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ABSTRACT
Today’s manufacturing industry is confronted with an increasing
demand for product variability that stems from product customi-
sation needs and the engineering process. Different customer de-
mands and the mass-customisation of physical products require
designing multiple variants of products, and additional require-
ments may be introduced when the product reaches subsequent
stages (simulation, manufacturing, assembly, ...) in its engineering
process.

The state-of-the-art 3D modelling software deals with variability
in a mostly ad-hoc fashion. Designing products typically involves
creating digital 3D models using Computer-Aided Design (CAD)
software, and implementing variability requires duplication of en-
tire models or parts thereof that then require changes without any
identification of or distinction between the different requirements
that caused them. Parametric CAD approaches do enable design-
ing 3D models that contain modifiable parameters, but designers
must still ensure that the 3D model with updated parameter values
satisfies all requirements. It is therefore difficult or impossible with
current approaches and tools to design variants of products in a
structured and efficient manner.

In this work, we present VariMod, a 3D modelling approach that
distinguishes between invariant requirements that each variant of
a 3D model must satisfy, and variant-specific requirements that
individual variants must satisfy. Hereby, VariMod enables the spec-
ification of ‘generic’ 3D models that satisfy invariant requirements,
of which the parameter values can be optimised so that they also
satisfy variant-specific requirements. To this end, VariMod repre-
sents both types of requirements as bidirectional constraints that
are solved to find optimal parameter values that satisfy all con-
straints. VariMod features a constraint-solving process that aims to
minimise the modifications made to parameter values when opti-
mising a 3D model, thereby preventing unexpected modifications
to the 3D model. We use PrintTalk, a programmatic CAD language
for parametric 3D modelling, as a vehicle for implementing and val-
idating VariMod by demonstrating how it can be used for designing
variants of 3D models in a structured and efficient manner.
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1 INTRODUCTION
1.1 Context
Today’s manufacturing industry is confronted with an increasing
demand for product variability [20]. Generally speaking, demand
for variability stems from product customisation needs [14] and the
manufacturing process [17]. We illustrate the sources of variability
by describing the typical engineering process for manufacturing a
chair by means of 3D printing (fig. 1).

In the first step, a chair is designed using Computer-Aided Design
(CAD) software. CAD software enables the creation and modifica-
tion of digital 3D models that serve as the ‘blueprint’ for an actual
product that must be manufactured and assembled in later stages
of the engineering process.

In this step, different customer demands and themass-customisation
of physical products require designing multiple variants of products.
For example, multiple variants of a chair may be designed with
varying dimensions for the legs or seat. As another example, multi-
ple variations of a phone case are required to ensure compatibility
with different phone models.

After the initial design step, additional requirements may be
introduced when the product reaches subsequent stages in its en-
gineering process. These requirements could be regarded as non-
functional requirements (NFRs) [19], as they do not describe the
‘functionality’ of the product, but rather the conditions for ensuring
that the product is manufacturable and embeddable in its target
domain. A typical engineering process therefore also introduces
variation, because the design of products must be modified when
they do not satisfy one or more NFRs [9].

Continuing our example, after obtaining a digital 3D model rep-
resenting a chair from the first step, this design is compiled into
the form of an STL file. STL is a common file format that represents
the surface of a 3D model as a triangulated mesh [11]. This STL file
is then imported into simulation software for verifying that the
chair is sufficiently strong to support a certain weight. If this is not
the case, the design of the chair must be modified, which requires
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Figure 1: Typical engineering process of physical products.

going back to the initial design step. Otherwise, the chair can be
manufactured in a next step.

If, as in our example, the chair is manufactured by means of
3D printing, its parts must meet the manufacturing constraints
of a specific 3D printer, such as maximum print dimensions or
maximum time required to print the parts.When not all parts satisfy
these requirements, the chair’s design must be modified, again
moving back to the initial design step in the process. Otherwise,
the manufactured parts can be assembled into a complete chair
in the assembly step. However, here too the design may require
adaptation when for example the assembly time is too long because
of the number of parts, or the parts do not fit together due to
imprecisions introduced throughout the process.

1.2 Problem
The previous example illustrated that variability may be introduced
at many points during the design and engineering process of phys-
ical products. Creating variants of a product involves modifying its
3D model in CAD software [8], returning to the initial design step
in the engineering process even when the need for the adaption is
driven by later stages in the process.

State-of-the-art CAD software enables the design of paramet-
ric 3D models for dealing with variability. Parametric modelling
enables the customisation of 3D models by modifying parameter
values such as dimension and position. However, some modifica-
tions cannot be realised by modifying parameter values, or it would
be cumbersome to do so. For example, it is not trivial to change
aspects of a shape that do not directly correspond to adjustable
parameters. In this case, designers are limited to creating variants
by duplicating an original design and modifying each version inde-
pendently. This limitation is partly solved by programmatic CAD
(PCAD) languages such as OpenSCAD1 and PrintTalk [15]. PCAD
languages enable modifying 3D models by changing the program
text by which the 3D model is constructed. Additionally, these lan-
guages enable a shape to be instantiated an arbitrary number of
times, and each instance can be modified independently within a
single program through (again) parameter changes. The program-
matic approach to 3D modelling enables the application of Software
Product Line (SPL) techniques for promoting the variability and

1https://openscad.org/

reusability of 3D models. However, current PCAD languages lack
an integration of these techniques [1].

• No support for constraints that express relations between
parameters. These constraints are required for preventing
errors resulting from incompatible parameter values. For
example, constraints can express that the outer diameter of
a ring must be larger than the inner diameter.

