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Abstract
When creating and maintaining programs, software developers make use of version con-
trol software to store different versions of the source code. Version control software uses
commits as building blocks. Commits play a dual role: they represent a version of the
software program at a certain point in time; they also represent the changes compared
to the preceding version of the program.

In this dissertation, we investigate two types of commits that are harder for developers
to understand. First, we consider composite commits. Composite commits group many
unrelated changes. The changes target different tasks, such as fixing a bug or introducing
a new feature. Besides being harder to understand, composite commits also prove harder
for software developers to revert or integrate and for empirical researchers to analyse.
Second, we consider merge commits. Versions of the program start to diverge when dif-
ferent developers work on different features or bug fixes. A merge commit recombines
divergent versions. An overlap in source code or an interaction in behaviour demands
a resolution from the software developer, requiring them to understand the source code
of the different versions.

We propose an algorithmic foundation for tool support for these two types of prob-
lematic commits. Our first algorithm untangles composite commits using a data flow
driven approach. Our algorithm considers a programdependence graph andfine-grained
changes to the abstract syntax tree. The algorithm groups fine-grained changes accord-
ing to the program dependence graph slices they belong to. Our second algorithm ana-
lyses merge commits using a control flow driven approach. It uses symbolic execution to
gather path conditions of the different versions of the program. We define the program
semantics in function of these path conditions. The path conditions are checked against
rules that indicate presence of a semantic merge conflict.

We evaluate both algorithms. By analysing, refining, and using an established data-
set of composite commits, we find our untangling algorithm can determine whether a
commit is composite. The groups of fine-grained changes tend to be smaller than the
commit’s tasks, but stay within their boundaries. We evaluate our semantic merge con-
flict detection algorithm in two ways. First, we evaluate its correctness through mutation
testing. Second, we evaluate it empirically by applying it to real-world merges. We dis-
cuss challenges in the empirical evaluation of semantic merge conflicts. Our evaluation
shows that in specific cases our approach is a promising extension to existing mechan-
isms in semantic merge conflict detection.

iii





Samenvatting
Bij het schrijven en onderhouden van programma’s gebruiken softwareontwikkelaars
versie controle software om verschillende versies van de broncode op te slaan. Versie
controle software gebruikt commits als bouwstenen. Commits hebben een dubbele rol:
ze representeren een versie van het programma op een zeker tijdspunt; ze representeren
ook de veranderingen ten opzichte van de vorige versie van het programma.

In deze dissertatie onderzoeken we twee types commits die moeilijker verstaanbaar
zijn voor ontwikkelaars. Eerst kijken we naar samengestelde commits. Samengestelde
commits groeperen verschillende ongerelateerde veranderingen. De veranderingen be-
handelen verschillende taken, zoals het herstellen van een bug of het toevoegen van een
eigenschap. Behalve moeilijker verstaanbaar te zijn, zijn samengestelde commits ook
moeilijker voor ontwikkelaars om ongedaan te maken of te integreren en voor onder-
zoekers om te analyseren. Ten tweede behandelen we samenvoegcommits. Versies van
het programma divergeren wanneer verschillende ontwikkelaars aan verschillende ei-
genschappen werken of bugs herstellen. Een samenvoegcommit voegt de gedivergeerde
versies weer samen. Indien de broncode overlapt of het gedrag mekaar beïnvloedt, dan
moet de ontwikkelaar een oplossing voorzien na eerst de broncode van de verschillende
versies te begrijpen.

Wij stellen een algoritmische onderbouwing voor hulpmiddelondersteuning voor bei-
de types van problematische commits voor. Ons eerste algoritme ontwart samengestelde
commits aan de hand van een dataverloop gebaseerde aanpak. Ons algoritme gebruikt een
programma afhankelijkheidsgraaf en fijnmazige veranderingen aan de abstracte syntax-
boom. Het algoritme groepeert de fijnmazige veranderingen op basis van de stukken
uit de programma afhankelijkheidsgraaf waar ze toe behoren. Ons tweede algoritme
analyseert samenvoegcommits aan de hand van een controleverloop gebaseerde aanpak.
Het gebruikt symbolische executie om padcondities van de verschillende versies van het
programma te verzamelen. We definiëren de programmasemantiek in functie van deze
padcondities. De padcondities worden vergeleken met regels die de aanwezigheid van
een semantisch samenvoegsconflict aanduiden.

We evalueren beide algoritmes. Door het analyseren, verfijnen en gebruiken van een
erkende dataset van samengestelde commits besluiten we dat ons ontwaralgoritme kan
vaststellen of een commit samengevoegd is. De groepen fijnmazige veranderingen zijn
over het algemeen kleiner dan de taken in de commit, maar blijven erdoor begrensd. We
evalueren ons semantisch samenvoegsconflictalgoritme op twee manieren. Eerst evalu-
eren we de correctheid aan de hand van mutatietesten. Ten tweede evalueren we het
empirisch door het toe te passen op echte samenvoegcommits. We beschrijven ook uit-
dagingen bij het empirisch evalueren van semantische samenvoegsconflicten. Onze eva-
luatie laat zien dat onze aanpak in specifieke gevallen een veelbelovende uitbreiding is
op bestaande mechanismen.
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An Meine Freude
Tune: Chanson de Bicêtre, as sung in student folklore at the VUB and ULB.

Somewhere near Philly, I found my silly
Though now my wife, I can’t tame her, no still she
Is in control of the things that we do
All for the best or boredom would ensue!
Yes I must say: what a life we are living
Crossing the ocean, it leads to thanksgiving

Oh Tina, what do you do?
Making me smile, when I don’t want to
Oh Tina, what do you do?
No escape now, it’s me and you

Hailing from China, parents left the nation
Brought to the US, much to my elation
對不起, 但我不会说中文¹
Même en français ce serait comme une peine
Nee geef me dan toch maar Nederlands praten
Dat het nu Engels is, kan ik niet haten

Refrain

We have new adventure, right on the horizon
Your land of corn syrup, handegg, bison bison
Road trips abound, national parks, see you there
Roses in your hand and jasmine in your hair
Lacking all that we will still have each other
Living to the fullest with my sweetheart, my lover

Refrain

¹Duìbùqǐ, dàn wǒ bù huì shuō zhōngwén.
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Chapter 1

Introduction
When creating and maintaining programs, software developers need to store and
manage many different versions of the source code. As one developer works on
a new feature, another may be fixing a bug; each developer is working on their
own version. Released versions of the program are also kept, in case a bug fix
needs to be backported. A developer may also just want to keep the code around
before making a bigger change, in case the change does not pan out.

To handle these different versions, version control software was first developed
through ad hoc in-house solutions at least as far back as the 1960s, e.g., with IBM’s
CLEAR [22]. In the 1970s, Bell Labs developed the Source Code Control System
(SCCS) [137]. The Revision Control System (RCS) was introduced in 1982, build-
ing on SCCS’s ideas [156, 157, 158] and introducing the concepts of branching
and merging. In 1986, the Concurrent Versions System (CVS) was built on top
of RCS [62]. Contrary to SCCS and RCS, CVS manages the entire software pro-
ject and its history as one entity: the repository. CVS works in a client-server
setup, with one server managing the repository and users connecting to it to re-
quest a certain version. CVS dominated the version control software landscape
throughout the 1990s and early 2000s. Subversion (SVN) was released in 2004
to solve many of the bugs and pitfalls CVS had to deal with [31]. SVN soon took
over the top spot from CVS. As this was happening, a distributed approach to
version control software was gaining prominence in the early 2000s, pioneered
by BitKeeper [102, 103, 104] and Arch [97, 136]. In 2005, BitKeeper removed
their community edition aimed at open source developers, which at the time was
used by the Linux kernel. Linus Torvalds, author of the Linux kernel, decided to
develop his own version control software: Git [159]. Git grew in popularity and
is now by far the most popular version control software in use [79, 123].

Git uses the commit as a building block. A commit plays a dual role: it rep-
resents a version of the program at a certain point in time; it also represents
the changes compared to the previous version of the program. In combination
with its distributed nature, Git enables developers to work in parallel, to revert
changes, to apply changes across different branches, and to do all of this in a
structured manner.
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Chapter 1 Introduction

1.1 Problem Statement

The commit is the building block in modern version control software. This in
turn makes it a necessary focus of practitioners. We provide some examples.
Developers share commits with one another to publish their changes, deal with
commits when reverting a change, can pick certain commits out of the history to
reapply them in other situations, and can perform various other commit-based
version control software features. Reviewers evaluate changes per commit or set
of commits. Researchers analyse the history of a project by looking at the timeline
of commits [77], look for patterns in commits [150], or draw other conclusions
from commits.

In that light, any perceived flaw or shorting of a commit haswide-reaching con-
sequences. Consider, for example, the following two types of problematic com-
mits. First, consider a composite commit, a commit that groups many unrelated
changes. The changes target multiple tasks, such as fixing a bug, introducing
a new feature, or performing a refactoring of the code. This makes a composite
commit harder to understand than a commit performing just one task: a reviewer
or other developer needs to distinguish which parts of the code belong together
themselves [18, 61, 89, 154]. Composite commits also pose problems when want-
ing to revert or integrate the changes of just one of the tasks contained within.
Composite commits are also harder for researchers to analyse [64, 66, 88, 108,
109, 119]. Second, consider merge commits. As developers work on different fea-
tures or bug fixes, the different versions of the programs start to diverge. The
different versions are recombined in a merge commit. The merge commit is thus
the point where two different pieces of code first interact. This can lead to a tex-
tual overlap in the changes, a syntactic flaw in the combined code, or semantic
conflicts as the behaviour creates unintended interactions [105].

Some of the issues related to problematic commits can be avoided by having
developers adhere to proper practices. One can spend extra time working with
their Git client to split up changes into different commits rather than committing
everything at once. One can maintain an extensive test suite and use a continu-
ous integration pipeline to detect issues with merge commits [114]. The upfront
time and effort that need to be put into these proper practices are clear to the
developer, but their long term gains may not be obvious. As such, developers do
not necessarily follow proper practices, leading to problems down the line.

Tomitigate these issues, we thus require automated techniques for problematic
commits that enable us to reap the benefits of proper practices without requiring
the same level of developer time and effort. Because code has semantic meaning,
such techniques inherently require having a certain understanding or model of
that semantic meaning in order to correctly create or validate commits.

2



1.2 Overview of the Approach

The research in this dissertation is guided by the following statement:

We hypothesise that many of the issues caused by problematic commits can be avoided
by means of tool-supported identification and resolution of these problematic commits.
These techniques must be able to reduce some of the time and effort developers need to
invest applying proper practices beforehand or resolving issues afterwards.

1.2 Overview of the Approach

We approach two types of problematic commits from two different angles. The
types of problematic commits we consider are the two types discussed in the
previous section: composite commits and merge commits. We investigate a data
flow driven approach for one type and a control flow driven approach for the
other.

For composite commits, we propose an untangling algorithm using a data flow
driven approach. The algorithm uses fine-grained changes and slicing in pro-
gram dependence graphs. Based on the program dependence graph slices they
belong to, the changes are grouped together. Weposit that these groups of changes
can be used to identify the different tasks present in the composite commit, thus
enabling the application of this technique prior to creating commits or post hoc
to untangle existing commits.

In merge commits, we specifically target those where semantic merge conflicts
occur: conflicts where the merge seems to have completed successfully, but an
interaction in behaviour of the different branches leads to bugs that are not dis-
covered until triggered by the test suite or, worse, a user. We propose a detection
algorithm for semanticmerge conflicts using a control flow driven approach. The
algorithm uses symbolic execution to obtain path conditions from the different
versions of the program. We define program semantics in terms of these path
conditions. The algorithm checks the path conditions against rules that indic-
ate whether a semantic merge conflict is present. The developer is warned when
this is the case and provided the offending path conditions in order to locate the
potential conflict.

1.3 Contributions

We make the following main contributions:

1. Design an automated approach to detect and untangle composite commits.
The approach is based around the idea of creating a slice around the fine-
grained changes made to an abstract syntax tree. The approach first con-
siders which parts of the abstract syntax tree are affected by a change. The
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Chapter 1 Introduction

approach then slices around the corresponding nodes in a programdepend-
ency graph. Overlap in the slices is used to decide whether the changes
belong together.

2. The refinement of an existing dataset of composite commits from five Java
projects. We perform an automated cleaning step and a manual verific-
ation. We use this dataset to evaluate a prototype implementation of our
commit untangling technique. The dataset can be used by other researchers
working with composite commits.

3. A large-scale study into the prevalence of syntactic and semantic merge
conflicts. We combine data from Github and Travis CI to attain build status
information of merge commits and their parents. We report on the preval-
ence of syntactic and semantic merge conflicts, the effort and time involved
in fixing them, and the parts of a project the effort is situated in. The list of
used projects and the derived list of fixing commits was made available to
researchers desiring further study.

4. An automated approach to detecting semantic merge conflicts by means of
symbolic execution. Symbolic execution is used to analyse every version
in a merge. The path conditions produced by the symbolic execution are
combined based on equivalency across versions. The combinations are val-
idated against rules that recognise the presence of a semantic merge con-
flict.

5. An alternative approach to detecting semantic merge conflicts in the full
revision history of a project. This approach centres around locating bug
fixing commits that can be linked to themerge commit. The semanticmerge
conflicts found this way are used in the evaluation of the previous point.

6. Prototype implementations of contributions 1 and 4, available via [113].
Both prototypes are written in Java and target Java code. The prototypes
were used to evaluate the approaches they implement.

1.4 Supporting Publications

• Ward Muylaert and Coen De Roover. ‘Untangling Source Code Changes
Using Program Slicing’. In: BElgian-NEtherlands software eVOLution sym-
posium (BENEVOL). ed. by Serge Demeyer, Ali Parsai, Gulsher Laghari and
Brent van Bladel. Vol. 2047. CEUR Workshop Proceedings. CEUR-WS.org,
2017, pp. 36–38. url: https://ceur-ws.org/Vol-2047/BENEVOL_2017_
paper_10.pdf

4

https://ceur-ws.org/Vol-2047/BENEVOL_2017_paper_10.pdf
https://ceur-ws.org/Vol-2047/BENEVOL_2017_paper_10.pdf


1.4 Supporting Publications

In this publication, we describe a first tentative idea towards untangling
composite commits. This idea was further worked out and presented in
the publication that follows.

• Ward Muylaert and Coen De Roover. ‘Untangling Composite Commits Us-
ing Program Slicing’. In: 18th International Working Conference on Source
CodeAnalysis andManipulation (SCAM). IEEEComputer Society, Sept. 2018,
pp. 193–202. doi: 10.1109/SCAM.2018.00030

In this publication, we analyse the problem posed by composite commits.
The publication proposes an automated approach to untangling composite
commits into clusters of related changes. The approach uses fine-grained
changes between two versions of a program. These fine-grained changes
are combined with information from a program dependence graph. The
concept of slicing in a programdependence graph is adapted to slice around
the fine-grained changes. The fine-grained changes are then grouped to-
gether based on the produced slices. This grouping finally determines how
to untangle the composite commits. We will describe the problems caused
by composite commits in Section 3.1. We will describe our untangling ap-
proach and its evaluation in Chapter 4.

• Ward Muylaert and Coen De Roover. ‘Prevalence of Botched Code Integ-
rations’. In: 14th International Conference on Mining Software Repositories
(MSR). ed. by Jesús M. González-Barahona, Abram Hindle and Lin Tan.
IEEE Computer Society, May 2017, pp. 503–506. doi: 10.1109/MSR.2017.
40

In this publication, we look into the prevalence of syntactic and semantic
merge conflicts on a large scale. By combining data fromGithub, a software
repository host, and Travis CI, a continuous integration service, we obtain
information on the build status ofmerge commits and their parents across a
wide range of projects. Based on this information, we analyse the frequency
of syntactic and semantic merge conflicts, the effort required to fix such
conflicts, and the parts of the code the effort focuses on. We will describe
this analysis and its results in Chapter 5.

