

Vrije Universiteit Brussel

Infrastructure-as-Code Ecosystems
Opdebeeck, Ruben; Zerouali, Ahmed; De Roover, Coen

Published in:
Software Ecosystems: Tooling and Analytics

DOI:
10.1007/978-3-031-36060-2_9

Publication date:
2023

Document Version:
Accepted author manuscript

Link to publication

Citation for published version (APA):
Opdebeeck, R., Zerouali, A., & De Roover, C. (2023). Infrastructure-as-Code Ecosystems. In T. Mens, C. De
Roover, & A. Cleve (Eds.), Software Ecosystems: Tooling and Analytics (1 ed., pp. 215-245). Springer.
https://doi.org/10.1007/978-3-031-36060-2_9

Copyright
No part of this publication may be reproduced or transmitted in any form, without the prior written permission of the author(s) or other rights
holders to whom publication rights have been transferred, unless permitted by a license attached to the publication (a Creative Commons
license or other), or unless exceptions to copyright law apply.

Take down policy
If you believe that this document infringes your copyright or other rights, please contact openaccess@vub.be, with details of the nature of the
infringement. We will investigate the claim and if justified, we will take the appropriate steps.

Download date: 11. Oct. 2023

https://doi.org/10.1007/978-3-031-36060-2_9
https://cris.vub.be/en/publications/infrastructureascode-ecosystems(368806c2-a90a-473a-9b63-d816e2b8fa08).html
https://doi.org/10.1007/978-3-031-36060-2_9

Chapter 9
Infrastructure-as-Code Ecosystems

Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

Abstract Infrastructure as Code (IaC) is the practice of automating the provisioning,
configuration, and orchestration of systems onto which software is deployed through
scripts in domain-specific languages. With the increasing importance of reliable
and repeatable deployments, ecosystems are emerging around online repositories
of reusable IaC assets. In this chapter, we study two such ecosystems in detail: the
one forming around the Docker Hub repository of reusable Docker images, and the
one forming around the Ansible Galaxy repository of reusable Ansible roles. We
start with an introduction to Docker, the most popular container management tool,
and Ansible, the most popular configuration management tool. Although both tools
are used to configure machines onto which applications are deployed, they differ
fundamentally in the means through which this is achieved. Next, we discuss the
Docker Hub and Ansible Galaxy online repositories for reusable Docker images and
Ansible roles. Having introduced these emerging ecosystems, we highlight a number
of approaches taken by researchers studying them. Subsequently, we survey the state
of the art in research on the practices followed by their contributors and users, ranging
from the versioning of releases and keeping dependencies up-to-date to detecting
bugs. We conclude with the challenges that researchers face when analysing these
ecosystems.

Ruben Opdebeeck
Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, e-mail:
ruben.denzel.opdebeeck@vub.be

Ahmed Zerouali
Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, e-mail:
ahmed.zerouali@vub.be

Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, e-mail:
coen.de.roover@vub.be

213

214 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

9.1 Introduction

A key activity in IT operations is managing and configuring the digital infrastruc-
ture upon which software systems are deployed. In the broadest sense, infrastructure
configuration encompasses account management, setting up firewall filters, the in-
stallation of software packages, and their configuration. As infrastructures grow to
tens or even hundreds of machines, managing these configurations by hand becomes
impractical. Moreover, infrastructures that need to be scalable and elastic require
the ability for new machines to be spun up or down in a moment’s notice. Thus,
automation becomes a necessity.

Infrastructure as Code (IaC) is the practice of automatically provisioning, config-
uring, managing, and orchestrating the machines in a digital infrastructure through
source code which can be read both by humans and machines alike. This enables ap-
plying best practices already established for application code to infrastructure code,
such as change management through version control systems or quality assurance
through testing and code review.

Broadly spoken, two paradigms can be discerned among the IaC practice. In the
paradigm of immutable infrastructures, existing configurations cannot be changed.
It requires technologies such as virtualisation and containerisation to replace the in-
frastructure with a newly-configured one. In the paradigm of mutable infrastructures,
existing configurations can be changed. Doing so reliably and in a repeatable manner,
requires technologies such as configuration management languages that automate the
changes to pre-existing infrastructures.

Accompanying the rise in IaC technologies are emerging software ecosystems
wherein practitioners share open-source artefacts for reuse by others. In this chap-
ter, we discuss two of the most popular of such technologies and their emerging
ecosystems, one for each IaC paradigm. We start our discourse with Docker in
Section 9.2, the leading containerisation technology powering immutable infrastruc-
tures, and its Docker Hub ecosystem of reusable Docker images. Next, we continue
with Ansible in Section 9.3, a leading configuration management language powering
mutable infrastructures, and its Ansible Galaxy ecosystem of reusable configuration
management code. For both technologies, we describe their ecosystem and its partic-
ipants, metadata, and content. Moreover, we summarise a number of approaches to
analysing the ecosystem, in terms of its metadata as well as its artefacts. We conclude
with a number of promising avenues of research into these technologies and their
ecosystems.

9 Infrastructure-as-Code Ecosystems 215

9.2 Docker and its Docker Hub Ecosystem

9.2.1 Introduction to Containerisation

Virtual machines are software-based simulations of the hardware upon which soft-
ware is deployed. Deploying applications on a virtual machine facilitates porting
them across hardware platforms and operating systems, while also isolating them
from other applications that share the same physical host. A closely related technol-
ogy is containerisation, a lightweight version of virtualisation [34]. Containerisation
enables developers to package all components required to run an application into a
“container”. These components include the executable, and all dependencies such
as web or database servers and their configuration files. Importantly, the container
does not include the operating system or kernel itself. These are shared with the host
machine, along with its physical non-virtualised hardware. This allows containers
to remain lightweight, yet portable to other hosts with similar hardware and oper-
ating system. The application deployed within the container is ensured a consistent
infrastructure across different hosts.

Containers are an enabling technology of continuous integration and continuous
deployment pipelines (see Section 8.1.3) in which applications are put through a
series of tests, each test running the application in an environment of which the
last resembles or is the actual production environment. Containerisation is also a
popular choice for isolating the micro-services of cloud-native applications [14]
from each other, exposing only their functionality through a well-defined interface.
Packaging micro-services into containers also facilitates implementing horizontal
scaling and elasticity. It suffices to spin up new container instances as the load on
the micro-service increases, and to spin redundant containers as the load decreases.

9.2.2 The Docker Containerisation Tool

Docker [49], which is a platform designed to build, share, and run containerised
applications, standardized the use of containers with easy-to-use tools for develop-
ers, and established a universal packaging approach which subsequently accelerated
the adoption of container technologies. In 2013, the Docker Engine was launched,
and in 2015, Docker launched the Linux Foundation project “the Open Container
Initiative (OCI)” to design open standards for operating-system-level virtualisation,
most importantly Linux containers. Today, various containerisation tools support the
OCI standards established by Docker (e.g., containerd, runc, CRI-O, etc). Accord-
ing to the 2022 Stack Overflow Developer Survey [47], Docker is the most loved
containerisation tool.

Docker containers are created as instances of Docker images. Each image can
be built from a blueprint named “Dockerfile”1, a simple text-based script with

1 https://docs.docker.com/engine/reference/builder

216 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

instructions to build a Docker image. Starting from a base image, each instruction
creates a new “layer” for the image, which represents the changes to the previous
layer caused by executing the instruction. Each layer has an associated digest, i.e., a
unique hash signature of the changes, and is immutable. Thus, a Dockerfile produces
a Docker image, which is a stack of layers. Once the image is built, it can be used to
instantiate multiple containers, each originating from the same Docker image.

A Dockerfile can be based on another Dockerfile, thereby inheriting the latter’s
image and its layers as the base image. Although it is possible to create Docker images
from scratch2, most images are based on other images. This leads to a hierarchy of
images, with a small number of base images forming the foundation.

As images are used to create runnable containers, they contain operating system
packages that will complement the kernel provided by the host. Typically, these
form the lowest layers of an image, originating from one of the aforementioned
base images. Images including Linux-based distributions provide access to that
distribution’s toolset, such as their package manager (e.g., aptitude on Debian).
Subsequent layers may use these package managers to add third-party packages,
e.g., language runtimes and language-specific package managers (e.g., JavaScript
and npm, or Python and pip). These can then in turn be used to add third-party
language-specific libraries. Finally, the top-most layers are typically used for first-
party code, binaries, and assets.

For example, Listing 9.1 depicts the Dockerfile that builds the image redis:7-
bullseye. This Dockerfile includes different Docker commands. FROM specifies the
parent image which is being built upon. RUN executes a shell command in a new layer
of the image being built. For example, the shell command groupaddwill create a new
group on the container with the specified name. ENV defines environment variables
for the container. WORKDIR sets the current working directory. COPY copies files into
the image, etc. This Dockerfile will build an image which inherits the layers of the
debian:bullseye-slim image, amended with layers containing the changes caused by
the other commands. Dockerfiles can contain other commands, such as VOLUME to
declare a mount point for data volumes and CMD to set the default command to run
when a container is started.

