
When is it safe to run a transactional workload
under Read Committed?

Brecht Vandevoort
UHasselt, Data Science Institute, ACSL
brecht.vandevoort@uhasselt.be

Bas Ketsman
Vrije Universiteit Brussel

bas.ketsman@vub.be

Christoph Koch
École Polytechnique Fédérale

de Lausanne
christoph.koch@epfl.ch

Frank Neven
UHasselt, Data Science

Institute, ACSL
frank.neven@uhasselt.be

ABSTRACT
The popular isolation level multiversion Read Committed
(RC) exchanges some of the strong guarantees of serial-
izability for increased transaction throughput. Neverthe-
less, transaction workloads can sometimes be executed un-
der RC while still guaranteeing serializability at a reduced
cost. Such workloads are said to be robust against RC.
This paper provides a high level overview of deciding ro-
bustness against RC. In particular, we discuss how a sound
and complete test can be obtained through the formaliza-
tion of transaction templates. We then increase the model-
ing power of transaction templates by extending them with
functional constraints which are useful for capturing data
dependencies like foreign keys. We show that the incorpo-
ration of functional constraints can identify more workloads
as robust than would otherwise be the case. Even though
the robustness problem becomes undecidable in its most gen-
eral form, we establish that various restrictions on functional
constraints lead to decidable and even tractable results that
can be used to model and test for robustness against RC for
practical scenarios.

1. INTRODUCTION
The gold standard for desirable transactional semantics

is serializability, and much research and technological de-
velopment has gone into creating systems that provide the
greatest possible transaction throughput. Nevertheless, in
practice, a hierarchy of alternative isolation levels of differ-
ent strengths is available, allowing users to trade off semantic
guarantees for better performance. One prominent example
is the isolation level (multiversion) Read Committed (RC),
which does not guarantee serializability but which can be im-
plemented more efficiently than isolation level Serializable.
The central question that we address in this paper is: When
is it safe to run a transactional workload under RC?

Various researchers have studied the so-called transac-
tional robustness problem [1–4, 6–10, 16, 18], which revolves
around deciding whether for a given workload a lower iso-

Copyright is held by the authors. Publication rights licensed to Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. This is a minor revision of the
paper entitled Robustness Against Read Committed for Transaction Tem-
plates with Functional Constraints, published in LIPIcs, Vol. 220, 2022.
DOI: 10.4230/LIPIcs.ICDT.2022.16.
.

lation level than Serializable is sufficient to guarantee se-
rializability. Specifically, a set of transaction programs is
called robust against a given isolation level if every possi-
ble interleaving of the executed programs allowed under the
specified isolation level, is serializable. That there is a real
chance that nontrivially robust workloads do exist is proba-
bly best demonstrated by the fact that the well-known TPC-
C benchmark is robust against Snapshot Isolation [10]. More
specifically, any schedule allowed under Snapshot Isolation
that exclusively contains transactions that are instantiations
of transaction programs from TPC-C is serializable.

Executing a transaction program over a database results
in a sequence of read and write operations on concrete data-
base objects that we simply refer to as a transaction. When
multiple programs are executed concurrently, the resulting
sequence of interleaved transactions is referred to as a sched-
ule. Within such a schedule, transactions can introduce de-
pendencies when they access the same database objects. For
example, if a transaction T1 writes to an object and another
transaction T2 afterwards reads this object, then T2 depends
on T1. The dependency graph CG(s) of a schedule s is the
graph whose vertices are the transactions of s and whose
edges represent dependencies between transactions. It is
well-known that a schedule is (conflict) serializable if and
only if its dependency graph is acyclic [14].

Robustness for a given workload specified as a set of con-
crete transactions is obviously decidable as one can simply
enumerate all schedules allowed under the chosen isolation
level and verify whether their dependency graphs are acyclic.
There are, however, more efficient approaches that are based
on characterisations in terms of a particular counterexam-
ple schedule that must exist when a set of transactions is
not robust against the isolation level. These are the follow-
ing: split schedules and multisplit schedules for Read Un-
committed and Read Committed in single-version databases
where concurrency control is implemented based on read and
write locks [12]; multiversion split schedules for (multiver-
sion) Read Committed [16]; and a multiversion split sched-
ule for Snapshot Isolation [9, 13]. Deciding robustness then
reduces to searching for a counterexample schedule adhering
to a specific form.

These results do not immediately extend to the setting
where a workload is specified as a set of transaction pro-
grams (as, for instance, the TPC-C benchmark). Indeed, a
transaction program represents a potentially infinite num-

ber of concrete transaction instantiations giving rise to an
infinite number of possible schedules. A frequently used ap-
proach for detecting robustness in this setting is based on
summarizing all potential schedules in a static dependency
graph [6,10]. More specifically, the vertices in this graph are
the transaction programs, and there is an edge from a pro-
gram P1 to a program P2 if there exists a pair of transactions
T1 and T2 instantiated from P1 and P2, respectively, where
T2 depends on T1. By construction this graph contains all
possible dependency graphs of schedules that can be derived
from the given set of transaction programs. In particular,
every cycle in the dependency graph of a non-serializable
schedule is witnessed by a cycle in the static dependency
graph. A sufficient condition for robustness therefore relies
on the absence of cycles in the static dependency graph. No-
tice that this is only a sufficient condition for robustness, as
a cycle in the static dependency graph does not necessarily
imply the existence of a non-serializable schedule.