• No composition of requirements that are introduced at
various points during the engineering process in such a way
that additional requirements can be modelled ‘on top of’ an
existing model and its requirements (which itself may repre-
sent a variant) without the need for changing the existing
part.

• Nohierarchy betweenpotentially incompatible require-
ments, making it impossible to generate 3D models that sat-
isfy ‘more important’ requirements but omit incompatible
‘less important’ requirements.

In summary, the state-of-the-art 3D modelling software deals with
variability in a mostly ad-hoc fashion. Implementing variability
requires duplication of entire models or parts thereof that then
require changes without any identification of or distinction between
the different requirements that caused them. It is therefore difficult
or impossible to design variants of products in a structured manner.

1.3 Approach
In this paper, we present VariMod, an approach for designing vari-
ations of digital 3D models using parametric CAD software. To
enable straightforward variational design, VariMod distinguishes
between two categories of requirements:

• Invariant Requirements (IRs) for ensuring that each variant
results in a valid 3D model. For example, each variant of our
chair must have legs that are attached to the bottom of the
seat, and the distance between them is constrained by the
dimensions of the seat.

• Variant-specific Requirements (VRs) for ensuring that a vari-
ant either satisfies customer demands, or is manufacturable
and compatible with subsequent steps of the engineering
process. For example, a chair’s legs must have minimal di-
mensions, determined by theweight that the chair is required
to hold and the material out of which the chair will be man-
ufactured.

VariMod improves upon the state of the art in three important
ways.

• VariMod enables the separation of IRs and VRs of 3D models
so that variational designs can be modelled efficiently and
in a structured manner. A model that satisfies IRs can be
instantiated multiple times, with each instance optimised so
that it satisfies different VRs for meeting different customer
demands or to be suitable for different means of manufac-
turing.

• In VariMod, both IRs and VRs are represented as bidirec-
tional constraints. Instead of only testing whether they are
satisfied, a constraint solver can help designers in finding op-
timal parameter values that satisfy bidirectional constraints.
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For example, VRs can be used for optimising a hinge’s di-
mensions to respect a 3D printer’s size limitations while
maximising its strength and load capacity.

• VariMod allows the assignment of criticality levels to con-
straints that express requirements, so that preferential re-
quirements can be expressed. VariMod optimises the parame-
ter values of a 3Dmodel when preferential requirements con-
tradict each other by prioritising requirements with higher
criticality levels. For example, when requirements that en-
sure manufacturability are considered more important than
requirements that are purely aesthetic, a higher criticality
level can be assigned to the former such that VariMod can
generate a manufacturable 3D model that satisfies as many
of the aesthetic requirements as possible.

VariMod introduces Invariant Constraints for modelling invari-
ant requirements (IRs) that ensure the validity of each variant of
3D models, and Variant-Specific Constraints that express variant-
specific requirements (VRs). Invariant constraints may leave the
model ‘underconstrained’, meaning that multiple values can be as-
signed to a parameter without invalidating any of the constraints on
the parameter’s value. VariMod uses variant-specific constraints for
optimising these parameter values without invalidating the invari-
ant constraints. In doing so, VariMod aims to modify the 3D model
as little as possible in order to prevent unnecessary changes of
parameter values that modify the 3D model in an unexpected man-
ner. When parameter values satisfy all variant-specific constraints,
they are left unchanged. Otherwise, VariMod attempts to find new
parameter values that satisfy both invariant constraints and variant-
specific constraints. VariMod’s strategy for combining invariant
constraints and variant-specific constraints is discussed in section 3.

We use the PrintTalk [15] programmatic CAD language as a
means for implementing and validating our approach. PrintTalk
textually describes 3D models using both imperative statements
and constraints. The language features a powerful constraint mech-
anism that enables a clean integration of VariMod. We extend
PrintTalk with a new component through which variant-specific
constraints can be asserted. The implementation hereof is available
in our software artefact at https://doi.org/10.5281/zenodo.8046217.

1.4 Overview
We discuss the state of the art and related work, and further mo-
tivate VariMod in section 2. A detailed description of VariMod is
given in section 3. Section 4 describes how VariMod can be in-
tegrated into existing PCAD languages. VariMod is validated in
section 5.

2 BACKGROUND AND STATE OF THE ART
We review the landscape of 3D modelling software that is used
for designing digital 3D models and we describe the limitations of
the state-of-the-art methods for designing variants of 3D models.
The effectiveness of constraints for modelling requirements is also
discussed in this section. Additionally, we provide an overview of
existing tools for modelling the Non-Functional Requirements of
3D models and illustrate the limitations of these tools regarding
variational design.

2.1 3D Modelling Software
Digital 3D models are commonly constructed using Computer-aided
Design (CAD) software. While this software is typically GUI-based,
3D models can also be described programmatically through pro-
grammatic CAD languages such as OpenSCAD2 and PrintTalk [15].
CAD software typically implements one of two main 3D modelling
techniques.

• Direct Modelling can be thought of as sculpting a 3D model.
Through a GUI, 3D models are manipulated by clicking
and dragging. The resulting 3D model is free of parame-
ters and constraints that express relations between parts of
the 3D model. Direct modelling does not capture informa-
tion on how the design was achieved. The lack of parameters
and constraints makes direct modelling less suitable for the
systematic designing of modifiable and reusable 3D models.
Examples of direct modelling CAD software are PTC Creo
Direct3 and Shapr3D4.

