<td>Performs calculations related to n-body problem</td>
</tr>
<tr>
<td>nboyer</td>
<td>625</td>
<td>Logic program evaluator</td>
</tr>
<tr>
<td>peval</td>
<td>497</td>
<td>Partial evaluator for Scheme</td>
</tr>
<tr>
<td>freeze</td>
<td>325</td>
<td>Adds &quot;freeze&quot; to meta-circular evaluator</td>
</tr>
<tr>
<td>level</td>
<td>379</td>
<td>Lazy evaluator for Scheme</td>
</tr>
<tr>
<td>machine-sim</td>
<td>964</td>
<td>Compiles to machine code and simulates</td>
</tr>
<tr>
<td>multiple-dw</td>
<td>404</td>
<td>non-deterministic evaluator</td>
</tr>
</tbody>
</table>
```

Our results thus show that an increase in running time is not always due to more intra-component reanalyses. The increase in running time can also be caused by, e.g., the overhead created by the detection of the change patterns or by the updating of the analysis results; we discuss this in more detail in RQ3. Some components can also take longer to analyse than others, which means that even if there are fewer intra-component analyses performed, they may take a longer time.

LISTING 3. NBody Benchmark with an Inverted Conditional

```
(define (rand)
  (let* ((hi (quotient (car *seed*) 127773))
         (lo (modulo (car *seed*) 127773))
         (test (- (+ 16807 lo) (+ 2836 hi))))
    (if (> test 0)
        (set-car! *seed* test)
        (set-car! *seed* (+ test 2147483647)))
    (car *seed*))

(define random (lambda (n) (modulo (abs (rand)) n)))
...
```

LISTING 4. NBody Benchmark with a Consistent Renaming

```
(define (rand)
  (let* ((hi (quotient (car *seed*) 127773))
         (lo (modulo (car *seed*) 127773))
         (test (- (+ 16807 lo) (+ 2836 hi))))
    (if (> test 0)
        (set-car! *seed* test)
        (set-car! *seed* (+ test 2147483647)))
    (car *seed*))

(define random (lambda (n) (modulo (abs (rand)) n)))
...
```

LISTING 5. NBody Benchmark with a Moved Function Definition

```
(define (rand)
  (let* ((hi (quotient (car *seed*) 127773))
         (lo (modulo (car *seed*) 127773))
         (test (- (+ 16807 lo) (+ 2836 hi))))
    (if (> test 0)
        (set-car! *seed* test)
        (set-car! *seed* (+ test 2147483647)))
    (car *seed*))