Additional isolation level specific conditions have been
identified that must hold for a cycle in a dependency graph
witnessing non-robustness: dangerous structure for Snap-
shot Isolation [10] and the presence of a counterflow edge
for Read Committed [2]. Robustness against these isolation
levels is therefore guaranteed as long as all cycles in the
static dependency graph do not satisfy the corresponding
condition. We stress that such approaches depend on the
construction of a static dependency graph which in itself is
a non-trivial task. Indeed, a manual analysis of each pair
of programs is required to identify possible dependencies.
IsoDiff [11] automates this construction by analyzing an ex-
ecution trace (i.e., a set of concrete transactions obtained by
executing the transaction programs). But the disadvantage
of this approach is that it might miss programs that are not
executed frequently and are therefore not in the execution
trace. Therefore, IsoDiff might falsely identify applications
as robust against a lower isolation level.

Our work on robustness differs from the just mentioned
approach as follows: (1) We introduce a formalism to express
transaction programs, referred to as transaction templates,
that facilitates reasoning in terms of counterexample sched-
ules and in essence allows to construct the static dependency
graph automatically without manual intervention; and, (2)
we provide a decision procedure for robustness against mul-
tiversion Read Comitted that is both sound and complete.
In comparison to earlier work, which only offered methods
that are sound but not complete, our approach enables the
detection of more and larger groups of workloads to be ro-
bust against Read Committed. A restriction of our approach
is that we must assume that there is a fixed set of read-only
attributes that cannot be updated and which are used to
select tuples. The most typical example of this are primary
key values passed to transaction templates as parameters.
We refer to [16] for a more in depth discussion. In [20], we
present a sufficient (but no longer complete) condition for
testing robustness for an extension of templates where all
attributes of tuples can be modified and that incorporates
inserts, deletions, and predicate reads.

This paper is intended as a more accessible overview of
the main ideas presented in [16] and [18]. Many concepts
are only introduced informally and we refer to the original
papers for more details. For a more complete overview of our
work, we refer to [17]. For an introduction to concurrency
control aimed at database theorists we refer to [14] and [13].

For a more complete discussion of the related work we refer
to [16,18].

2. DEFINITIONS
We present the necessary definitions based on a small ex-

tension of the SmallBank benchmark [1], which we will use
as a running example throughout the paper. The Small-
Bank schema consists of three tables: Account(Name, Cus-
tomerID, IsPremium), Savings(CustomerID, Balance, In-
terestRate), and Checking(CustomerID, Balance). Under-
lined attributes are primary keys. The Account table asso-
ciates customer names with IDs and keeps track of the pre-
mium status (Boolean); CustomerID is a UNIQUE attribute.
The other tables contain the balance (numeric value) of the
savings and checking accounts of customers identified by
their ID. Account (CustomerID) is a foreign key referencing
both the columns Savings (CustomerID) and Checking (Cus-
tomerID). The interest rate on a savings account is based on
a number of parameters, including the account status (pre-
mium or not). The application code can interact with the
database only through the following transaction programs:

• Balance(N): returns the total balance (savings & check-
ing) for a customer with name N .

• DepositChecking(N ,V): makes a deposit of amount V
on the checking account of the customer with name N .

• TransactSavings(N ,V): makes a deposit or withdrawal
V on the savings account of the customer named N .

• Amalgamate(N1,N2): transfers all the funds from N1

to N2.

• WriteCheck(N ,V): writes a check V against the ac-
count of the customer with name N , penalizing if over-
drawing.

• GoPremium(N): converts the account of the customer
with name N to a premium account and updates the
interest rate of the corresponding savings account. This
transaction program is an extension w.r.t. [1].

Databases. A relational schema consists of a set of rela-
tions, where a finite set of attribute names Attr(R) is asso-
ciated to every relation R. A database (instance) D over a
relational schema assigns a finite set of tuples to each rela-
tion R in this schema, and we furthermore say that these
tuples are of type R. Each such tuple of type R maps the
attribute names in Attr(R) to a value.

Example 2.1. We will refer to the following SmallBank
database instance by D1 and use it as a running example:

Account Name CustomerID IsPremium
t : Alice 123 true
t′ : Bob 456 false

Savings CustomerID Balance InterestRate
v : 123 $2500 0.50
v′ : 456 $450 0.50

Checking CustomerID Balance
q : 123 $50
q′ : 456 $30

Transactions and schedules. We distinguish three opera-
tions R[t], W[t], and U[t] on a tuple t, denoting that tuple
t is read, written, or updated, respectively. The operation
U[t] is an atomic update and should be viewed as an atomic
sequence of a read of t followed by a write to t. We will
use the following terminology: a read operation is an R[t] or
a U[t], and a write operation is a W[t] or a U[t]. Further-
more, an R-operation is an R[t], a W-operation is a W[t], and
a U-operation is a U[t]. We also assume a special commit op-
eration denoted C. To every operation o on a tuple of type
R, we associate the set of attributes ReadSet(o) ⊆ Attr(R)
and WriteSet(o) ⊆ Attr(R) containing, respectively, the set
of attributes that o reads from and writes to. When o is
an R-operation then WriteSet(o) = ∅. Similarly, when o is a
W-operation then ReadSet(o) = ∅.