Listing 9.1: Dockerfile of the image redis:7-bullseye
1 FROM debian:bullseye−slim
2 RUN groupadd −r −g 999 redis && useradd −r −g redis −u 999 redis
3 ENV GOSU VERSION 1.14
4 RUN set −eux; \
5 savedAptMark=”$(apt−mark showmanual)”; \
6 apt−get update ; \
7 apt−get install −y −−no−install−recommends ca−certificates dirmngr gnupg wget; \
8 ...
9 WORKDIR /data
10 COPY docker−entrypoint.sh /usr / local /bin /
11 ENTRYPOINT [”docker−entrypoint.sh”]

2 Using the Docker-reserved minimal image named “scratch”, https://hub.docker.com/_/
scratch.

9 Infrastructure-as-Code Ecosystems 217

Running containers are provided read-only access to the image’s layers to form
the container’s file system. Containers can thus access all files created while the
image was built. In addition, the container is provided with a new writeable layer on
top of the image’s layers, called the container layer, which is used to perform all file
system modifications caused while the container is running.

9.2.3 The Docker Hub Ecosystem

Next to being instantiated into containers, Docker images can be shipped to online
registries to be reused by third parties. Providing a common place to build, update,
and share images, software ecosystems form around such online registries. With more
than 9.4M images (as of August 2022), Docker Hub is the largest registry for Docker
images. It has served billions of image downloads, with images such as Ubuntu,
Redis, node, Alpine, and MySQL each having more than a billion downloads.

9.2.3.1 Types of Images Collected on Docker Hub

Images in Docker Hub are distributed as repositories, allowing contributors to group
several variants of images (e.g., for different architectures). Repositories may be
public or private, where public repositories are categorised as either official or
community repositories. The official status is considered a quality label, hinting that
the repository contains secure and well-maintained images produced by well-known
organisations (e.g., MySQL or Debian). They are therefore often used as the base
image for other images. Community repositories, in contrast, can be created by any
user or organisation [5].

To facilitate the search for images in Docker Hub, they are labelled with the name
of the repository (e.g., debian) and a tag (e.g., buster). An image can have multiple
tags, and thus have multiple labels (e.g., both debian:bullseye and debian:11 refer
to the same image). The labels of community images usually start with the name of
the organisation or user producing the images, followed by the image name and tag
(e.g., grimoirelab/full:0.2.26).

Figure 9.1 illustrates the workflow of creating Docker containers from Docker
images pulled from Docker Hub 3. Pulled images can also be used as the base image
in a Dockerfile for a new image. For example, Listing 9.2 shows the Dockerfile of
the image debian:bullseye-slim. This image is built from scratch and it was used as
the base image in the Dockerfile in Listing 9.1. Therefore, the layers of this image
are all included in the list of layers of the redis:7-bullseye image.

3 For more details about the Docker architecture, we refer the reader to https://docs.docker.
com/get-started/overview/

218 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

Docker image

Docker Hub

Dockerfile
Docker container

build
run

pull and run

pu
sh

Fig. 9.1: Process of creating a Docker container.

Listing 9.2: Excerpt of the Dockerfile of debian:bullseye-slim

1 FROM scratch
2 ADD rootfs. tar .xz /
3 CMD [”bash”]

9.2.3.2 Image Metadata Maintained on Docker Hub

The Docker Hub registry maintains several types of metadata about its images. Basic
information, like the repository and image name, its type (official or community),
tags, number of pulls, number of stars given by other users, and the size of images,
can be found on the Docker Hub homepage for each image (e.g., https://hub.
docker.com/_/debian). This information is also provided by Docker Hub’s API,
and augmented with the image’s creation date, home repository in GitHub (or another
hosting service), last pull date, supported architectures (e.g., AMD64, ARM64), a
unique SHA digest for the image, etc.

Most importantly, the API provides a manifest4 for each Docker image, which is a
JSON file with metadata about the layers within the image and their size. When trying
to run an image with a specified name and tag from Docker Hub, the Docker engine
contacts the registry, requesting the manifest for that image. Before downloading the
image layers, the engine verifies the manifest’s signature, ensuring that the content
was produced by a trusted source. Once downloaded, the engine verifies and ensures
that the digest of each layer matches the one specified in the manifest. Layer digests
are also used to identify layers that have already been downloaded.

4 https://docs.docker.com/registry/spec/manifest-v2-2/

9 Infrastructure-as-Code Ecosystems 219

9.2.4 Approaches to Analysing Docker Hub Images

Images within the Docker Hub ecosystem have enjoyed attention in empirical soft-
ware engineering research. Before surveying the findings of this research, we discuss
the different forms of research methods used to analyse Docker Hub images and their
ecosystem.

9.2.4.1 Docker Hub Metadata Analysis

In a pure metadata analysis, researchers analyse information that can be gathered
about Docker Hub images without running them as containers and without inspecting
the source code of their Dockerfiles. Various sources of such metadata exist.

Zerouali et al. [57], for instance, mapped the network of popular images derived
from the Debian base image without inspecting any Dockerfile. This first required
extracting image repository, name, and tags of 27,760 official and 5,842,567 com-
munity images through the Docker Hub API. Using the image manifests, they could
then identify 9,581 official and 924,139 community images built on top of the De-
bian base image. The same approach was followed later by the same authors [56] to
identify node, Python and Ruby based community images.

Most of the images shared in Docker Hub belong to open source projects, of which
the version control repositories are hosted on social coding platforms like GitHub,
GitLab, or Bitbucket. By extracting the link to these repositories from Docker Hub,
researchers can obtain more metadata about the repositories that version an image’s
Dockerfile. For instance, information about the age of the repository, its contributors,
number of stars, watchers, forks, etc. Commit logs and change statistics from version
repositories can also be used in metadata analyses. For example, Lin et al. [27]
constructed a dataset [28] that contains information about 3,364,529 Docker images
and the 378,615 git repositories behind them. The dataset’s information from Docker
Hub includes the image description, tags, number of pulls, publisher username, etc.
The dataset’s information from GitHub includes the repository’s branches, releases,
commit logs, Dockerfile commit history, etc.

9.2.4.2 Static Analysis of Dockerfiles and Docker Images

There are two main ways in which static analysis can be used to study the Docker
Hub ecosystem. The first is to statically analyse the Dockerfiles used to build Docker
images. The second is to analyse the content of an image’s layers without running
the image as a container.

For Dockerfiles, the canonical technique is to parse the instructions of the file
into an Abstract Syntax Tree (AST). Each instruction is represented as a node in
this AST, with the operands of the instruction (e.g., the shell command of a RUN
instruction or the image name of a FROM instruction) appearing as child nodes.
Xu et al. [52] further classify these nodes into one of four categories: operator (or

220 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

Docker command) nodes, resource nodes, shell command nodes, and parameter
nodes.

As each RUN instruction contains one or several shell commands, it is possible
to find some of them including other bash scripts embedded as arguments (e.g.,
line 5 in Listing 9.1). This adds more levels of nesting to AST representations.
Henkel et al. [19] presented an AST representation that tackles this challenge of
nesting in Dockerfiles. They employed phased parsing, wherein they first perform a
simple top-level parse, resulting in an AST as described above. Then, they refine the
tree by parsing RUN instructions into separate commands (e.g., line 3 of Listing 9.3),
and parsing the options of popular command-line tools.

Listing 9.3: Excerpt of the Dockerfile of shogunshogun-dev:latest

1 FROM debian:buster−backports
2 MAINTAINER shogun[at]shogun−toolbox.org
3 RUN apt−get update −qq && apt−get upgrade −y && apt−get install −qq

,! −−force−yes −−no−install−recommends make gcc g++ libc6−dev libbz2−dev
,! ccache libarpack2−dev ...

Figure 9.2 shows the AST representation for the Dockerfile in Listing 9.3 using
Henkel et al.’s approach [19]. The same technique was later used to characterize
Dockerfile function code, which is the code that comes after the Docker command
(e.g., line 3 in Listing 9.3), through AST paths [60].

Dockerfile

RUN MAINTAINERFROM

debian buster -
backports BASH-AND shogun@shogun

- toolbox .org

apt-get
upgrade

apt-get
update

apt-get
install

Flag-qq Flag-y Flag-qqpackages

gcc

Flag-...

...

Fig. 9.2: AST of the Dockerfile in Listing 9.3 constructed using the technique of
Henkel et al. [19].

Several tools have become available to statically analyse Dockerfiles. The Deep-
Source Docker analyser 5 scans for potential bugs, anti-patterns, security vulnera-

5 https://deepsource.io/docs/analyzer/docker/

9 Infrastructure-as-Code Ecosystems 221

bilities, and performance issues. The VSCode Docker extension 6 provides basic
linting, whereas Hadolint 7 detects code smells in an AST of the Dockerfile us-
ing a rule-based approach, supporting issues that affect commands as well as the
shell code in their operands. It is worth mentioning that Hadolint rules can be cus-
tomised. For example, rule DL4000 was used to check for the usage of the command
MAINTAINER which was considered a best practice. When this command became
deprecated, DL4000 was updated to indicate that the LABEL command should be
used instead.

By downloading the layers of an image and analysing their content, the content
of images can also be analysed statically without the need to run them. To download
the layers comprising an image, researchers use layer identifiers extracted from the
manifest and then download the blobs from the registry using Docker Hub’s API.
This technique was used by Henriksson et al. [21] to extract the list of packages
installed in an image and to scan the packages for vulnerabilities.

9.2.4.3 Dynamic Analysis of Dockerfiles and Docker Images

Two types of dynamic analysis can be discerned in the literature: 1) analysis of the
build output of Dockerfiles, and 2) analysis of running containers of built images.