• WardMuylaert, Johannes Härtel and Coen De Roover. ‘Symbolic Execution
to Detect Semantic Merge Conflicts’. In: 23rd International Working Confer-
ence on Source CodeAnalysis andManipulation (SCAM). ed. by LeonMoonen,
Christian D. Newman andAlessandra Gorla. IEEE, Oct. 2023, pp. 186–197.
doi: 10.1109/SCAM59687.2023.00028
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Chapter 1 Introduction

In this publication, we consider the problem of semantic merge conflicts.
We first define merge conflicts in function of a property of each of the four
parts of a merge. Using symbolic execution, we instantiate this property
as a description of the behaviour of a program. With the merge conflict
definition and this semantic description, we then propose an approach to
detect semantic merge conflicts. We will describe the problems caused by
semantic merge conflicts in Section 3.3. We will describe the approach and
its evaluation in detail in Chapter 6.

1.5 Dissertation Outline

Chapter 2: Background
In this chapter, we start by motivating the use of version control software.
We then provide a walk through the history of version control software and
how it evolved from its beginnings to the current most-used one: Git. We
follow this up by a deep dive into Git, its concepts, and terminology. We
finish the chapter by describing three existing techniques that wewill apply
in later chapters: first, we look at program dependence graphs, which we
use in Chapter 4; next, we look at slicing on those program dependence
graphs, also used in Chapter 4; and finally, we describe symbolic execution,
which we apply in Chapter 6.

Chapter 3: Problematic Commits
We describe two types of commits that have negative effects on developers,
researchers, and other practitioners. First, we discuss composite commits,
commits that combine many unrelated changes. We describe in what man-
ner composite commits negatively affect practitioners and discuss research
analysing their prevalence. This sets up Chapter 4, where we propose an
approach to automatically untangle composite commits. Second, we dis-
cuss different types of merge conflict and then focus on semantic merge con-
flicts in particular. In a semantic merge conflict, merging code together
from different branches may appear to have succeeded, but the interaction
of behaviour leads to bugs that are not caught until the code is executed.
We describe how these conflicts affect developers. We perform a study into
the prevalence of merge conflicts in Chapter 5. We propose an automated
approach to detecting semantic merge conflicts in Chapter 6.

Chapter 4: Untangling Composite Commits Using Program Slicing
In this chapter, we propose an algorithm to untangle composite commits
using a data flow driven approach. Our approach combines two main con-
cepts: (1) distilling fine-grained changes between the abstract syntax trees
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1.5 Dissertation Outline

of two versions of a programand (2) slicing in a programdependence graph.
We define slicing around a fine-grained change. Our approach applies this
definition to group the fine-grained changes together based on the pro-
duced slices. We develop a prototype implementing our approach. To eval-
uate our technique, we analyse and refine an established dataset of Java
commits. We find that our algorithm can determine whether or not a com-
mit is composite. When untangling the commit, we find that the groups
of fine-grained changes tend to be smaller than the different tasks making
up a composite commit. Groups do, however, stay within their respective
tasks.

Chapter 5: Prevalence of Merge Commits
Following the discussion of different types of merge conflicts in Chapter 3,
we look into the prevalence of syntactic and semantic merge conflicts on
a large scale. By combining data from Github, a software repository host,
and Travis CI, a continuous integration service, we obtain information on
the build status of merge commits and their parents across a wide range
of projects. We find merge commits lead to failure less often than regu-
lar commits. Repairing the code usually happens the same day, in fewer
than ten lines, and primarily involves editing source code as opposed to
test code. Applying proper practices, e.g., maintaining an extensive test
suite, may take time and effort, but our results indicate they mitigate many
issues associated with code integration.

Chapter 6: Symbolic Execution to Detect Semantic Merge Conflicts
In this chapter, we present an automated approach to detecting semantic
merge conflicts using a control flow driven approach. We define program
semantics in terms of the path conditions produced by a symbolic execu-
tion engine. Our approach checks whether the path conditions satisfy es-
tablished rules that indicate a merge conflict. We develop a prototype that
warns developers in the case of semantic merge conflicts. To evaluate our
approach, we first perform a retroactive study to classify semantic merge
conflicts using heuristics. The results of the retroactive study are used to
evaluate our proactive detection of semantic merge conflicts. The evalu-
ation shows our approach to be a promising complement to existing tech-
niques for detecting semantic merge conflicts.
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Chapter 2

Background
In this chapter, we provide some general background and context to the topics
that are discussed in the rest of this dissertation: we detail version control soft-
ware, program dependence graphs, and symbolic execution.

First, we briefly discuss a situationmotivating why developers use version con-
trol software, such as Git. Second, we detail different approaches to version con-
trol software through its history. This is done to increase understanding of design
decisions in Git. Third, we go deeper into how Git works, what terminology is
common in its usage, as well as discussing some of the developments currently
being explored to improve the common approach to version control software. Git
is currently the most used version control software [79, 123] and the work in this
dissertation is evaluated on projects managed in Git. Fourth, we detail program
dependence graphs, which see heavy use in Chapter 4. Finally, we introduce
symbolic execution, which is used in Chapter 6.
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Chapter 2 Background

2.1 Why Version Control Your Software?

When developing and publishing software alone or as part of a larger team, it is
easy to end up with many largely identical versions of the same application. This
quickly leads to the lack of an overview and the inability to keep track of these
versions.

Consider a situation where a developer has released version 1.0.0 of an ap-
plication to the public. The developer continues working on the application to
add a new feature for a future version 1.1.0 release. A user discovers a bug
in the released version. The developer fixes the bug in the source code of the
first released version so a new version, 1.0.1, can be released. This version does
not include the in-progress work on the feature as it is not yet ready for release.
Instead, the developer also ports the bug fix to their in-progress 1.1.0 version.
Some time later, the developer decides they need to refactor the work on the new
feature. Afraid something might go wrong, the developer keeps a copy of the
source code before starting the refactoring. After the refactoring and some fur-
ther improvements, the feature is ready and the developer releases version 1.1.0.
The application is a success and the developer hires a second developer to speed
up adding new features and fixing bugs. Both developers set to work on differ-
ent new features for the application. As they do not want their work interfering
with one another before it is finished, they keep their versions separate. When
both features have been completed, the developers determine which parts of the
source code need to be combined in order to release the next version which will
contain both features.

As shown, even when working alone a developer may find themself needing to
manage and support different stable released versions, an unreleased develop-
ment version, a version currently being tested, or other versions of the software
they are working on. When developers work together on the same software, the
problem ofmanaging different versions is exacerbated. Each developer may have
their own local versions as they work on different features, fix bugs, or perform
other software development related tasks.

To help developers with the management of different versions, version control
software was created. Not only does version control software help developers
store different versions, version control software also keeps track of connections
between different versions, metadata describing different versions, moving code
across different versions, and several other features.
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2.2 Version Control Software History

2.2.1 Ad Hoc Solutions

The first documented references we could find concerning the creation of ver-
sion control software describe ad hoc in-house solutions in the 1960s [22]. One
such example is CLEAR and its extended version CLEAR-CASTER, developed at
IBM [22]. CLEAR made use of the concept of “deltas”, changes that were kept
separate from the original source text. CLEAR was, however, never publicly re-
leased nor was it described in detail. Indeed, even further details of the exact
representation of the deltas are unclear. The authors described CLEAR-CASTER
as “requiring extra machine time, which has to be balanced against the benefits
that might accrue in the long run to a complete development project. We haven’t
proved yet, one way or the other, whether it will significantly reduce the time
taken to complete a project.” [22].

2.2.2 Local File-Based

The first published research of an approach to version control software was in
1975 with the Source Code Control System (SCCS) [137]. SCCS first saw devel-
opment and usage in 1972 at Bell Labs. SCCS, like CLEAR, uses the concept of
deltas applied to a previous version of a file. Note that SCCS has no concept of
an entire project, the version control is on a file basis. The authors argued using
deltas, instead of the entire source code for every point in time, was necessary to
manage disk space while attempting to keep a record of every version of every
file. A delta in SCCS consists of the lines inserted and deleted by that change.
A move of lines of code is described in terms of insertions and deletions as well.
A textual reason for the delta also has to be added by the developer creating the
delta.¹ The deltas are sorted through a version identifier of the form x.y. The
x represents the release number, the y a level within the release. All the deltas
form a list, sorted by their release number, then by their level, both from lowest
to highest. This is depicted in Figure 2.1. Internally, the deltas are not stored
separately, but instead more on a line-per-line basis for a certain file. Thus a
file internally starts with just the exact source in version 1.1. As new revisions
are added, the file gradually grows with sections stating things such as “this line
added in version 1.5” or “this line deleted in version 2.3”. When a developer
needs to get the source code for a certain release (or level within a release), SCCS
builds the correct source code by going through the file that is requested and

¹The authors note that “The quality of the reason (like the quality of the change itself) depends
on the conscientiousness of the programmer. Reasons like ‘Trouble Report 5576: change SUM
header’ are what one likes to see. Sometimes, unfortunately, one sees instead things like ‘An-
other bug’ or ‘Tried again’.”. This will still be familiar to anyone working with version control
software.
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1.1 Δ1.2 Δ1.3 Δ1.4 Δ2.1 Δ2.2

Figure 2.1: Depiction of the chain of deltas used in SCCS [137]. A new delta for
release 2, delta 2.3, would be added at the very end of the chain. A
new delta for release 1, delta 1.5, would be added after delta 1.4.
Delta 1.5 would not be used when determining the source code for
release 2. Reproduction of a figure in the original paper.

apply the deltas as needed. This approach makes the complexity to get a file at
a certain revision independent of when that revision was made. The approach
does, however, make the complexity grow as the number of revisions increases.
Conceptually, new deltas can only be added to the end of the release they belong
to. In case this release is not the most recent one, they are entered within the
chain of deltas, prior to the deltas of subsequent releases. SCCS then knows not
to apply that particular delta in case the source for a subsequent release is asked
for by a developer. After all, a freshly inserted delta may invalidate those that
follow it. SCCS also has what it calls optional deltas. Optional deltas only get
applied when explicitly asked for by the user. The idea behind this was to enable
temporary fixes for a specific customer. Optional deltas and the ability to add a
delta to the previous release thus enable a primitive form of explicitly splitting
up the history of the source code.

The Revision Control System (RCS) was introduced in 1982 and builds on the
approach employed in SCCS [156, 157, 158]. Just like in SCCS, editing a file in
RCS requires checking the file out of the version control system, making your
edits, and then checking it back into the system. To prevent issues due to two
people editing the same file, checking out a file also means taking a lock on said
file.² This in turn makes it clumsy for a team to work on a project. One might
have to wait a while before being allowed to start editing a file. To get around
this limitation, RCS introduced branching and merging. In the RCS model, a line
of revisions is called a branch. There is one main line, referred to as the trunk.
Different branches may sprout (“fork”) from the trunk or from other branches.
Thus a tree of revisions is created. Two branches A and B can be merged together
again by the developer. Due to the tree structure, they have a common point
from which both branches ultimately sprouted. To merge A and B together, RCS
considers changes since that common point. The changes that happened since

²While not explicitly mentioned in [137], we believe SCCS worked in the same manner.
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that common point to branch B are applied to branch A. If there is an overlap
between the changes in both branches, RCS cannot decide what is desired. In-
stead, the developer needs to resolve the issue by manually editing the result.

Internally, RCS’s approach to storing deltas is different from the one employed
by SCCS. Tichy [156] refers to SCCS’s approach as “merged deltas”, whereas RCS
uses “separate deltas”. In the separate deltas approach, one initial revision is
kept as-is in the version control software. Every other revision then has a delta
describing the changes to the revision one step closer to the initial revision. Thus
to get the file at a certain revision, the version control software needs to start from
the initial revision and then apply every delta between the initial revision and the
desired revision. There are twoways to implement the concept of separate deltas:
(1) forward direction, where the oldest revision is kept as is and newer versions
are made with deltas building on it and (2) backwards direction, where the re-
verse is true. Grune [62] use the terms positive and negative deltas, respectively,
instead. RCS uses a backwards direction on the trunk, reasoning that the most
recent version is the one that will be accessed most often. Getting the most re-
cent revision does not require any processing since it is kept as-is. Getting older
revisions however does increase in complexity the further back in the history the
revision is. For branches other than the trunk, RCS uses forward direction from
the point where the branch separates from the trunk. Thus to get the most recent
revision on a branch, RCS needs to start at the most recent version from trunk,
apply backward deltas to get back to the point of separation, then apply forward
deltas to reach the correct revision. All this juggling with deltas is done to avoid
having to store too many full versions of a file on disk, which was expensive at
the time.

2.2.3 Client-Server Repository-Based

In 1986, Dick Grune built a first version of the Concurrent Versions System (CVS)
on top of RCS [62]. Rather than working per file as RCS did, CVS considers the
entire software project and its history as one entity. The entity is called a reposit-
ory. The repository keeps track of what files are in it, though CVS does not track
file metadata or renaming of files. A developer, interested in making changes,
gets a revision from the repository, which results in them obtaining a local ver-
sion of all the tracked files at that revision. Just like RCS, CVS supports branches
separating from a main branch called trunk. As with RCS, the assumption is that
most of the work happens on the latest revision of the trunk. As mentioned, CVS
is built on top of RCS, using it to handle the versioning of individual files in the
repository. Grune posits this is an implementation detail and not inherent to the
CVS approach.

CVS changes the approach to locking files. In RCS, a developer obtained a lock
on a file when getting a revision of the file. Thus, nobody else could attempt to
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create a new revision for that file until the lock was released by that developer. In
CVS, this is no longer the case. Two developers can both both get the same revi-
sion, version O, from the repository and make their local changes to it, creating a
version A and a version B. When the first developer updates the repository with
their version A, the update proceeds as usual. When the second developer at-
tempts to update the repository with their changes, however, CVS does not allow
it. Instead, the second developer needs to bring their local copy up to date with
the new source of truth, i.e., version A. To do so, CVS employs the same strategy
as was used by RCS to merge branches together. CVS considers the lines changed
by versions A and B compared to the revision they both started from. If there
is no overlap in the changed lines, the local version B is adjusted such that its
changes are described in terms of version A. If there is an overlap, a concurrency
conflict and its location are reported to the developer who is expected to resolve
the conflict. Once any such conflict is resolved, the second developer can update
the repository with their version B, which now follows version A.

At first just a collection of shell scripts, CVS was picked up and fleshed out
by Brian Berliner. In 1990, Berliner published a version of CVS rewritten from
scratch in C. The improved portability gained from this led to CVS quickly being
picked up by users [14, 15]. Later improvements saw CVS take on a client-server
model in 1993, which enabled the development of software by developers spread
over the entire world. In thismodel, the server hosts the repository. Creating new
revisions requires the developer to connect to the server. The introduction of this
model was a boon to the burgeoning free softwaremovement andCVS dominated
the version control software landscape throughout the 1990s and early 2000s.

CVS was, however, not without its flaws and bugs. To that end, a company
called CollabNet kickstarted work on a new version control software by hiring
some people intimately familiar with CVS [31]. The new project was called Sub-
version (SVN), was also open source, and work on it was started in 2000. One
of the goals was to keep the interface as similar as possible to the one used by
CVS while avoiding any of the bugs and pitfalls CVS had encountered. The first
1.0 release was published in 2004 and SVN soon became the dominant version
control software in use.