Example 2.2. Say, we want to read the balance of the
savings account of customer 123 and set the balance of the
savings account of customer 123 to $1000. The former trans-
lates to operation R[v] of type Savings with ReadSet(R[v]) =
{CustomerID,Balance}, and the latter to operation W[v] of
type Savings with WriteSet(W[v]) = {Balance}. Notice that
v refers to a specific tuple in D1 as defined by Example 2.1.

Suppose we want to increase the balance of the savings
account of customer 123 by $150. The associated oper-
ation becomes U[v] of type Savings with ReadSet(U[v]) =
{CustomerID,Balance} and WriteSet(U[v]) = {Balance}.

A transaction T is a sequence of read and write operations
followed by a commit. For two operations a, b ∈ T, we use
a <T b to denote the fact that a precedes b in transaction T.

Example 2.3. Consider an increase of the savings ac-
count balance of the customer named Alice by $150 over
database D1. The associated transaction consists of two op-
erations: R[t]U[q] with U[q] as in Example 2.2 and R[t] of
type Account with ReadSet(R[t]) = {Name,CustomerID}.

When considering a set T of transactions, we assume that
every transaction in the set has a unique id i and write Ti to
make this id explicit. Similarly, to distinguish the operations
of different transactions, we add this id as a subscript to the
operation. That is, we write Wi[t], Ri[t], and Ui[t] to denote
a W[t], R[t], and U[t] occurring in transaction Ti; similarly
Ci denotes the commit operation in transaction Ti. This
convention is consistent with the literature (see, e.g. [5, 9]).
To avoid ambiguity of notation, we assume that a transac-
tion performs at most one write, one read, and one update
per tuple. The latter is a common assumption (see, e.g. [9])
and all our results carry over to the more general setting in
which multiple writes and reads per tuple are allowed.

A (multiversion) schedule s over a set T of transactions
is a total order over the operations in T , consistent with
the order of operations in each transaction Ti ∈ T . For
a pair of operations a, b occurring in s, we use a <s b to
denote the fact that a precedes b in s. Each write operation
in s creates a new version of the tuple it writes to, and
each read operation observes a specific version of the tuple
it reads from. Note that read operations do not necessarily
read the most recently created version. Indeed, multiversion
databases such as Postgres and Oracle maintain multiple
versions of each tuple, and the version observed by a read
operation depends on the chosen isolation level. We say that
a schedule is a single version schedule if every read operation

observes the most recently created version. A single version
schedule over a set of transactions T is single version serial
if its transactions are not interleaved with operations from
other transactions. That is, for every triple of operations
a, b, c occurring in s with a <s b <s c and a, c ∈ T implies
b ∈ T for every T ∈ T . Figure 1a and 1c show three example
schedules.

The absence of aborts in our definition of schedule is con-
sistent with the common assumption [6, 9] that an underly-
ing recovery mechanism will rollback aborted transactions.
We only consider isolation levels that only read committed
versions. Therefore there will never be cascading aborts.

Conflict Serializability. Let bi and aj be two operations
on the same tuple from different transactions Ti and Tj in
a set of transactions T . We then say that bi is conflicting
with aj if:

• (ww-conflict) WriteSet(bi) ∩WriteSet(aj) ̸= ∅; or,

• (wr-conflict) WriteSet(bi) ∩ ReadSet(aj) ̸= ∅; or,

• (rw-conflict) ReadSet(bi) ∩WriteSet(aj) ̸= ∅.

In this case, we also say that bi and aj are conflicting oper-
ations. When bi and aj are conflicting operations in T , we
say that aj depends on bi in a schedule s over T , denoted
bi →s aj if:1

• (ww-dependency) bi is ww-conflicting with aj and the
version written by aj is created after the version writ-
ten by bi; or,

• (wr-dependency) bi is wr-conflicting with aj and bi ei-
ther creates the version observed by aj , or it creates a
version that is created before the version observed by
aj ; or,

• (rw-antidependency) bi is rw-conflicting with aj and bi
observes a version created before the version written
by aj .

Example 2.4. For examples of rw-antidependencies, con-
sider operations R1[v], U2[v] and R1[q], U4[q] in schedule s2
(Figure 1c without dashed arrow). Particularly notice that
the write operation for the latter anti dependency occurs
before the accompanying read operation. Examples of wr-
dependencies are operations U2[v] and R3[v] in schedules s1
and s2, as well as operations U4[q] and R1[q] in schedule s3.
None of the schedules in Figure 1 observe a ww-dependency.

Two schedules s and s′ are conflict equivalent if they are
over the same set T of transactions and for every pair of
conflicting operations aj and bi, bi →s aj iff bi →s′ aj .

Definition 2.5. A schedule s is conflict serializable if it
is conflict equivalent to a single version serial schedule.

Example 2.6. Schedule s1 and s2 in Figure 1 are conflict
equivalent. The pairs of conflicting operations are R1[v] and
U2[v], U2[v] and R3[v], R1[q] and U4[q], and R3[q] and U4[q].
Equivalence of the dependencies is straightforward, except
perhaps for R1[q] →s1 U4[q] and R1[q] →s2 U4[q], which are
due to a wr-dependency in s1 and rw-antidependency in s2.

1Throughout the paper, we adopt the following convention:
a b operation can be understood as a ‘before’ while an a can
be interpreted as an ‘after’.

R1[t] R1[v] R1[q] C1

R2[t] U2[v] C2

R3[t] R3[v] R3[q] C3

R4[t] U4[q] C4

T1:

T2:

T3:

T4:

(a) Schedule s1.