Xu et al. [52] used dynamic analysis to detect temporary file smells in Dockerfiles;
i.e., files that are created and deleted in separate layers while the image is built,
which leads to a redundant increase in image size. To this end, they instrumented the
host kernel to log file creation and deletion. The resulting traces enable identifying
temporary files across multiple layers. Henkel et al. [20] combined static and dynamic
analysis to warn about Dockerfile breakage. Their approach looks for common error
patterns in build logs and associated Dockerfiles. For instance, they find that when
Docker reports an error message “Unable to locate package python-pip” while
building Dockerfiles containing the instructions FROM ubuntu:latest and RUN
apt-get -y install python-pip, this error is due to the use of the undefined,
latest or 20.04 tags.

Dynamic analysis of running Docker containers can be costly due to the resources
required. Nonetheless, it is an effective method for scanning Docker images for se-
curity vulnerabilities and bugs. For example, Zerouali et al. [55] developed ConPan,
a tool that pulls and runs a Docker image from Docker Hub to perform software
composition analysis. Once the container is running, the tool executes commands
to extract the list of packages available at run-time and compares them to pack-
age registries. The resulting list is inspected to analyse the packages’ outdatedness
(i.e., technical lag [53]) and to identify vulnerable and buggy packages. Similarly,
Shu et al. [45] proposed the Docker Image Vulnerability Analysis (DIVA) frame-
work to automatically discover, download, and analyze Docker images for security
vulnerabilities.

6 https://github.com/microsoft/vscode-docker

7 https://hadolint.github.io/hadolint/

222 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

9.2.5 Empirical Insights From Analysing Docker Hub Images

Having discussed the analysis methods through which the Docker Hub ecosystem
and its assets can be studied, we turn to the latest insights uncovered in this manner.

9.2.5.1 Technical Lag and Security in the Docker Hub Ecosystem

A survey among Docker users revealed that the absence of security vulnerabilities is
a top concern in the decision to adopt Docker images [4]. Another survey showed that
Docker users are also concerned about the presence of bugs in third-party software
loaded within images, and about outdated versions of this software [1]. In contrast,
another survey showed that only 19% of developers claim to test their Docker images
for vulnerabilities during development [50]. This signals a tendency to produce and
consume Docker images without inspecting their software in detail.

Through an in-depth investigation of the attack surface and definition of an
adversary model, Combe et al. [9] provided a comprehensive overview of the vul-
nerabilities brought about by the use of Docker. Shu et al. [45] analysed Docker
images for security vulnerabilities. On a set of 356,218 images, they observed that
both official and community images contain an average of 180 vulnerabilities. Many
images had not been updated for hundreds of days, calling for a more systematic
analysis of the content of Docker containers.

Package changes within Docker images can lead to broken functionality, poor
performance, or security issues in the applications that depend on the packages.
Gholami et al. [16] carried out an analysis in which they studied how packages are
changing in official Docker images. After analysing 37k images from official reposi-
tories, they found that 50% of the images conducted at least 8 package upgrades. To
shed more light on this problem, Sabuhi et al. [43] proposed a method to assess the
impact of upgrading packages of Docker images on application performance.

Zerouali et al. [59] studied the relationship between outdated system packages in
Debian-based images, their security vulnerabilities, and their bugs. They computed
the difference between the outdated system packages and their latest available releases
in terms of versions, vulnerabilities and bugs. They found that no Debian-based image
is free of vulnerabilities or bugs, so deployers cannot avoid them even if they deploy
the most recent packages in these images. To ensure that they only consider Debian-
based images, they relied on Docker’s inheritance mechanism previously explained
in Section 9.2.3. Later, the same authors extended this study by instantiating the
formal technical lag [58] framework along five different dimensions: package lag,
time lag, version lag, bug lag and vulnerability lag [57]. The technical lag refers to
the difference between deployed software package releases and the ideal (e.g., most
fresh, secure or stable) available releases. Then, they carried out an empirical study
on 140,498 popular Debian-based images from official and community Docker Hub
repositories. For each dimension they found that community images have higher
lag than official images. Depending on the lag dimension, images from specific
Debian distributions were found to have a higher lag than those coming from others.

9 Infrastructure-as-Code Ecosystems 223

For example, version lag was highest for images relying on Debian Testing, while
vulnerability lag was highest for OldStable images. They also found that in some
cases, the lag increases over time, for example for package and version lag in Debian
Testing images.

In a similar study, Zerouali et al. [54] focused on npm third-party packages and
evaluated their outdatedness and vulnerabilities using 961 official node-based images
coming from three Docker Hub repositories, namely node, ghost and mongo-express.
They found that the presence of outdated npm packages in official node images in-
creases the risk of security vulnerabilities. Later, the same authors extended this
study to include Ruby and Python packages [56]. They found that the last time com-
munity images were updated, they had more outdated and vulnerable core packages
than non-core ones. After some time, these packages missed more updates leading to
more vulnerabilities present in Docker Hub community images. They also reported
that the presence of vulnerable packages is considerably more pronounced for node
and Ruby images, which tend to be more outdated and more vulnerable than Python
images. Moreover, node images tend to have the highest proportion of packages
missing major updates, as well as a high number of duplicate package releases. Fig-
ure 9.3 shows the process and pipeline followed in the work of Zerouali et al. [56]
to construct a representative dataset of community Docker Hub images and their
installed third-party packages.

Extracting image layers
from Docker Hub

Running images Collecting security
vulnerabilities

Collecting package
releases

Identifying candidate
images

Extracting installed
packages Data Analysis

Fig. 9.3: Overview of the data collection pipeline used by Zerouali et al. [56].

9.2.5.2 Technical Debt and Code Smells in Dockerfiles

Docker documents several best practices for writing Dockerfiles8, but developers
do not always follow them [51, 42, 19]. This may lead to technical debt and smells
in Dockerfiles with a negative impact on the reliability and performance of Docker
images. Azuma et al. [2] studied self-admitted technical debt (SATD) in Dockerfiles.
SATD are comments left by developers as a reminder about code manifesting techni-
cal debt. They manually classified all comments found in 3,149 Dockerfiles coming

8 https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

224 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

from 462 GitHub repositories. They found that 3% of the comments are SATD, and
that the 3 most common SATD classes concern maintainability, testing, and defects.

In a large-scale study of 6,334 Docker projects, Wu et al. [51] categorized Dock-
erfile smells into two categories: DL-smells (i.e., violations of the official Dockerfile
best practices) and SC-smells (i.e., violations of shell script best practices). They
found that nearly 84% of the analysed projects have smells in their Dockerfiles.
Furthermore, they found that DL-smells appear more often than SC-smells.

Ksontni et al. [25] manually analysed the Dockerfile and Docker-compose files
of 68 projects for technical debt and refactoring opportunities. Docker-compose is a
tool that allows the creation and operation of multi-container applications on a single
host using YAML files that include configurations such as services, networks, and
volumes for each container. They found six Dockerfile technical debt categories re-
lated to Image size, Build Time, Duplication, Maintainability, Understandability and
Modularity. For Docker-compose files, they found four: Duplication, Maintainabil-
ity, Understandability and Extensibility. As a remedy, they propose 14 refactorings
for Dockerfiles and 12 for Docker-compose files. They conclude that these smells
are widespread, and that there is a lack of automatic tools that support developers in
fixing them.

9.2.5.3 Challenges in Maintaining and Evolving Dockerfiles

Next to the freshness, security, and quality of Docker images, other socio-technical
aspects such as their evolution, reproducibility, and adoption have been studied.

Cito et al. [8] characterised the Docker ecosystem by discovering prevalent quality
issues and studying the evolution of Docker images. Using a dataset of over 70,000
Dockerfiles, they contrasted the general population with samples containing the top
100 and top 1,000 most popular projects using Docker. They observed that the most
popular projects change more often than the rest of the Docker population with an
average of 5.81 revisions per year and 5 lines of changed code. Most importantly,
based on a representative sample of 560 projects, they observed that one out of three
Docker images could not be built from their Dockerfiles.

Oumaziz et al. [33] carried out a study on duplicates in Dockerfiles families
(e.g., Python Dockerfiles). After inspecting Dockerfiles from 99 official Docker
repositories they found that duplicates in Dockerfiles are frequent. They also found
that maintainers are aware of the existence of these duplicates. However, they have
mixed opinions regarding them. Tsuru et al. [48] proposed a method to detect Type-2
code clones in Dockerfiles.

Henkel et al. [19] found that Dockerfiles on GitHub have on average nearly five
times more best practice violations than those written by Docker experts. They
argue for more effective tooling in the realm of Dockerfiles. Eng et al. [15] revisited
the findings of previous studies about Dockerfiles. After inspecting a large set of
9.4M unique Dockerfiles spanning from 2013-2020, they could confirm previous
findings of a downward trend in using open source images and an upward trend of
using language images. They also confirmed that the numbers of Dockerfile smells

9 Infrastructure-as-Code Ecosystems 225

are slightly decreasing. They concluded that their results support previous studies’
recommendations for improving tools for creating Docker images.

9.3 Ansible and its Ansible Galaxy Ecosystem

Having discussed the leading containerisation technology powering immutable in-
frastructures, we turn our attention to the leading technology for configuration man-
agement of mutable infrastructures.

9.3.1 Introduction to Configuration Management

Configuration management tools such as Ansible, Chef, and Puppet provide automa-
tion and replicability to infrastructure deployments using domain-specific languages.
Practitioners can use these languages to write configuration management scripts
wherein they declaratively specify the steps required to configure the machines in a
digital infrastructure. The tools then execute these scripts by executing each step on
each individual infrastructure machine automatically.