• Parametric Modelling forms a more systematic approach to
design. Parametric 3D models are represented by a history
tree. The nodes of this tree represent parameterised com-
ponents such as primitive 3D shapes (e.g., cubes, spheres,
and cylinders), and operations for modifying parameter val-
ues or combining components by means of set-theoretical
operations such as union and difference.
Some parametric modelling software supports constraints
for declaratively specifying relations between components.
In this case, 3D models can be modified through parameter
changes, and requirements can be modelled as constraints on
these parameters. Reusing 3D models is achieved by copying
(parts of) the history-tree. Examples of parametric CAD
software are FreeCAD5, Siemens NX6 and Solidworks7.

This paper focuses on parametric modelling, as it provides a
systematic way for adapting 3D models through parameter changes
that can be conducted either manually or by an underlying con-
straint solver with the goal of satisfying requirements expressed
as constraints. We now briefly discuss constraints in visual and
programmatic parametric CAD approaches.

Constraints in Visual Parametric CAD Tools. Visual CAD software
usually includes a limited set of constraints that can be asserted
manually by the designer. Examples of constraints that are typically
supported are perpendicularity, parallelism, and tangency. Existing
visual CAD approaches do not distinguish constraints that express
invariant constraints from variant-specific constraints, making it
cumbersome to determine whether a constraint models one or the
other.

Constraints in Programmatic CAD Languages. While many pro-
grammatic CAD languages and libraries that implement parametric
modelling exist, most of them do not include support for constraints.
We discuss the programmatic CAD approaches that do offer explicit
support for constraints: OpenSCAD, CadQuery, and PrintTalk.
2https://openscad.org/
3https://www.ptc.com/en/products/creo/elements-direct
4https://www.shapr3d.com/
5https://www.freecad.org/
6https://www.plm.automation.siemens.com/global/en/products/nx/
7https://www.solidworks.com/
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OpenSCAD8 is one of the most popular CAD languages. Follow-
ing the functional programming paradigm, the language is limited
to assert-statements for constraining parameter values. There is
no underlying constraint solver that can assign values to variables
in order to satisfy constraints. When an assertion fails, the corre-
sponding constraint is not satisfied and an error is raised.

CadQuery9 is a Python library for parametric CAD that imple-
ments a limited set of geometric constraints. These constraints are
bidirectional, as parameter values can be modified in order to sat-
isfy constraints. An error is raised when not all constraints can
be satisfied. However, because Python does not natively support
constraint programming, the constraint solver must be invoked
manually.

PrintTalk[15] is a programmatic CAD language for modelling
3D printable objects. Constraints represent requirements through
declarative relations such as relative positions that must hold be-
tween elements of a design. An underlying constraint solver solves
these constraints, and assign values to the constraint variables
in a design. The language serves as a base for implementing and
validating VariMod, and is further discussed in section 4.

2.2 SPL Practices Applied to 3D Modelling
The variability and reusability of software artefacts are prominent
subjects of the Software Product Line (SPL) research field, but are
also relevant to the field of physical product design. 3D modelling
is mainly a software problem, and typically involves CAD software.
While state-of-the-art 3D modelling tools lack support for SPL-
like techniques for improving the variability and reusability of
3D models [1], the applicability of these techniques to the field of
3D modelling has been demonstrated by earlier research, which we
briefly discuss next.

The work by Amand et al. [2] introduces a learning-based ap-
proach for detecting invalid parameter values of 3D models con-
structed by OpenSCAD scripts, and for deriving constraints on
these parameters. The derived constraints improve the variability
of 3D models by preventing errors resulting from incompatible pa-
rameter values. However, OpenSCAD and other PCAD languages
provide no features for integrating these constraints into existing
scripts. VariMod overcomes this limitation by featuring invariant
constraints through which relations between the parameters of
3D models can be expressed.

The work by Hofmann et al. [13] presents a framework for man-
aging ‘design expectations’ of 3Dmodels with the goal of facilitating
model reuse. The framework distinguishes between assertions and
and integrators. Assertions check whether ‘design expectations’
are met, while integrators modify 3D models so that they meet
expectations. VariMod provides similar functionality, as invariant
constraints can specify conditions that each variant of the 3Dmodel
must meet, and an integrated constraint solver can determine pa-
rameter values that meet these conditions.

2.3 Variational Design of 3D Models
Earlier work on variational modelling explored the idea of using con-
straints for modelling variational geometry, so that the geometry of

8https://openscad.org/
9https://github.com/CadQuery/cadquery

objects can be modified in a straightforward manner. The work by
Lin et al. [18] describes a system through which objects can be mod-
ified by altering the constraints that describe their geometry. Later
work by Kimura et al. [16] describes a framework that captures
design requirements from different stages of the design process
in the form of constraints. Modifications to an object’s design are
made by incrementally adding the constraints associated with each
step in the design process to the set of constraints that describe
the object’s geometry. VariMod implements a similar strategy by
distinguishing between invariant and variant-specific constraints
to model an object’s geometry.

2.4 Non-Functional Requirements in Product
Design

In a traditional engineering process (fig. 1), only functional require-
ments are considered during the design phase of a product [17]. As
products reach further stages in the development process, design
flaws may arise. For example, products may be found to be impossi-
ble or expensive to manufacture. To account for this, non-functional
requirements (NFRs) should also be considered during the initial
design stage [19]. Taking NFRs into account during the design of
digital 3D models using CAD is the topic of the active research on
what is called the Design For X (DFX) methodology.

DFX. The goal of Design For X (DFX) [12] is to enable the design
of 3D models to be optimised for a certain criterion X. The DFX
methodology takes NFRs into account during the design stage with
the goal of reducing the need for modifications when subsequent
stages of the engineering process are reached.

Existing applications of DFX include ‘Design For Materials’ [4],
‘Design For Manufacturing’ [3], and ‘Design For Assembly’ [5].