T1

T2 T3

T4

(b) CG(s1) = CG(s2).

R1[t] R1[v] R1[q] C1

R2[t] U2[v] C2

R3[t] R3[v] R3[q] C3

R4[t] U4[q] C4

T1:

T2:

T3:

T4:

(c) Schedule s2 (with solid and dashed arrows) and s3 (with only solid arrows).

T1

T2 T3

T4

(d) CG(s3).

Figure 1: All schedules are multi-version. Read operations observe a particular version of the accessed object. This version is
either the result of a write operation (in that case indicated through an arrow pointing to the respective write) or the initial
version present at the start of the schedule (in that case without arrow).

A conflict graph CG(s) for schedule s over a set of trans-
actions T is the graph whose nodes are the transactions in
T and where there is an edge from Ti to Tj if Ti has an
operation bi that conflicts with an operation aj in Tj and
bi →s aj . Conflict graphs for schedules s1, s2, and s3 are
given in Figure 1b and 1d.

Theorem 2.7 ([14]). A schedule s is conflict serializ-
able iff the conflict graph for s is acyclic.

Multiversion Read Committed. Let s be a schedule for
a set T of transactions. Then, s exhibits a dirty write iff
there are two ww-conflicting operations aj and bi in s on
the same tuple t with aj ∈ Tj , bi ∈ Ti and Tj ̸= Ti such
that bi <s aj <s Ci. That is, transaction Tj writes to an
attribute of a tuple that has been modified earlier by Ti,
but Ti has not yet issued a commit. We say that a schedule
s is read-last-committed (RLC) if every read operation aj in
s on some tuple t observes the most recent version of t that
is committed before aj . Note that this version is different
from any version of t created before aj that has not been
committed yet. Note in particular that a schedule cannot
exhibit dirty reads, defined in the traditional way [5], if it is
read-last-committed.

Example 2.8. Schedules s1 and s2 are both RLC. Sched-
ule s3 is not RLC, since in s3 operation R1[q] observes the
original version of object q instead of the version written by
U4[q]. Clearly, all three schedules are free of dirty writes,
since none of the involved transactions write to a shared ob-
ject (i.e., there are no ww-dependencies at all).

Definition 2.9. A schedule is allowed under isolation
level read committed (RC) if it is read-last-committed and
does not exhibit dirty writes.

It follows from the properties described in Example 2.8
that schedules s1 and s3 are allowed under isolation level
RC, while schedule s2 is not.

3. TRANSACTION TEMPLATES
Figure 2 displays the transaction templates for Small-

Bank. In short, a transaction template is a sequence of read
(R), write (W) and update (U) statements over typed vari-
ables (X, Y, . . .) (the additional (dis)equality constraints

at the end of each template in Figure 2 will be discussed
in Section 5 and can be ignored for now). For instance,
R[X : Account{N, C}] indicates that a read operation is per-
formed to a tuple in relation Account on the attributes Name
and CustomerID. We abbreviate the names of attributes by
their first letter to save space. The set {N,C} is the read
set of the read operation. Similarly, W and U refer to write
and update operations to tuples of a specific relation. Write
operations have an associated write set while update op-
erations contain a read set followed by a write set: e.g.,
U[Z : Checking{C, B}{B}] first reads the CustomerID and Bal-
ance of tuple Z and then writes to the attribute Balance. All
R-, W- and U-operations always access exactly one tuple. A
U-operation is an atomic update that first reads the tuple
and then writes to it.

Templates serve as abstractions of transaction programs
and represent an infinite number of possible transactions.
More formally, a transaction T over a database D is an in-
stantiation of a transaction template τ if there is a variable
mapping µ from the variables in τ to tuples of the corre-
sponding type in D such that µ(τ) = T, where we use µ(τ)
to denote the transaction obtained by replacing each vari-
able X in τ by its corresponding tuple µ(X). We then say that
a set of transactions T over tuples in D is consistent with a
set of templates P and database D if every transaction in T
is an instantiation of a transaction template in P.

Example 3.1. Disregarding attribute sets, {R[t] R[v] R[q],
R[t] U[v], R[t] U[q]} is a set of transactions consistent with the
SmallBank templates as it contains an instantiation of Bal-
ance, DepositChecking, and TransactSavings. Furthermore,
{R[t] R[v] R[q] U[q′]} with q ̸= q′ is not a valid set of transac-
tions as the two final operations in WriteCheck should be on
the same object as required by the formalization. Typed vari-
ables effectively enforce domain constraints as we assume
that variables that range over tuples of different relations
can never be instantiated by the same value.

4. ROBUSTNESS
We define the robustness property [6] (also called accept-

ability in [9,10]), which guarantees serializability for all sched-
ules of a given set of transactions for a given isolation level.

Definition 4.1 (Transaction Robustness). A set T
of transactions is robust against RC if every schedule over
T that is allowed under RC is conflict serializable.