These domain-specific tools often provide built-in abstractions to perform com-
mon configuration actions, such as managing users or installing software packages.
These abstractions also take care of ensuring idempotence to prevent making changes
to a machine’s configuration if it is already configured correctly. Such abstractions
enable practitioners to evolve their infrastructure mutably, by re-executing changed
scripts on machines which were configured with earlier versions of the script.

Nonetheless, tools cannot offer built-in abstractions for each potential scenario
and thus provide mechanisms for extension by means of modules and plug-ins.
They also offer mechanisms for the reuse of such modules and plug-ins. Some tools
even allow reusing whole configuration scripts. Consequently, the more popular of
these tools are surrounded by sizeable communities of open-source developers who
contribute their own solutions to infrastructure configuration tasks. This has led
to a number of new Infrastructure-as-Code software ecosystems, such as the ones
surrounding the Ansible Galaxy, Chef Supermarket, and PuppetForge platforms. In
this section, we focus on the former, Ansible and the Ansible Galaxy ecosystem,
since it is the most popular tool of its kind [47].

9.3.2 The Ansible Configuration Management Tool

Ansible is an automation platform offering solutions for configuration management
and provisioning of cloud machines. As such, it has become one of the most popular
Infrastructure-as-Code tools today [17]. To configure groups of remote machines,

226 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

the Ansible tool pushes configuration changes over the network based on tasks
written in a YAML-based domain-specific language. This language offers many of
the programming constructs found in general-purpose languages, such as variables,
expressions, conditionals, simple loops, and exception handling. A complete Ansible
program is called a playbook, which is further subdivided into one or more plays.
Ansible code can also be modularised into roles, which can be reused in multiple
plays or playbooks.

9.3.2.1 Ansible Plays and Playbooks

A playbook contains all code necessary to configure a complete infrastructure.
Playbooks consist of several plays, each configuring a group of machines with the
same responsibilities. For example, the playbook depicted in Listing 9.4 contains
one play to configure database servers (lines 1–16) and another to configure web
servers (lines 18–24).

Listing 9.4: Contrived example of an Ansible playbook to configure database and
web servers
1 - hosts: databases
2 vars:
3 psql_db_name: prod
4 psql_db_user: app
5 tasks:
6 - name: Ensure database exists
7 postgresql_db:
8 name: "{{ psql_db_name }}"
9 state: present
10
11 - name: Ensure user exists and has access to database
12 postgresql_user:
13 db: "{{ psql_db_name }}"
14 name: "{{ psql_db_user }}"
15 priv: ALL
16 state: present
17
18 - hosts: webservers
19 tasks:
20 - name: Ensure apache is installed
21 apt:
22 name: apache2
23 state: present
24 # ...

Each play consists of a sequence of tasks, which Ansible executes in sequential
order on each machine individually. Each task performs one action corresponding
to one step in the configuration of a machine. For instance, the first task of the first
play in Listing 9.4 (lines 6–9) uses the postgresql db action to create a database.
Tasks can also be executed conditionally, or executed in a loop on each item in a list.
Ansible offers a number of built-in actions, such as user to manage user accounts,
or apt to install software packages (line 21 in Listing 9.4). Practitioners can also
implement their own actions in Python through plug-ins.

9 Infrastructure-as-Code Ecosystems 227

Within tasks, practitioners can write expressions in the Jinja2 templating lan-
guage. Naturally, expressions can refer to variables, which can be defined on many
different levels, e.g., play-level variables, variables local to a task, or variables whose
value is specific to individual machines. Our example’s first play defines two play-
level variables (lines 3–4), storing the name of the created database and user. These
variables are referenced in three expressions, demarcated by double braces (lines 8,
13, 14). Ansible evaluates the part between double braces and substitutes the result
of this evaluation into the string in which the expression is embedded. For instance,
the result of evaluating the expression on line 8, which merely refers to a variable,
will be “prod”. Expressions can also manipulate data through filters, perform tests
for conditional logic, or use lookups to produce data from external sources. As with
actions, users can also define their own filters, tests, and lookups using plug-ins.

9.3.2.2 Ansible Roles

It is common for parts of different plays to perform similar configuration tasks. For
instance, both web servers and database servers may require network interfaces to
be configured and certain firewall rules to be set up. Similarly, one may want to set
up a test environment with a database server that uses the same configuration as
the production environment. Rather than duplicating the tasks across the different
plays, it is possible to modularise and reuse them with a role. An example of a role
for the latter situation is depicted in Figure 9.4, which is adapted from the play in
Listing 9.4.

Listing 9.5: The postgres role’s
tasks/main.yml file
1 - name: Ensure database exists
2 postgresql_db:
3 name: "{{ psql_db_name }}"
4 state: present
5
6 - name: Ensure user exists
7 postgresql_user:
8 db: "{{ psql_db_name }}"
9 name: "{{ psql_db_user }}"
10 priv: ALL
11 state: present

Listing 9.6: The postgres role’s
defaults/main.yml file
1 psql_db_name: prod
2 psql_db_user: app

Listing 9.7: Playbook using the role
1 # Configure production DB
2 - hosts: databases
3 roles:
4 - role: postgres
5
6 # Configure test DB
7 # with separate parameters
8 - hosts: test-database
9 roles:
10 - role: postgres
11 vars:
12 psql_db_name: test
13 psql_db_user: test

Fig. 9.4: Contrived example of Ansible role to configure database servers.

228 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

Roles follow a strict directory structure. Like a play, a role contains a sequence
of tasks, listed in the tasks/main.yml file. In our example, this file contains the
same tasks as the play it is adapted from (Listing 9.5). Roles commonly have a set
of parameters, called default variables, listed in defaults/main.yml, that can be
used to customise the role’s behaviour. The example role lists as its default variables
the same variables that were present in the original play (Listing 9.6).

When a role is included in a play, these variables can be overridden with values
specific for that play. This facilitates reuse within an infrastructure configuration
project. Listing 9.7 exemplifies this, where we override the variables specifically for
the test environment. Moreover, roles can also be shared across different playbooks,
and can thus be used for separate infrastructures. Therefore, it is possible to construct
roles and share them with other practitioners for use in their infrastructure projects.
This forms the foundation of the Ansible Galaxy ecosystem, which we cover next.

9.3.3 The Ansible Galaxy Ecosystem

Ansible Galaxy is a registry operated by Ansible to facilitate reusing open-source
Ansible code. It collects and displays metadata about Ansible roles and plug-ins
written by open-source developers. Ansible practitioners can discover the reusable
content via Ansible Galaxy’s web interface, while a command line utility can be
used to install, update, and manage the content in a project.

As of January 2023, Ansible Galaxy indexes over 31,500 roles, the most popular
of which have been downloaded millions of times. For instance, the most down-
loaded role is geerlingguy.java9, with over 15M downloads, closely followed by
geerlingguy.docker10 (13.5M downloads). These roles install Java and Docker,
respectively, on various Linux systems and offer many customisation options for
their users.

Ansible Galaxy is merely an indexer, and does not store the content itself. Instead,
the code is stored in GitHub repositories, and installing consists of cloning the
repository. To add (or update) roles or plug-ins to Ansible Galaxy, an open-source
developer must import their repository. Ansible Galaxy then populates (or updates)
various pieces of metadata according to the information found in that repository.

9.3.3.1 Types of Ansible Galaxy Content

Ansible Galaxy aggregates two types of content, namely roles and collections. As
described above, roles contain reusable tasks that are made generic through the use
of parameters. When such roles are committed to open-source repositories, they can
be imported into Ansible Galaxy to be reused by others. Such roles generally aim

9 https://galaxy.ansible.com/geerlingguy/java

10 https://galaxy.ansible.com/geerlingguy/docker

9 Infrastructure-as-Code Ecosystems 229

to configure one facet of an infrastructure. For instance, the geerlingguy.docker
role mentioned above installs and configures the Docker driver on various Linux
platforms. Not only does it install all necessary software packages, it can also set
various configuration options, configure the Docker software to start automatically
when the system boots, etc.

Ansible Galaxy collections are, as the name implies, collections of related Ansible
content. Although collections can include roles, their primary use case is to extend the
Ansible language by means of plug-ins for actions, filters, lookups, etc. As such, they
intend to facilitate writing configuration tasks, rather than bundling configuration
tasks for a specific purpose. A collection’s content commonly shares a single theme.
For instance, the community.dns collection aggregates plug-ins to manage DNS
configurations, and the amazon.aws collection contains content related to Amazon
AWS. Collections are backed by GitHub mono-repositories that contain all of the
code for the collection’s constituents.

9.3.3.2 Types of Metadata Maintained by Ansible Galaxy

Three types of metadata can be retrieved from Ansible Galaxy, namely role and
collection metadata, repository metadata, and usage and quality metadata. Role
and collection metadata comprises information that is extracted from a role’s
meta/main.yml file or a collection’s manifest file. For roles, this includes its name
and author, a description, its license, the platforms and Ansible versions it supports,
any dependencies on other roles or collections, tags submitted by the author, etc. For
collections, this also includes basic data such as the name and author, but further
includes all constituents of the collection and their information.

