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Abstract—Docker is a popular technology to containerise
applications together with their dependencies into reproducible
environments. In Docker, container images can depend on oth-
ers through inheritance. Such inheritance can propagate bad
practices and security vulnerabilities from a parent image to its
children. Unfortunately, Docker Hub, the most popular online
registry of images, lacks transparency about such inheritance.
This obscures the software supply chain, possibly leaving image
users unaware of quality or security issues caused by parent
images. Nonetheless, we found inheritance on Docker Hub to
be an understudied topic in academia to date. Therefore, the
goal of this paper is to empirically investigate the practice of
image inheritance on Docker Hub. To this end, we collect a
dataset of 636,625 unique images belonging to popular Docker
repositories and identify inheritance by comparing the images’
layers. We leverage the constructed inheritance network to
empirically investigate three aspects, namely the structure of
the inheritance network, how child images differ from their
parents, and outdatedness of parent images. Our results show
that most popular community Docker Hub images directly inherit
from official images rather than other community ones. We also
observe that community child images are often much larger than
their parent, in comparison to official child images. This may
indicate the existence of gaps between the features provided by
official images and those required by consumers, suggesting the
need for more ready-made parent images. Finally, we find that
around half of the child images use an outdated parent image
at the time the child is built, although time lag is usually less
than a month. However, time lag becomes much larger when we
compare against the latest version of the parent image available
at the analysis date, with up to 70% of child images using an
outdated parent image and a median of over 5 months of time lag.
This indicates that users should pay attention to the lineage of the
images they consume, and motivates future work on alleviating
technical lag in Docker images.

Index Terms—Docker; Docker Hub; software supply chain;
software ecosystems; inheritance network; technical lag

I. INTRODUCTION

Containerisation is a key technology in the DevOps practice.
It enables practitioners to package their software together
with its dependencies into a container image. These can
be used to produce containers, i.e., isolated environments
which can be run consistently on any system [1]. As the
most popular containerisation technology, Docker [2] is widely
used today. Its success may in part be attributed to the ease
in which containers can be created. Indeed, the concept of
image inheritance enables practitioners to reuse and build upon
existing images, often contributed by third parties.

To facilitate such reuse, Docker provides the Docker Hub
container image registry. Docker Hub has grown steadily
over the past years [3], currently hosting millions of differ-
ent images. Consequently, it has been the subject of many
research studies, including quality [4], [5], security [6], [7]
and evolution [3], [8]. Nonetheless, the subject of image
inheritance has seen considerably less research attention. The
few studies on image inheritance largely disregard the vast
amounts of information present in Docker Hub, and focus
more on Dockerfiles, i.e., the specifications used to build
images.

However, it is vital to understand the image inheritance
network, as it contains important insights on the quality and
security of Docker images. Bloated parent images, i.e., images
containing large amounts of unnecessary files, reduce the
efficiency and quality of child images [9]. Moreover, security
vulnerabilities may be propagated from a parent image to its
children [6], [10]. Finally, with the increasing importance of
supply chain security, knowledge of an image’s parents is
paramount.

While the propagation of security vulnerabilities in Docker
Hub has been investigated previously [6], [11], [12], to the
best of our knowledge, a comprehensive study of the general
properties of inheritance in Docker Hub has not yet been
undertaken. Therefore, the aim of this paper is to investigate
three aspects. First, we investigate the structure of the network,
including the prevalence of inheritance and the most influential
images. This aspect replicates prior work [13] but with a
more recent and accurate inheritance network. Second, we
investigate how inheriting images differ from their parents in
terms of size and instructions added. In this aspect, we aim
to understand how developers extend images and to uncover
insights that could be used to suggest or create improved
base images. Finally, we investigate the outdatedness of parent
images in terms of time lag. Outdatedness of dependencies
forms a threat to supply chain security. As such, insights
into outdatedness of parent images can drive future work
on improving the security landscape of the Docker Hub
ecosystem.

To carry out our study, we create a novel dataset of
inheritance on Docker Hub. Due to the size of the Docker
Hub ecosystem, we focus solely on the most popular image
repositories to keep the analyses feasible. Specifically, we



collect 636,625 unique images from all official and the top
1000 community Docker Hub repositories. We devise an algo-
rithm to detect inheritance between these images and to create
an inheritance network. We then visualise and quantitatively
analyse this network to investigate the three aspects outlined
above. The data and scripts used in this study are available for
download at https://doi.org/10.5281/zenodo.8119368.

II. BACKGROUND

A. The Docker Containerisation Framework

Containerisation is a widely-used technique to isolate soft-
ware into its own environment. Developers can create con-
tainer images that package an application together with an
operating system and all runtime dependencies. A container
created from the image runs the application in an environment
which is independent from the host’s. However, containers
share memory and CPU with the host system and are therefore
more lightweight than virtualisation, making them a popular
alternative to achieve platform independence. Various tech-
nologies implementing containerisation exist, of which Docker
is the most popular [14].

Docker images are created by building Dockerfiles. A Dock-
erfile consists of a sequence of instructions, such as RUN to
run shell commands, or COPY to copy files from the host
environment into the image. To build an image, for each
instruction sequentially, the Docker engine creates a container,
runs the instruction in it, and records the changes that are
made. Each subsequent instruction builds upon the changes
of those before it. Effectively, this creates a stack of changes
caused by each instruction, which makes up the final image.