Balance:

R[X : Account{N, C}]
R[Y : Savings{C, B}]
R[Z : Checking{C, B}]
Y = fA→S(X), X = fS→A(Y)
Z = fA→C(X), X = fC→A(Z)

DepositChecking:

R[X : Account{N, C}]
U[Z : Checking{C, B}{B}]
Z = fA→C(X), X = fC→A(Z)

TransactSavings:

R[X : Account{N, C}]
U[Y : Savings{C, B}{B}]
Y = fA→S(X), X = fS→A(Y)

Amalgamate:

R[X1 : Account{N, C}]
R[X2 : Account{N, C}]
U[Y1 : Savings{C, B}{B}]
U[Z1 : Checking{C, B}{B}]
U[Z2 : Checking{C, B}{B}]
X1 ̸= X2,
Y1 = fA→S(X1), X1 = fS→A(Y1)
Y2 = fA→S(X2), X2 = fS→A(Y2)
Z1 = fA→C(X1), X1 = fC→A(Z1)
Z2 = fA→C(X2), X2 = fC→A(Z2)

WriteCheck:

R[X : Account{N, C}]
R[Y : Savings{C, B}]
R[Z : Checking{C, B}]
U[Z : Checking{C, B}{B}]
Y = fA→S(X), X = fS→A(Y)
Z = fA→C(X), X = fC→A(Z)

GoPremium:

U[X : Account{N, C}{I}]
R[Y : Savings{C, I}]
U[Y : Savings{C}{I}]
Y = fA→S(X), X = fS→A(Y)

Figure 2: Transaction templates for SmallBank.

T1

T2

T3

T4

T5

T6

b1 a1

b2a2

a3b3
a4b4

Figure 3: Multiversion split schedule.

Our characterization of transaction robustness for a set of
transactions T is based on counterexample schedules of a
very specific form, called multiversion split schedules. These
schedules are obtained by splitting a transaction T1 ∈ T into
two parts and interleaving other transactions T2, T3, . . . , Tm

with m ≥ 2 in between in a sequential fashion. If there are
any remaining transactions Tm+1, Tm+2, . . . , Tn in T , they
are placed at the end of the schedule in an arbitrary order.
For such a schedule s to be a valid multiversion split sched-
ule, we furthermore require that s is allowed under RC, and
that there is a dependency in s from transaction Ti to trans-
action Ti+1 for all i ∈ {1, . . . ,m−1}, as well as a dependency
from Tm to T1. Figure 3 depicts a schematic multiversion
split schedule for m = 4, with arrows indicating the required
dependencies. In this figure, T5 and T6 depict trailing trans-
actions. Furthermore, schedules s2 and s3 in Figure 1 are
examples of multiversion split schedules.
By construction, a multiversion split schedule has a cycle

in its conflict graph CG(s), and is therefore not conflict se-
rializable. Since every multiversion split schedule is allowed
under RC, the existence of a multiversion split schedule for
a set of transactions T witnesses the fact T is not robust
against RC. The next theorem shows that the converse is
also true, i.e., if a set of transactions T is not robust against
RC, then we can always construct a multiversion split sched-
ule for T .

Theorem 4.2 ([16]). For a set of transactions T , the
following are equivalent:

1. T is not robust against RC;

2. there is a multiversion split schedule s for T .

Theorem 4.3 ([16]). Deciding robustness against RC
for a set of transaction is decidable in ptime.

Algorithm 1: Deciding transaction robustness against
RC.
Input : Set of transactions T
Output: True iff T is robust against RC

for T1 ∈ T do
for b1 a read operation in T1 do

G := prefix-conflict-free-graph(b1, T1, T \{T1});
TC := reflexive-transitive-closure of G;
for (T2, Tm) in TC do

for a1 ∈ T1, a2 ∈ T2, bm ∈ Tm do
if a1 conflicts with bm and b1 is
rw-conflicting with a2 and (b1 <T1 a1

or bm is rw-conflicting with a1) then
return False

return True

A polynomial time algorithm for deciding robustness that
cycles through all possible split schedules is presented as Al-
gorithm 1. Define prefix-conflict-free-graph(b1, T1, T), for a
transaction T1, an operation b1 ∈ T1 and a set of transac-
tions T with T1 ̸∈ T , as the graph containing as nodes all
transactions in T that do not contain a ww-conflict with an
operation in prefixb1(T1). Furthermore, there is an edge be-
tween two transactions Ti and Tj if Ti has an operation that
conflicts with an operation in Tj .

Let P be a set of transaction templates andD be a database.
Then, P is robust against RC over D if for every set of trans-
actions T that is consistent with P and D, it holds that T
is robust against RC.

Definition 4.4 (Template Robustness). A set of trans-
action templates P is robust against RC if P is robust
against RC for every database D.

Theorem 4.5 ([16]). Deciding robustness against RC
for a set of transaction templates is decidable in ptime.

An extension of Algorithm 1 is provided as Algorithm 2 in
[16]. The crux underlying the extension is that, although a
single transaction template can have infinitely many instan-
tiations, the concrete choice of tuples as well as the number
of different instantiations for the same template that need
to be considered to find a multiversion split schedule (if it
exists) is bounded.

U1[t] R1[v] U1[v] C1

U2[t
′] R2[v] U2[v] C2

T1:

T2:

Figure 4: Non-serializable schedule under RC.

5. FUNCTIONAL CONSTRAINTS
Tuples in a database instance are often related to each

other, for example through foreign keys. To capture such
data dependencies, we use unary functions mapping tuples
from one relation to tuples from another relation. Existence
of these functions can often be derived from the database
schema, but the precise mapping from tuples to other tuples
is always instance-specific.