Repository information comprises information gathered from the GitHub repos-
itory. This includes the GitHub URL, repository description, and information about
the owner of the repository. Ansible Galaxy also stores the README file of the
repository, URLs to Travis CI build information if available, and metrics such as
the number of stars, watchers, forks, and open issues at the time the content was
imported. It also lists the known versions of the repository, which Ansible Galaxy
identifies as git tags that adhere to the semantic versioning format (x.y.z). Finally,
the metadata includes information about the latest commit at the time of import, and
timestamps related to the last import that was performed on the repository.

Usage and quality metadata includes a role or collection’s download count and
quality information submitted by users and generated by tools. Users of the ecosystem
can rate content through community surveys, which inquire about the quality of the
role or collection’s documentation, its ease of use, readiness for production, etc. These
survey responses can be retrieved individually or through an aggregate “community
score”. Roles have additional scoring metrics, the “quality score”, which is an average
of a “syntax score” and a “metadata score”. Ansible Galaxy applies linters and
additional checks during import time, whose warnings are used to calculate these
scores and can also be retrieved individually.

230 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

9.3.4 Approaches to Analysing Ansible Galaxy

The Ansible Galaxy ecosystem has been the subject of empirical software engineer-
ing research in recent years. This section surveys the analyses that form the foundation
for the research methods that have been applied to Ansible Galaxy and Ansible client
code. We also highlight some key challenges addressed in such research, and point
the reader towards datasets.

We distinguish between three types of analyses on Ansible Galaxy. Metadata
analysis concerns any analysis of role metadata extracted from Ansible Galaxy and
related services, such as GitHub repositories. Static and dynamic analysis concerns
analyses that operate on the source code of Ansible projects. The distinguishing
factor is whether or not Ansible code is executed. In static analysis, the Ansible code
is never executed throughout the analysis, whereas in dynamic analysis, (parts of)
the code may be evaluated by specialised interpreters.

9.3.4.1 Ansible Galaxy Metadata Analysis

The Ansible Galaxy indexer can be used as a valuable source of information for
ecosystem metadata analysis. Metadata extracted from a role’s git repository, such
as commits, tags, contributors, issues, and pull requests, can further enrich this
metadata. Finally, roles and repositories are often linked to additional sources of
metadata, such as CI services like Travis CI, CircleCI, and GitHub Actions, which
can provide information about a project’s build and test statuses.

Much of this information has been aggregated in Opdebeeck et al.’s [29] “An-
dromeda” dataset. It represents a full snapshot of Ansible Galaxy’s content, collected
in January 2021. It contains the aforementioned Galaxy metadata of over 25,000 An-
sible roles, as well as metadata about their repository’s git commits and tags. The
authors also published Voyager [31], the tool used to collect this dataset. It im-
plements the pipeline depicted in Figure 9.5. It starts by querying Ansible Galaxy’s
JSON-based API to discover roles and collect their metadata. Subsequently, it clones
the roles’ repositories and collects git metadata and versions. It later analyses the
code in these repositories to create a structural representation and to categorise code
changes between two consecutive role versions.

Importantly, since the dataset mainly contains raw data, it may not be immediately
usable for analysis. For instance, one should likely filter out low-quality repositories
using standard metrics such as number of downloads and repository activity. More-
over, Ansible Galaxy supports monolithic repositories, or “monorepos”, which store
multiple roles in a single repository. Such monorepos need to be handled with care
when cross-referencing with git data, e.g., not every commit in the repository will
apply to every role in the repository. Finally, Ansible Galaxy may serve outdated in-
formation, such as repository metrics and role versions, since this information is not
continually updated in the index. However, since all Galaxy repositories are linked to
GitHub repositories, standard tools can be used to compute up-to-date information.

9 Infrastructure-as-Code Ecosystems 231

galaxy.ansible.com

canonical id: bennojoy.mysql
description: role for mysql
download count: 6593
name: mysql
license: BSD
versions: []

canonical id: bennojoy.mysql
description: role for mysql
download count: 6593
name: mysql
license: BSD
versions: []

canonical id: bennojoy.mysql
description: role for mysql
download count: 6593
name: mysql
license: BSD
versions: []

{}{}{}
*not included
in Andromeda

commits:
- message: ...

sha1: ...
tags:

- name: 1.0.0
commit sha1: ...

commits:
- message: ...

sha1: ...
tags:

- name: 1.0.0
commit sha1: ...

commits:
- message: ...

sha1: ...
tags:

- name: 1.0.0
commit sha1: ...

role 1: 1.0.0 role 1: 1.1.0
role 1: 1.0.0 role 1: 1.1.0

role 1: 1.0.0 role 1: 1.1.0

Role v1 v2 #TaskEdit . . .

role 1 1.0.0 1.1.0 1 . . .

role 1 1.1.0 2.0.0 3 . . .

role 2 v1.1.1 v1.2.0 0 . . .

.

Crawl &
normalise

Clone repos

Extract
commits
& tags

Construct
structural
model

Structural
change
distilling

Fig. 9.5: Overview of the data collection pipeline of Voyager [32].

9.3.4.2 Static Analysis of Ansible Infrastructure Code

Prior work has proposed various approaches to static analysis of Ansible code,
ranging from code smell detection and defect prediction, over change distilling, to
model checking of behavioural properties. Many of these approaches have been
summarised for IaC in general by Chiari et al. [7]. Static analyses share a need
to represent the code they reason about. In this section, we describe a range of
representations that have been used in prior work, starting with the simplest and later
delving into more advanced representations.

Lexical representations are the simplest code representations. They often take
the form of token streams, wherein the original source code is split based on positions
of certain character classes, e.g., whitespace, or separators such as colons. Such
representations do not distinguish between different program elements. This makes
it difficult to perform an in-depth analysis of the code. However, token stream
representations can be used for tasks such as code smell detection, wherein the
detector uses matching rules corresponding to sequences of tokens to highlight
potential problems in code. Such approaches have been proposed for other IaC
languages, such as Puppet [38]. Nonetheless, research on Ansible has skipped such
representations, as it is trivial to obtain syntactical, tree-based representations, as
described below.

Syntactical representations are the result of transforming token streams into
richer, often tree-based structures by assigning syntactical classes to tokens and
reassembling them to represent program elements. For instance, in a syntactical
representation, a task appears as a single element with sub-elements for the task’s
constituents, rather than a subsequent sequence of tokens in a flat token stream. Such
representations therefore encode the structure of the program and elide lexical details
such as whitespace and separators. This substantially facilitates the analysis of the
code. For example, counting the number of tasks that appear in a role requires little
more than a simple tree traversal.

Since Ansible code is written in YAML, one can easily obtain a tree-based syntac-
tical representation merely by parsing the YAML file. The resulting representation

232 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

is a data structure consisting of lists and key-value dictionaries, closely matching
the structure of the source code. However, this representation exhibits a number of
shortcomings. First, the elements of the data structure are unlabelled, i.e., without
context, one cannot determine whether a key-value mapping is a task, a block of
tasks, a collection of variables, or a variable value. This burdens the designer of the
analysis, who has to reconstruct this context themselves.

Second, YAML parsing does not take Ansible-specific syntax into account, such
as the task argument shorthand which allows one to write an action and its arguments
on a single line. For example, the shorthand apt: name=apache2 state=present
is equivalent to the action of the last task in Figure 9.4. Such shorthands further burden
the designer of the analysis, who may need to perform additional transformations on
the representation. Nonetheless, many static analysis approaches for Ansible merely
parse the YAML code, since it is often sufficient for their use cases, such as code
linting [39] or defect prediction [12].

Structural representations build upon syntactical representations to capture
more of the structure of an Ansible program. Opdebeeck et al.’s [32] structural
model for Ansible roles is one such representation which addresses the limitations
of the previously-described syntactical representations. It abstracts over the parsed
YAML data structures such that each program element is tagged with its type, e.g.,
tasks, variables, or blocks. Moreover, the representation is normalised such that
syntactical variants (e.g., task argument shorthand) map to the same representation.

Figure 9.6 depicts the structural model for the example role in Figure 9.4. One
can see that the model represents relevant files in the role, including files containing
tasks or default variables. Each unit of the script, including variables and tasks, is
modelled as a separate node as a child of the component in which it is contained.
For instance, the two variables are part of the default variable file component. The
two tasks are part of an implicit top-level block, which in turn is part of the task file.

Opdebeeck et al. used this model to distil fine-grained changes to role source code,
which were used to compare different role versions. The structural models of over
125,000 role versions and the distilled changes are also contained within the afore-
mentioned Andromeda dataset [29]. Both the structural model builder and change
distiller have been made open-source in their Voyager data collection tool [31].

Behavioural representations can store behavioural information derived by prior
static analyses alongside the representation of the source code. Static analysis tools
can then employ the already-derived information in their own analyses.

Several kinds of behavioural information can be considered. Control and data flow
information are among the most common requirements for in-depth static analyses.
Control flow information describes the possible paths that a program may take, and
includes information about control order, branching points, and loops. Data flow
information describes how and where data is defined and used in a program.

The Structured Resource Tree representation by Dai et al. [10] is a tree repre-
sentation whose nodes represent components (files, blocks), units (tasks), variables,
and operations (expressions). The tree is structured according to a structural contain-
ment relationship, similar to the aforementioned structural model, i.e., a component

9 Infrastructure-as-Code Ecosystems 233

node’s children are those nodes (other components or units) that are contained within
it. Contrary to purely structural representations, Structured Resource Trees contain
some behavioural information, such as data flow dependencies between variables and
expressions, and a partial execution order relationship. However, since the represen-
tation relies on “define before use” heuristics, it cannot account for the intricacies
of Ansible’s semantics, such as lazy evaluation and complex variable precedence
rules. Moreover, the representation does not relate control flow to data flow, and can
therefore not capture the influence of values on which control flow branch is taken.