Since each instruction depends on previous changes, and
since the first instruction does not have a predecessor, it
follows that the first instruction must be a special case. Indeed,
each Dockerfile must start with a FROM instruction, which
specifies the base for the next instruction. This can either be
a pre-existing image, or the special-case empty scratch
image. The former causes inheritance between images, in
which the layers of the existing image become a prefix of
the layers of the new one. The latter, as the name implies,
creates the new image from scratch.

Listing 1 exemplifies a Dockerfile to build a NodeJS appli-
cation. The FROM instruction (line 1) specifies that the image
needs to build upon an image named node:18-alpine,
which we shall return to later. Subsequently, the COPY in-
struction copies source code files into the image, RUN installs
the application’s runtime dependencies with the npm package
manager, and the CMD instruction specifies which command to
invoke when a container is spun up from the resulting image.

1 FROM node:18-alpine
2 COPY . .
3 RUN npm install
4 CMD [ "node", "app.js" ]

Listing 1: Example Dockerfile to build a NodeJS image.

As mentioned, images are stacks of separate layers, each
corresponding to an instruction. Layers are identified through
SHA-256 digests, based on the changes made in the layer
itself, as well as its dependencies (i.e., predecessor layers).
Subsequently, images are also given a SHA-256 digest, based
on its layers and certain other properties. For instance, images
built from the same instructions may be distinguished based on
the architecture on which they run, such as amd64 or armv7.

Image repositories store images after they are built. Each
repository has a unique name and can store multiple images
which are individually addressable by tags, often used to
distinguish different versions. Within a repository, an image
can be given multiple tags. For instance, an image providing
a Python 3.11.4 runtime could be tagged with 3.11.4, 3.11,
and 3. When a Python 3.11.5 image is made later, and
assigned the tags 3.11.5, 3.11, and 3, the latter two will
be disassociated from the earlier image, leaving only 3.11.4
pointing to it. Finally, the last built version of an image is
automatically tagged latest by the Docker engine.

Given a name and a tag, an image can be addressed as
<name>:<tag>. In the example of Listing 1, line 1 specifies
node:18-alpine as a base image, referring to an image
in the node repository with the tag 18-alpine. If no tag
is specified in a FROM instruction, latest is implied.

B. The Docker Hub Ecosystem

Images can be pushed to and pulled from centralised image
repositories, enabling reuse of images. Container registries,
such as Docker Hub1, Google Container Registry2, and Quay3,
aggregate many public image repositories, forming ecosystems
of Docker content. Of these, Docker Hub is the largest and
most popular public registry to date with more than 9.4M
images (as of August 2022). It has facilitated billions of image
downloads, with images like ubuntu, alpine, and redis
having over a billion downloads each.

Repositories in Docker Hub are divided into official and
community repositories. Images in official repositories must
undergo a validation process, must maintain security and qual-
ity standards, and must be maintained regularly. Importantly
for inheritance, official images may only inherit from other
official images. Because of their high quality standards, official
images often serve as good base images. Examples of official
repositories include debian, python, and nginx.

Community repositories do not need to meet the same
strict requirements as official ones. Nonetheless, this does not
mean they are necessarily of lower quality. Many popular
open-source projects provide their own image repositories,
of which datadog/agent and grafana/grafana, are
popular examples.

III. CONSTRUCTING THE INHERITANCE NETWORK

To carry out the empirical study, we first need to construct
an inheritance network of Docker Hub images. In the follow-

1https://hub.docker.com/
2https://gcr.io/
3https://quay.io/
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ing sections, we first describe the collection of the relevant
data (Section III-A). Afterwards, we describe how we leverage
image layer information to identify inheritance and how we
construct the inheritance network (Section III-B).

A. Data Collection

To build the Docker Hub inheritance network and perform
the empirical study, we require a dataset of Docker Hub im-
ages. This dataset needs to adhere to several key requirements
so that the resulting inheritance network is accurate. First,
our network’s nodes should represent individual images rather
than entire repositories of multiple image versions. Second, the
dataset should contain all image versions of a specific image
repository, rather than just the latest tag. Prior work has
shown many images’ parents to be unidentifiable when old
image versions are not considered [12], and that up to 20%
of images do not have a latest tag [3]. Third, we want our
dataset to cover both official and community repositories, and
want to avoid restrictive filters, such as operating systems or
programming languages, where possible.

We cannot rely on Dockerfiles to build our dataset [8],
[13], as they may specify base images with the latest tag,
which could have been modified after the image was built and
pushed. Therefore, although Dockerfiles specify the inherited
repository exactly, the image version may not be accurate.
Moreover, Dockerfiles may not always be available.

We will instead leverage image contents to identify the
exact parent. Rather than downloading image contents, which
comes with a large overhead [6], we will use layer digests
as a proxy for layer contents. Using layer digests will enable
our approach to scale efficiently and to identify exact parent
images accurately, regardless of the tag used in a Dockerfile.
However, our approach will only be able to identify inheritance
if both the parent and child images are present in the dataset.

To collect this dataset, we list all image repositories (Sec-
tion III-A1), and then retrieve the image metadata for all tags
in a popular subset of these repositories (Section III-A2).

1) Gathering the Image Repository List: As a first step in
gathering a dataset of image layer information, we require a
list of the image repositories on Docker Hub. Unfortunately,
Docker Hub does not publicly expose such a list for commu-
nity repositories. Moreover, simple crawling approaches used
by prior work [3] can no longer be applied4. Instead, we resort
to an exhaustive search via Docker Hub’s search API.