DFX software exists both as standalone tools10, and as plugins
for CAD software11. Existing DFX tools are capable of analysing
3D models and making recommendations on how the models can
be manually optimised in order to satisfy the DFX requirements.
Yet, existing DFX tools are not capable of automatically optimising
3D models for compliance with DFX requirements. Instead, after
analysis, the DFX tools only report which rules are satisfied and
which are not. Designers still must manually modify 3D models
and re-run the analysis, and this in an iterative manner until the
3D models are compliant with DFX requirements. This approach
provides no distinction between the initial design and DFX optimi-
sations, hampering the systematic specification of multiple versions
of a design, each optimised for other DFX requirements, such as
manufacturability on different machines.

DFX tools typically allow designers to assign a criticality level
to each rule, so that the designer can prioritise more critical rules
when trying to find the most optimal design through iterative mod-
ifications. As current DFX tools are not capable of automatically
making modifications, these criticality levels are solely used for
informing the designer, and it is up to the designer to ensure that
rules with higher criticality levels are prioritised when modifying
3D models.

10https://www.dfma.com/
11https://www.dfmpro.com/
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2.4.1 Use Case: NFRs for 3D Printing. The work by Asadollahi-
Yazdi et al. explores the DFX approach for Additive Manufacturing
(AM), more commonly referred to as 3D printing. 3D printing is
becoming a popular means of manufacturing and rapid prototyping.
Yet, not all digital 3D models can be efficiently manufactured by
means of layer-by-layer 3D printing. An example of a manufac-
turing constraint for layer-by-layer 3D printing is that each layer
to be printed must be sufficiently supported by the layer under-
neath. Layers that are insufficiently supported by the 3D model
itself require additional support structures that must be generated
and printed to ensure the correct manufacturing of the 3D model.

The DFX approach can be applied to optimise an initial 3D model
for satisfying non-functional requirements such as manufacturing
constraints during the design stage [3]. Each type of 3D printer
has different characteristics that influence its capability of printing
unsupported parts. In order to make optimal use of each printer, the
initial design must be optimised for multiple printers. With current
DFX tools, this requires an independent instance of the original
design per printer.

3 APPROACH
We present VariMod, a structured and efficient approach to variabil-
ity in 3D modelling. Our approach enables instantiating multiple
variants of a 3D model such that each variant satisfies different
requirements. These requirements are expressed as constraints on
the 3D model’s parameter values, and VariMod relies on a con-
straint solving mechanism that combines invariant constraints that
ensure the validity of all variants, together with variant-specific
constraints for optimising parameter values. Additionally, critical-
ity levels can be assigned to constraints, so that constraints with
a lower criticality can be omitted in favour of constraints with a
higher criticality when modifying 3D models.

3.1 Invariant vs. Variant-Specific Constraints
VariMod distinguishes between constraints for expressing invariant
requirements (IRs) and variant-specific requirements (VRs). This
distinction promotes the reusability of designs, as it facilitates de-
signing multiple variations of a 3D model that each satisfy different
VRs.

(1) Invariant constraints are part of a 3D model’s design, and
are meant for expressing IRs. Parameter values can be derived
from and limited by invariant constraints. This implies that
invariant constraints serve two purposes.

(a) Check the validity of the values of object (shape, ...) pa-
rameters with respect to the conditions specified by the
constraint. For example, invariant constraints can be used
for expressing that shapes cannot have negative dimen-
sions.

(b) Find parameter values that satisfy the constraints placed
on the parameters. To this end, an underlying constraint
solver is used, alleviating the need for designers to provide
a specific value for each parameter.

(2) Variant-specific constraints can be asserted onto a 3Dmodel’s
parameters externally to the 3D model’s design, and are
meant for expressing VRs. Examples include customer de-
mands, and requirements originating from the engineering

Solve Invariant Constraints

Raise Error

Sat?

[Yes]

[No]

Sat?

[Yes]

[No]

Generate 3D Model

Solve
Variant-Specific Constraints

Figure 2: Two-round constraint solving process.

process downstream from the design step. Variant-specific
constraints also serve two purposes.
• Check whether a 3D model satisfies requirements implied
by external factors such as manufacturability and other
non-functional requirements. For example, variant-specific
constraints can be used for checking whether a 3Dmodel’s
dimensions do not exceed the maximum printable size of
a 3D printer.

• Optimise a 3D model by further constraining its parame-
ters. For example, variant-specific constraints can be used
for expressing the maximum printable size of a 3D printer,
so that the 3D model’s parameter values can be optimised
for making it compliant with these maximum dimensions.

3.2 Preferential Constraints
Although some constraints are required for generating a valid
3D model that satisfies customer demands and that is compatible
with the engineering process (simulation, manufacturing, assem-
bly, ...), other constraints may be preferential instead. For example,
requirements that ensure actual manufacturability are considered
to be more important than requirements that are purely aesthetic.
To account for this, VariMod distinguishes between required con-
straints and preferential constraints.

Furthermore, criticality levels can be assigned to preferential
constraints, so that designers can introduce a hierarchy between
constraints. This enables VariMod to optimise the parameter values
of a 3D model when preferential constraints contradict each other,
and this by prioritising constraints with higher criticality levels
while omitting incompatible constraints with lower criticality levels.
VariMod still raises an error when a required constraint can not be
satisfied.

3.3 Constraint Solving Process
To generate 3D models that satisfy both invariant and variant-
specific constraints, VariMod features a two-round constraint solv-
ing process, as illustrated in fig. 2.