Example 5.1. Reconsider the schema of the SmallBank
benchmark discussed in Section 2. To capture the dependen-
cies between tuples induced by the foreign keys, we use two
unary functions: fA→S maps a tuple of type Account to a tu-
ple of type Savings, while fA→C maps a tuple of type Account
to a tuple of type Checking. As Account(CustomerID) is
UNIQUE, every savings and checking accounts is associated to
a unique Account tuple. This is modelled through the func-
tions fS→A and fC→A with an analogous interpretation. For
database instance D1 introduced in Example 2.1, these func-
tions are defined as follows:

fA→S(t) = v fA→C(t) = q

fA→S(t
′) = v

′ fA→C(t
′) = q

′

fS→A(v) = t fC→A(q) = t

fS→A(v
′) = t

′ fC→A(q
′) = t

′

Transaction program instances often access various tuples
where some of them are related via such functions. For ex-
ample, every instance of the program GoPremium in our
running example first reads an Account tuple to look up
the CustomerID C for the given Name N and then updates
the Savings tuple with the corresponding CustomerID C
(cf. function fA→S). However, the formalism for transac-
tion templates introduced in Section 3 does not capture this
information, thereby allowing program instances that can-
not occur in practice, potentially leading to workloads that
are falsely identified as not robust against RC.

Example 5.2. Ignoring the functional constraints of tem-
plate GoPremium in Figure 2, Figure 4 shows a schedule
over two instances of GoPremium over database instance
D1. Since this schedule is allowed under RC but not seri-
alizable, we can conclude that {GoPremium} is not robust
against RC. Note however that T2 cannot occur in practice,
as the Account tuple t′ has a different CustomerID than the
Savings tuple v in D1.

To include these dependencies between different tuples in
a program instance, we extend transaction templates with
functional constraints. For a template τ with variables X

and Y and a function f , an equality constraint is an expres-
sion of the form X = f(Y), and a disequality constraint is an
expression of the form X ̸= Y. Intuitively, these functional
constraints reduce the number of possible instantiations of
a template. More formally, a transaction T over a database
D is an instantiation of a template τ , witnessed by a vari-
able mapping µ, if µ satisfies all functional constraints of

τ . That is, for every equality constraint X = f(Y) in τ ,
µ(X) = f(µ(Y)) holds in D and for every disequality con-
straint X ̸= Y in τ , we have µ(X) ̸= µ(Y).

Example 5.3. Reconsider transactions T1 and T2 over
database instance D1 in Example 5.2. The GoPremium
template in Figure 2 has two functional constraints: Y =
fA→S(X) and X = fS→A(Y). Transaction T1 is an instantia-
tion of GoPremium, as both v = fA→S(t) and t = fS→A(v)
hold in D1 (cf. Example 5.1). However, T2 is not an instan-
tiation of GoPremium, as v = fA→S(t

′) and t′ = fA→S(v)
do not hold in D1.

Functional constraints do not replace the more usual data
consistency constraints like key constraints, functional de-
pendencies or denial constraints, The latter are in-
tended to verify data consistency, whereas the former are
intended to verify whether a set of transactions instanti-
ated from templates are indeed consistent with these tem-
plates. The abstraction of functional constraints provides
a straightforward mechanism to capture dependencies be-
tween tuples implied by foreign key constraints but is not
limited to those. For the SmallBank benchmark, for exam-
ple, we can infer from the fact that Account(CustomerID)
is UNIQUE that each checking and savings account is associ-
ated to exactly one Account tuple, even though no foreign
key from respectively Checking and Savings to Account is
defined in the schema.

We say that a transaction template is a variable transac-
tion template when it does not contain any functional con-
straints and an equality transaction template when all con-
straints are equality constraints. We denote these sets by
VarTemp and EqTemp, respectively. For an isolation level I
and a class of transaction templates C, t-robustness(C,I)
is the problem to decide if a given set of transaction tem-
plates P ∈ C is robust against I. When C is the class of all
transaction templates, we simply write t-robustness(I).

Unfortunately, adding functional constraints to transac-
tion templates renders the robustness problem undecidable,
even when disequality constraints are not allowed:

Theorem 5.4 ([18]). t-robustness(EqTemp,RC) is
undecidable.

The proof is a reduction from Post’s Correspondence Prob-
lem (PCP) [15] and relies on cyclic dependencies between
functional constraints. We emphasize that robustness is de-
fined w.r.t. all possible database instances, instead of one
specific database instance. In particular, the undecidability
proof shows that there is no bound on the required minimal
size of a database instance required to construct a coun-
terexample, if such a counterexample exists.

To obtain decidable fragments, we introduce restrictions
on the structure of functional constraints. The schema graph
SG(Rels,Funcs) of a schema over the set of relations Rels
and with Funcs as the set of implied functions is a directed
multigraph having the relations in Rels as nodes, and in
which there are as many edges from a node R ∈ Rels to node
S ∈ Rels as there are functions f ∈ Funcs with dom(f) = R
and range(f) = S. We say that a schema is acyclic if the
multigraph SG(Rels,Funcs) is acyclic and that it is a multi-
tree if there is at most one directed path between any two
nodes in SG(Rels,Funcs).

P Q

R

S

fP,R

fQ,R

fR,S

fQ,S

Figure 5: Acyclic schema graph for a schema over four rela-
tions and four functions. If we remove function fQ,S (dashed
edge), the resulting schema graph is a multi-tree.