The latter is traditionally captured in Program Dependence Graphs (PDGs), a
representation that joins control and data flow information into a single graph.
Opdebeeck et al.’s [30] PDG representation implements this concept for Ansible
roles. It consists of control nodes interlinked through control flow order edges,
and data nodes representing unique abstract values present in the program. The
latter are linked to control and data nodes alike via data flow (data definition and
data usage) edges. For data nodes, the representation further distinguishes between
different types of data, namely literals, expressions, named value nodes (variables)
and unnamed value nodes (results of expressions). The PDG builder also accounts
for the aforementioned intricacies of Ansible’s semantics and ensures that no two
different concrete values are ever represented by the same abstract data node. To this
end, when a variable is used multiple times, the builder ensures that the node for its
value is linked to both usages if it can be statically proven that the usages will always
receive the exact same value. Otherwise, the builder will use multiple data nodes
to represent the different usages of a variable, since its value may have changed in
between two usages. An example of a PDG for the role of Figure 9.4 is depicted in
Figure 9.7. From the representation, one can immediately see that both tasks use a
common value, as well as how these values are defined and used.

Role

name: postgres

version: 1.0.0

DefaultVarFile

name: defaults/main.yml

Variable

name: psql_db_name

value: prod

Variable

name: psql_user_name

value: app

TasksFile

name: tasks/main.yml

Block (implicit)

Task

name: Ensure database exists

action: postgresql_db

args:

name: {{ psql_db_name }}

state: present

Task

name: Ensure user exists

action: postgresql_user

args:

db: {{ psql_db_name }}

name: {{ psql_user_name }}

priv: ALL

state: present

Fig. 9.6: Structural model representation
of Figure 9.4.

postgresql_db postgresql_user
ORDER

present

args.state

ALL

args.priv

present

ar
gs
.s
ta
te

$1

args.name args.db

$2

args.name

{{ psql_db_name }}

DEF

{{ psql_user_name }}

DEF

psql_db_name

USE

psql_user_name

USE

prod

DEF

app

DEF

Action Expression Named value Unnamed value Literal Control flow Data flow

Fig. 9.7: Program dependence graph rep-
resentation of Figure 9.4.

234 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

9.3.4.3 Dynamic Analysis of Ansible Infrastructure Code

Dynamic analysis of configuration management languages in general and Ansible
in particular is largely unexplored. Nonetheless, we discern three dynamic analysis
approaches that can be applied to Ansible roles.

First, since configuration management tools need to interact with a machine’s
operating system to configure the machine, a dynamic analysis could collect system
call traces while the code is being executed. Such traces provide insights into the
behaviour of a configuration script at runtime. The collected traces can then be
subjected to further analysis to find faults and defects in the code, as has been applied
to find missing control order dependencies in Puppet programs [46]. Moreover, traces
for different programs can be matched to one another, e.g., to suggest migrations of
imperative shell scripts to Ansible tasks [22].

Second, test cases and their outcomes can serve as a source of information for
empirical studies. To test their Ansible roles, many developers use molecule [41],
a test framework designed for Ansible. Behind the scenes, molecule uses Docker
to set up a virtual infrastructure on which it executes an Ansible role. The role
developer can subsequently test the final infrastructure state through assertions, also
written in the Ansible language. Test outcomes could provide interesting insights
for developers. Moreover, these test cases provide an automated means to execute
Ansible roles, and could thus be used to generate the aforementioned system call
traces.

Finally, rather than relying on test cases written by developers, some approaches
generate their own test cases to check behavioural properties of infrastructure code.
Hummer et al. [23] used model-based testing to find idempotence issues in Chef
code. Their approach uses a system model and state transition graph representations
(cf. Section 9.3.4.2) to generate a sequence of test cases. Subsequently, it executes
these test cases, monitors the actions undertaken by the IaC tool, and analyses them
to detect idempotence issues.

9.3.5 Empirical Insights from Analysing Ansible Infrastructure Code

We now discuss the most recent insights from empirical software engineering re-
search into the Ansible ecosystem gained through the analysis methods discussed
above. For a more general overview of prior work on Infrastructure as Code, we refer
the reader to the systematic mapping study by Rahman et al. [37].

9.3.5.1 Code Smells and Quality in the Ansible Galaxy Ecosystem

Code smells are recurring coding patterns indicating flaws in a program’s design
or implementation. Importantly, code smells themselves are not necessarily defects,
their presence merely indicates a potential defect as a suggestion for a developer

9 Infrastructure-as-Code Ecosystems 235

to investigate in more depth. Moreover, code smells may highlight potential main-
tenance issues and areas worthy of refactoring. A related concept is that of code
quality metrics, which quantify various quality-related aspects of source code.

Initially, much of the work on quality metrics and code smells in Infrastructure
as Code focused on investigating whether metrics for general-purpose languages
(e.g., number of statements, inconsistent naming conventions) were applicable to IaC
languages. For instance, both Sharma et al. [44] and van der Bent et al. [3] transposed
code smells and quality metrics, respectively, from general-purpose languages to
Puppet code. Dalla Palma et al. [11] extended these efforts to propose a set of 46
quality metrics for Ansible code, such as the number of tasks, loops, and conditionals.
These metrics are computed from simple syntactical source code representations (cf.
Section 9.3.4.2), mainly by counting the number of occurrences of keywords in the
source code.

Rahman et al. [39] defined seven security-related code smells for Ansible, such as
the use of hardcoded passwords or a lack of integrity checking on files downloaded
by a task. The implement a rule-based detection tool, called SLAC, to identify these
smells using a syntactical code representation. They subsequently used this tool to
investigate the prevalence of security smells in nearly 15,000 open-source Ansible
files, belonging to over 350 repositories. They observed that 25.3% of the studied
Ansible repositories found on GitHub contain at least one of the security smells.
They furthermore found a total of more than 17,000 security smells throughout these
repositories, over 80% of which are uses of hardcoded secrets. The authors further
conducted a qualitative analysis by submitting issue reports to GitHub repositories,
whose results suggest that most Ansible practitioners agree with the reports.

Opdebeeck et al. [30] hypothesise that some of Ansible’s semantics, such as lazy
evaluation of expressions and a complicated variable precedence system, may lead
to defects in Ansible code. The authors therefore propose 6 code smells related to
the usage of variables and expressions, such as multiple usages of a variable whose
value may have changed between the usages, variables that have been defined through
unnecessarily complicated mechanisms, and potentially accidental redefinitions of
variables. They developed an approach which operates on their Ansible program
dependence graph representation and detects the proposed smells through graph
matching. The authors apply this approach to study the prevalence of the proposed
smells in Ansible roles indexed by Ansible Galaxy. They observed that these code
smells could be detected in the development history of over 4,200 roles, comprising
nearly 20% of the studied dataset with a total of more than 31,000 unique smell
instances, roughly 22,000 of which are still present in the role’s latest version. They
also found that although some of the smells are getting fixed by developers, the rate
at which the smells are introduced outpaces that of the fixes. However, they observed
that it may take multiple years before a smell is fixed.

Kokuryo et al. [24] investigated the usage of imperative actions that can run
arbitrary shell commands. To this end, they investigated the tasks of 864 Ansible
roles discovered through the Ansible Galaxy ecosystem. They found that nearly half
of these roles use at least one imperative action, mainly to perform operations for
which there is no dedicated Ansible action, but also to perform filesystem operations.

236 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

They further found that many of these imperative actions can be replaced by dedicated
Ansible actions, which are preferred over arbitrary shell commands.

Hassan and Rahman [18] empirically studied the quality of 4,831 test files in 104
open-source Ansible repositories. They found that 1.8% of these files contain test
bugs, which they categorise into 7 types of test defects, such as excessive amounts
of logs being generated, or software artefacts that are unavailable when a test script
runs. They further identified a number of testing patterns that correlate with the
identified bugs, such as assertion roulette and testing playbooks solely in a local
environment that may not accurately represent real-world situations.

Many opportunities for code smell and code quality research on Ansible still
exist. One particular aspect that is worthy of investigation is a potential connection
between Ansible Galaxy’s quality survey scores and the detected code smells or
proposed code quality metrics. Such an empirical study could be beneficial to the
ecosystem and its practitioners, by providing more insights into automated tools and
how their results correlate with user-provided qualitative data.

9.3.5.2 Defect Prediction for the Ansible Galaxy Ecosystem

Defect prediction is the use of machine learning models to predict whether code or
code changes are defective. Such models are trained to distinguish between defective
and defect-free code using a set of code metrics as features. They are then tasked
with predicting whether previously unseen code is defective, based on the model’s
inferences from the training phase. For Ansible, Dalla Palma et al. [12] trained and
compared 5 different machine learning models using 104 features and a dataset of
more than 100 open-source Ansible repositories. They classify their metrics into 3
categories. First, IaC-oriented metrics relate to structural properties of the Ansible
code, and include the 46 aforementioned metrics proposed by Dalla Palma et al. [11]
as well as 14 metrics transposed from prior work by Rahman and Williams [40].
Second, delta metrics capture the amount of change in these IaC-oriented metrics
between successive releases of a script. Finally, process metrics capture informa-
tion regarding the development process rather than the code, e.g., the number of
developers that worked on a file. Their empirical analysis uncovered that a Ran-
dom Forest model provides the best defect prediction performance for their features.
They also found that IaC-oriented metrics and specifically the number of tokens and
lines of code in a file, tend to maximise the prediction performance. They further
observed that, contrary to traditional defect prediction, process metrics do not con-
tribute a significant performance improvement for Ansible code. This could be due
to infrastructure code being changed less often than traditional application code.