In the first round, only invariant constraints are considered.
The invariant constraints are sent to the solver, which attempts
to find a set of satisfiable constraints using the process described
in 4.3. When the solver finds a solution that satisfies the invariant
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(a)

(b)

(c)

(d)

Interval of values satisfying
Invariant Constraints

Interval of values satisfying
Variant-Specific Constraints

Interval of values satisfying
both Invariant Constraints &
Variant-Specific Constraints

Figure 3: Possible scenarios when combining invariant con-
straints and variant-specific constraints.

constraints, VariMod proceeds to the second round. Otherwise, an
error is raised.

In the second round, the variant-specific constraints, which can
consist of both required and preferential constraints, are combined
with the set of invariant constraints that were satisfied in the first
round. This ensures that variant-specific constraints can only be
added to the set of satisfied constraints when they do not invalidate
previously satisfied invariant constraints. Preferential constraints
are considered in decreasing order of criticality levels.

To ensure that every design can be exported to a valid 3D model
file, VariMod requires parameters that are constrained by variant-
specific constraints to also be constrained by invariant constraints.
As such, 3D models cannot contain unbound parameters after the
invariant constraints are solved. When a parameter is constrained
by both invariant and variant-specific constraints, multiple sce-
narios are possible when both types of constraints are combined,
depending on the actual constraints involved. Figure 3 visualises
these different scenarios, which can be categorised as follows.

• Invariant constraints and variant-specific constraints
are (partially) compatible. A set of values that satisfy
both invariant and variant-specific constraints exists when
variant-specific constraints are more general than invariant
constraints (scenario a), when variant-specific constraints
are equally or more specific than invariant constraints (sce-
nario b), or when the values that satisfy the invariant con-
straints partially overlap with the values that satisfy the
variant-specific constraints (scenario c).
If the value that was determined from invariant constraints
happens to also satisfy the variant-specific constraints, it
remains unchanged in order to not unnecessarily change the
3D model, preventing any unexpected changes. Otherwise,
an alternative value that also satisfies the variant-specific
constraints is assigned to the parameter.

• Invariant constraints and variant-specific constraints
are not compatible. No value exists that satisfies both the
invariant and variant-specific constraints placed on a param-
eter (scenario d). In this case, an error is raised.

4 EXTENDING PCAD LANGUAGES TO
SUPPORT VARIMOD

VariMod is general enough to be integrated with virtually all para-
metric CAD tools that support constraints. In this section we de-
scribe how VariMod can be integrated into PrintTalk, an existing

PCAD language for modelling 3D printable products. We used the
resulting implementation to validate our approach (section 5).

This section starts by providing a brief overview of the PrintTalk
language, before describing the actual integration and implementa-
tion.

4.1 3D Modelling in PrintTalk
In PrintTalk, 3D components are called ‘shapes’. The language
contains a set of primitive shapes (cubes, spheres, cylinders, etc.)
that can be combined into other, more complex shapes.

PrintTalk implements the Constructive Solid Geometry (CSG)
modelling technique, where 3D models can be thought of as tree
structures. The root of the tree represents the complete 3D model,
while leafs represent primitive shapes. Shapes that compose other
shapes are represented by internal nodes of the tree. In PrintTalk,
shapes can be combined by means of union and difference opera-
tions.

PrintTalk features a powerful abstraction mechanism, as shapes
can take two different types of parameters.

• Construction parameters, to which a value is assigned by the
programmer upon instantiation of the shape.

• Constraint variables, to which a value is assigned by an un-
derlying constraint solver. The value of a constraint variable
is determined by the constraints that are asserted on it. Con-
straints on a shape’s variables are asserted from within the
shape when the constraints are part of a shape’s definition.
Additionally, constraints can be asserted externally, as part
of the composition, when composing the shape with other
shapes.

Shapes further contain a script, in which constituents of a composi-
tion can be instantiated and constraints asserted on the constraint
variables of the shape and its constituents.

A constraint in PrintTalk is bidirectional, as the solver is used
to both test whether the relation expressed by the constraint holds
and to assign values to constraint variables to make the relation
expressed by the constraint hold. PrintTalk constraints can either be
primitive constraints that are natively supported by the underlying
constraint solver, or user-defined constraints that combine other
(possibly also user-defined) constraints.

Figure 4 illustrates a PrintTalk program and its resulting 3Dmodel
representing a hollow cube. First, a cube (line 4) is composed with
a cylinder (line 5) that sticks out from two opposing sides. The
resulting shape is named cube-cyl. Next, cube-cyl is cut (line 13)
from a larger cube (line 12) to obtain the target hollow-cube shape,
which is then exported as an STL file (line 19). The dimensions of
the shapes are determined by constraints asserted as part of the
shapes’ definitions. For example, the cyl-dia constraint variable
represents the diameter of the hole, and is specified to be 70% of
the length of the edges of the hollow cube.

4.2 Integrating VariMod into PrintTalk
To integrate VariMod in PrintTalk, we introduce a new component
named variant for asserting variant-specific constraints on shapes
without modifying their definitions. A variant composes a root
shape and its invariant constraints with a set of variant-specific
constraints. Figure 5 provides an overview of the relations between
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1 (shape: cube-cyl (cyl-dia cube-size)
2 (cyl-length)
3 (script:
4 (cube 0 0 0 cube-size)
5 (cylinder 0 0 0 cyl-dia cyl-length))
6 (constraints:
7 (assert: (>= cyl-length cube-size))))
8
9 (shape: hollow-cube (cube-size)
10 (cyl-dia in-size)
11 (script:
12 (cube 0 0 0 cube-size)
13 (cut: (named: cut-obj (cube-cyl cyl-dia in-size))))
14 (constraints:
15 (assert: (= in-size (* cube-size 0.9)))
16 (assert: (= cyl-dia (* cube-size 0.7)))
17 (assert: (= (cut-obj@cyl-length) cube-size))))
18
19 (print: (hollow-cube 100) "hollow-cube.stl")

Figure 4: PrintTalk program that models a hollow cube.