2.2.4 Distributed Repository-Based

Around the same time that development started on Subversion, a newkind of ver-
sion control software was being developed. There are no clear research sources
for this, but online sources indicate that Arch by Thomas Lord in 2001 was the
first open source program of this new breed [97, 136]. This new kind of version
control software was notably decentralised. With the client-server model of CVS
and SVN abandoned, no special server software is needed. Instead communica-
tion happens over other protocols such as HTTP or SSH. This also means a revi-
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sion can be finalised locally and simply shared with others afterwards, whereas
CVS and SVN required the client to connect to the server in order to create a
new revision. Arch shifted the focus to the difference between two revisions:
changesets. A changeset consists of (1) a structural diff which describes the dif-
ference between the file trees, such as renames or permission changes, and of
(2) a textual diff which describes the actual textual difference in the files them-
selves. Lord decided that getting changesets right was important, since these
were what was sharedwith others through patch files sent around to others. They
also showed more clearly the intention of the developer. This approach with a fo-
cus on changesets is still in use in some modern version control software, see for
example Section 2.3.4. To further support a distributed approach in Arch, the
computational complexity of branching and merging was made cheaper. This
was a necessity when, contrary to CVS and SVN, every developer can create new
revisions without first syncing up with others. Rather than having to merge loc-
ally before being able to commit, i.e., create a new revision, a developer could now
commit locally before merging.

BitKeeperwas a proprietary distributed version control programfirst proposed
in 1998 and released in 2000 [102, 104]. BitKeeper pioneered at least some of the
features later found in Arch [103]. BitKeeper provided a community edition for
open source developers. Notably, and at the time controversially, the Linux ker-
nel made use of BitKeeper from 2002 through 2005. The community edition was
not available to all contributors of the Linux kernel however. To get around some
of the proprietary limitations, some scripts were created by those contributors. In
reaction to this, the community edition of BitKeeper was removed by its owners
in 2005.

In the wake of this removal, Linus Torvalds, author of the Linux kernel, found
the open source alternatives at the time lacking [159]. Instead Torvalds started
from scratch and created Git. Git’s popularity gradually grew and it is now the
most popular version control software in use [79, 123]. We will go into more
detail on Git in Section 2.3.

2.3 Git Model and Terminology

Git is currently the most used version control software. In JetBrains’ “The State
of Developer Ecosystem in 2023” survey, 87% of respondents state using Git reg-
ularly [79]. The next highest response for version control software scores but 6%.
Of the nearly 1.5 million projects tracked by Open Hub³ 74% use Git [123]. In
this dissertation we analyse projects that make use of Git. That said, the prob-
lem we tackle, as well as our approach to do so, is not inherently linked to Git,

³Open Hub is a website with the goal of maintaining an index of open source software develop-
ment.
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Figure 2.2: Overview of Git objects and how they relate to one another. Blobs
represent file contents. Trees are lists of references to blobs and other
trees (as visualised in the bottom two trees), akin to directories. A
commit represents one version of the program under version control.
A commit has a tree and refers to its parent commit(s). Every arrow
indicates a reference from one object to another.

but is a more general problem when integrating software from different sources.
This section gives a broad overview of Git and the terminology it uses. Sec-
tions 2.3.1 and 2.3.2 of this overview are based on the Pro Git book by Chacon
and Straub [28].

2.3.1 Objects

Internally, Git is a collection of objects and the pointers between them.⁴ The three
types of objects are: (1) blobs, representing files, (2) trees, representing a collection
of blobs and other trees akin to a directory, and (3) commits, representing a version
and pointing to a tree and to zero ormore parent commits. Figure 2.2 depicts how
the different objects relate to one another.

On disk, the objects are stored in compressed files which are named after the
SHA-1 hash⁵ of a combination of a Git header to identify the type of object and
the content of the object itself. By default, objects are stored in full, meaning a
new object is saved in its entirety in a different file. This in stark contrast to the
delta approach taken by the version control software described in Section 2.2. Git
does optimise the storage periodically by returning to that delta approach. Once
some configured threshold is hit, Git’s garbage collectionwill pack certain objects
together in what they call “packfiles”. Within a packfile, the different versions of

⁴Pro Git describes Git’s internal database as a “content-addressable filesystem”, a key-value store.
⁵At the time of writing this is SHA-1. There are plans to move to SHA-256 [120].
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an object may be saved as deltas compared to their most recent version present
in the packfile.

Blobs

At the basis of Git’s internal system lies the blob object. The blob object represents
a file’s content. As noted in the previous paragraph, a new object means a new
file on disk, storing the content in full. This is also true for blob objects, a far
cry from older version control software which was forced to minimise disk usage
from the start.

Trees

The second object is a tree. A tree is a list of references to blobs and to other trees,
identified by their SHA-1 hashes. Conceptually this can be seen as a directory.
Consider as an example a file at location dir1/dir2/file.txt. A tree representing
dir1 would have a reference to a tree representing dir2, which in turn has a
reference to a blob representing the contents of file.txt. A tree also stores
metadata for the objects it references: their file or directory name, their object
type, and the permissions. A new tree object is created if its list of objects changes,
i.e., when a blob or tree is added, removed, or renamed. Such a new tree object
would still point to the same blobs and trees if their contents were unchanged.

Commits

The third object is a commit. Conceptually this is a revision, a version, of the
source code. Most commits have two pointers. First to a certain tree object, i.e.,
the root folder of the files at that point. Second to its parent commit, i.e., the
previous version of the source code. Not all commits have exactly one parent
commit. A root commit will have no parent commits. A merge commit will
usually have two parent commits, though Git can be made to use more parent
commits. We will provide more detail about merges later on in Section 3.2. Note
that one commit can be the parent of many other commits, this is how the history
splits up (“forks”) as different people work on the code. Besides the pointers to
other objects, commits can also carry some metadata such as a commit message
describing the changes, a date, the author, or the committer. Since commits are
also objects, they are also identified by means of their SHA-1 hash. These are the
hashes a Git user will be most familiar with, every git commit issued creates a
new one in a project’s history.

It is through these commits that a project gets its history. Starting from a com-
mit, one can walk back following the commit’s parents to find previous versions
of the project. Creating a new commit through git commit is akin to saving a
snapshot of the project at that point. Doing so has the new commit pointing to
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Figure 2.3: Overview of references in Git and a line of commits (depicted as
circles) they refer to. Main, cool-feat, and bugfix are branches (rect-
angles). HEAD is the special reference HEAD (cloud), here pointing
at the main branch. v0.4.1 is a tag (hexagon) pointing at a specific
commit. Note that the direction of the arrows indicates the direction
of the internal pointers. A commit thus happened after the commit it
points to.

the currently active commit as its parent commit. The new commit then becomes
the currently active commit.

Commits are an overloaded term; in common usage they carry a dual mean-
ing. On the one hand, commits are the version of the source code at that recorded
point. On the other hand, commits are the difference between that version and
the version prior to it. Conceptually, one can see the commit graph as consisting
of either of the two meanings [96]. Indeed, switching between the two repres-
entations is possible as long as two tools exist: one to create a patch given two
versions (such as diff) and one to apply a patch to one version (such as patch).

2.3.2 References

Working with just commit SHA-1 hashes quickly becomes confusing. To rem-
edy this, Git uses four different types of “references”. One can think of these as
human-readable names for the commit hashes. An overview depicting three of
the different reference types and a commit graph is shown in Figure 2.3.

Branches

The first type of reference is a branch. In Figure 2.3 these are visualised by rect-
angles. A branch is a named pointer to one certain commit, internally it is just a
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file with the given name and as content the SHA-1 hash of the commit in ques-
tion. Multiple branches can point to the same commit. Every project will start
out with one branch, commonly called ‘master’ or ‘main’. A new branch can be
created with git branch. Branches are the main way that a Git user will use to
reach (collections of) commits. Since Git’s commits only keep track of their dir-
ect parents, branches serve as the starting points to find such a chain of commits.
When referring to a branch, onemaymean either the exact commit being pointed
at or that commit and its entire history.

HEAD

The second type of reference is unique. It is called HEAD. In Figure 2.3 HEAD is
visualisedwith a cloud. Git uses theHEAD reference to decidewhat the currently
active commit is. To some extent, HEAD can be thought of as corresponding to
the current local version of the code that a developer sees on their file system.

Generally, HEAD points to a branch, with the branch then pointing to a cer-
tain commit. Switching from one branch to another (also called “checking out” a
branch, achievable through git checkout) changes the HEAD pointer to point
to the other branch. Switching what HEAD points to also directly affects the code
the developer sees in their project directory. The content changes to match the
content of the tree object belonging to the commit object pointed to by the branch
reference that the HEAD reference now points to. When creating a new commit,
Git will also check what branch HEAD currently points to. Git will then modify
the branch reference, making the branch point to the newly created commit. In
this scenario, the HEAD itself is not changed directly, though following the ref-
erences does make it point to the newly created commit.

When HEAD does not point at a branch, however, it is referred to as being
“detached”. This can be achieved by checking out a commit directly, a tag (see
below), or a remote branch (see below). Git warns the user when this situation
occurs. If one were to create a new commit while the HEAD is detached, then
there is no branch pointer to move to the newly created commit. Nothing refer-
ences the new commit, meaning it will not be listed in any of the default ways one
would interact with Git. Those default ways rely on references to find starting
points in the chain of commits. While the user can refer to the new commit by
its SHA-1 hash, the lack of references puts the commit at risk of being garbage
collected by Git at a later point in time.

Tags

A third type of reference is a tag. In Figure 2.3 tags are visualised with a hexagon.
A tag can point to any type of object, but is most commonly used to reference a
commit. Specifically, a common approach is to tag a specific release of the soft-
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ware under version control, e.g., v0.4.1. A tag can be “lightweight” or “annot-
ated”. A lightweight tag is nothing more than the name of the tag and a reference
to an object by means of the object’s SHA-1 hash. An annotated tag holds extra
metadata such as the tag author, date, and a description. Due to the extra in-
formation that needs to be stored, an annotated tag is actually stored as an object
internally. This is, however, an implementation detail.

Remote Branches

A final reference type are remote branches. These are read-only branches showing
the last known state of a remote version of the Git repository. That last known
state may or may not be integrated in the local versions of the Git repository.
Often when checking out a remote branch locally, Git will automatically create
a local branch of the same name, pointing to the same commit. If this did not
happen, then HEAD points to a commit directly instead of to a branch. As men-
tioned before, this creates a detached HEAD state and puts the user at risk of
losing commits that are made from that point onwards.

2.3.3 Forking and Merging

A local repository communicates with the world by fetching changes from or
pushing changes to a remote repository.⁶ Git is distributed version control soft-
ware, so it imposes no hierarchy onto the different repositories. That said, desig-
nating one repository as the one true repository is a common approach taken by
developer teams. Doing so enables every authorised developer to fetch from and
push to one specific repository rather than keeping track of which repositories
need to contacted. Git also offers a pull command. This is the same as fetching
a remote branch reference and then merging (see below) it into the local branch.

When fetching or pushing, Git uses the references in the repository to decide
which information gets shared. Pushing by default only considers the currently
active branch, fetching defaults to all remote branches and tags. When the refer-
ences get shared, Git recursively decides which commits and other objects need
to be shared between the two repositories such that the references make sense.
After all, if a reference points to a commit, then one would expect not just that
commit to be present, but also the commit’s tree, the commit’s parent commit(s),
and any other objects referenced by those two. Fetching does not change the local
branches, only the remote branch references are updated.
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Figure 2.4: A commit graph with two merges. Merge commit 7 has commits 5
and 6 as parents. Their common ancestor is commit 2, from where
the history forked. Merge commit 9 has commits 7 and 8 as parents.
Their common ancestor is commit 6, another fork in the history.

Fork

As explained in Section 2.3.2, Git keeps track of the currently active commit. Cre-
ating a new commitmeansmaking it the currently active commit. The previously
active commit is used as the new commit’s parent.

A commit 𝑐2 that already serves as the parent of a commit 𝑐4, can be checked
out again, either through a branch, directly, or through another reference. When
the new commit 𝑐3 is then created, the existing child 𝑐4 of the current commit 𝑐2
is not removed. Instead, the history forks so that the current commit 𝑐2 is also the
parent of the new commit 𝑐3. The result of these actions is visualised in Figure 2.4
in the commits marked 2, 3, and 4. Since a Git user mainly works through branch
references in Git, this usually means there is a branch reference pointing at 𝑐4 (or
one of its descendants) and another branch reference at 𝑐3. Thus the terms often
intertwine: one forks off a new branch, one branches off, and other combinations.

Due to Git’s distributed nature, every repository is standalone. Git nor the de-
veloper are aware of what happens in remote repositories unless the information
is explicitly fetched. Thus, developers on different machines can and do create
commits using the same parent commitwithout even realising so. In otherwords,
the Git commit history is constantly forking into different branches even when
a developer is not consciously trying to do so. Note that this does not cause any
issues in the Git history. After all, fetching merely updates the remote branch
references.

⁶A remote repository can also reside on the same machine, but this does not change the way
repositories interact.
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Merge

Forking is an essential part of working with Git. However, in many situations
one may want to do the opposite and recombine forked off versions. Consider
for example a branch in which a bug was fixed, while regular development con-
tinued in another branch. Ideally, the other branch would also incorporate the
bug fix. While one can manually reapply the bug fix to the other branch, the
more common way in Git is to perform a merge.

When merging, two commits serve as the parent commit for one commit re-
ferred to as a merge commit. In this dissertation, we will usually refer to the two
parent commits as A and B. We will use M to refer to the merge commit. While
technically possible to merge more than two commits at a time, this is rarely
done. Figure 2.4 depicts a commit graph with two merge commits. Git uses
a three-way merge algorithm to perform this merge. These kind of algorithms
were introduced with diff3 in the late 1970s [43, 84]. Git’s three-way merge al-
gorithm uses not only the two commits being merged, but also goes through the
project’s history to find their common ancestor.⁷ We will refer to the common
ancestor as O. The extra information from the common ancestor enables check-
ing what has changed on either side compared to that common ancestor. This
in turn is used to decide what to keep in the final merged version. If one of the
two parent commits did not change a line of a file compared to the common an-
cestor while the other parent commit did, then Git will use the changed line for
the merged version. If both parent commits changed the same line in different
ways, then Git does not know which version is preferred. Instead, amerge conflict
is raised to the developer. The developer is then expected to choose which side,
if any, they prefer to keep in the merged version.⁸ We go into greater detail in
merge conflicts in Section 3.2.

Performing a git merge does not always result in a new (merge) commit. Con-
sider a situation such as in Figure 2.5 where the bugfix branch will be merged
into the main branch. In this case, no commits were made on the main branch
after the bugfix branch was created. The commit history did not fork; main is

⁷In normal Git usage, there will always be a common ancestor. It is, however, possible to create
two unrelated trees of commits. A developer can do somanuallywith git checkout --orphan
new_branch_name which will create an entirely new branch. A user of Github Pages may also
have noticed such an unrelated tree in their project repository under the gh-pages branch. Try-
ing tomerge two such unrelated treeswith git mergewill result in an error: fatal: refusing
to merge unrelated histories. The developer can still force Git tomerge the two unrelated
trees by passing the --allow-unrelated-histories flag. In case of any overlap, Git will, due
to the lack of any common ancestor, more quickly raise a merge conflict for the developer to
solve, requiring them to decide which lines to keep in the final version.

⁸Perhaps both changes need to be in the merged version. Perhaps neither needs to remain and
the developer instead chooses a third ad hoc solution. Indeed, the developer may choose to add
or remove completely unrelated lines to add to the version of the file that will be part of the
merge commit.
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Figure 2.5: Situation in which Git will default to a fast-forward when merging.
The situation after fast-forwarding is depicted in Figure 2.6. If instead
amerge commit is forced, the situation looks as depicted in Figure 2.7.