Rather than relying on a large, pre-generated list of search
terms as applied in previous work [6], we use an incremental
approach. Specifically, we generate a 1521-word dictionary
composed of all minimal search terms that the API accepts,
i.e., all 2-character combinations of allowed characters in
repository names (“a–z”, “0–9”, “.”, “-”, or “/”). We initially
execute a search query for each search term. However, since
the search API is limited to returning 10,000 results, these
short search terms may not uncover all repositories. Instead,

4Replicating the approach used by Zhao et al. [3] results in a mere
689 community repositories, while prior work has uncovered over a million
repositories [10].

Official Community

# repos 175 10,422,531
# repos with 0 pulls 2 3,616,703
# repos with >1B pulls 23 49
Total pull count 106,756,687,443 330,183,083,133

# repos in our dataset 171 995
# tags in our dataset 96,094 1,018,429
# unique images in our dataset 44,917 591,708

TABLE I: Metrics of Docker Hub and our final dataset.

when the API returns the maximum number of results, we
extend the search term by prefixing and suffixing each allowed
character (e.g., “aa” becomes “aaa”, “aab”, “baa”, . . . ) and
running the search process anew for each expanded term. We
deduplicate, extract and store all of the relevant information
of each search result, most importantly, the repository name,
its total pull count, and whether the repository is official.

After executing this collection process, we found a total
of 10,422,706 image repositories, of which 175 official ones.
Table I depicts metrics of the resulting dataset. Interestingly,
we note that a large fraction (over 3.5 million) of repositories
have never been pulled and are therefore likely not being used
in practice.

2) Gathering the Image Metadata: The second phase of
our data collection consists of first collecting all tags in
a repository. Afterward, we collect image metadata, most
importantly its list of layers, for each discovered tag. Since
multiple tags can correspond to the same image, we will
already remove duplicate images by comparing their layer
digests. In case duplicate images occur across repositories, we
keep official images in favour of community ones.

Given the size of the Docker Hub ecosystem and the large
number of repositories discovered earlier, it is necessary to
apply filters to keep the analysis feasible. First, we decide to
focus only on images of the amd64 architecture, since it is the
most used [12] and inheritance between different architectures
is impossible. Second, for community repositories, we only
include the 1000 most pulled repositories, which will prevent
low quality and unused images from polluting the dataset
while still keeping a large number of images to analyse. There-
fore, our dataset will consist of all amd64 images for each tag
of all official and the top-1000 community repositories.

We executed this collection process on March 19th, 2023.
Collecting the image metadata of all official repositories took
nearly 11 hours, whereas it took close to 4.5 days for the
top-1000 community ones. In total, we failed to gather image
metadata for 4 official and 5 community repositories. These
failures were either due to the repository being intentionally
empty (e.g., temporary or deprecated repositories), or due to
the repository being moved, renamed, or removed between
the time of repository collection and image collection. An
overview of the number of repositories, tags, and images used
in the rest of study is provided in the bottom rows of Table I.
Our final dataset consists of 636,625 images belonging to 1166
image repositories.



Algorithm 1: Inheritance detection algorithm
input : A list of n images I = [i1, . . . , in] with their

layers
output: A set of direct inheritances < Pi, Ci >

between parent Pi and child Ci

1 I ← SortByLayers(I);
2 previous-root ← 1;
// Outer loop over all images

3 for i← 2 to n do
// Loop over candidate parents

4 for j ← i− 1 to previous-root do
5 if Ij’s layers are prefix of Ii’s layers then
6 Output < Ij , Ii > as direct inheritance;
7 break;

8 if no parent was found for Ii then
9 previous-root ← Ii;

B. Building the Inheritance Network

Having collected the dataset of Docker Hub images, we
proceed to construct its inheritance graph. To this end, we
need to identify inheritance relationships between images.
Recall from Section II-A that when an image inherits from
a parent, the parent’s layers will form a prefix of the child’s.
Consequently, an inheritance relationship between a child and
parent image can be identified by investigating their layers.

To identify all inheritance relationships in our dataset, we
use the algorithm depicted in Algorithm 1. First, we lexico-
graphically sort the list of images based on their layer digests
(line 1). This ensures that an image’s parent, if any, is ordered
before the image itself. Then, the algorithm sequentially
attempts to identify a parent for each image. It does this by
backtracking through the image list in reverse order in search
of the first image whose layers match a prefix, and is thus the
closest parent to the image. Recall that we remove duplicate
images based on the layers, meaning there can be at most
one such image. This backtracking halts whenever it reaches
a root image, i.e., one without a known parent. Any further
exploration will yield no matches, since the earlier images are
certainly unrelated because of the lexicographical sorting.

Once we obtain the set of all inheritance relationships, we
can construct the inheritance network, which is a directed
graph. Its nodes represent each image that is involved in at
least one inheritance relationship, whereas edges represent an
inheritance relationship, flowing from the child to its parent.
Since we only add nodes that are involved in an inheritance
relationship, our network does not contain isolated nodes.

IV. EMPIRICAL STUDY

We now leverage the inheritance network to perform an em-
pirical study into inheritance in Docker Hub. In the empirical
study, we aim to answer 5 research questions divided into 3
topics, as outlined below.

Isolated nodes Connected nodes

# nodes % nodes # nodes % nodes

Total 326,619 51.30 310,006 48.70
Official 9,878 1.55 35,039 5.50

Community 316,741 49.75 274,967 43.19

TABLE II: Network node metrics

Structure of the network
RQ1: What does the inheritance network look like?
RQ2: Which images are most often inherited from?

Characteristics of inheritance
RQ3: How much do inheriting images grow in size?
RQ4: Which instructions are added to parent images?