Variant-Specific Requirements

Invariant Requirements

Shape

Parameters &
Constraint Variables

Invariant Constraints

Variant

Variant-Specific Constraints

Constraints Are Bidirectional 

Figure 5: Overview of the relations between the newly intro-
duced components.

existing PrintTalk components and the newly introduced variant

component. We explain this structure in more detail in what follows.
A new variant is instantiated using the variant: construct.

1 (variant:
2 (write-to: <filename>)
3 (main: <main>)
4 (constraints: <constraints>))

A variant consists of a filename, to which the 3D model is exported,
a main shape, and a set of variant-specific constraints. The main
shape represents the root of the 3D model’s component tree. The
constraints can operate on the constructor parameters and con-
straint variables of the main shape. When asserting constraints, the
main pseudo-variable can be used for referencing the main shape.

In order to assign a criticality level to variant-specific constraints,
a hierarchy of criticality levels can optionally be declared within
variant components, as shown below.
1 (variant:
2 ...
3 (preferential-constraints: (id0 id1 ... idn)
4 <preferential-constraints>))

A hierarchy is a list that consists of tags 𝑖𝑑0 to 𝑖𝑑𝑛 , representing
criticality levels in descending order. This design allows for new
criticality levels to be introduced by adding them to the list. Ad-
ditionally, the relative hierarchy between criticality levels can be
altered by changing the positions of their corresponding tags in
the list. An asserted constraint is preferential if it is preceded by a
criticality level.
1 (assert: <criticality-level> <constraint>)

Constraints that are asserted without a criticality level are consid-
ered to be required constraints.
1 (shape: cube-constrained-size ()
2 (cube-size)
3 (script:
4 (cube 0 0 0 cube-size))
5 (constraints:
6 (assert: (>= cube-size 10))))
7
8 (variant:
9 (write-to: "cube-cs-ext.stl")
10 (main: (cube-constrained-size))
11 (constraints:)
12 (preferential-constraints: (strong weak)
13 (assert: weak (= (main.cube-size) 12))
14 (assert: strong (= (main.cube-size) 20))))

Listing 1: variant Component in PrintTalk.

Listing 1 illustrates how the different types of constraints can be
used together in PrintTalk extended VariMod. In this program,
shape cube-constrained-size is definedwith an invariant constraint
(line 6) that specifies that its size must be equal or greater than 10.
Next, a variant of cube-constrained-size is declared by asserting
two preferential variant-specific constraints on constraint variable
cube-size of the main shape.

Although compatible with the invariant constraint, the variant-
specific constraints contradict each other. Therefore, VariMod sug-
gests 20 as the value for cube-size, satisfying the variant-specific
constraint with the higher criticality level on line 14, while omitting
the constraint on line 13.

4.3 Solving Constraints
In addition to the newly introduced variant component, we also
adapt PrintTalk’s constraint solving process to allow variables to be
constrained by a combination of invariant constraints and variant-
specific constraints, thereby supporting VariMod’s two-stage con-
straint solving process as described in section 3.3.

The first stage remains identical to PrintTalk’s original constraint
solving process, as the solver only has to consider invariant con-
straints. When the invariant constraints do not contradict each
other, variant-specific constraints are considered. First, required
variant-specific constraints are considered, followed by preferential
variant-specific constraints in descending order of criticality level.
If at any point a constraint cannot be satisfied, an error is raised.

Our implementation of PrintTalk integrates the Z3 Solver [7].
Z3 offers no explicit support for constraint hierarchies [6] used to
express preferential constraints. We overcame this limitation by
making multiple calls to the constraint solver with monotonically
growing sets of constraints following the solving pattern outlined
above, essentially implementing the locally-predicate-better solving
mechanism fromWilson and Borning [21]. In the first call, the set of
invariant constraints is sent, in the second call this set is extended
with the required variant-specific constraints, and so on.
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5 VALIDATION
This section validates VariMod and demonstrates how it overcomes
modern-day CAD software’s limited support for variational de-
sign by distinguishing between invariant and variant-specific con-
straints. Additionally, we compare VariMod to the functionality
of current CAD tools for modelling variant-specific requirements
(VRs). All our scenarios start from the initial design of a hinge
modelled in PrintTalk, to which different VRs expressed as variant-
specific constraints are added.

Invariant Requirements of Shapes. We first define a PrintTalk
shape that models the invariant requirements (IRs) of a hinge using
invariant constraints. Upon instantiation, this shape represents a
valid 3D model that does not model VRs yet. We design multiple
variants of the hinge using variant components that assert different
variant-specific constraints throughout this section. The PrintTalk
program modelling the IRs of a hinge is provided in listing 2. The
program defines two shapes. The first shape represents the leaf of
a hinge, and is reused twice as part of the second shape for mod-
elling the two leaves of the hinge. Both shapes contain invariant
constraints that model IRs for ensuring that the resulting 3D model
is valid, and can function as a hinge. For example, invariant con-
straints ensure that the diameter of the screw-holes does not exceed
the dimensions of a leaf (lines 12–13). While the code produces a
valid 3D model, the diameter of the screw-holes and the distance
between them, and the diameter of the pin are intentionally left ‘un-
derconstrained’. Therefore, additional variant-specific constraints
are required for the hinge to be practical.