Figure 2.6: Situation after amerge thatwas instead fast-forwarded. The situation
before fast-forwarding is depicted in Figure 2.5.

a part of the history of bugfix. Rather than create a merge commit, Git will in-
stead fast-forward main to catch up with bugfix. Git does this by moving the
main pointer to point to the same commit as the one pointed at by bugfix. This
is depicted in Figure 2.6. The fast-forwarding behaviour can be overridden by
using --no-ff when merging, in which case a “trivial” merge commit is created
instead. This is depicted in Figure 2.7.

Rebase

Besides merging, Git offers “rebasing” as another way of reconciling histories.
One can think of rebasing as performing a merge, but rewriting history so that it
appears as if the history never forked to begin with. Figures 2.8 and 2.9 depict a
rebase. When rebasing the bugfix branch on the main branch, Git still considers
the common ancestor of both branches. Git takes every commit in bugfix since
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Figure 2.7: Situationwhen forcingGit to create amerge commitM instead of fast-
forwarding. The situation before the merge is depicted in Figure 2.5.

Figure 2.8: The commit history before rebasing bugfix on main. Figure 2.9
shows the situation afterwards.

that common ancestor and “replays” the changes of each commit in turn on main.
In this situation it replays commits 3, 6, and 7. New commits (3′, 6′, and 7′) are
created when rebasing. “Merge” conflicts can still occur. If a replayed commit
conflicts with changes in the main branch, Git warns the developer of a merge
conflict. As before, the developer is then expected to decide what to do before
Git continues replaying commits. A rebase effectively rewrites the Git history.
Afterwards, one cannot tell that the history had forked. Due to this limitation,
we do not consider merge conflicts created while rebasing in this dissertation.

2.3.4 Future

Git is ubiquitous, but by no means perfect. Alternative approaches have seen
research and development. Whether any programs will replace Git or whether
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Figure 2.9: The rewritten commit history after the bugfix branch has been re-
based on the main branch. Figure 2.8 shows the situation prior to
rebasing. Note that commits 3, 6, and 7 are slightly modified as chan-
ging the parent changes the SHA-1 hash used to identify the commit.

any of the major ideas will be included in Git, only time will tell. We detail some
different approaches taken that try to improve the user experience of version
control software. These approaches range from improving Git with plug-ins to
new tools with radically different approaches to version control software.

Improving Line-Based Differencing

Git stores the different versions of a file, not the changes between those versions
(see Section 2.3). Only when asked to show the difference between two versions,
does the differencing tool create the patch format to be shown to the user.

Rather than relying on the built-in differencing tool, Git users can choose any
other differencer. At itsmost basic level this can be done through other line-based
differencers, which visualise the difference in another way, such as delta [38] or
vimdiff [166].

Entirely different tools can be used as well. Asenov et al. [8] build on top of
Git by parsing the file into its abstract syntax trees (AST) and showing differ-
ences between those. One could take a similar approach using the more popular
ChangeDistiller [29, 48] which describes changes to an AST in terms of inserting,
updating, moving, and deleting nodes. Taking this idea a step further, one may
be able to introduce semantic differencing [19, 73, 78, 92, 125, 128, 129] straight
into one’s Git setup. In semantic differencing, the behaviour of two versions is
compared and changes in said behaviour are reported to the user.

Integrated Services

Fossil [72] is distributed version control software that works in a similar way to
Git, but uses some different design choices [71]. Fossil was first released in 2006
and saw its first serious adoption by a project in 2009 when SQLite, database
software by the same author as Fossil, started using it. The major selling point of
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Fossil is that features like a web interface, an issue tracker and a wiki are built-in
and version controlled. Thus, there is no need for extra software, such as GitHub,
offering those features.

While Fossil is distributed, using it in the distributed manner that one might
be used to fromGit seems to be discouraged. By design, users are not supposed to
work away in private. Instead all branches are synced continuously. Fossil does
not allow much in terms of history rewriting either. This leads to failed or aban-
doned attempts in different branches remaining visible in the history forever.
This is in contrast to Git where a branch may remain private indefinitely and its
history rewritten entirely before it is shared with the world. Furthermore, Fossil
wants users to see the entire graph of changesets at once by default, showing all
parallel branches rather than just the changesets in the branch one is working on.

When merging or performing similar actions in Git, developers are immedi-
ately expected to create a changeset of the new situation. In Fossil, this changeset
creation is postponed. The developer is expected to first test that the merge went
as expected, before making a concious decision to create a changeset. The Fossil
authors state that this stimulates clearer descriptions by the developer perform-
ing the merge, compared to the often used default message when using Git.

Sound Distributed Version Control Software

Pijul advertises itself as a “sound distributed version control system” [106], stat-
ing it is inspired by Darcs [37], a version control system with a focus on change-
sets akin toArch’s approach discussed in Section 2.2.4. Pijul claims it fixes sound-
ness and performance problems found in Darcs.

Pijul describes files by means of a graph: a line of code is a vertex, an edge
indicates the order from one line to the next. An edge is associated with a change
that introduces or removes it. Updates to the file mean the addition of edges in
the case of added lines, or the indication that an edge is now ‘dead’ in the case of
deleted lines. The change to an edge is also linked to the changes it depends on.
The Pijul authors say this creates a conflict-free replicated datatype (CRDT).

We will not go into further detail here, but the authors claim the graph ap-
proach precludes merge conflicts (see Section 3.2) as they are known in Git. Spe-
cifically, the approach precludes textual merge conflicts (see Section 3.2.1). As
the authors state: “this does not mean that the merge will have the intended se-
mantics” [107].

Version Controlling Conflicts

Jujutsu [174] is version control software that stores extra information not con-
sidered by most version control software. For example, Jujutsu constantly stores
the current state of the directory, amending an existing commit of the code. In
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1 int foo(int x, int y, int z) {
2 int b;
3 int c;
4
5 if (x > 10) {
6 b = x + y;
7 c = b * z;
8 } else {
9 b = 5;

10 c = 2 * b;
11 }
12
13 return c;
14 }

Listing 2.1: An example function for which a program dependence graph is
shown in Figure 2.10.

Git, one can see the changes made since the last commit by using git diff, but
these changes are not tracked until explicitly added with git add. Jujutsu also
keeps track of all operations that are executed, such as syncing with remote re-
positories. This enables undoing any of the operations. Perhaps most radically,
Jujutsu commits (textual) merge conflicts (see Section 3.2 and specifically Sec-
tion 3.2.1), simply indicating in the revision log that there is an unresolved con-
flict. The user may still continue working as they please, committing more code
and only bothering to fix the conflict when they are ready to do so. When the
conflict does get resolved, the history that follows the conflict is automatically
rebased (see Section 2.3.3).

2.4 Program Dependence Graph and Program Slicing

We provide a primer on program dependence graphs and program slicing, which
we use in Chapter 4.

2.4.1 Program Dependence Graph

Ferrante et al. [47] introduced the program dependence graph (PDG) in 1987. A
PDG represents both data flow dependencies and control flow dependencies of a
program in one graph. The nodes in a PDG are statements of the program. The
edges are either data flow edges or control flow edges. A data flow edge connects
two nodes when the one node uses data, e.g., a variable, set by the other node.
A control flow edge connects a node to its preceding control statement, e.g., to a
node representing an if statement.
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foo()

int x int y int z

x > 10

return c;

x

b = x + y;

x y

c = b * z;

z

truetrue

b = 5;

false

c = 2 * b;

false

c

bb

c

Figure 2.10: A program dependence graph of Listing 2.1. Solid lines represent
a control dependency. Consequent and alternative are marked by
true and false, respectively. Dashed lines represent a data depend-
ency. They are labelled with the used variable. This graph was gen-
erated by TinyPDG [68, 69, 70] and manually cleaned up for read-
ability. The int b and int c declarations are hidden. Line number
information was removed from the nodes.

An example program is shown in Listing 2.1. The foo method has three para-
meters: x, y, and z. If the value of x is larger than 10, then the three parameters
are combined to one value that is returned. If x is not larger than 10, then a value
unrelated to the three parameters is returned.

We use TinyPDG [68, 69, 70] to generate a PDG and clean it up for readability.⁹
This PDG is shown in Figure 2.10. Control dependencies are depicted by solid
lines. Statements that get executed regardless of the if get a control dependency

⁹TinyPDG creates intra-procedural PDGs. In Chapter 4, we extend this functionality to create
inter-procedural PDGs.
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from the start of the function. Those in the consequent or the alternative of the if
get marked as true or false control dependencies, respectively. Data depend-
encies are depicted by dashed lines. The label next to the dashed line indicates
which variable caused the data dependency.

2.4.2 Program Slicing

Program slicing [169, 170] is the process of creating a smaller version of a pro-
gram such that, for a certain program property or behaviour chosen by the user,
the original and the smaller program obtain the same value or behave the same
way. By enabling a developer to focus on a smaller section of the code, program
slicing helps, for example, when debugging or understanding the code. One way
to perform program slicing is by using the program dependence graph described
in Section 2.4.1.

When working with a program dependence graph, this slicing is performed by
transitively following the edges starting from a certain node of interest. There are
some different approaches here depending on the user’s preferences. The three
main slicing strategies in program dependence graphs are backwards, forwards,
and both. Backwards means starting at the node of interest and following the
edges backwards till the start of the program. This thus finds nodes that affect
the node of interest. Forwards slicing follows the edges, finding nodes that are
affected by the node of interest. On its own this forward slicing may not produce
any code that can be executed, but knowing which parts of the code are affected
by the node of interest can, for example, help when planning a modification to
the program. When applying the both strategy, the edges are followed in both
directions.

Slicing can also be performed statically or dynamically [143, 151]. Static sli-
cing [170] is the original approach and aims to preserve the behaviour for all the
program input. Dynamic slicing [90] instead aims to preserve behaviour for only
a subset of the program input. In Chapter 4, we will use static slicing.

We look again at the example function shown in Listing 2.1 and its program
dependence graph in Figure 2.10. Say we are interested in the behaviour on line
10 and want to slice the program to preserve its behaviour. In the program de-
pendence graph, this line has its own node. Slicing backwards means following
the transitive control and data dependencies backwards, resulting in the nodes
that ensure c gets the value it ends up with (here 10). Slicing forwards means
following the data dependency to the return statement’s node. The sliced pro-
gram dependency graph is shown in Figure 2.11. From this program dependence
graph, a function can then be reconstructed.
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foo()

int x x > 10

return c;

x

b = 5;

false

c = 2 * b;

false

b

c

Figure 2.11: A program dependence graph of Listing 2.1 after slicing forwards
and backwards around node c = 2 * b.

2.5 Symbolic Execution

Symbolic execution is a program analysis technique first described in 1976 by
King [86]. The main use case for symbolic execution is the automated explora-
tion of a program and the generation of inputs for test cases to exercise the pro-
gram [26, 57, 58, 125]. We make use of symbolic execution in Chapter 6.

2.5.1 Overview

When analysing a program, symbolic execution assigns symbolic variables to the
program’s input. As the code is symbolically executed, constraints are placed on
these symbolic variables. When a control structure, such as an if, is encountered,
the analysis splits up. The analysis thus considers the different execution paths
of the program. The repeated splitting up can conceptually be thought of as
creating a “symbolic execution tree” where each leaf node represents the end of
the execution of that path. Every path thus analysed will have a path condition
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1 int guess_the_codes(int x, int y) {
2 if (x > 50) {
3 if (y == 27182) {
4 return 0; // Success!
5 } else {
6 return 1; // Close
7 }
8 } else {
9 return 2; // Not even close

10 }
11 }

Listing 2.2: A method where two guesses have to be provided. The first guess, x,
needs to be larger than 50. The second guess, y, needs to be exactly
27182. On success, 0 is returned. On failure to guess correctly,
numbers 2 and 1, respectively, are returned.

associated with it: a collection of the constraints on the symbolic variables en-
countered along that path.

Consider the code in Listing 2.2. The symbolic execution tree for this pro-
gram is shown in Figure 2.12. The input for this program are the parameters
x and y. Symbolic execution creates two symbolic variables: 𝑥 and 𝑦, respect-
ively. Note that what can be considered input is not necessarily only the para-
meters of a method. Retrieving information from an external source, a call of
Math.random(), a prompt for user input, and, depending on the type of sym-
bolic execution, a call to a method that is not analysed by symbolic execution are
other examples of potential input.

As symbolic execution starts up there is one path to follow with an empty path
condition. There are no constraints on the symbolic variables.

The first if, on line 2, is encountered and the analysis forks in two. A con-
straint is added to the path condition on each side of the fork. On the left side,
in Figure 2.12, this makes for 𝑥 > 50. On the right side, this is 𝑥 ≤ 50.

Continuing symbolic execution on the left side of the tree leads to the if on
line 3. Once again, analysis forks in two and a constraint is added to each side.
The path conditions are now (𝑥 > 50) ∧ (𝑦 = 27182) on the left side and (𝑥 >
50) ∧ (𝑦 ≠ 27182) on the right.

Once more continuing on the left, symbolic execution encounters a return
on line 4. In the most basic case, symbolic execution now terminates for this
execution path and its path condition is logged:

pc1 = (𝑥 > 50) ∧ (𝑦 = 27182).

In some symbolic execution engines, the value returned by a programormethod
under analysis also becomes a part of the final path constraint. Suppose this
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Figure 2.12: The symbolic execution tree for an analysis of Listing 2.2. The dia-
monds depict a control flow decision. The equations outside the
polygons are path conditions.

variable is called return. The extended path condition for this first path of the
execution then becomes

pc′1 = (𝑥 > 50) ∧ (𝑦 = 27182) ∧ (return = 0).

Going back to the previous fork, symbolic execution handles the other side and
encounters the return on line 6. Once again the path terminates and the path
condition is

pc2 = (𝑥 > 50) ∧ (𝑦 ≠ 27182).

Finally, handling the right side of the first forking, symbolic execution encoun-
ters the return on line 9. This path terminates as well and the path condition
is

pc3 = (𝑥 ≤ 50).

As mentioned, a common usage of symbolic execution is to obtain inputs for
test cases. Going from the generated path conditions, with their constraints on
symbolic variables, to the concrete values that lead to the execution of different
parts of the program requires solving the path conditions. Constraint solvers,
such as Z3 [39], are used to this end. Solving the path conditions pc1, pc2, and pc3
with Z3, for example, results in the values shown in Table 2.1. Note that many
different solutions may be possible for one path condition. Calling the program
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Path Condition 𝑥 𝑦

pc1 51 27182
pc2 51 27183
pc3 50 0

Table 2.1: Solutions by the Z3 constraint solver for the path conditions resulting
from symbolic execution of Listing 2.2.

in Listing 2.2 with the values found for 𝑥 and 𝑦will cause the path corresponding
to that path condition to be executed. Thus a test can be added that executes the
program using those inputs.

2.5.2 Dynamic Symbolic Execution

Dynamic symbolic execution is a variation on symbolic execution first introduced
in 2005 by Godefroid et al. [58]. In dynamic symbolic execution, the program is
simultaneously executed concretely and symbolically. While executing it con-
cretely, symbolic variables are still created for input and constraints placed upon
them are still collected into a path condition. By having concrete values at its
disposal, dynamic symbolic execution can continue analysis in some cases where
regular symbolic execution falls short. Another term in the literature is con-
colic testing [140], a portmanteau of concrete and symbolic execution. Concolic
testing is an approach to dynamic symbolic execution in which each path is ex-
plored in turn from the start of the program under analysis,¹⁰ as opposed to, for
example, the forking strategy described in Section 2.5.1. As such, concolic test-
ing is a subcategory of dynamic symbolic execution. We describe this dynamic
symbolic execution approach in the following paragraphs.