Outdatedness of parent images
RQ5: How outdated are parent images?

A. Structure of the Network

RQ1: What does the inheritance network look like?: In
the first research question, we perform an initial exploratory
analysis by visualising the network. Through this, we aim to
understand the overall shape of the ecosystem.

Research Method: First, we visualise and explore the
network using Gephi5. We use Gephi’s built-in graph drawing
algorithms to render the inheritance network. We also use
its implementation of the PageRank [15] algorithm to assign
weights to each node in the graph. These weights are used
to determine the size of the node to draw. Intuitively, nodes
which more often appear as ancestors, are ranked higher and
are consequently drawn larger.

Afterwards, we will divide the inheritance network into
clusters of connected components. Each component will con-
tain a root image and all of its descendants. Since Docker does
not support multiple inheritance, this will effectively turn our
network into a forest of disconnected subtrees. We will then
investigate the distribution of the component sizes to better
understand the sizes of subcultures in the network.

Results: As can be seen in Table II, our entire inheritance
network consists of 310,006 nodes. Roughly half of the images
in our dataset are represented in this network. Conversely, for
the other half, we could not find any inheritance involving
these images in our dataset.

We observe that in absolute numbers, community images
make up the majority of our connected network. Nonetheless,
a larger proportion of all official images (78%) are represented
in the connected network, as opposed to only 53.5% of
community images. Moreover, 15,549 images are intermediate
parents, i.e., they inherit a parent image and are themselves a
parent image.

Figure 1 depicts the Gephi visualisation of the inheritance
network. Nodes are coloured according to the image type (blue
for official images, brown for community) and sized according
to their PageRank score. Edge colours signify the type of the
inheriting image, i.e., a brown edge represents an inheriting

5https://gephi.org/

https://gephi.org/


dockersaturn/	

captainduckduck:0.0.1
openjdk:8u212-

jre-alpine3.9

alpine:3.9.4

alpine:3.16.3

debian:buster-

20191014-slim

python:2.7.16-

slim-buster

python:

3.8.13-

slim-

bullseye

openjdk:8u222-slim-buster

debian:bullseye-

20220822-slim

Fig. 1: Gephi visualisation of the most influential nodes in the
network.

community image. Edge thickness indicates the child image’s
contribution towards the influence of the parent image, i.e.,
the total number of descendant images that inherit the parent
image transitively via the child. To maintain comprehensibility,
we only depict the visualisation for the most-inherited subset
of the network.

Most importantly, visible on the right of the figure, we
observe a community image with a high PageRank score,
namely dockersaturn/captainduckduck:0.0.1.
Upon closer inspection, this image is an anomaly, and
inherits alpine:3.6 without adding new layers. However,
the inherited alpine:3.6 image is no longer associated
to a tag on Docker Hub, and is therefore not included
in our dataset. If it had still been tagged, it would
have been chosen as the canonical image following our
deduplication strategy (cf. Section III-A). We will return
to this phenomenon in Section V-A. For the remainder of
our empirical analysis, we will instead relabel this image as
“alpine:3.6-detached”.

Centrally, we observe an official image, alpine:3.16.3,
that forms the ancestor for a large subnetwork of community
images. Towards the corners, we observe several influential
official images with influential official children. Further ex-
ploration reveals that the parent images are operating system
images, like alpine and debian, while the child images
are language runtimes for Java and Python.

Finally, the visualisation shows isolated nodes correspond-
ing to separate root images, each forming their own com-
ponent in the network. In total, our network consists of
5391 components. The majority of these (3256) are minimal
components of size 2, consisting of just a parent and a child.
Nonetheless, we observed that larger components can consist

Child type Parent type # edges %

official official 32,931 10.80
community official 238,411 78.22
community community 33,476 10.98

TABLE III: Inheritance relationship types

of thousands of images, the largest having over 18,000 images.
This component is rooted at alpine:3.9.4, indicating that
it is a highly-used base image. We further found that the
average component consists of 57 images.

Summary: 78% of official images are involved in inheri-
tance vs. only 53.5% of popular community ones. Most root
images are inherited just once, although large outliers with
thousands of descendants exist. Parent images could have
been misidentified due to image aliasing.

RQ2: Which images are most often inherited from?: The
previous research question confirmed the existence of several
influential base images. Moreover, Figure 1 suggests official
images are more popular base images. In RQ2, we inspect
these influential base images more closely, and investigate the
different types of inheritance in our dataset.

Research Method: First, we quantify the types of inher-
itance in our network. These types are determined based on
the official status of the child and parent image, leading to
three possibilities since official images cannot inherit from
community ones. Then, we identify the most popular parent
images in the network, both in terms of their in-degree (i.e.,
number of direct children) and their PageRank [15] score,
calculated earlier.

Results: Table III summarises the types of inheritance be-
tween images. We notice that the majority (78%) of inheritance
relationships involve a community image inheriting from an
official one, whereas inheritance between two official images is
the least common. Although official images make up a smaller
proportion of our dataset, we observe that in nearly 89% of
inheritance cases, the parent is an official image. Nonetheless,
community images inheriting from other community images
form a non-negligible portion.

Table IV depicts the top 5 images in the network according
to their direct in-degree and their PageRank scores. We notice
that for both metrics, the entire top 5 consists of images that
offer either an operating system (alpine and debian) or
a language runtime (openjdk and python) based on those
operating systems. Moreover, the top 5 consists entirely of
official images. The most inherited community image in our
dataset is fluent/fluent-bit:1.8, ranked 63rd with
780 direct children.