1 (shape: leaf (x y z w t h knuckle-dia)
2 (screw-dia c-dist screw-dist)
3 (script:
4 (cuboid x y z w t h)
5 (cut: (rotate: 90 0 0 (cylinder x y (+ z c-dist) screw-dia t)))
6 (cut: (rotate: 90 0 0 (cylinder x y (- z c-dist) screw-dia t)))
7 (cuboid (+ x (/ w 2) (/ knuckle-dia 4)) y (- z (/ h 4))
8 (/ knuckle-dia 2) t (/ h 2))
9 (cylinder (+ x (/ w 2) (/ knuckle-dia 2)) y (- z (/ h 4))
10 knuckle-dia (/ h 2)))
11 (constraints:
12 (assert: (< screw-dia w))
13 (assert: (< screw-dia (/ h 2)))
14 (assert: (= screw-dist (* 2 c-dist)))
15 (assert: (> screw-dist screw-dia))
16 (assert: (< screw-dist (- h screw-dia)))
17 (assert: (>= knuckle-dia t))))
18
19 (shape: hinge (l w h)
20 (screw-dia screw-dist pin-dia knuckle-dia pin-rim clearance)
21 (script:
22 ;; Leaf with pin
23 (named: leaf1 (leaf 0 0 0 l w h knuckle-dia))
24 (named: pin (cylinder (+ (/ l 2) (/ knuckle-dia 2)) 0 (/ h 4)
25 (- pin-dia clearance) (/ h 2)))
26 ;; Leaf with hole
27 (named: leaf2 (leaf 0 (* knuckle-dia 2) 0 l w h knuckle-dia))
28 (cut: (named: pin-hole (cylinder (+ (/ l 2) (/ knuckle-dia 2))
29 (* knuckle-dia 2) (/ h -4) pin-dia (/ h 2)))))
30 (constraints:
31 (assert: (= screw-dist (leaf1.screw-dist)))
32 (assert: (= screw-dist (leaf2.screw-dist)))
33 (assert: (= screw-dia (leaf1.screw-dia)))
34 (assert: (= screw-dia (leaf2.screw-dia)))
35 (assert: (< pin-dia knuckle-dia))
36 (assert: (= pin-rim (/ (- knuckle-dia pin-dia) 2)))
37 (assert: (>= pin-rim (/ w 8)))
38 (assert: (= clearance (/ w 8)))))

Listing 2: PrintTalk program modelling the IRs of a hinge.

5.1 Variation through Variant-Specific
Constraints

In a first experiment, we validate VariMod for designing variants
that satisfy the same IRs, but varying VRs. Through VariMod’s
variant components, variant-specific constraints representing VRs
can be asserted on a shape’s variables without makingmodifications
to the shape’s definition itself. A clear distinction between IRs
and VRs is maintained, as they are asserted in a distinct place
in the program text. This makes it straightforward to determine
which constraints model VRs, and can therefore be safely modified
without invalidating IRs. The example below describes a scenario in
which a variant of an existing 3D model is designed, while ensuring
that modifications do not cause the 3D model to invalidate IRs. In
this scenario, variant-specific constraints influence the diameter of
the hinge’s pin and knuckle, and the size of the rim. Additional
constraints specify the diameter of the screw-holes and the distance
between these holes.
1 (variant:
2 (write-to: "hinge.stl")
3 (main: (hinge 25 4 50))
4 (constraints:
5 (assert: (>= (main.pin-dia) 5))
6 (assert: (<= (main.knuckle-dia) 8))
7 (assert: (>= (main.pin-rim) 1))
8 (assert: (= (main.screw-dia) 5))
9 (assert: (= (main.screw-dist) 20))))

Listing 3: Variant component for modelling the variant-
specific requirements of a hinge.

Optimising Parameter Values. The example below illustrates Va-
riMod’s capabilities for optimising parameter values. We consider
a scenario in which the design of the hinge in modified so that
it can be manufactured and used to support a door. To obtain a
hinge that is manufacturable, and that satisfies the requirements
imposed by its targeted use, VRs originating from different steps of
the engineering process must be considered. In this scenario, we
focus on the size and position of the mounting holes of the hinge.
Next to IRs for ensuring that the resulting 3D model represents
a functional hinge, the following VRs, originating from different
steps in the engineering process, must be considered for finding
an optimal value for their corresponding parameters in the digital
3D model:

• To be manufacturable, the diameter of the screw-holes must
be at least 5mm.

• For assembly, the hinge will be mounted using screws with
a diameter of 6mm.

• The door to which the hinges are to be mounted foresees
that the screw-holes are 30mm apart.

Listing 4 illustrates a VariMod variant component that models
the VRs described above, originating from different steps of the
engineering process.
1 (variant:
2 (write-to: "hinge-engineering-process.stl")
3 (main: (hinge 25 4 50))
4 (constraints:
5 (assert: (>= (main.screw-dia) 5))
6 (assert: (= (main.screw-dia) 6))
7 (assert: (= (main.screw-dist) 30))))

Listing 4: Variant component modelling VRs originating
from different steps of the engineering process.
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(a) (b)

Figure 6: Observing the effect of variant-specific constraints
on 3D models.

Figure 7: Multiple variants that satisfy different variant-
specific constraints.

Comparing Variants of Designs. As VariMod distinguishes invari-
ant constraints and variant-specific constraints, the effect of variant-
specific constraints can be observed by comparing the 3D mod-
els resulting from variants that assert different variant-specific
constraints. Furthermore, VariMod ensures that the invariant con-
straints of a 3D model are satisfiable, so that an initial 3D model
can be generated before it is optimised using variant-specific con-
straints. Hereby VariMod enables comparing initial 3D models with
their optimised versions. Figure 6 illustrates the differences between
these two versions for the hinge described above. Figure 6 (a) rep-
resents the 3D model that results from only considering IRs, while
fig. 6 (b) represents the 3D model that results after also considering
VRs.