Consider again Listing 2.2. On a first run, dynamic symbolic execution will
start with random concrete values or use user input. Let us assume 0 is chosen
as value for both x and y. As before, symbolic variables 𝑥 and 𝑦 are also created.
The program is executed concretely and finishes on line 9 with a path condition
𝑥 ≤ 50. To continue, one of the constraints is negated and a constraint solver is
used to find a solution for this alternative. In this case, there is only one constraint
to negate, resulting in 𝑥 > 50. A solution is 𝑥 = 51 and 𝑦 = 0.

The program is executed concretely once more with the new input. Now exe-
cution ends up on line 6 with path condition (𝑥 > 50) ∧ (𝑦 ≠ 27182). Dynamic
symbolic execution negates the latter constraint and a constraint solver provides
new values for the final execution of the program. This execution ends on line 4
and the analysis ends.

¹⁰We note that some authors make no distinction between dynamic symbolic execution and con-
colic testing.
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1 int signs_average() {
2 int i = 10;
3 int sum = 0;
4 while (i > 0) {
5 if (getRandomNumber(-100, 100) > 0) {
6 sum = sum + 1;
7 } else {
8 sum = sum - 1;
9 }

10 i = i - 1;
11 }
12 return sum;
13 }

Listing 2.3: Block of code executing a random number generator ten times. For
every positive random number, sum is incremented. Otherwise, sum
is decremented. The number of paths in this program is 210 = 1024.

Now consider the following adjustment to Listing 2.2: we change the if on
line 3 to have y == hash(x) as condition. Here the hash function is one that
cannot be inversed by the constraint solver. Regular symbolic execution thus
ends up with a path condition in which the constraint 𝑦 = hash(𝑥) cannot be
solved, assuming it can even be represented. In dynamic symbolic execution,
however, there is a concrete value for x and thus the function call can simply be
executed. Suppose its result is 345, then the constraint solver can instead find a
solution for 𝑦 = 345. This is trivially determined to be 345. Thus the analysis
can continue.

2.5.3 Limitations

Symbolic execution has some limitations. We discuss path explosion and insuf-
ficient constraint solving theory in this section.

Path Explosion

Since analysis forks when encountering a control flow branching statement
such as an if, the number of paths to analyse can grow rapidly. Consider the
example in Listing 2.3. Every call to getRandomNumberwill cause the creation of
a new symbolic variable. Every time the execution reaches the if statement, the
number of paths to analyse doubles.

This problem is inherent to a program analysis technique such as symbolic ex-
ecution where the complexity of the program is not abstracted away, but instead
encoded in its entirety through the path constraints. This in contrast to a tech-
nique such as, for example, abstract interpretation [32] which simplifies the value

34



2.6 Conclusion

domain in order to analyse programs.
A special case of the path explosion problem is one where infinite paths are

created. To understand this, consider again the example in Listing 2.3, but now
remove line 2 and instead have int i be a parameter of the function. Symbolic
execution would then create a symbolic variable 𝑖 for i. This in turn means the
while on line 4 will now also cause the analysis to split up every time it is ex-
ecuted. As there is no limit on the value of the variable 𝑖,¹¹ the analysis can keep
rechecking the while indefinitely.

Research continues to address the path explosion problem, for example by re-
using an earlier analysis of functions [57, 112] or through merging different pro-
gram states together [165]. In practice, the problem can also be managed by de-
ciding which parts of the program to prioritise, by putting limits on the number
of path to explore, by limiting the number of times one loop can be repeated,
by adding loop invariants, i.e., extra constraints that limit the values a variable
such as 𝑖 is allowed to have, or, crudely, by limiting the time symbolic execution
is allowed to run for. Note that many of these approaches lead to parts of the
program simply not being analysed.

Constraint Solving Theory

The constraint solver is a vital part of symbolic execution, solving path con-
straints to obtain concrete input. As such, symbolic execution is directly lim-
ited by which input domains and operations the constraint solver can represent,
what it can solve, and how efficiently it can solve it. When constraints cannot
be solved, entire parts of the program may remain unanalysed. For example, a
constraint solver that can only solve linear equations would fail to solve 2𝑥 = 16
for 𝑥. Another example would be the ℎ𝑎𝑠ℎ(𝑥) described in Section 2.5.2. Improv-
ing constraint solvers is its own field of research and beyond the scope of this
dissertation.

2.6 Conclusion

In this chapter, we provided general background and context to the topics that
will be discussed in the following chapters. We motivated the use of version
control software to manage a project’s history. We described the history of ver-
sion control software to better understand some of the design choices in Git, the
most popular version control software in use [79, 123]. We gave an in-depth
description of Git’s workings and the terminology used in Git as well as the
following parts of this dissertation. Specifically, we described commits which

¹¹In practice, i is limited in Java by the size of an integer. Other languages may not have this
restriction.
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will be examined closer in Chapter 3 for two types that require more developer
time and effort. We described program dependence graphs which we use extens-
ively in Chapter 4. Finally, we described symbolic execution which we employ in
Chapter 6.
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Problematic Commits
In Chapter 2, we described how version control software enablesmanaging a pro-
ject’s source code and its history. Developers record their changes into chunks
called commits. The commit is thus the unit in a project’s history, both for the
team developing the project and those reviewing it. Software evolution research-
ers analysing projects’ histories also commonly consider the history in terms of
the existing commits.

Some types of commits are harder for developers, reviewers, or researchers:
they demand extra time and effort to understand, categorise, and other aspects
we will discuss. In this chapter, we go into detail on two such types. First, we
discuss composite commits, which are the result of bad practices by developers
during the development of a program. Second, we discussmerge commits, which
are an inherent part of the usage of version control software in a team setting.
Specifically, we consider the (semantic) conflicts that may arise in a merge com-
mit. The later chapters in this dissertation then focus on finding solutions for
these two types of problematic commits.

The chapter is divided in three parts. In Section 3.1 we define composite com-
mits. We discuss their negative effects as well as their prevalence. Later on, in
Chapter 4, we will discuss our approach to deal with these composite commits.
In Section 3.2 we discuss different types of conflicts that occur when merging
branches in version control software. In Section 3.3 we look at semantic merge
conflicts in particular and discuss their negative effects. We will look into the
prevalence of semantic merge conflicts in Chapter 5. In Chapter 6 we will then
discuss our approach to detect semantic merge conflicts.
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3.1 Composite Commits

Best practice suggests each commit in a project’s history should only contain
changes related to one task. Such commits are called single-task or atomic com-
mits [42, 155].

However, developers do not necessarily follow the best practice of creating only
single-task commits [64, 66, 88, 108, 119, 155]. For example, a small bugmay end
up being fixed while work is underway on another feature. The bug fix and the
new feature then end up in the same commit. Floss refactoring is another prob-
lem: refactoring in order to prepare an implementation for a new feature, after
which the refactoring changes and the new features changes both are committed
together [111]. These situations result in composite commits: larger commits that
combine many unrelated changes.

3.1.1 Negative Effects

Composite commits may have several negative effects. We provide some ex-
amples.

Negative Effects On Reviewers

A code reviewer will have a harder time dealing with larger commits of unrelated
changes. A worse understanding of the code leads to lower quality feedback [9].
In a survey at Microsoft, reviewers specifically called out composite commits as
being harder to understand [154]. In a survey at Mozilla, reviewers stated five in-
dividual commits are easier to understand and considered them to be of a higher
quality than a single composite commit [89]. Google has converged on smal-
ler commits, when compared to similar companies, in order to speed up code
review [138]. Commits touching more files lead to fewer useful comments by
reviewers [18]. Larger commits lead to more rounds of reviewing [12]. When
reviewing pull requests, reviewers value the organization of the commits in the
pull request [61], i.e., one commit for every subsystem to be changed by the pull
request. Reviewers do not like pull requests that tackle different features and
fixes [61]. These are harder to review. In fact, such pull requests may be rejected
even if their separate parts would have been useful for the project.

As these studies show, composite commits make it harder to review code. This
results in requiring more effort and time, but can also lead to a lower quality
review. Addressing this issue requires either developers to bemore diligent when
creating commits or requires the introduction of tools that can do it for them.
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Negative Effects On Research

The history of a project under version control is already split into commits. Thus
a researcher analysing the project history will turn to use commits as is, rather
than defining their own way to split up the history of a project. Using the com-
mits directly also enables the research to be directly applicable to existing pro-
jects, without the need for potential extra preprocessing. However, the research
may require just commits making a particular change or fitting a certain cat-
egory. Composite commits pose a problem for this kind of research, forcing the
researchers to decide on the “one” motivation for a commit when that commit
comprises various unrelated changes. Equally problematic, a researcher may
have to go out of their way to untangle the commits before being able to use them
in their analysis. For example, Mills et al. [108, 109] describe an approach to bug
localisation, i.e., finding the code relevant to a certain bug. Their technique uses
commits as a basis and they had to first manually verify all commits to ensure
none are composite.

Herzig et al. [66] find that the presence of composite commits impacts bug
counting models, i.e., models determining how often a certain file or set of files
has caused bugs in the past. Analysing which files are considered to cause de-
fects, Herzig et al. find a difference of 6% to 50% (with a harmonic mean of 17%)
when applying a bug countingmodel on a datasetwith composite commits versus
one with the composite commits split into atomic commits. When using models
to link source files to bug reports, 16% are linked incorrectly due to the pres-
ence of composite commits. When training bug prediction models on datasets of
commits, they find a median accuracy improvement of 16% after untangling the
commits.

Nguyen et al. [119] look into the effect of composite bug fixing commits. Us-
ing a dataset of composite commits and one of atomic commits, they analyse
the effect of composite commits on two existing approaches from other authors.
BugCache [85] is amodel for predicting the presence of bugs in commits. Nguyen
et al. find the accuracy of BugCache improves by 1% to 32% after removing com-
posite commits. BugLocator [173] considers a bug report and ranks files it thinks
are related to that bug report. Removing composite commits led to Nguyen et al.
seeing an improvement of 6% to 21% in BugLocator.

Kochhar et al. [88] look into bug localisation techniques. In their dataset they
found 28% of files changed in bug fixing commits were unrelated to the bug the
commit was fixing. However, Kochhar et al. found no statistical difference in the
results of bug localisation after cleaning out these composite commits.

Herbold et al. [64] consider composite commits on a line-based granularity.
They do not consider every unrelated line in a composite commit a problem. In-
stead, they define “problematic” depending on the type of research the commits
are being used for, specifically: program repair, bug localisation, or variations of
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defect prediction. They estimate that 3% to 47% of the lines in composite bug fix-
ing commits can be considered problematic for the research the commit is being
used for.

The effect of composite commits on research varies depending on the field.
Certain models seem to be especially affected directly by it, as they rely on clean
input to be modelled on. This may pose problems with the rise of machine learn-
ing approaches. The ability to split composite commits up into atomic commits
tackling a single task each would help improve these models.

Negative Effects On Tool Users

Since the commit is the unit in a project’s history, tools aimed at helping a user
work with the history are built around the concept of a commit. These tools
generally do not consider the existence of composite commits.

Visualisation tools show a tree of commits or the changes contained in one
commit. For these tools, a composite commit is still just one commit. An over-
view of commits will often show just the first line describing each commit. For
brevity, the common approach is to limit this first line to about 50 characters.
In doing so, the different unrelated changes contained in a composite commit
may be obscured if the developer only describes what they consider the “most
important” change. This lack of information in the commit overview may not be
obvious to someone looking at it. In a detailed view of the commit, the changes
are commonly shown as is; there is no distinction made between possibly un-
related changes. In some cases, the commit message will indicate the different
tasks that a commit tackles, but this cannot be relied on: Nguyen et al. [119] find
3% to 41% of composite bug fixing commits did not mention all included tasks
in the commit message.

Individual changes are more difficult to revert if they are a part of a larger
commit. In Git, for example, one can directly apply git reset or git revert
to undo changes at the commit level. Undoing parts of a commit instead requires
extra steps for the user.

Furthermore, changes are more difficult to integrate if they are part of a com-
posite commit with other unrelated changes. Again in Git, one can cherry-pick
individual commits and apply them to other branches of the code. No suchmech-
anism exists for parts of commits.

In conclusion, several tools do not take into account changes on a more fine-
grained level than a commit, which can be problematic in the light of composite
commits. If a tool can detect composite commits andwarn developers about them
before they get committed, this alleviates some of the problems described here.
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Negative Effects On Merging

The properties that make composite commits problematic also surface when de-
velopers merge branches.

A mining study of 66 projects finds that smaller commits facilitate the resol-
ution of merge conflicts [164]. This study also finds that having more separate
chunks in a merge reduces the time to merge.

In a survey, by McKee et al. [101], developers state that they break up changed
code into smaller, standalone pieces to manage the complexity when resolving
merges. In effect, the developers are untangling the merge commit to make it
easier to understand. In another survey, by Vale et al. [164], one of the surveyed
developers specifically mentions large branches with many features as problem-
atic due to their potential interaction in behaviour. Whenmerging, all the changes
from that branch just show up as one parent commit the developer has to deal
with, akin to one big composite commit.

In these cases, a tool to untangle either the commits prior to merging or the
merge commit itself after the merge has happened would help the developers to
understand the different changes involved in the merge.

Summary

These studies show that composite commits result in negative effects for various
practitioners. Developers cannot apply their usual tools to work with a single
task within a composite commit. Reviewers have a more difficult time to under-
stand composite commits. Researchers may come to incorrect conclusions.

Developers should be encouraged to apply proper practices and avoid creat-
ing composite commits. Tools and techniques should be developed to help de-
velopers in this.

3.1.2 Prevalence

Composite commits occur on a regular basis. While the different studies we will
cite here do not entirely agree on how prevalent composite commits are, the stud-
ies do all indicate the real presence of composite commits.

All Commits

Tao and Kim [155] perform a manual review of 453 commits across four Java
projects. They find that between 17% and 29% of the investigated commits are
composite.

A study by Herzig et al. classifies 7000 commits across five Java open source
projects [66]. The study finds that of those commits referencing a bug report, 6%
to 12% are composite.
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Kawrykow and Robillard [83] look at changes on a method level. They identify
refactorings such as renaming, extraction of local variables, removal of a redund-
ant this, and others. They find 79% of method updates have refactorings inter-
leaved with changes with a semantic effect.

Bug Fixing Commits

Mills et al. analyse 837 bug fixing commits and the 1344 files changed by those
commits [108]. They find just 496 files to be relevant to fixing, though also note
another 262 are test files. They find three common causes for an unrelated file
to be included in a composite commit: 72 files had only comment changes, 395
files added new code, and 74 files were refactorings.

Kochhar et al. take a similar approach and analyse 498 changed files in 100
bug fixing commits [88]. They find 28% of the changed files were not related to
the bug fix.

The study by Herzig et al. [66] mentioned above also considers bug fixing com-
mits separately. In bug fixing commits, the prevalence of composite commits
ranges from 7% to 20%.

Nguyen et al. analyse eight open source projects whose commits were previ-
ously used in other research. They find that 11% to 39% of all the bug fixing
commits were composite [119]. Of those composite bug fixing commits, 3% to
41% had commit messages that did not indicate the presence of multiple tasks
being handled.

Finally, Herbold et al. look at bug fixing commits with a line-based granular-
ity [64]. To do this, they crowd source a manual validation of 3498 commits fix-
ing 2328 bugs across 28 projects. This leads to a total of 289904 modified lines
getting classified. Herbold et al. conclude just 22% to 38% of changed lines con-
tribute to the bug fix. When ignoring documentation and test changes, this range
improves: 69% to 93% of lines contribute to the bug fix.