Interestingly, we find that alpine and language runtimes
are more popular as direct parents, whereas debian base
images only enter the top 5 when the PageRank metric is
considered. This may suggest that Debian images are more
often inherited indirectly, i.e., through intermediate parents,
while Alpine is more popular as a direct base image.



Highest in-degree Highest PageRank

Image In-degree Image PageRank

alpine:3.6-detached 15,067 alpine:3.9.4 0.0248
openjdk:8u212-jre-alpine3.9 11,254 alpine:3.6-detached 0.0208
python:3.8.13-slim-bullseye 7,642 debian:buster-20191014-slim 0.018
python:2.7.16-slim-buster 6,470 openjdk:8u212-jre-alpine3.9 0.016
openjdk:8u222-slim-buster 5,931 debian:bullseye-20220822-slim 0.011

TABLE IV: Top-5 images with highest in-degree and PageRank scores

Summary: Official images, specifically operating systems
and language runtimes, are popular parents. The top com-
munity images are rarely inherited by other popular images.

B. Characteristics of Inheritance

RQ3: How much do inheriting images grow in size?:
To characterise inheritance, we first look at the size increase
of child images, both in terms of layers and image size.
Image size is an important factor in the quality of images,
since smaller images reduce storage and distribution costs
and may lead to more efficient runtime performance [9],
[16]. Therefore, answering this research question may provide
insights that can help image providers optimise their images.

Research Method: First, for each inheritance relationship
in our dataset, we calculate the number of layers added to the
base image. We then study the distribution of the number of
additional layers, comparing official against community child
images. To this end, we apply the appropriate statistical tests
to determine whether the difference is statistically significant.

Second, for each inheritance relationship, we calculate the
total size increase caused by the additional layers. We analyse
the evolution of size increase over time, based on the date the
child image was pushed. Both the layer size and the image
push date are available in the image metadata collected in
Section III-A. However, we notice that the push date is not
always available for individual images. The earliest timestamp
in our dataset is in September 2020, so our evolution analysis
omits child images pushed before that date.

Results: Figure 2 depicts boxenplots of the distribution of
the number of layers added after inheritance, distinguishing
between official and community child images. We observe
that both distributions are right-skewed, indicating that the
majority of inheriting images add relatively few new layers.
The median number of added layers is 13 and 14 for official
and community images, respectively. Moreover, the maximum
number of observed added layers is 56 for official images,
while for community images, higher numbers can often be
found. These observations may suggest that official images
are more optimised, since adding more layers may increase
I/O overhead [16].

To statistically confirm these observations, we carried out
the non-parametric Mann-Whitney U test that does not assume
normality of the data. The null hypothesis H0 assumes that
both distributions are similar. We rejected H0 with statistical
significance p < 0.01. However, we only found a negligible
effect size (|d| = 0.04) in favour of community images
using Cliff’s Delta, a non-parametric measure quantifying the

difference between two populations beyond the interpretation
of p-values.

Importantly, we observe that for some community images,
the additional layer count is an over-approximation due to
intermediate parents that have not been identified. For instance,
inspecting the Dockerfile of the image which adds the highest
number of new layers (108), we find that it actually inherits
from an intermediate parent which is not hosted on Docker
Hub. Instead, it is hosted on Microsoft’s Artifact Registry,
which is not considered in our dataset.
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Fig. 2: Distribution of additional layer counts for official and
community inheriting images.

Finally, Figure 3 depicts the evolution of size differences
over time, based on the last pushed date of the image, split
between official and community images. We observe a slight
upward trend, showing that both official and community im-
ages are adding more and more data to their base images. Most
strikingly, we find that community images add significantly
more data to their parent images than official images. This
may again indicate that official images are better optimised,
or that community images suffer more from bloating [9].
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Fig. 3: Temporal evolution of average size difference after
inheritance.

Summary: Although popular community child images add
slightly more layers than official ones, they add a lot more
data, suggesting optimisations may be possible.
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Fig. 4: Average instruction occurrence per inheritance case.

RQ4: Which instructions are added to parent images?:
In addition to size and layer increases during inheritance,
we investigate which instructions practitioners use to create
inherited images on Docker Hub. This may identify trends in
instruction usage and may also provide information about the
reasons why developers extend images.

Research Method: We identify and count the types of
Docker instructions for each layer added during inheritance.
These instructions are provided by Docker Hub in the image
metadata already collected. We then calculate how often these
instructions occur during inheritance.

Results: Figure 4 depicts the average number of times that
each Docker instruction is used to extend a base image, iden-
tified through the layers that were added during inheritance.
We find that RUN, ENV, COPY, LABEL, and ARG are the
most frequent instructions, each occurring on average at least
once. This may indicate that developers often run commands to
extend images (e.g., to install new packages or to compile their
own source code) and copy new files into them. Moreover, they
may use LABEL to set their own image metadata, and use ENV
and ARG to introduce or override (environment) variables.

Instructions such as CMD and ENTRYPOINT, which con-
figure which command is run when a container is started,
occur on average only in roughly half of extended images.
The least frequent instruction is ONBUILD, which registers
another instruction to be triggered when the image is used
as a base image. The lack of CMD and ENTRYPOINT is
surprising, as one would expect inheritors to override which
command is executed by the container, rather than inherit the
base image’s command. This may indicate that many popular
images provide a “framework” as a base image for others
to extend further. On the other hand, since the ONBUILD
instruction is only useful when the image is meant to be
a base image, a lack thereof may suggest that the child
images in our dataset are meant to be used as-is, without
further inheritance. Nonetheless, we must take into account
that use of the ONBUILD instruction may be rare, regardless
of inheritance. Alternatively, it is possible that the base image
already provides a suitable command, causing the lack of CMD
and ENTRYPOINT instructions.