Scalable Variations on the Design. This example illustrates Vari-
Mod’s capabilities for modelling multiple variants of a design in a
scalable manner. VariMod enables the specification of VRs through
the assertion of variant-specific constraints in a variant, without
requiring modifications to the initial shape that models IRs. This
approach enables the straightforward creation of variations on a de-
sign, as multiple variants can be instantiated for modelling different
VRs through variant-specific constraints. Modifications made to the
original shape that only models IRs affect all variants of that shape,
while modifications made through a variant component only affect
the variant that is represented by that variant component. Figure 7
illustrates three variants of a hinge that are designed through three
variant components, without modifying the initial shape that mod-
els IRs, depicted at the top of the figure. Modifications made to this
initial shape would affect each variant of the shape.

5.2 Support for Preferential Constraints
This final example illustrates VariMod’s capabilities for optimising
3D models when not all requirements are compatible, but some
requirements are considered to have a higher priority over others.
VariMod supports preferential variant-specific constraints, and uses
the criticality level for determining an optimal set of parameter
values, prioritising the satisfaction of constraints with a higher crit-
icality level over constraints with a lower criticality level. Listing 5
demonstrates how several variant-specific constraints with differ-
ent criticality levels are used for determining the optimal diameter
for the pin and knuckle of the hinge.

1 (variant:
2 (write-to: "hinge.stl")
3 (main: (hinge 25 4 50))
4 (constraints:
5 (assert: (= (main.pin-dia) 5))
6 (assert: (= (main.screw-dia) 5))
7 (assert: (= (main.screw-dist) 20)))
8 (preferential-constraints: (strong medium weak)
9 (assert: medium (= (main.knuckle-dia) 8))
10 (assert: strong (= (main.pin-rim) 2))
11 (assert: weak (> (main.pin-dia) (/ (main.knuckle-dia) 2)))))

Listing 5: Assigning criticality levels to variant-specific
constraints.

6 LIMITATIONS AND FUTUREWORK
We identify four items of future work for overcoming current limi-
tations of VariMod.

QueryingMultiple Conceptual Representation Layers. Digital 3DCAD-
drawings can be represented on multiple conceptual levels [10]. In
PrintTalk, for example, 3D models have three conceptual levels.

• The front-end PrintTalk program representing the 3D model.
• The back-end representation of the 3D model in the underly-
ing geometric modelling kernel, for calculating the geometric
properties of the 3D model.

• A triangulated approximation of the 3D model in the form
of an STL file, that can be visualised and imported into other
software suitable for applications such as 3D printing.

The integration of VariMod into PrintTalk only supports constraints
that operate on the attributes of the front-end PrintTalk-code. This
front-end representation contains no information about attributes
that require calculations on the back-end level, such as volume or
intersecting lines. To constrain these lower-level attributes, future
work may extend VariMod with support for constraints that operate
on attributes present in other model representation layers.

Supporting Modifications beyond Parameter Changes. VariMod
currently only supports the modification of parameter values of
3D models. Future work could explore an extension of VariMod
that is capable of optimising 3D models through modifications that
cannot be expressed as parameter changes. For example, 3D models
may be modified by substituting components, or by adding new
features such as chamfers and fillets.

Variants of Variants. Currently, we only investigated the creation
of variants of 3D models that contain just invariant constraints (i.e.,
root shapes without variations). Although there is nothing partic-
ular in our current approach that disallows creating variants of
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variants, this is something we have not yet explored and imple-
mented.

Learning-Aided Parameter Configurations. As argued by Amand
et al., machine learning can be used for deriving constraints that
prevent errors resulting from incompatible parameter configura-
tions of 3D-models. Because VariMod supports the specification
of such constraints, future work could enable automatic insertion
of these constraints into PrintTalk shapes so that errors resulting
from faulty parameter configurations of underconstrained shapes
can be prevented.

7 CONCLUSION
This paper describes VariMod, an approach for designing variants
of 3D models in parametric CAD in a structured manner. VariMod
distinguishes between invariant constraints that ensure validity
of 3D models, and variant-specific variant-specific constraints for
optimising the parameter values of each variant. By distinguish-
ing invariant constraints and variant-specific constraints, VariMod
promotes the reusability of 3D models, as an initial 3D model that
satisfies all invariant constraints can be instantiated multiple times
to create variations that each satisfy the same invariant constraints,
but different variant-specific constraints. This way, VariMod facili-
tates instantiating different variants of a 3D model in a structured
and efficient manner.

Both invariant and variant-specific constraints are composed and
solved by VariMod’s two-stage constraint solving process, which
first determines initial parameter values using invariant constraints
and then optimises these values based on variant-specific con-
straints. VariMod also differentiates between required constraints
and preferential constraints. 3D models must satisfy required con-
straints, and VariMod raises an error when no parameter values
that satisfy all required constraints exist. Preferential constraints
have a criticality level assigned to them, and VariMod prioritises
constraints with a higher criticality level over constraints with a
lower hierarchy level. When constraints are incompatible, VariMod
attempts to still generate a 3D model that satisfies as many con-
straints as possible by omitting incompatible constraints with low
criticality levels.

We implemented VariMod as an extension to PrintTalk, and
validated our approach by using VariMod to design 3D models.
Comparing its capabilities with those of the state-of-the-art para-
metric CAD software, we demonstrated how VariMod can effec-
tively by used for designing variants of 3D models in a structured
and efficient manner.
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