3.2 Merge Conflicts

In Section 2.3.3 we briefly touched on conflicts that can occur when merging two
branches together in Git. Such a merge conflict occurs when different branches
are merged during a three-way merge and the textual changes in each branch
overlap. Git cannot decidewhich changes to prioritise and leaves the choice to the
developer. Software developers are likely familiar with these Git merge conflicts.
The error message of such a conflict is shown in Listing 3.4. Such amerge conflict
is, however, not the only type of merge conflict that may occur. The literature
also discerns additional conflict types [105, 142, 152, 160]. We specifically detail
textual, syntactic, semantic, build, and test merge conflicts in this section. In the
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Figure 3.1: The four relevant parts when talking about merging and merge con-
flicts: the merge commit M, its direct parent commits A and B, and
their common ancestor commit O. As in Chapter 2, the arrows indic-
ate a child-parent relation.

rest of this dissertation we use the textual, syntactic, and semantic categorisation
of merge conflicts, unless when related work warrants the use of another term.

Textual merge conflicts occur when two or more branches change a line of code in
different ways.

Syntactical merge conflicts occurwhen the textualmerge has succeeded, but a res-
ulting merged file is no longer syntactically correct.

Semantic merge conflicts occur when the syntax of the merged files is correct, but
the behaviour does not conform to the developers’ intentions.

Build and test merge conflicts are characterised by the way they are detected: the
former is caught when building the code, the latter when running its tests.

When discussing merges and merge conflicts in the remainder of this disser-
tation, we will generally consider the merge to have four parts: O, A, B, and M.
These four parts are visualised in Figure 3.1. First comes O, the common ancestor
commit from which two branches have diverged. We use A and B to refer to the
two final commits of both branches before they are merged together. Here we
focus on the version of the source code as it is after the commit, not so much the
changes making up that final commit. The merge commit M is then where the
branches are actually merged together. Merge commit M has A and B as its direct
parents. Following the parents back far enough will eventually lead back to O.

3.2.1 Textual Merge Conflicts
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1 Hello world

Listing 3.1: Version O of welcome.txt in a textual merge conflict.

1 Hello world!

Listing 3.2: welcome.txt in version A
in a textual merge
conflict.

1 Hello there world

Listing 3.3: welcome.txt in version B
in a textual merge
conflict.

1 Auto-merging welcome.txt
2 CONFLICT (content): Merge conflict in welcome.txt
3 Automatic merge failed; fix conflicts and then commit the result.

Listing 3.4: When attempting to merge versions A and B of welcome.txt (see
Listings 3.2 and 3.3), Git will not know which version to prioritise.
Instead, this error message is shown and the user is expected to
choose a resolution themselves.

Textual merge conflicts occur when merging branches that changed the same
line in different ways. Consider a file welcome.txt as shown in Listings 3.1
to 3.3. Originally, welcome.txt contains just one line: Hello world. Commit
A changes the one line to instead say Hello world!. Commit B on the other
hand changes the line to say Hello there world. When merging both versions
together with Git, or with any similar version control software, it will compare
the three versions to decide on a merge candidate of the file that incorporates all
changes from both the branches. As the same line is changed in different ways,
however, Git cannot deduce whether the final file should contain the line Hello
world!, the line Hello there world, both lines, or some combination of the two
lines. Rather than trying to guess at a resolution, Git stops trying to merge the
file, puts both choices in the file, prints an error such as in Listing 3.4, and lets
the developer make the decision instead. Once a resolution is decided on, i.e., the
developer edited the merge candidate file themselves so that it looks as desired,
the developer manually finishes the merging process.

Textual merge conflicts remain a problem to this day [55, 93, 101, 164] as well
as an object of research [100]. Recent efforts include using machine learning
techniques to either predict textual merge conflicts [20, 124] or to have themodel
create the merge candidate [44, 126, 153].

3.2.2 Syntactic Merge Conflicts

One can consider a syntactic merge conflict in two ways. On the one hand, a
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1 if (pcfProperties.getInstanceCertificate() != null) {
2 builder.instanceCertificate(new ResourceCredentialSupplier(
3 pcfProperties.getInstanceCertificate()));
4 }

Listing 3.5: Version O in a real-world syntactic merge conflict. Code extracted
from the Spring Cloud Config project [148], merge 81585fe09e5ffb7-
0708e4c6b2767bb2af73ecc5c.

1 if (pcfProperties.getInstanceCertificate() != null) {
2 builder.instanceCertificate(new ResourceCredentialSupplier(pcfProperties.

getInstanceCertificate()));
3 }
4 else {
5 builder.instanceCertificate(new ResourceCredentialSupplier(resolveEnvVariable

(”CF_INSTANCE_CERT”)));
6 }

Listing 3.6: Version A in a syntactic merge conflict. A newline is removed and an
else is added.

1 if (pcfProperties.getInstanceCertificate() != null) {
2 builder.instanceCertificate(new ResourceCredentialSupplier(
3 pcfProperties.getInstanceCertificate()));
4 }
5 else {
6 builder.instanceCertificate(new ResourceCredentialSupplier(
7 resolveEnvVariable(”CF_INSTANCE_CERT”)));
8 }

Listing 3.7: Version B in a syntactic merge conflict. The same else is added as in
version A, but with a newline after an opening parenthesis.

1 if (pcfProperties.getInstanceCertificate() != null) {
2 builder.instanceCertificate(new ResourceCredentialSupplier(pcfProperties.

getInstanceCertificate()));
3 }
4 else {
5 builder.instanceCertificate(new ResourceCredentialSupplier(resolveEnvVariable

(”CF_INSTANCE_CERT”)));
6 }
7 else {
8 builder.instanceCertificate(new ResourceCredentialSupplier(
9 resolveEnvVariable(”CF_INSTANCE_CERT”)));

10 }

Listing 3.8: Version M in a syntactic merge conflict. Git does not consider this a
textual merge conflict and completes the merge without problems.
The resulting piece of code, however, has two else branches.
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textual merge can complete successfully, but the resulting code in M is not syn-
tactically correct. An example of this is given in Listings 3.5 to 3.8. This code is
extracted from merge 81585fe09e¹ from the Spring Cloud Config project [148].
In this example, version A slightly adjusts the consequent of an if statement
and also adds an else. Version B does not change the consequent, but adds a
slightly different else. When merging, both elses appear in the resulting merge
M. On the other hand, merging can be approached from a structured point of
view rather than purely textual: the syntax of the code in question is taken into
consideration to create the merge candidate M. A failure to perform such a struc-
tured merge would then be a syntactic merge conflict.

Structured merging [25, 171] can sidestep some textual merge conflicts. Con-
sider, as an example of structured merging, a function call foo(1, 2) in version
O of a three-way merge. Version A changes the call to foo(3, 2). Version B
changes the call to foo(1, 4). The commonly used textual merge algorithms
would not try to merge this and instead report a textual merge conflict. A tool
aware of the syntax of the language in question, however, can conclude that
the two arguments are distinct parts and create a merge where the line reads
foo(3, 4). As another example, consider a Java class where versions A and B
each add a different interface to the class. A syntax-aware tool could conclude
that both interfaces can be added to the class in the merge.

This structured approach to merging software code has been around since the
1990s [25, 171]. While the research field has remained active [1, 4, 5, 8, 76, 99,
121, 139, 141], the adoption of structural merging tools in the industry seems to
lag behind. We hypothesise that this is due to the need of requiring a merging
specification that covers the entirety of the languages one would want to use in a
project. Apel et al. [5] have tried to mitigate this issue by combining structured,
completely syntax-based, merging with textual merging. The idea in what Apel
et al. call “semi-structured merging” is to have a merging specification that starts
at the top level of the languages, e.g., classes, their methods. The parts of the
language not covered by this merging specification remain represented as textual
nodes in the larger syntax tree. Thus, for example, a class and its methods could
be explicitly represented in the syntax tree, but the method body remains just
a blob of text. Changes within a method’s body would then be merged using a
textual merging algorithm. The approach taken by Asenov et al. [8] works as a
“plugin” into Git, potentially making adoption easier. They provide a generic
tree merging algorithm, which can, assuming the presence of a parser for the
language, also handle abstract syntax trees.

¹Full SHA-1 hash is 81585fe09e5ffb70708e4c6b2767bb2af73ecc5c.
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3.2.3 Semantic Merge Conflicts

In semantic merge conflicts the merge encountered no issues on a textual nor on
a syntactical level. Instead, the behaviour of the merge is no longer in line with
what versions A or B expected.

Consider the case of Listing 3.9, showing version O of a semantic merge con-
flict. The displayed method adds x and y together and returns the result. One
developer decides that there is an off-by-one error and changes line 2 to int z =
x + y + 1 in version A, see Listing 3.10. Another developer meanwhile also had
the same idea and changes line 3 to return z + 1 in version B, see Listing 3.11.
Listing 3.12 shows version M. In version M the changes in A and B result in both
lines 2 and 3 adding an extra + 1. Versions A and B have the same semantic
change and behave in the same manner, i.e., both versions add one to the sum
of both arguments. In version M that behaviour has changed in a way that is no
longer as intended. Now two gets added to the sum of the arguments.

As with syntactic merging, one can approach semantic merging from two dif-
ferent angles: creating a valid merge candidate or validating an existing merge
candidate.

Creating a valid merge candidate is an approach similar to the structured mer-
ging aimed at syntactic merge conflicts mentioned in Section 3.2.2. Berzins [16]
achieves this by means of a formal definition of semantic merging in a language-
independent manner. If conditions in this definition are met, it describes how to
construct a semantically conflict-free merge candidate M. Much like with struc-
tured merging, a fallback is required: if the conditions are not met, the approach
does not create a merge candidate at all. Another downside is that each program
must also be converted to the representation used by Berzins.

On the other hand, one can fall back to simply performing a textual merge, like
in Git, or a syntactical merge, like in structured merging. The resulting merged
code can then be semantically validated afterwards [35, 117, 145, 152, 160, 172].
In Chapter 6 we will further consider this second approach to semantic merge
conflicts, discuss the cited related work, as well as detail our own proposal.

3.2.4 Build Merge Conflicts

Build merge conflicts are conflicts caught by the compiler [36, 160] when build-
ing the code. This includes not only the syntactical conflicts described in Sec-
tion 3.2.2, but also some of the conflicts that we think of as semantic merge con-
flicts. Consider, for example, the simplified situation depicted in Listings 3.13
to 3.16, representing versions O, A, B, and M of a build conflict. A parameter x
is renamed in version A to n. The usage of x is changed accordingly. In version B
a developer adds a usage of the variable x. In version M, the renaming from ver-
sion A is propagated, but the use of x added in B is also still present. A compiler
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1 public int myAdd(int x, int y) {
2 int z = x + y;
3 return z;
4 }

Listing 3.9: Version O in a semantic merge conflict. myAdd sums two integers.

1 public int myAdd(int x, int y) {
2 int z = x + y + 1; // Modified
3 return z;
4 }

Listing 3.10: Version A in a semantic
merge conflict. myAdd
sums two integers and
adds one.

1 public int myAdd(int x, int y) {
2 int z = x + y;
3 return z + 1; // Modified
4 }

Listing 3.11: Version B in a semantic
merge conflict. myAdd
sums two integers and
adds one.

1 public int myAdd(int x, int y) {
2 int z = x + y + 1; // Modified in A
3 return z + 1; // Modified in B
4 }

Listing 3.12: Version M in a semantic merge conflict. myAdd sums two integers
and adds one, then adds one again.

would catch this issue. In a language without a compiler, this may not be caught
until the code is run. Some linters² can also catch this error in a language without
a compiler. As such, a buildmerge conflict’s definition relies on the language and
tools used.

Some research focuses specifically on build conflicts. Due to the overlap with
syntactic and semantic merge conflicts, we do not discuss this separately here.

3.2.5 Test Merge Conflicts

Test merge conflicts are found when testing the code in question [160]. Specific-
ally, a test failing on the merged code of version M that was not failing before
the merge. This also includes failing behaviour for which there was no test and
which was thus not caught until encountering it as a bug in the program.

As with build merge conflicts, test merge conflicts also overlap with both syn-
tactic and semantic merge conflicts. Also much like build merge conflicts, they
end up being defined in function of the language and tools used. The semantic
merge conflict example given in Section 3.2.3 (Listings 3.9 to 3.12) is also a test

²The term “linter” is generally used for tools using simple static analysis to catch mistakes in
source code.
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1 public int inc(int x) {
2 return x + 1;
3 }

Listing 3.13: Version O in a build conflict. inc increases the argument by one.

1 public int inc(int n) {
2 return n + 1;
3 }

Listing 3.14: Version A in a build
conflict. The parameter
x is renamed to n.

1 public int inc(int x) {
2 log(x);
3 return x + 1;
4 }

Listing 3.15: Version B in a build
conflict. The value of x
is logged.

1 public int inc(int n) {
2 log(x);
3 return n + 1;
4 }

Listing 3.16: Version M in a build conflict. The parameter x is renamed to n. The
old parameter x is still logged.

merge conflict. The example given in Section 3.2.4 (Listings 3.13 to 3.16) is a
build merge conflict in Java. In a language like Python or JavaScript, there is no
compiler. Certain code linters might catch the issue, but if this is not the case,
then this error would not be detected until tested for it. It can be debated that
a test conflict should be considered a build conflict depending on which tools
are used at what point in the software development process. Similarly, incorrect
syntax may not actually be caught until the incorrect file is actually loaded into
the interpreter in a language without a compiler. This in turn can thus change a
build conflict into a test conflict.

The murkiness of the definitions is further evidenced by Shen et al. [142] who
classify conflicts caught when building the tests as test conflicts. Those conflicts
are still errors caught by the compiler, but it was the tests that were not getting
built during the build phase in Shen et al.’s setup.

3.2.6 Summary

Some merge conflict definitions overlap, as depicted in Figure 3.2. A build con-
flict could be either a syntactic or a semantic merge conflict. Similarly a test con-
flict too could be either a syntactic or a semantic merge conflict. Both build and
test conflict definitions also rely on the languages and the tools involved. These
categories are based on the symptom, e.g., a compiler error, a test failing, rather
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Figure 3.2: Common categories when describing merge conflicts. Textual, syn-
tactic, and semantic focus on the cause, while build and test focus on
the symptom. As such, build and test can overlap depending on the
context.

than on the cause.
We prefer to focus on the cause, not the symptom. As such, we avoid the build

and test merge conflict categories and instead stick to textual, syntactic, and se-
mantic merge conflicts.

3.3 Semantic Merge Conflicts

In general, the version control software or the compiler will warn a developer
about any textual and syntactic merge conflicts. Detecting these does not re-
quire extra effort for the developer, even if resolving the conflict may do so. For
semantic merge conflicts, there is no such widespread ready-made solution. A
good and complete test suite can mitigate the issue, but this too requires de-
veloper time and effort. As such, we will focus on semantic merge conflicts in
more depth in this section as well as proposing our approach to detecting them
in Chapter 6.

As detailed in Section 3.2, a semantic merge conflict occurs due to an unexpec-
ted interaction of the behaviour in both sides of a merge. Semantic merge con-
flicts cost developers time to identify and fix. Even in their absence, developers
still have to verify that the merge is conflict-free.

A developer taking part in a survey by Vale et al. [164] mentions:
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The worst problems are when Git does not detect a merge conflict
because the change appears to merge cleanly, but then bugs are intro-
duced.

Another developer in the same survey [164] says:

My harder conflicts are oftenwhen integrating two different large fea-
ture branches, the tests may atmost ensure that specific isolated scen-
arios keep working, not that the involved features interact well, until
newer tests are written for that purpose.

Similarly, a Microsoft developer taking part in a survey by Bird and Zimmer-
mann [17] says:

[Semantic merge conflicts] tend to be subtle because they often are
not noticed for a while when totally bizarre behaviour occurs and it
takes a long time to track down what happened.