Finally, we find that usage of the MAINTAINER instruction
is decreasing over time. In fact, it only appears in 1 of 100
images in 2023, over 5 years after its deprecation in 2017.

Summary: RUN, ENV, and COPY are the most common
instructions. A lack of CMD instructions may suggest that
many of the most popular child images are supposed to be
inherited further, whereas a lack of ONBUILD instructions
may suggest the opposite.

C. Outdatedness of Parent Images

RQ5: How outdated are parent images?: Finally, we in-
vestigate the outdatedness of parent images. Since images
can be updated, a child may have inherited an outdated
version of its parent. Outdated images may carry security
vulnerabilities and other problems, and should therefore be
avoided. Although outdatedness has been studied extensively
for language ecosystems [17], [18] and packages installed in
Docker images [10], we find that the outdatedness of parent
images has not been studied so far. Therefore, answering
this research question may unearth important implications
regarding the security of Docker Hub images.

Research Method: To calculate outdatedness, we again
require the push date of both the parent and child image. As
described earlier, this date is not available for images pushed
before September 2020, and we exclude all such images.
Moreover, since the push date is in fact the last pushed date,
it is possible for a child image’s push date to be earlier than
that of its parent image, making the child image appear to be
older than its parent. This may occur when the parent image is
repushed to the same tag with the same content after the child
was already published. Therefore, in the upcoming analyses,
we exclude all such nonsensical inheritance relationships.

First, we investigate the difference between push dates of
the parent and child image. A high push difference between
a child and its parent means that the child image used an old
parent image which may no longer be maintained.

However, push difference does not take into account the
availability of new versions of the parent. Therefore, we also
investigate the time lag [10], which quantifies the outdatedness
between the parent image and its latest version. To this end,
we examine each inheritance relationship and determine the
most recent available version of the parent image at a specified
date. Subsequently, we calculate the time difference (i.e., time
lag [10]) between the push date of the latest version of the
parent and the version actually inherited from.

We carry out this analysis twice, assuming two different
time points to find the most recent available parent image.
First, we calculate time lag at the time the child image was
released, based on the child’s push date. Second, we assume
the child image would be deployed at the analysis time, which
we set at the time of data collection (March 19th, 2023). The
former produces best-case results, whereas the latter assumes
the more realistic scenario that images keep being used after
their initial build date. We apply the latter only to the latest
(last pushed) versions of child images. Calculating time lag
at the analysis time for child images which are themselves
outdated would lead to unsound results, since older images
are likely to become outdated with a significant time lag.



Results: a) Push date differences: Figure 5 depicts the
distribution of push differences for official and community
child images. We observe that the distribution is right-skewed,
indicating that more often than not, inheriting images use
recent variants of those images. We can also see that push date
differences are lower for official children than for community
ones. This can likely be attributed to the higher quality
standards that official images need to follow.
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Fig. 5: Push difference between inheriting and base image.

Nonetheless, we notice that there are 677 images in our
data set with a push difference of over a year, with one as
high as 763 days. Looking at official images only, which
are supposed to be of higher quality, Table V lists the most
extreme cases of push time difference. We immediately see
that most images inherit from centos:centos7.9.2009,
which was pushed to Docker Hub on 2021–09–15. In fact,
this image is involved in 92 of the 100 highest observed
push differences. This version of CentOS is unmaintained as
of August 2020. Therefore, any recent image depending on
(official) CentOS 7 will necessarily have a high push time
difference.

b) Time lag at the push date of the inheriting image:
Looking at time lag on release date confirms our initial
observation, as we find that over 53.8% of the images in our
dataset were using the latest available version of the image
they inherit from. We further found that 35.7% of outdated
images (time lag greater than zero) were less than one month
behind the latest available version. When considering all
inherited images (outdated and up-to-date), 29.7% exhibited
a time lag equal or exceeding one month. When looking at
official and community images, we observed that community
images tend to inherit from slightly more outdated image
versions compared to official images.

These results validate our initial observation, demonstrating
that image producers more often prefer recent and up-to-date
images when creating their own images. Nonetheless, over a
quarter of images use parent images that are already outdated
by more than a month at their release date. These findings are
consistent with previous studies as well [10].

c) Time lag at the analysis date: Figure 6 shows the time
lag incurred by outdated inherited images, grouped by the
child image’s kind (i.e., official or community). We found that
only 29.6% of the used images are up-to-date with zero time
lag. Overall, the median time lag is 5.63 months, the average
is 18.27 months while the maximum is 81.9 months. When
comparing between official and community images, we found
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Fig. 6: Time lag of outdated inherited images, grouped by their
kind (official or community), at the analysis date.

that the latter have more outdated images than the former, i.e.,
p < 0.01 using the Mann-Whitney U test, while the effect size
is medium (|d| = 0.469) in favour of community images.

These findings demonstrate that, as expected, images grow
more outdated over time. Nonetheless, since we only focus on
the latest versions of images, our results are still alarming. One
possible explanation may be that child images are maintained
and updated less often than their parents. Therefore, the child
image would get outdated as soon as a new parent image
version becomes available, and stay outdated for longer. Given
that community images are affected more by outdatedness, and
most community images inherit from official ones, which must
be maintained regularly, such an explanation appears likely.