(define random (lambda (n) (modulo (abs (rand)) n)))
...
```
TABLE IV
AVERAGE RUNNING TIMES FOR EACH OF THE BENCHMARK PROGRAMS EXPRESSED IN MILLISECONDS. RUNNING TIME CALCULATED ON 25 RUNS, AFTER 10 WARM-UP ROUNDS. ∆ SHOWS THE DIFFERENCE IN TOTAL TIME.

<table>
<thead>
<tr>
<th>Inverted conditional</th>
<th>Consistent renaming</th>
<th>Moved function definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>browse</td>
<td>186</td>
<td>186</td>
</tr>
<tr>
<td>matrix</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>mceval</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>nboby</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>nboyer</td>
<td>923</td>
<td>923</td>
</tr>
<tr>
<td>peval</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>freeze</td>
<td>6547</td>
<td>6547</td>
</tr>
<tr>
<td>leval</td>
<td>2368</td>
<td>2368</td>
</tr>
<tr>
<td>machine-sim</td>
<td>12140</td>
<td>12140</td>
</tr>
<tr>
<td>multiple-dw</td>
<td>15119</td>
<td>15119</td>
</tr>
</tbody>
</table>

∆ shows the difference in total time.

TABLE V
NUMBER OF INTRA-COMPONENT ANALYSES PERFORMED BY THE BASELINE AND THE NEW APPROACH, i.e., THE NUMBER OF COMPONENTS THAT ARE EVENTUALLY (RE)ANALYSED IN BOTH APPROACHES. ∆ REFERS TO THE DIFFERENCE BETWEEN THE BASELINE AND THE NEW APPROACH.

<table>
<thead>
<tr>
<th>Inverted conditional</th>
<th>Consistent renaming</th>
<th>Moved function definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>browse</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>matrix</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>mceval</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>nboby</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>nboyer</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>peval</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>freeze</td>
<td>1564</td>
<td>1564</td>
</tr>
<tr>
<td>leval</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>machine-sim</td>
<td>1035</td>
<td>1035</td>
</tr>
<tr>
<td>multiple-dw</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

C. RQ3: Overhead Created by Detecting Changes

In order to investigate the overhead created by the updating of the analysis results, we look at each individual phase of our approach, namely detecting changes and refactorings, updating the analysis results, and reanalysing any other changes that may exist. These results can be found in Table VI. As inverted conditionals and renamed identifiers lead to no reanalyses being performed if they are the only changes present, programs that contain these refactorings spend 0ms in the reanalysis phase. For all of our benchmark programs, both detecting the refactorings and updating the analysis results take only a few milliseconds.

For inverted conditionals, we see that freeze and machine-simulator do not spend a lot of time in the detecting and updating phase. However in RQ1, we saw that both of these benchmarks are slower than the baseline algorithm, despite having fewer intra-component analyses (as seen in RQ2). One possible reason for this is that, despite the fewer intra-component analyses being performed, the ones that are reanalysed are more difficult. The order in which components are added to the worklist can also influence the running time of the analysis [17], and while both the new approach and the baseline use the same LIFO worklist algorithm, the baseline approach also has to reanalyse the inverted conditional, meaning it will add an extra component to the worklist, which can lead to a different order.

For programs such as freeze that do have other changes present, we see that the time spent on the detection of patterns and on the updating of results takes only a few milliseconds, whereas the reanalysis of all the other changes present is more expensive. Moved function definitions always lead to some reanalysis. However, in these cases, the reanalysis that is performed also only takes a few milliseconds, whereas reanalysing other changes takes a longer time. Therefore, in
these programs, we see that the reanalysis of the changes takes longer than the detecting and updating of the analysis results. Additionally, we see little difference in the detection and updating phases across refactorings. This is because all possible refactorings are tested for when a change is found during the detection phase. The updating phase also does not differ a lot between the different behaviour-preserving change patterns. This is due to the fact that all analysis results need to be traversed during the updating phase regardless of which pattern is detected, meaning that each pattern will cause looping over the store σ, the Deps map, the Visited set and TrackMap, to inspect and potentially update each item.

We also do not see a connection between lines of code and time to update the analysis results for our benchmark programs. $nbody$ is the largest program in terms of lines of code, however, $nboyer$, with almost half the lines of code, spends the most time in the updating phase across refactorings. The time needed to update the analysis results does therefore not correspond to lines of code, but to the number of entries in the store, and to the number of dependencies in the program. When there are more entries in the store or more dependencies, more analysis results require checking and updating.

VII. LIMITATIONS AND FUTURE WORK

We leverage domain-specific knowledge about the impact of change patterns on analysis results to speed up an incremental modular analysis that did not employ such knowledge. The expertise required to add support for additional change patterns might hinder the applicability of our approach at large. However, designers of static analyses are likely to already possess this knowledge. Our approach can be ported to other dynamically-typed languages such as Python or JavaScript, but this may require insights about the analysed language.

We limited ourselves to context-insensitive type analyses in this work, although the approach supports context-sensitive analyses too. For the consistent renaming and inverted conditional change patterns, we have already implemented the required context updates for argument sensitivity and call-site sensitivity. A preliminary evaluation revealed that this increases the time required for the updating phase. On the other hand, the baseline incremental analysis is also more expensive for context-sensitive analyses. Therefore, a more detailed evaluation is required.

We only evaluated our work on programs that contain at least one of the three behaviour-preserving change patterns. Programs that do not contain any of these changes will incur the overhead of change pattern detection, which cannot be regained by saving on component reanalyses. However, for most of our benchmarks, the time spent in the detection phase is much shorter than the time spent reanalysing the components, keeping the overhead minimal.

Furthermore, we use annotations to find changes in the program, rather than compare commits.

Finally, our evaluation is limited to the three behaviour-preserving change patterns presented in this work. However, it can be extended as many other behaviour-changing patterns or refactorings exist [7], as well as other changes that might have a predictable effect on the analysis results. An example of such a change is adding a print statement at the very end of a function definition. When performing a type analysis, we know that this addition has the predictable effect of changing the return type of that function to void. While there might be some additional updates required for these other patterns (as with the moved function definitions and inverted conditionals), the approach stays the same: every expression or variable that has been changed according to a pattern should be updated in the analysis results accordingly.