In this section, we discuss how developers perceive semantic merge conflicts
as well as the effects that semantic merge conflicts have on developers. We do not
go into the prevalence of semantic merge conflicts here, instead deferring this to
Chapter 5 where we describe our own study on the prevalence of syntactic and
semantic merge conflicts. We also discuss related studies in Chapter 5.

3.3.1 Conflict Difficulty

In surveys, developers find the difficulty of merges and (semantic) merge con-
flicts is influenced by a few factors: the perceived complexity of the merge [101],
whether or not the developer has expertise on the code being merged [101], the
number of changed lines [164], and then number of changed files [164]. For
textual merge conflicts, some developers also cite semantic differences between
branches to increase the difficulty of finding a resolution [164].

Vale et al. [164] find that if the different blocks of changed code in a textual
merge conflict are more semantically related, then more time is taken to resolve
the conflict. After all, if the different blocks of conflicting code are semantically
related, then any semantic differences will have a larger impact across the tex-
tual conflict. They find that semantic conflict is a better indicator than the other
metrics that they have analysed.

Semanticmerge conflicts are difficult to understand. Even non-semanticmerge
conflicts are more difficult to understand when there are semantic differences
to contend with. Tools that pinpoint the causes of semantic merge conflicts or
that warn about semantic differences between branches can help developers in
managing this difficulty.
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3.3.2 Conflict Resolution

Nelson et al. [118] find that developers approach merge conflicts by means of
(in decreasing order of use): (1) examining the merge, i.e., looking at all of the
changes in the branches; (2) analysing the code, for example by means of a de-
bugger, or manipulating the code, i.e., making changes and seeing their effect;
or (3) examining the code, i.e., looking at the final resulting code. In order to
resolve a conflict, McKee et al. [101] find that developers require an understand-
ing of the code, contextual information about the conflict, and tools presenting
relevant information.

Brindescu et al. [21] perform an in-depth investigation into how developers
fix various merge conflicts, Brindescu et al. find that developers often get stuck
on finding the right information or on understanding the information once they
come across it.

Unexpected conflicts require additional developers and resources [118]. In a
survey of 124 Microsoft developers, Bird and Zimmermann [17] find the average
respondent spends 5.45 hours permonth integrating changes frombranches. The
95th percentile is as high as 15.45hours, which they explain by teams atMicrosoft
often having a person dedicated to handling integrations. Bird and Zimmermann
find most of this time is spent verifying the correctness of merges and resolving
conflicts.

Understanding a semantic merge conflict is key. A tool that describes the se-
mantic merge conflict and points the developer in the right direction thus helps
minimise the effort spent on resolving the conflict.

3.3.3 Solution Validation

When a developer believes that they have resolved the conflict, they still need to
be able to verify that the conflict really is resolved. Lacking dedicated tools or
tests, this can prove difficult.

Brindescu et al. find solution validation is a step developers often get stuck
on [21]. Approaches to validating their solution tended to mostly be building
the program [17, 118], running the program [17], running the tests [17, 118],
and even eyeballing the code to decide whether it looks correct [118].

“Using dedicated tools” was noticeably not a top answer by respondents to the
surveys (by Bird and Zimmermann [17] and Nelson et al. [118]) when asked how
they validate a merge. Tools that were used included generic static analysis tools,
none of which were dedicated to merge conflicts [118].

These findings indicate the lack of a widespread real-world tool that helps de-
velopers with semantic merge conflicts.
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3.3.4 Behavioural Change

The difficulty and effort of dealingwithmerges andmerge conflicts leads to beha-
vioural changes in the developers as well as structural changes in the way teams
work.

Bird and Zimmermann [17] describe anti-patterns that occur due to the diffi-
culty of working with branches.³ These anti-patterns include, but are not limited
to: merge paranoia, avoiding or deferring merging due to fear of consequences;
merge mania, spending too much time on merging; and development freeze,
stopping development activities because a merge is happening or about to hap-
pen.

Nelson et al. [118] investigate reasons for deferring a merge or deferring con-
flict resolution. Developers often cite the complexity of the code involved or hav-
ing to fix code in many different locations. Not owning the code at fault was also
an important factor. Said one person about deferring resolution: “Untangling
takes days instead of minutes when it gets too out of hand.”

de Souza et al. [40] analysed the workflow of a team of developers at the Na-
tional Aeronautics and Space Administration (NASA) in the United States of
America. Part of the workflow required a developer to inform the rest of the
team by email when code was added to their main branch. The email described
the changes and had an assessment of the impact the changes might have on
which people and which parts of the project. This enabled others to anticipate
integrating the codewith their own code. Such an approachwas also encountered
by Nelson et al. [118] in other projects, be it through sending email or through
holding weekly meetings.

Other organisations changed policy to avoid bad integrations near major re-
leases [118]. For example, some organisations require everyone to be available
during the two weeks prior to a release [118]. Policy changes at Microsoft and
extensive time spent validating merges make conflicts relatively rare according
to their developers [17].

Merge conflicts cause enough trouble that organisations consciously try towork
around them. Better tools could mitigate this to some extent by minimising the
effort required.

3.3.5 Tool Support

Vale et al. [164] identify four overarching challenges formerge conflict resolution:

1. Lack of coordination. This includes aspects such as communication between
team members, following best practices when it comes to committing code,
and a well-defined development process.

³Bird and Zimmermann [17] credit Appleton et al. [6] with the definition of these anti-patterns.
We were, however, unable to find this information in the cited document.
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2. Lack of tool support. This includes dedicated merge conflict tools, but also
making use of a proper issue tracker or ways to diff code.

3. Flaws in the system architecture. This can be due to the code being too
tightly coupled or due to project accruing too much technical debt.

4. Lack of testing suite or pipeline for continuous integration.

Two of these four challenges (challenge 2 and 4) involve tools. Usage num-
bers find many projects are lacking in these aspects. Just one in four developers
proactively monitor for merge conflicts [118]. Of those proactively monitoring,
one in three uses continuous integration [118]. Again of those proactively mon-
itoring, just one in four use code analysis tools although none of the tools seem
tailored specifically to merge conflicts [118].

Despite these low numbers, developers do desire better tools. Developers end
up maintaining custom tools and scripts [17]. Developers want tools to show
relevant information to resolve and validate merge conflicts [101]. Developers
mistrust tools that obscure the steps the tool takes or the rationale the tool has
for a certain result [101]. In a survey by Nelson et al. [118], one participant stated
an explicit desire for a semantic diffing tool. Another participant would already
be satisfied with a well-presented way to diff, not even necessarily semantically,
the different versions in the three-way merge to their common ancestor O.

Developers want better tools. Even in situations where tools exist, software
projects do not always use them to the fullest. This could be simply due to de-
velopers being unaware of the existing tools or due to having deemed the tools
to be insufficient or too complicated.

3.4 Conclusion

We discussed two types of problematic commits: composite commits, which con-
tain many changes handling different tasks, and merge commits, which may give
rise to different types of merge conflicts, semantic merge conflicts in particular.
We described how both types of commits have negative effects on developers and
other practitioners due to their increased complexity. We also discussed the pre-
valence of composite commits. In Chapter 5 we will look into the prevalence of
semantic merge conflicts in greater detail.

This chapter motivated the need for tools that help developers with the two
discussed types of problematic commits: their complexity leads to more time
and effort spent. In Chapter 4, we propose an automated approach to untangling
composite commits into smaller single-task commits. This enables developers to
split up existing composite commits or be warned about them prior to creating
them. In Chapter 6, we propose an automated approach to detecting semantic

54



3.4 Conclusion

merge conflicts. This approach can also be used to validate the resolution of a
semantic merge conflict.
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Chapter 4

Untangling Composite Commits
Using Program Slicing
Version control systems (VCS) arewidely used tomanage the history of code bases
(see Sections 2.2 and 2.3). In a VCS, a developer saves changes into units called
commits. Best practice suggests each commit should only contain changes related
to one task. Such commits are called single-task or atomic commits [42, 155].

In Section 3.1, we described how developers do not necessarily follow the best
practice of creating only single-task commits [64, 66, 88, 108, 119, 155]. For
example, a small bug that gets fixed while work is underway on another feature.
Bug fix and new feature then end up in the same commit. These situations result
in composite commits: larger commits that combine many unrelated changes.

Composite commits may cause several problems for developers, tool users,
reviewers, and researchers due to being harder to understand, analyse, or cat-
egorise. We described these different situations in Section 3.1.1 and concluded
all would benefit from dedicated tools to detect and untangle composite com-
mits. We discussed existing research into the prevalence of composite commits
in Section 3.1.2 and concluded that composite commits are not just a hypothetical
problem, but do commonly occur in the real world.

In this chapter, we discuss our approach to identifying anduntangling compos-
ite commits into smaller, single-task commits. Our approach extends program
slicing (see Section 2.4.2) over program dependence graphs (see Section 2.4.1) in
order to apply it to source code changes. We refine an existing dataset of com-
mits from five Java projects. We evaluate our approach on this refined dataset.
The results indicate that our approach is able to categorise commits as single-task
or composite. The results also indicate that our untangling approach produces
more fine-grained commits than single-task commits.

This chapter is structured as follows. Section 4.1 sketches our approach, eval-
uation, and enumerates contributions. Section 4.2 discusses related work. We
detail the components of our technique in Section 4.3 and the dataset used in its
evaluation in Section 4.4. The evaluation method and its results are presented in
Section 4.5. We discuss potential future work in Section 4.7.

57



Chapter 4 Untangling Composite Commits Using Program Slicing

4.1 Proposed Solution

Despite the problems caused by composite commits, developers continue to cre-
ate them due to the short term gain in time: creating one big commit takes less
time than figuring out which changes belong to which task and committing each
task individually. Tool support is required to identify commits as composite and
to decompose them into single-task commits. The first type of tool suffices to
warn developers that they are about to commit unrelated changes. The second
type of tool is also of use to researchers analysing the individual tasks a composite
commit is composed of.

We propose program slicing as a foundation for such tool support. In Sec-
tion 2.4.2, we discussed program slicing: a program analysis that answers ques-
tions about the influence of certain program statements on other program state-
ments [143, 169, 170]. We extend this idea in this chapter: our foundation for
tool support applies program slicing to changes to the abstract syntax tree. We
hypothesise that related changes affect source code from the same program slice and
thus that a commit may be decomposed into related changes using the created program
slices. Intuitively, this states that changes that belong together also have control
or data dependencies between their changed subjects.

To analyse our approach, we make use of a dataset of commits stemming from
five Java projects, gathered byHerzig and Zeller [67]. We first analyse this dataset
and refine it further to fit the context of this work.

Our results indicate that slicing on changes to the abstract syntax tree largely
meets the stated goals. Our technique is able to categorise commits as single-
task or composite. When untangling the composite commits into their individual
tasks, our technique at times produces more fine-grained results. That is to say,
our technique may untangle into several different tasks that should actually be-
long together as one task. As an example, consider a composite commit compris-
ing two parts: 𝑎 and 𝑏. Our technique might split this composite commit into
three parts instead: 𝑎, 𝑏1, and 𝑏2, where 𝑏1 and 𝑏2 together make up task 𝑏. This
is still better than the alternative in which the technique considers (parts of) dif-
ferent tasks to belong together. For example by untangling that same composite
commit into (1) 𝑎 ∪ 𝑏1 and (2) 𝑏2. As such, the results of our technique still prove
useful for reviewing, reverting, or integrating code.

Specifically, we make the following contributions:

1. A technique to slice around changes made to an abstract syntax tree. The
technique considers which parts of the abstract syntax tree are affected by
a change. The technique then slices around the corresponding nodes in a
program dependency graph. Overlap in the slices is used to decide whether
changes belong together.

2. The application of this technique to decide whether a commit handles a
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single task or whether the commit is composite.

3. The application of this technique to identify different parts of a commit to
untangle composite commits.

4. The refinement of an existing dataset of commits from five Java projects.
We perform an automated cleaning step and a manual verification of the
commits.

5. An evaluation of our approach using the refined dataset.

4.2 Related Work

We present the related work in two main categories. All related work attempts
to create single-task commits. Identifying composite commits is a by-product
of this process. The first category of related work uses some form of semantic
information derived from the changes or the rest of the source code. These ap-
proaches thus attempt to derive dependencies between different pieces of code.
Our approach falls in this first category. The second category of related work
instead uses purely textual and syntactical information. These can include in-
formation such as the distance between changes in a file or looking for string
similarities. Some look for patterns where a found pattern is immediately used
to group together similar changes or where a pattern is used as input data to
inform future decisions.

4.2.1 Semantics-Based Commit Untangling

Barnett et al. [11] usewhat they call diff-regions to untangle commits. Diff-regions
are the result of performing a textual difference between two versions and split-
ting up the result such that each block of textual changes stayswithin onemethod
or within one type. Barnett et al. work with limited information: only the before
and after of changed files are provided in one changeset, i.e., one commit. They
do not have access to the entire program. Instead they make use of any method
definitions that are present. Two diff-regions are linked (a) if they belong to the
samemethod, (b) if one diff-region uses amethodwhose definition appears in an-
other diff-region, or (c) if both diff-regions use a method defined in a file present
in the changeset. Their technique is evaluated on a single closed-source project.

Luna Freire et al. [98] lift Barnett et al.’s technique from C♯ to Java. Luna Freire
et al. evaluate their Java implementation on open source Java projects and confirm
Barnett et al.’s results. The tool by Luna Freire et al. is made open source as
opposed to the closed-source tool by Barnett et al.

Our work differs from Barnett et al. [11] and Luna Freire et al. [98] in that we
make use ofmore than just the relation between definitions and uses. Aswemake

59



Chapter 4 Untangling Composite Commits Using Program Slicing

use of a program dependence graph, all control and data flow dependencies are
mapped, providing a richer picture.

Tao and Kim [155] propose an approach using the ZeroOneCFA points-to ana-
lysis built into the T.J. Watson Libraries for Analysis (WALA). Their approach
then slices in the result of the points-to analysis. In their approach, a change is
split up into line-based changes. Their work uses more than just program slices
to determine which changes are related. All formatting changes, for instance,
are considered as one separate group of changes. In addition, they also employ
a pattern-based approach. String comparisons are used to relate, for example,
the addition of a .clone() method call in several locations without any static
dependencies. While this string comparison adds some extra relations between
changes, it does not always prove beneficial: the approach sometimes relates
changes that do not belong together. We consider more fine-grained changes on
the abstract syntax tree, while Tao and Kim look at line-based changes. We focus
specifically on the program slicing in isolation, without the patterns, and ana-
lyse how well program slicing behaves on its own. Tao and Kim only look at the
results of their combined analysis.

Pârtachi et al. [127] create what they name amulti-version name flow graph (𝛿-
NFG). A 𝛿-NFG combines the program dependence graph of multiple versions of
a file into one graph. The graph also indicates the changes that occurred between
the different versions. The graph incorporates edges indicating the flow of the
names of variables and similar program constructs. Within one commit, every
changed statement is at first considered atomic. For every change, the 1-hop
neighbourhood is considered. For every change, the graph with the node rep-
resenting that change and the direct neighbours in the 𝛿-NFG are considered.
These 1-hop neighbourhood graphs are clustered based on their similarity, us-
ing the Weisfeiler-Lehman graph kernel. Once none of the graphs meet a certain
threshold of similarity any more, and thus no more new clusters can be created,
the obtained clusters represent the untangled changes.

Chen et al. [30] create two control flow graphs: one for the program before
the change and one for the version after the change. Every node contains the
actual code statement, the function it is a part of, and whether the statement
is changed between versions. They augment each control flow graph with data
flow edges, name flow edges (similar to Pârtachi et al. [127]), and subtoken co-
occurence edges, i.e., whether two names contain the same subtokens, such as Box
in openBox and closeBox methods. Both control flow graphs are then merged
together by merging nodes with the same statement within the same function.
Finally, Chen et al. use the same bottom-up approach as Pârtachi et al. [127],
clustering nodes representing a change based on 𝑘-hop neighbours using affinity
propagation clustering. Again the clusters represent untangled changes.