Summary: The extent to which parent images are outdated
may be a cause for concern. Nearly 30% of popular child
images inherit a parent image that is outdated by over a
month at the time the child is built. At analysis time, 70% of
the latest version of popular child images inherit an outdated
parent with a median of 5.63 months.

V. DISCUSSION

A. Unidentifiable Parents

As observed in RQ1 and RQ3, our approach may fail to
identify parent images in some cases. We identify three reasons
this may happen.
1) The parent is not on Docker Hub, but on another registry.
2) The parent is on Docker Hub, but is omitted by a filter.
3) The parent is on Docker Hub, but is not linked to a tag.
While the first two cases can be avoided by applying our
approach on a larger dataset, the final case cannot currently
be addressed. Since Docker Hub allows its contributors to
overwrite tags, it is possible for images to become “detached”
from all tags, after which they can only be retrieved via their
SHA-256 digest. Consequently, because the API only exposes
tags, we cannot retrieve information about the detached image.
Therefore, if the image was used as a parent in the past, we
can no longer identify it as such.

In rare cases, we may be able to find an alternative image
with the same layers, i.e., an image that inherits the original
image but does not add any layers to it, which we encountered
in RQ1. Such images lead to “spurious parents”, where we
wrongly identify the parent image to be the alternative, while
the child image in fact inherited from the detached image.
Such spurious parents may have led to an over-approximation



Child image Parent image Push difference (days)

ibm-semeru-runtimes:open-11.0.18_10-jdk-centos7 centos:centos7.9.2009 531
crate:5.1.4 centos:centos7.9.2009 509
eclipse-temurin:19.0.2_7-jre-centos7 centos:centos7.9.2009 497
swift:centos7-slim centos:centos7.9.2009 491
mongo:4.0.28 ubuntu:xenial-20210804 359

TABLE V: High push differences: official images

of community parent images. Nonetheless, we found and
rectified one spurious parent (see RQ1), and found that the
other community parent images are much less influential in
the network.

Unfortunately, since we have no way of enumerating de-
tached images, we have no way of knowing which and
how many potential parents we missed. Therefore, there is
a potential for many of the isolated nodes in our network to
in fact be related to some unknown detached parent image
without an alternative, spurious parent to connect them. The
impossibility of tracking these images’ lineage is worrisome,
especially in the context of supply chain security, where it
hampers the ability for practitioners to inspect the health of
their dependencies, such as indirect parents of their Docker
images (cf. RQ5).

B. Implications

1) For image consumers: Our results reveal that many
images, although themselves up-to-date, use outdated parent
images (RQ5). Outdated base images ship outdated software,
which is more likely to contain bugs, inefficiencies, and
most importantly, security vulnerabilities. Such problems often
propagate into child images [6]. Although prior work has
already recommended practitioners to use up-to-date versions
of images [6], [19], we believe this to be insufficient. Instead,
practitioners should not only ensure the image itself is up-to-
date, but also ensure that all of the image’s ancestors are
both up-to-date and recent.

2) For image contributors: The results for RQ2 confirm
that, unsurprisingly, official images are by far the most in-
herited from. However, RQ3 shows that community child
images may grow in size by twice the amount that official
children do. This suggests that there is room for improvement
in space optimisations of community images. It may also
be indicative of a lack of ready-made, feature-complete
base images, causing consumers to need to add common
packages or dependencies. It may be worthwhile for base
image providers to investigate which features are often needed
by consumers, and to offer image variants that provide those
out-of-the-box. This may provide further opportunities for
deduplication, thereby saving storage and distribution costs.

Secondly, as revealed in RQ5, we observe high outdatedness
and time lag, especially for community images. In well-
known software ecosystems like npm and PyPI, packages can
specify dependencies using ranges. This enables clients to
update transitive dependencies with security patches. However,
inheritance in Docker images is pinned and immutable. Hence,
clients cannot resolve vulnerabilities in a parent image unless
the inheriting image itself is updated. Therefore, we urge

official and community image maintainers alike to remain in
sync with security updates of parent images.

3) For registry operators: As discussed in Section V-A, a
lack of historical information on image tags and the inability to
list image digests pose significant challenges for supply chain
security research. Moreover, not exposing such information
hampers practitioners who want to understand the source of
the images they use. We therefore implore registry operators
to provide tag histories and image digest lists, and to ratify
this in the distribution specification [20].

Many before us have repeatedly called for built-in security
tooling on Docker Hub [6], [7], [12], [19]. Docker’s recently-
unveiled Scout6, an image insights tool which shows vulner-
abilities and image inheritance lineage, is a promising first
step. Nonetheless, we find several shortcomings, such as its
apparent inability to identify community parent images, which
we believe should be addressed7. Moreover, we urge Docker
to roll out this security analysis to all Docker Hub images
instead of merely official ones. We also advise other registry
providers to follow suit with similar technologies.

4) For researchers: Most importantly, we advise re-
searchers to beware of detached images and their threats to
empirical Docker Hub research, as discussed in Section V-A.

Our research open various gates for future work. Our find-
ings in RQ3 motivate further empirical studies into the content
developers add during inheritance, specifically to investigate
why community images add twice as much content as official
images, and to the differences between images and their par-
ents. The results of RQ5 motivate further studies on the impact
of outdated base images in practice, and technical research
can investigate means to alleviate outdatedness of Docker
base images. Finally, tool builders can benefit from accurate
inheritance networks, such as those built by our approach,
to recommend base images [21], improve discoverability of
images [22], or to alert Docker image maintainers of security
vulnerabilities caused by base images.

VI. THREATS TO VALIDITY

We present the threats to validity of our research according
to the guidelines of Wohlin et al. [23].