VIII. RELATED WORK

Our work builds on top of the work on incremental static analysis of Van der Plas et al. [1]. Our work does not change the incremental analysis itself, but adds a step at the beginning of an incremental update, which detects specific change patterns and updates the analysis results accordingly. We look into the related work of both refactoring detection as well as incremental static analysis.

A. Refactoring Detection

Over the years, many studies [18]–[37] have been conducted on refactoring detection [7] and their detection. However, some approaches are prone to more false positives [38], e.g., due to reliance on similarity thresholds, which we avoid as mentioned in Section III-A.

Over the years, many techniques relying on detecting similarity between two program versions have been proposed. One of the earliest refactoring detection strategies was created by Demeyer et al. [18], who use a set of change metrics. Weissgerber and Diehl [25] use a set of rules in combination with clone detection. For example, for a method to be renamed, it must exist in the same class and have the same return type. Ref-finder [20], [39] also uses a set of rules in combination with a similarity threshold that is based on the longest common subsequence. However, this technique is also not ideal for renamed function definitions of recursive functions, for example, as references within the body of the function will also have to be updated, hampering similarity detection. The RefactoringCrawler [19] tool first renders a lightweight AST of the program and then uses Shingles encoding [40]. It uses a user-provided similarity threshold. Refdiff [26], [27] is a tool that works on multiple programming languages, and uses relations between entities, together with a similarity threshold. To find similarities, they use Term Frequency–Inverse Document Frequency (TF-IDF). RefDetect [22] also works on multiple languages and uses a string alignment algorithm, and also allows for detecting, for example, a function definition that has moved and that has another change in its body as well. All these techniques that rely on similarity are unfortunately vulnerable to false positives. If the similarity threshold is too low, many false negatives will occur. At the same time, if the threshold is too high, there will be more false positives. Therefore, such similarity thresholds are not sufficient in our
setting as we avoid false positives to ensure soundness of the analysis results.

RefactoringMiner [23, 41] uses a bottom-up approach using the AST of the program. While their approach leaves less room for errors than the ones using similarity threshold, in our approach we made use of the fact that the code has change annotations. Hence, we know where changes are and we can focus on pattern matching.

Stroggylou and Spinellis [31] as well as Ratzinger et al. [32] analyse commit messages to detect refactorings in code bases. However, this technique is not ideal in our setting, as we do not know which refactorings have been performed in this case, users do not always say they have refactored, and refactorings might have been performed incorrectly.

Additionally, there are also techniques that detect refactorings in the IDE as they are occurring [33, 34, 42, 43]. However, the static incremental analysis we build upon is not yet integrated into an IDE.

B. Incremental Static Analysis

Our work does not propose a new technique to perform incremental static analysis. Rather, we build on top of an existing incremental static analysis and make it more efficient when refactorings are present. There have been multiple studies on performing incremental static program analysis. Not all are applicable to dynamic, higher-order languages however, and many have different approaches to how the incremental analysis is performed. Nichols et al. [44] propose an incremental analysis for JavaScript. Their approach requires a mapping from old program points to new program points, which is similar to what we use when performing the updating. However, every program point has to be reanalysed at least once, whereas we try to avoid reanalysis as much as possible. In addition, the incremental analysis of Van der Plas et al. [1], only reanalyses the affected program parts.

IncA [45–48] uses Datalog-based graph patterns. Domain-specific knowledge about these graph patterns might be used to implement our approach in their setting.

Andromeda [49] uses a support graph to perform specifically incremental demand-driven taint analysis. Another technique using support graphs is proposed by Saha and Ramakrishnan [50]. Programs need to be specified as Horn clauses, a requirement that is not needed by the approach we built upon. Also, our approach can also be applied to other analyses than taint analysis. Garcia-Contreras et al. [51, 52] also require Horn clauses for a context-sensitive incremental modular analysis. However, the approach uses programmer-defined lexical modules, and thus does not allow for thread-modular analyses, for example.

Unlike the technique of Van der Plas et al. [1], many incremental static analysis techniques require a static call graph [53–59]. Liu et al. [60] do not require a statically known call graph, and preserve precision in their incremental analysis. However, their approach is limited to flow-insensitive analyses.

IX. Conclusion

In this work, we propose a method to decrease the running time of an incremental static analysis by updating previous analysis results according to change patterns detected in the code change. As change patterns have a predictable effect on the analysis results, the results can be updated directly, thereby avoiding a more expensive reanalysis of the changes. We find that for 25 of our 30 benchmarks, there is indeed a decrease in running time between 3% and 99% (RQ1). For consistent renamings, all of the benchmarks were faster, while for inverted conditionals 2 of the 10 benchmarks were slower. For moved function definitions, 3 of the 10 benchmarks were slower, though we also see our best result in a program with a moved function definition (RQ2). From RQ3, we can also conclude that for our benchmark programs, there is little overhead created by our approach to detect refactorings and to update the analysis results. Especially in bigger programs with many dependencies for which reanalysing components can be expensive, and for change patterns that may otherwise schedule many components for reanalysis, our approach can speed up existing incremental analyses.

Acknowledgements

This work was partially supported by Research Foundation – Flanders (FWO) (grant number 11F4822N), by CS ICON project APAX, and by “Cybersecurity Initiative Flanders”.

<table>
<thead>
<tr>
<th></th>
<th>Inverted conditional</th>
<th>Consistent renaming</th>
<th>Moved function definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Detection</td>
<td>Updating</td>
<td>Reanalysis</td>
</tr>
<tr>
<td>browse</td>
<td>3</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>matrix</td>
<td>3</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>mceval</td>
<td>3</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>nbody</td>
<td>13</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>nboyer</td>
<td>18</td>
<td>129</td>
<td>0</td>
</tr>
<tr>
<td>peval</td>
<td>8</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>freeze</td>
<td>5</td>
<td>19</td>
<td>6535</td>
</tr>
<tr>
<td>leval</td>
<td>4</td>
<td>14</td>
<td>2259</td>
</tr>
<tr>
<td>machine-sim</td>
<td>12</td>
<td>46</td>
<td>12866</td>
</tr>
<tr>
<td>multiple-dw</td>
<td>5</td>
<td>20</td>
<td>11302</td>
</tr>
</tbody>
</table>