Borovits et al. [6] used a machine learning approach to detect linguistic inconsis-
tencies in Ansible tasks. To this end, they built a synthetic dataset by mutating tasks
found in open-source repositories, thereby creating inconsistencies between their
description and actual behaviour. They then use this dataset to train and evaluate
multiple machine learning classifiers that predict such inconsistencies. Their results

9 Infrastructure-as-Code Ecosystems 237

suggest that both classical machine learning techniques and deep learning techniques
are effective at finding these inconsistencies.

9.3.5.3 Evolution within the Ansible Galaxy Ecosystem

Many software ecosystems recommend using the semantic versioning (SemVer)
standard [35] (x.y.z) to denote software release versions [36, 13, 26]. Ansible Galaxy
is no different, and recommends its contributors to use SemVer to denote their role
release versions. However, it provides no guidelines in regards to interpreting the
semantics of semantic versioning, such as selecting a release type (i.e., major, minor,
or patch version increments). To alleviate this gap, Opdebeeck et al. [32] conducted
a large-scale empirical study into the versioning practices employed in the Ansible
Galaxy ecosystem. Their findings indicate that although a majority of Ansible Galaxy
roles adheres to the semantic versioning syntax, a substantial portion of developers
may choose their version increment arbitrarily.

They further conducted a qualitative survey with role developers, querying them
about their interpretation of semantic versioning for Ansible roles. The survey re-
veals that many developers consider a role’s default variables to be its main interface.
Backwards-incompatible changes to these default variables, e.g., removing or renam-
ing, are considered backwards-incompatible and therefore lead to a major version
bump. Adding new variables is often seen as the addition of functionality, and
constitutes a minor version increment.

With these insights, the authors extract a set of structural change metrics by
performing change distilling on their structural model representation (cf. Sec-
tion 9.3.4.2). These metrics are used as the features to train a Random Forest
machine learning model tasked with predicting the appropriate version bump for
a set of changes. The model indicates that the most important features are gener-
ally aligned with practitioners’ responses, such as changes to default variables or
additions of tasks. Nonetheless, their classifier experiences difficulty in correctly
predicting the version increment. A subsequent manual analysis uncovered that in
many cases, the model was making the correct prediction, yet the role developer
chose a wrong version increment in practice.

Finally, the authors synthesised a set of recommendations for Ansible practitioners
and the ecosystem as a whole. For instance, they recommended a set of versioning
guidelines based on the practitioner responses, and recommended role users to
thoroughly test their Ansible code after updating a dependency.

9.4 Conclusion

This chapter discussed the emerging Infrastructure-as-Code ecosystems forming
around Ansible and Docker, the most popular embodiments of the mutable and

238 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

immutable IaC paradigms respectively, the different approaches to analyse them,
and the latest empirical insights.

Both of these ecosystems pivot around registries in which software artefacts
are being created and shared. Ansible has Ansible Galaxy while Docker has Docker
Hub. Artefacts in these registries are similar to general-purpose libraries, in the sense
that they can be reused by others in creating and configuring clusters of (virtual)
machines, clouds and containers. Ansible Galaxy hosts Ansible roles and collections,
while Docker Hub hosts Docker images.

Previous studies [17, 19, 1] have shown that developers and users of these artefacts
face many challenges when they are developing or reusing these artefacts. Example
challenges include the understandability and testability of these artefacts. Developers
complain that testing is difficult and code review is too basic, i.e., no clear reviewing
guidelines are available. In addition, because these ecosystems are relatively young
and growing rapidly, their reusable artefacts suffer from inconsistency, i.e., their
versions are often backward incompatible. Moreover, many artefacts suffer from
security vulnerabilities [57, 39], which may jeopardise dependent artefacts and
millions of their users.

Next to the developers, researchers also face different challenges when analysing
these ecosystems. First, a lack of tooling requires researchers to create new tools and
analyses from scratch that can cope with the specifics of IaC artefacts. Moreover, in
many cases, they need to understand the use and development of these artefacts in
the wild in order to come up with the appropriate rules to follow when creating data
collection and analysis pipelines. This is due to the lack of clear coding conventions
and standards such as semantic versioning for Ansible roles and Dockerfile naming.
They are also required to choose the right sample of artefacts to analyse. For example,
inheritance in Docker can lead to duplicate images being studied multiple times. Sim-
ilarly, Ansible scripts can be cloned and distributed across different projects. Biased
datasets do not accurately represent reality which may lead to misinterpretations of
empirical results. Furthermore, the vast scale of available data forces researchers to
consider frozen snapshots of an IaC ecosystem, which may impede gaining insights
into the ecosystem’s evolution. Finally, since most ecosystem research on Ansible
and Docker focuses solely on a single ecosystem, the generalisability of their findings
is hampered. It is often unclear whether similar observations can be made for other
IaC ecosystems, such as the ones formed around Chef and Puppet. We conclude that
there are ample opportunities for further research into the domain.

References

1. Anchore.io: Snapshot of the container ecosystem. https://anchore.com/wp-content/
uploads/2017/04/Anchore-Container-Survey-5.pdf (2017). Accessed 2023-04-15

2. Azuma, H., Matsumoto, S., Kamei, Y., Kusumoto, S.: An empirical study on self-admitted
technical debt in dockerfiles. Empirical Software Engineering 27(2), 1–26 (2022)

3. van der Bent, E., Hage, J., Visser, J., Gousios, G.: How good is your Puppet? an empirically
defined and validated quality model for Puppet. In: International Conference on Software

9 Infrastructure-as-Code Ecosystems 239

Analysis, Evolution and Reengineering (SANER), pp. 164–174 (2018). DOI 10.1109/SANER.
2018.8330206

4. Bettini, A.: Vulnerability exploitation in Docker container environments. FlawCheck, Black
Hat Europe (2015)

5. Boettiger, C.: An introduction to Docker for reproducible research. ACM SIGOPS Operating
Systems Review 49(1), 71–79 (2015). DOI 10.1145/2723872.2723882

6. Borovits, N., Kumara, I., Di Nucci, D., Krishnan, P., Dalla Palma, S., Palomba, F., Tamburri,
D.A., van den Heuvel, W.J.: FindICI: Using machine learning to detect linguistic inconsis-
tencies between code and natural language descriptions in infrastructure-as-code. Empirical
Software Engineering 27(178) (2022). DOI 10.1007/s10664-022-10215-5

7. Chiari, M., De Pascalis, M., Pradella, M.: Static analysis of infrastructure as code: a survey.
In: International Conference on Software Architecture (ICSA), pp. 218–225 (2022). DOI
10.1109/ICSA-C54293.2022.00049

8. Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An empirical analysis
of the Docker container ecosystem on GitHub. In: International Conference on Mining Software
Repositories (MSR), pp. 323–333. IEEE (2017). DOI 10.1109/MSR.2017.67

9. Combe, T., Martin, A., Di Pietro, R.: To Docker or not to Docker: A security perspective. IEEE
Cloud Computing 3(5), 54–62 (2016). DOI 10.1109/MCC.2016.100

10. Dai, T., Karve, A., Koper, G., Zeng, S.: Automatically detecting risky scripts in infrastructure
code. In: Symposium on Cloud Computing (SoCC), pp. 358–371. ACM (2020). DOI
10.1145/3419111.3421303

11. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Toward a catalog of software
quality metrics for infrastructure code. Journal of Systems and Software 170 (2020). DOI
10.1016/j.jss.2020.110726

12. Dalla Palma, S., Di Nucci, D., Palomba, F., Tamburri, D.A.: Within-project defect predic-
tion of infrastructure-as-code using product and process metrics. Transactions on Software
Engineering 48(6), 2086–2104 (2022). DOI 10.1109/TSE.2021.3051492

13. Decan, A., Mens, T.: What do package dependencies tell us about semantic versioning? Trans-
actions on Software Engineering 47(6), 1226–1240 (2021). DOI 10.1109/TSE.2019.2918315

14. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R., Safina,
L.: Microservices: yesterday, today, and tomorrow. Present and ulterior software engineering
pp. 195–216 (2017)

15. Eng, K., Hindle, A.: Revisiting Dockerfiles in open source software over time. In: 2021
IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pp. 449–
459. IEEE (2021)

16. Gholami, S., Khazaei, H., Bezemer, C.P.: Should you upgrade official Docker Hub images in
production environments? In: International Conference on Software Engineering - New Ideas
and Emerging Results (ICSE-NIER), pp. 101–105. IEEE (2021)

17. Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F.: Adoption, support, and challenges
of infrastructure-as-code: Insights from industry. In: International Conference on Software
Maintenance and Evolution (ICSME), pp. 580–589. IEEE (2019)

18. Hassan, M.M., Rahman, A.: As code testing: Characterizing test quality in open source Ansible
development. In: International Conference on Software Testing, Verification and Validation
(ICST), pp. 208–219 (2022). DOI 10.1109/ICST53961.2022.00031