AccountSavings Checking

fA→S

fS→A

fA→C

fC→A

Figure 6: Schema graph for the SmallBank benchmark. The
dashed edges correspond to the multi-tree schema graph for
the schema restricted to fA→S and fA→C .

Example 5.5. Consider the schema over four relations
P , Q, R and S, and three functions fP,R, fQ,R, fR,S with
dom(fi,j) = i and range(fi,j) = j for each function fi,j.
The corresponding schema graph with solid lines is given in
Figure 5. This schema is a multi-tree, as there is at most one
path between any pair of nodes. Notice that the definition of
a multi-tree is more general than a forest, as a node can still
have multiple parents (e.g., node R in our example). Adding
the function fQ,S with dom(fQ,S) = Q and range(fQ,S) = S
results in the schema graph given in Figure 5 that is still
acyclic, but no longer a multi-tree as there are now two paths
from Q to S.

Figure 6 displays the schema graph for the SmallBank
benchmark that can be seen to be cyclic.

5.1 Templates admitting multi-tree bijectivity
Notice that the equality constraints for all templates in

the SmallBank benchmark in Figure 2 imply that the func-
tions fA→S and fS→A are bijections and act as each oth-
ers inverses. Indeed, for every occurrence of a constraint
Y = fA→S(X) in a template τ , there is a corresponding con-
straint X = fS→A(Y) in τ as well, and vice versa. For fA→C

and fC→A, the observation is analogous.
We say that a set of transaction templates admits multi-

tree bijectivity if we can partition the functions in pairs
(fi, gi) such that fi and gi are each others inverses (i.e.,
Y = fi(X) occurs in a template τ iff X = gi(Y) occurs in τ
as well), and every restriction of the schema graph obtained
by choosing a single function f from each pair (fi, gi) is a
multi-tree. We refer to [18] for a more formal definition of
multi-tree bijectivity. We denote the class of all sets of tem-
plates admitting multi-tree bijectivity by MTBTemp.

Example 5.6. The SmallBank benchmark admits multi-
tree bijectivity, witnessed by the partitioning {(fA→S , fS→A),
(fA→C , fC→A)} and the observation that every schema graph
obtained by removing either fA→S or fS→A, as well as either
fA→C or fC→A, is a multi-tree. For example, the schema
graph restricted to fA→S and fA→C is a tree and therefore
also a multi-tree, as shown in Figure 6.

The next theorem allows disequalities whereas Theorem 5.4
does not require them.

Warehouse District Customer Order

OrderLineStock
Figure 7: Acyclic schema graph for the TPC-C benchmark.

Theorem 5.7 ([18]). t-robustness(MTBTemp,RC)
is decidable in nlogspace.

The intuition behind the previous result is based on a non-
deterministic algorithm guessing the counterexample multi-
version split schedule by iteratively adding a new transaction
to the schedule, while maintaining a schedule allowed under
RC and without contradicting earlier functional constraints.
The crux of this approach relies on the fact that for this
fragment, the algorithm must keep track of only a constant
number of tuples per relation.

5.2 Templates over acyclic schemas
We denote by AcycTemp the class of all sets of transaction

templates over acyclic schemas. As a concrete example, the
schema graph for an abstraction of the TPC-C benchmark2

is given in Figure 7. Since this schema graph does not con-
tain any cycles, the TPC-C benchmark is situated within
AcycTemp. Notice in particular how this acyclic schema
graph corresponds to the hierarchical structure of many-to-
one relationships inherent to the schema for this benchmark.
For example, every OrderLine belongs to exactly one Order,
and every Order is related to exactly one Customer, but the
opposite is never true (i.e., a Customer can be related to
multiple Orders, each of which can be related to multiple
OrderLines). In general, the results presented in this sec-
tion can be applied to all workloads over schemas with such
a hierarchical structure.

Theorem 5.8 ([18]). t-robustness(AcycTemp,RC)
is decidable in expspace.

The underlying algorithm is similar to the one for The-
orem 5.7, but for this fragment the number of tuples that
must be maintained to avoid contradicting earlier functional
constraints can be exponential.

Lower complexities can be obtained by assuming further
restrictions on either the set of transaction templates or the
paths in the schema graph. Towards the former, notice that
from the instantiation of a variable X in a template τ with
a tuple from a database instance D, we can sometimes infer
the tuple from D that must be assigned to a variable Y in τ
if X is related to Y via one or more functional constraints in
τ . In that case, we say that X implies Y in τ . Informally, a
template is said to be restricted if for every combination of
variables X, Y, Z and W in τ with X implying Z and Y implying
W in τ , either Z implies W or W implies Z in τ . We denote by
AcycResTemp the class of all sets of restricted transaction
templates over acyclic schemas. A more formal definition of
restricted templates and the resulting class AcycResTemp
can be found in [18].

Theorem 5.9 ([18]).

2Since our formalism does not support predicate reads (cf.
Section 1), we modified the benchmark to only include key-
based lookups. More details, as well as the corresponding
transaction templates can be found in [19].

1. t-robustness(AcycResTemp,RC) is decidable in ex-
ptime.

2. t-robustness(AcycTemp,RC) is decidable in pspace
when the number of paths between any two nodes in the
schema graph is bounded by a constant k.

Regarding (1), all templates in TPC-C with the exception of
NewOrder are restricted. Regarding (2), when the schema
graph is a multi-tree then k = 1 and for TPC-C k = 2
(recall that in general there can be an exponential number of
paths), leading to a more practical algorithm for robustness
in those cases.