As a threat to construct validity, we use the last push
date of an image as a proxy for the date when an image was
built. However, since developers could repush the same image
at a later date, this date may be inaccurate. This may have
caused inaccuracies in the findings of RQ5. Unfortunately,

6https://www.docker.com/products/docker-scout/
7Docker Scout is still in Early Access and these limitations may be fixed

in a final release.

https://www.docker.com/products/docker-scout/


such inaccuracies could not be avoided, since Docker Hub
provides no historical information.

As a threat to external validity, since we only analysed
the official and top 1000 community repositories, our findings
cannot be generalised to the larger Docker Hub ecosystem
and only apply to the popular repositories considered in our
dataset. Although a random sample may improve general-
isability, it would be unlikely to contain community parent
images, and our approach would be unable to identify such
parents. Therefore, to improve generalisability, our approach
could be replicated on a larger subset of the ecosystem.
However, such a dataset would require much longer to collect.
A second threat to validity stems from the omission of other
image registries in our dataset. Therefore, we cannot claim
generalisability to other registries.

As a threat to internal validity, we only considered the
amd64 architecture. Nonetheless, we do not expect obser-
vations to differ significantly for other architectures. Sec-
ondly, our dataset possibly lacks some parent images (cf.
Section V-A), meaning we may have under-approximated how
often inheritance occurs.

VII. RELATED WORK

a) Empirical Studies on Docker: Docker and the Docker
Hub ecosystem have been widely studied in prior work. Zhao
et al. [3] investigate image characteristics (e.g., layer size, file
types) of 47TB worth of images from Docker Hub. Cito et
al. [8] study Dockerfiles for quality issues, revealing that one
third of the 70,000 considered files could not be built and were
thus unusable. Lin et al. [19] combine Dockerfiles and their
Docker Hub images to investigate the evolution of Docker
images, uncovering that Dockerfiles evolve more slowly than
general-purpose source code. Ibrahim et al. [24] investigate
the differences between official images and community coun-
terparts and find that community counterparts are often more
storage-optimised. On the other hand, Zerouali et al. [10]
investigate technical lag in Debian-based images and find that
official Debian images suffer less from technical lag than their
community counterparts.

Some prior work has investigated inheritance in Docker
images. Zhang et al. [13] determine inheritance based on
FROM instructions in Dockerfiles. Our work replicates part
of their study, namely the exploration of the structure of the
resulting network and the most influential images. Nonethe-
less, their inheritance calculation relies on Dockerfiles, which,
as mentioned in Section III-A, may not always be reliable
or available. Other than that, they investigated differences
between different categories of images, such as Operating
System or Language Runtime.

Shu et al. [6] investigate the propagation of security vul-
nerabilities in the Docker Hub ecosystem. They find that
vulnerabilities are pervasive in the ecosystem and suggest that
many may be propagated from parent to child images. Similar
to our work, they collect an exhaustive dataset of Docker
images and calculated inheritance between them, albeit with
a different algorithm resulting in a graph of layers rather than

images. Moreover, they do not explore general properties of
Docker Hub image inheritance. Ul Haque et al. [11] investigate
a similar topic, but determine inheritance from Dockerfiles.

b) Empirical Studies on Infrastructure as Code: Since
Docker is an Infrastructure-as-Code (IaC) technology, we also
look at empirical studies in the IaC domain. We find that the
majority of existing studies in the IaC domain focus on co-
evolution of source and infrastructure code [25], code quality
and smells [26]–[29], and practitioner insights [30], [31].
Nonetheless, some IaC ecosystems have been subjected to em-
pirical studies, such as the practice of content versioning [32],
and the characteristics of reusable Kubernetes code [33].

c) Empirical Studies on Dependency Networks: A final
area of related work is that of dependency networks, since our
inheritance network is also a form of dependency network. De-
can et al. [34] study evolutionary patterns of the npm, CRAN,
and RubyGems ecosystems and the importance of semantic
versioning and dependency constraints. Later, they further
examine the growth of the npm ecosystem, uncovering that
transitive dependencies often cause fragility. Kula et al. [35]
investigate thousands of Maven and CRAN artefacts, revealing
popularity, adoption, and updating patterns. Blincoe et al. [36]
identify dependency networks through GitHub projects and
find that most ecosystems are centred around one project and
interconnect with other ecosystems.

VIII. CONCLUSION

Docker Hub forms the largest ecosystem of container im-
ages. Its contents constitute vital parts of software supply
chains. However, image inheritance, although vital to under-
stand for security purposes, is obscured by Docker Hub. There-
fore, in this paper, we construct an inheritance network of the
popular subset of the Docker Hub ecosystem. Specifically, we
collect a dataset of 636,625 Docker images spread across the
175 official and 1000 most popular community repositories,
and compare their layers to identify inheritance. We leverage
the network to empirically study the most influential images,
the characteristics of image inheritance, and the outdatedness
of parent images. We find that many image ancestors may
remain unidentified since Docker Hub does not provide tag
histories. Such “detached images” may form a substantial
threat to empirical research based on Docker Hub. Moreover,
we find that community images add twice the amount of data
to a parent image than official ones, suggesting the former can
benefit from optimisations. Finally, we uncover that at release
time, most images use relatively up-to-date parent images.
However, we find that if one were to deploy the images today,
over 70% would use an outdated parent, with a median of over
5 months of time lag. This indicates that Docker Hub users
should pay additional attention to the lineage of the images
they consume, and calls for better security insights provided
by image registries.
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