19. Henkel, J., Bird, C., Lahiri, S.K., Reps, T.: Learning from, understanding, and supporting
devops artifacts for docker. In: International Conference on Software Engineering (ICSE), pp.
38–49. IEEE (2020)

20. Henkel, J., Silva, D., Teixeira, L., d’Amorim, M., Reps, T.: Shipwright: A human-in-the-loop
system for Dockerfile repair. In: International Conference on Software Engineering (ICSE),
pp. 1148–1160. IEEE (2021). DOI 10.1109/ICSE43902.2021.00106

21. Henriksson, O., Falk, M.: Static vulnerability analysis of Docker images (2017)
22. Horton, E., Parnin, C.: Dozer: Migrating shell commands to Ansible modules via execution

profiling and synthesis. In: International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 147–148 (2022). DOI 10.1145/3510457.3513060

240 Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover

23. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing idempotence for infrastructure
as code. In: ACM/IFIP/USENIX International Middleware Conference, pp. 368–388 (2013).
DOI 10.1007/978-3-642-45065-5%5C 19

24. Kokuryo, S., Kondo, M., Mizuno, O.: An empirical study of utilization of imperative modules
in Ansible. In: International Conference on Software Quality, Reliability and Security (QRS),
pp. 442–449 (2020). DOI 10.1109/QRS51102.2020.00063

25. Ksontini, E., Kessentini, M., Ferreira, T.d.N., Hassan, F.: Refactorings and technical debt in
docker projects: An empirical study. In: International Conference on Automated Software
Engineering (ASE), pp. 781–791. IEEE (2021). DOI 10.1109/ASE51524.2021.9678585

26. Lam, P., Dietrich, J., Pearce, D.J.: Putting the semantics into semantic versioning. In: Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!), pp. 157–179. ACM (2020). DOI 10.1145/3426428.3426922

27. Lin, C., Nadi, S., Khazaei, H.: A large-scale data set and an empirical study of Docker images
hosted on Docker Hub. In: International Conference on Software Maintenance and Evolution
(ICSME), pp. 371–381. IEEE (2020). DOI 10.1109/ICSME46990.2020.00043

28. Lin, C., Nadi, S., Khazaei, H.: A large-scale data set of Docker images hosted on Docker Hub
(2020). DOI 10.5281/zenodo.3862987

29. Opdebeeck, R., Zerouali, A., De Roover, C.: Andromeda: A dataset of Ansible Galaxy roles
and their evolution. In: International Conference on Mining Software Repositories (MSR), pp.
580–584 (2021). DOI 10.1109/MSR52588.2021.00078

30. Opdebeeck, R., Zerouali, A., De Roover, C.: Smelly variables in Ansible infrastructure code:
Detection, prevalence, and lifetime. In: International Conference on Mining Software Reposi-
tories (MSR). ACM (2022). DOI 10.1145/3524842.3527964

31. Opdebeeck, R., Zerouali, A., Velázquez-Rodrı́guez, C., De Roover, C.: Replication package of
SCAM 2020 Ansible role semantic versioning empirical study (2020). DOI 10.5281/zenodo.
4041169

32. Opdebeeck, R., Zerouali, A., Velázquez-Rodrı́guez, C., De Roover, C.: On the practice of
semantic versioning for Ansible Galaxy roles: An empirical study and a change classification
model. Journal of Systems and Software 182 (2021). DOI 10.1016/j.jss.2021.111059

33. Oumaziz, M.A., Falleri, J.R., Blanc, X., Bissyandé, T.F., Klein, J.: Handling duplicates in Dock-
erfiles families: Learning from experts. In: International Conference on Software Maintenance
and Evolution (ICSME), pp. 524–535. IEEE (2019)

34. Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Computing 2(3), 24–31 (2015)
35. Preston-Werner, T.: Semantic versioning 2.0.0. https://semver.org/ (2013). Accessed

2023-04-15
36. Raemaekers, S., van Deursen, A., Visser, J.: Semantic versioning and impact of breaking

changes in the maven repository. Journal of Systems and Software 129, 140–158 (2017).
DOI 10.1016/j.jss.2016.04.008

37. Rahman, A., Mahdavi-Hezaveh, R., Williams, L.: A systematic mapping study of infrastructure
as code research. Information and Software Technology 108, 65–77 (2019). DOI 10.1016/j.
infsof.2018.12.004

38. Rahman, A., Parnin, C., Williams, L.: The seven sins: Security smells in infrastructure as code
scripts. In: International Conference on Software Engineering (ICSE), ICSE ’19, pp. 164–175
(2019). DOI 10.1109/ICSE.2019.00033

39. Rahman, A., Rahman, M.R., Parnin, C., Williams, L.: Security smells in Ansible and Chef
scripts: A replication study. Transactions on Software Engineering and Methodology 30(1)
(2021). DOI 10.1145/3408897

40. Rahman, A., Williams, L.: Source code properties of defective infrastructure as code scripts.
Information and Software Technology 112, 148–163 (2019). DOI 10.1016/j.infsof.2019.04.013

41. Red Hat, Inc.: Ansible Molecule. https://molecule.readthedocs.io/en/latest/
(2023). Accessed 2023-04-15

42. Rosa, G., Scalabrino, S., Oliveto, R.: Fixing dockerfile smells: An empirical study. International
Conference on Software Maintenance and Evolution (ICSME) (2022)

9 Infrastructure-as-Code Ecosystems 241

43. Sabuhi, M., Musilek, P., Bezemer, C.P.: Studying the performance risks of upgrading Docker
Hub images: A case study of WordPress. In: International Conference on Performance Engi-
neering, pp. 97–104. ACM (2022)

44. Sharma, T., Fragkoulis, M., Spinellis, D.: Does your configuration code smell? In: Working
Conference on Mining Software Repositories (MSR), pp. 189–200 (2016). DOI 10.1145/
2901739.2901761

45. Shu, R., Gu, X., Enck, W.: A study of security vulnerabilities on Docker Hub. In: International
Conference on Data and Application Security and Privacy, pp. 269–280. ACM (2017). DOI
10.1145/3029806.3029832

46. Sotiropoulos, T., Mitropoulos, D., Spinellis, D.: Practical fault detection in Puppet programs.
In: International Conference on Software Engineering (ICSE), pp. 26–37 (2020). DOI 10.
1145/3377811.3380384

47. Stack Overflow: 2022 stack overflow developer survey. https://survey.stackoverflow.
co/2022 (2022). Accessed 2023-04-15

48. Tsuru, T., Nakagawa, T., Matsumoto, S., Higo, Y., Kusumoto, S.: Type-2 code clone detection
for Dockerfiles. In: International Workshop on Software Clones (IWSC). IEEE (2021)

49. Turnbull, J.: The Docker Book: Containerization is the new virtualization. James Turnbull
(2014)

50. Vermeer, B., Henry, W.: Shifting Docker security left. https://snyk.io/blog/
shifting-docker-security-left/ (2019). Accessed 2023-04-15

51. Wu, Y., Zhang, Y., Wang, T., Wang, H.: Characterizing the occurrence of dockerfile smells in
open-source software: An empirical study. IEEE Access 8, 34127–34139 (2020)

52. Xu, J., Wu, Y., Lu, Z., Wang, T.: Dockerfile TF smell detection based on dynamic and static
analysis methods. In: Annual Computer Software and Applications Conference (COMPSAC),
vol. 1, pp. 185–190. IEEE (2019). DOI 10.1109/COMPSAC.2019.00033

53. Zerouali, A., Constantinou, E., Mens, T., Robles, G., González-Barahona, J.: An empirical
analysis of technical lag in npm package dependencies. In: International Conference on
Software Reuse (ICSR), Lecture Notes in Computer Science, vol. 10826, pp. 95–110. Springer
(2018). DOI 10.1007/978-3-319-90421-4 6

54. Zerouali, A., Cosentino, V., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the impact of
outdated and vulnerable JavaScript packages in Docker images. In: International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 619–623. IEEE (2019)

55. Zerouali, A., Cosentino, V., Robles, G., Gonzalez-Barahona, J.M., Mens, T.: Conpan: a tool
to analyze packages in software containers. In: International Conference on Mining Software
Repositories (MSR), pp. 592–596. IEEE (2019)

56. Zerouali, A., Mens, T., De Roover, C.: On the usage of JavaScript, Python and Ruby packages
in Docker Hub images. Science of Computer Programming 207, 102653 (2021)

57. Zerouali, A., Mens, T., Decan, A., Gonzalez-Barahona, J., Robles, G.: A multi-dimensional
analysis of technical lag in Debian-based Docker images. Empirical Software Engineering
26(2), 1–45 (2021)

58. Zerouali, A., Mens, T., Gonzalez-Barahona, J., Decan, A., Constantinou, E., Robles, G.: A
formal framework for measuring technical lag in component repositories—and its application
to npm. Journal of Software: Evolution and Process 31(8) (2019). DOI 10.1002/smr.2157

59. Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the relation between outdated
docker containers, severity vulnerabilities, and bugs. In: International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 491–501. IEEE (2019). DOI 10.1109/
SANER.2019.8668013

60. Zhang, Y., Zhang, Y., Mao, X., Wu, Y., Lin, B., Wang, S.: Recommending base image for
docker containers based on deep configuration comprehension. In: International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 449–453. IEEE (2022)