6. CONCLUSION
We presented a high level overview on our recent work on

deciding robustness against RC for transaction templates.
It should be clear that these techniques can only be used
when the set of allowed transaction templates is known be-
forehand (for instance, when exposed through an API) and
does not apply when completely arbitrary transactions can
be inserted. As already mentioned in the introduction, our
techniques only work when there is a fixed set of read-only
attributes that cannot be updated and which are used to
select tuples for update. We do not believe these restric-
tions can be easily lifted. Nevertheless, we do think that
the insights obtained through the study of transaction tem-
plates can aid in establishing sufficient (but no longer com-
plete) conditions for testing robustness against RC for gen-
eral transaction programs. We present some initial results
in this direction in [20].

A pertinent question is what can be done when a set of
transaction templates is found not to be robust against RC.
In [16], we present a template modification technique based
on the insight that an equivalent set of transaction tem-
plates robust against RC can be created by promoting R-
operations to U-operations that write back the read value.
Such a change does not alter the effect of the transaction
templates, but the newly introduced write operation will
trigger concurrency mechanisms in the database. Alomari
and Fekete [2] presented a modification technique that re-
lies on adding new tuples to the database that act as locks
for problematic combinations of transactions, thereby en-
forcing that these transactions cannot be interleaved with
each other and therefore ensuring robustness against RC. A
completely different approach is to no longer require that
all transactions have to be executed under the same isola-
tion level but only assign stricter isolation levels to prob-
lematic transactions. The corresponding allocation problem
has been investigated on the level of transaction for Snap-
shot Isolation and Two-phase Locking [9] and RC, Snapshot
Isolation, and Serializable Snapshot Isolation [21]. It would
be interesting to investigate the allocation problem in the
context of transaction templates.

Acknowledgments
This work is partly funded by FWO-grant G019921N.

7. REFERENCES
[1] M. Alomari, M. Cahill, A. Fekete, and U. Rohm. The

cost of serializability on platforms that use snapshot
isolation. In ICDE, pages 576–585, 2008.

[2] M. Alomari and A. Fekete. Serializable use of read
committed isolation level. In AICCSA, pages 1–8,
2015.

[3] S. M. Beillahi, A. Bouajjani, and C. Enea. Checking
robustness against snapshot isolation. In CAV, pages
286–304, 2019.

[4] S. M. Beillahi, A. Bouajjani, and C. Enea. Robustness
against transactional causal consistency. In CONCUR,
pages 1–18, 2019.

[5] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL
isolation levels. In SIGMOD, pages 1–10, 1995.

[6] G. Bernardi and A. Gotsman. Robustness against
consistency models with atomic visibility. In
CONCUR, pages 7:1–7:15, 2016.

[7] A. Cerone, G. Bernardi, and A. Gotsman. A
framework for transactional consistency models with
atomic visibility. In CONCUR, pages 58–71, 2015.

[8] A. Cerone, A. Gotsman, and H. Yang. Algebraic Laws
for Weak Consistency. In CONCUR, pages 26:1–26:18,
2017.

[9] A. Fekete. Allocating isolation levels to transactions.
In PODS, pages 206–215, 2005.

[10] A. Fekete, D. Liarokapis, E. J. O’Neil, P. E. O’Neil,
and D. E. Shasha. Making snapshot isolation
serializable. ACM Trans. Database Syst.,
30(2):492–528, 2005.

[11] Y. Gan, X. Ren, D. Ripberger, S. Blanas, and
Y. Wang. Isodiff: Debugging anomalies caused by
weak isolation. PVLDB, 13(11):2773–2786, 2020.

[12] B. Ketsman, C. Koch, F. Neven, and B. Vandevoort.
Deciding robustness for lower SQL isolation levels. In
PODS, pages 315–330, 2020.

[13] B. Ketsman, C. Koch, F. Neven, and B. Vandevoort.
Concurrency control for database theorists. SIGMOD
Rec., 51(4):6–17, jan 2023.

[14] C. H. Papadimitriou. The Theory of Database
Concurrency Control. Computer Science Press, 1986.

[15] E. L. Post. A variant of a recursively unsolvable
problem. Bull. Amer. Math. Soc., pages 264–268, 1946.

[16] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Robustness against read committed for transaction
templates. PVLDB, 14(11):2141–2153, 2021.

[17] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Robustness against read committed: A free
transactional lunch. In PODS, pages 1–14. ACM, 2022.

[18] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Robustness against read committed for transaction
templates with functional constraints. In ICDT,
volume 220 of LIPIcs, pages 16:1–16:17, 2022.

[19] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Robustness against read committed for transaction
templates with functional constraints (full version).
https://arxiv.org/abs/2201.05021, 2022.

[20] B. Vandevoort, B. Ketsman, C. Koch, and F. Neven.
Detecting robustness against MVRC for transaction
programs with predicate reads. To appear in EDBT,
2023.

[21] B. Vandevoort, B. Ketsman, and F. Neven. Allocating
isolation levels to transactions in a multiversion
setting. Manuscript, 2022.

https://arxiv.org/abs/2201.05021

	Introduction
	Definitions
	Transaction Templates
	Robustness
	Functional Constraints
	Templates admitting multi-tree bijectivity
	Templates over acyclic schemas

	Conclusion
	References