Li et al. [94, 95] look into the problem of slicing a project’s history for a certain
feature. They approach this by considering all tests covering that feature. Their
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goal is a minimal version of the history such that the tests still pass. The general
idea is that their technique removes parts of the history, then checks whether the
tests still pass. They use two techniques to do so. In the first technique [94], this is
done by considering which methods are called when the test is run, collecting all
changes affecting the methods as well as code referenced by it, and running the
tests once to verify. In the second technique [95], the history is instead partitioned
and the tests are run on partitions to find changes preserving the test results. This
process is repeated to determine a minimal history.

Arima et al. [7] try to achieve the joining of commits rather than untangling
them. They consider the issue of one task being spread across multiple commits.
To detect the issue, they construct a weighted directed graph across two commits.
Nodes are the methods. A method present in both commits will have two differ-
ent nodes, one for each commit. Edges are based on whether methods are the
same, whether one calls the other, or whether they are defined in the same class.
Depending on the distance between two methods in the graph, the approach by
Arima et al. decides whether the different commits should have been one commit.

4.2.2 Syntactic- or Textual-Based Commit Untangling

Herzig and Zeller [67] combine many different metrics by means of confidence
voters. They look at changes on the level of addition and removal of method
calls and method definitions, which is more coarse-grained than our approach.
Herzig and Zeller combine various metrics to decide similarity. Their approach
considers, for example, the distancewithin a file, the similarity in package names,
or the distance in a call graph. Rather than a mix of such ad hoc techniques, we
base our work on one fundamental assumption: changes belonging to one task
relate by means of an overlap in slices in the program dependence graph.

Kreutzer et al. [91] look at the changes in two different ways: line-based, by
making use of the diff tool, as well as fine-grained by making use of Change-
Distiller [48]. To match changes together, the approach by Kreutzer et al. con-
siders a string representation of these changes. It then looks for the longest com-
mon subsequence to determine similarity in changes. This information is finally
used to cluster changes together. We too make use of change distilling, but our
methods of defining similarity strongly differ. We rely on the dependencies that
show up in the program dependence graph, not on patterns.

Just like Kreutzer et al., Kirinuki et al. [87] also use the longest common sub-
sequence to look for patterns. They analyse the changed program statements
between many revisions. For each duo of subsequent revisions, they consider the
longest common subsequence of the program’s statements. Differences the two
revisions have compared to that longest common subsequence are extracted as
a pattern template. The pattern template is stored in a database. When a new
commit is made to the project for which such a database has been constructed,
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the new commit can be compared to the patterns in the database. If a pattern
matches a strict subset of the entire commit, then the commit is marked compos-
ite. This differs from our work in the same way as the previous paragraph, we do
not look for patterns in the changes.

Wang et al. [167] break a change into fine-grained changes with Gumtree [46],
an approach we also follow, albeit with another tool. Wang et al. group changes
together by using def-use relations, similarly to Barnett et al. [11]. They im-
prove on Barnett et al.’s method by also defining a similarity metric between
fine-grained changes. This metric further groups changes that change code in a
similarmanner. They reason this handles situations where a similar code change,
like a refactor, is applied in many unrelated changes.

A completely different approach is performed by Dias et al. [42]. They make
use of a change logger, a program that needs to be installed by the developers
prior to their programming. A change logger tracks fine-grained changes as they
are made. Dias et al. then link the fine-grained changes together based on attrib-
utes such as for example proximity in time, proximity in history, i.e., did many
other changes happen in-between, or whether the changes happen within the
same class. They employ a form of machine learning to use these metrics to de-
cide whether commits are composite. We purposefully did not opt to use change
loggers. Requiring a change logger renders the troves of repositories already out
there useless. Evenwith yet-to-be-developed software itmay not be feasible to re-
quire its developers to install appropriate change loggers. Privacy reasons could
be cited, the developer might not be using the appropriate IDE, or the developer
may just find it too cumbersome to set up the change logger.

4.3 Overview of the Approach

We want our technique to take as input a commit that needs to be analysed. We
want our technique to output the clusters of related changes that the technique
considers the commit to comprise. Each of these clusters is then one untangled
single-task commit. To achieve this, our technique consists of fourmajor parts, as
depicted in Figure 4.1. First, the commit is distilled into fine-grained changes to
the program’s abstract syntax tree (AST). Second, an inter-procedural program
dependence graph is created for every file in the commit. We will refer to an
inter-procedural program dependence graph as a system dependence graph (SDG).
Third, for every fine-grained change, our technique slices on it in the system de-
pendence graph. Finally, changes are grouped by means of the slices they belong
to.

Wehave implemented our technique for commits to Java programs. Weprovide
a high-level overview of the implementation in Algorithm 1. This too follow the
structure of this section.
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Figure 4.1: Overview of our approach. The input is a commit, the output the
untangled single-task commits that make up the commit. The four
main parts of our approach are each described in detail in Section 4.3.
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1 Function untangle(c: Commit): Set[Set[Change]] is
2 files ← changedFilesPreCommit(c);
3 clusters ← ∅;
4 foreach f ∈ files do
5 sdg ← createSDG(f);
6 changes ← changeDistiller(f);
7 slices ← ∅;
8 foreach change ∈ changes do
9 node ← getPreCommitNode(change);

10 slices ← slices ∪ (change, sliceBackwards(node, sdg));
11 end
12 partition ← partitionBy(slices, changeInSliceTransClosure);
13 clusters ← clusters ∪ partition;
14 end
15 return clusters;
16 end

Algorithm 1: High level overview of the untangling algorithm. Given a
commit, the algorithm untangles the commit into different clusters of related
changes.

The rest of this section provides further detail into each of the four steps from
Figure 4.1. Wewill use the example difference of source code shown in Listing 4.1
as a running example. The example in question is part of composite commit
5e2cdc06¹ of the ArgoUML project, trimmed for the sake of this example.

4.3.1 Fine-Grained Change Distilling

In step one, we make use of a change distiller. When working with a project,
we have commits at our disposal, i.e., line-based changes. For our approach, we
instead want fine-grained changes on an abstract syntax tree. A change distiller
can be applied on commits to split them into more fine-grained changes follow-
ing some algorithm. Another option to obtain fine-grained changes would be by
means of a change logger, a program tracking everything a developer does as they
work on the code. However, this would require the logger to be installed on de-
velopers’ machines beforehand. While possible within a company, this approach

¹Full identifier is 5e2cdc061a0572d4007f4bc84382fff80f29e726. Note that this identifier does
not match up with what may be found online at the ArgoUML project. At the time of the
creation of the dataset (see Section 4.4), not all projects were managed by Git. Herzig and
Zeller converted these other repositories to Git themselves, so this identifier only makes sense
within their dataset.
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1 public FigActionState() {
2 - _bigPort = new FigRRect(10 + 1, 10 + 1, 90 - 2, 25 - 2, Color.cyan, Color.

cyan);
3 + bigPort = new FigRRect(10 + 1, 10 + 1, 90 - 2, 25 - 2, Color.cyan, Color.

cyan);
4 - _bigPort.setCornerRadius(_bigPort.getHalfHeight());
5 + bigPort.setCornerRadius(bigPort.getHalfHeight());
6 - _cover = new FigRRect(10, 10, 90, 25, Color.black, Color.white);
7 + cover = new FigRRect(10, 10, 90, 25, Color.black, Color.white);
8 - _cover.setCornerRadius(_cover.getHalfHeight());
9 + cover.setCornerRadius(cover.getHalfHeight());

10 - _bigPort.setLineWidth(0);
11 + bigPort.setLineWidth(0);
12 - addFig(_bigPort);
13 + addFig(bigPort);
14 - addFig(_cover);
15 + addFig(cover);
16 }

Listing 4.1: Difference view for commit 5e2cdc06 of ArgoUML. Used as running
example for Section 4.3. The variables _bigPort and _cover are
renamed to bigPort and cover.

comes with privacy concerns for the user and is not a feasible approach for many
researchers.

To distil the changes from a commit, we make use of ChangeNodes [149].
ChangeNodes is an implementation of the ChangeDistiller algorithm [48]. The
ChangeDistiller algorithm in turn is based on work by Chawathe et al. [29].
The ChangeNodes implementation operates on the abstract syntax tree (AST) of
a Java program. The AST in question is created using the Eclipse Java Develop-
ment Tools (JDT). Given two versions of a program, ChangeNodes performs tree
differencing on their ASTs and returns a list of change operations. A change op-
eration is either Insert, Update, Move, or Delete. One could compare this list of
change operations to the changes as produced by the diff tool. Applying diff’s
changes on the first version of the program results in the second version of the
program. Similarly, applying ChangeNodes’s list of operations on the AST of
the first version of the program, results in the AST of the second version of the
program. ChangeNodes thus provides fine-grained changes describing the diff
style changes in the commit. In our scenario the two versions used as input for
ChangeNodes are (1) the version of the program with the changes of the com-
mit under analysis not yet applied and (2) the version of the program after the
commit under analysis has been applied.

Listing 4.2 depicts the output of ChangeNodes when applied to our running
example. ChangeNodes computes nine AST-level change operations that have
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1 Update: _bigPort SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
2 Update: _bigPort SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
3 Update: _bigPort SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
4 Update: _bigPort SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
5 Update: _bigPort SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
6 Update: _cover SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
7 Update: _cover SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
8 Update: _cover SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]
9 Update: _cover SimpleProperty[org.eclipse.jdt.core.dom.SimpleName,identifier]

Listing 4.2: The distilled changes for commit 5e2cdc06 of ArgoUML, the running
example of Section 4.3. Each line is one fine-grained change. Note
that the representation here is simplified for viewing. The actual
distilled changes also indicate any new content as well as where in
the abstract syntax tree they are supposed to be inserted, updated,
moved, or deleted.

the same effect as the original commit. In our example, they are all of the Update
type: the names of the variables are updated. We number the distilled changes
from one to nine for future reference.

4.3.2 System Dependence Graph

In the second step, our technique uses program dependence graphs (PDGs). Pro-
gram dependence graphs contain both control and data flow dependencies as
dependence edges (see Section 2.4.1). In this chapter, we also make the following
explicit distinction in terminology. A procedure dependence graph is the program
dependence graph for onemethod or procedure. Method calls are not resolved. A
system dependence graph (SDG) is the program dependence graph for a combina-
tion of procedure dependence graphs. Themethod calls are used to link different
procedure dependence graphs. Our SDGs are for the entire file in which changes
occur.

For the implementation of this second step, we extend the open source Tiny-
PDG tool [68, 69, 70]. TinyPDG creates a procedure dependence graph of a Java
method from anAST provided by the Eclipse Java Development Tools (JDT). This
was a convincing point in its selection. It enables our implementation to link
results from TinyPDG back to ChangeNodes, as both operate on the same AST.
TinyPDG does, however, only work on an intra-procedural level and thus cre-
ates only procedure dependence graphs. Our implementation therefore renders
TinyPDG inter-procedural using the algorithm introduced by Horwitz et al. [75].
Using this algorithm our extended version of TinyPDG, TinySDG, combines the
procedure dependence graphs of the different methods into one SDG. Note that
our implementation does this on a per file basis, not for the entire project. In other
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1 A a = new A();
2 a.setX(1);
3 A b = a;

Listing 4.3: An example of a partial definition of an object. TinyPDG does not
realise line three should have a data dependency on line two.

words, the resulting SDGs connect procedure dependence graphs fromwithin the
same file, not from outside that file.

There are some shortcomings in the creation of our SDGs, we describe four.
First, consider a situation where a b++ is used in the right-hand side of an assign-
ment, e.g., a = b++;. In this case, TinyPDG does not see this as an assignment to
b. Thus, TinyPDG does not add the required data dependencies for statements
using b later in the program. Second, TinyPDG cannot handle try-catch state-
ments. Galindo et al. [52] propose exception-sensitive program slicing to handle
these statements correctly. Third, TinyPDG does not handle partial object defin-
itions correctly, an example of which is shown in Listing 4.3. In this example,
class A has a property x for which there is a setter function setX. In this example,
TinyPDGwill not create a data dependency between line three and line two. Sim-
ilar issues arise with constructors. Finally, the SDG algorithm by Horwitz et al.
[75] does not consider polymorphism. These issues in turn make the slicing in
the next step of our approach (Section 4.3.3) incomplete, i.e., the slices end up
containing less code than what is needed. Some of these limitations can be mit-
igated by use of an expression dependence graph [132, Chapter 5], which uses
more fine-grained nodes in the graph and rethinks the edges between the nodes,
as well as by using object flow dependencies [53]. Further improvements could
also be made in terms of dealing with data structures, by using field-sensitive
techniques [50], or in terms of dealingwith concurrency [51], which our approach
does not consider.

The entire system dependence graph created for the running example is too
large to include here as there are other changes in the file that we did not include
in Listing 4.1. Instead we show an extract of the relevant parts in Figure 4.2.

4.3.3 Program Slicing

In step three, our technique performs program slicing [169, 170]. We briefly
discussed program slicing with an example in Section 2.4.2. The idea behind
program slicing is as follows. Given a variable of interest 𝑣 in a statement 𝑠,
backwards program slicing on 𝑣 retrieves the statements that may affect that 𝑣
in that location. Executing a program reduced to those statements that affect
variable 𝑣 should, in theory, compute the same run-time values for 𝑣 as if the
entire program were executed. We opt for backwards slicing over other slicing
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Figure 4.2: Relevant parts of the system dependence graph for the running ex-
ample of Section 4.3. Solid lines with the label true are control de-
pendencies. Dashed lines are data dependencies. The label indicates
the identifier set by the source node and used by the destination node.
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Figure 4.3: Visual explanation of how slicing around a fine-grained change oper-
ation 𝑐 works. The abstract syntax tree node affected by change oper-
ation 𝑐 is marked as 𝑜𝑐. 𝑜𝑐 corresponds to or is part of a node 𝑛𝑐 in the
system dependence graph. 𝑆(𝑐) is the resulting slice backwards from
𝑛𝑐.

strategies due to backwards slicing resulting in a small slice, i.e., only what leads
directly to a certain program point is included. This minimises which other parts
are potentially considered related and also leads to smaller graphs to work with,
which should be more efficient.

A common static approach to backwards slicing relies on a program depend-
ence graph. Since the program dependence graph establishes the dependencies
for all parts of a program, the information to slice is already present. Specific-
ally, backwards slicing on a node 𝑛 in a program dependence graph amounts to
determining what other nodes 𝑛 can be reached from.

Our extension to TinyPDG implements the backwards slicing algorithm for
system dependence graphs introduced previously by Horwitz et al. [75]. To de-
terminewhat node to slice on, our technique oncemore considers the fine-grained
change operations provided by ChangeNodes. Figure 4.3 depicts how slicing
around a fine-grained change operation 𝑐 works. For such a fine-grained change
operation 𝑐, we identify the original location 𝑜𝑐 of the abstract syntax tree node
affected by the change. This location is used to find the node 𝑛𝑐 in the system
dependence graph such that 𝑜𝑐 is present in 𝑛𝑐. Slicing on node 𝑛𝑐 produces the
slice 𝑆(𝑐). For ease of notation we will just write 𝑐𝑖 ∈ 𝑆(𝑐𝑗) to indicate the situation
in which node 𝑛𝑐𝑖 belongs to the slice around node 𝑛𝑐𝑗. Such a slice is computed
for every fine-grained change operation.
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We note that in program slicing, a variable is specified to indicate which data
dependencies to follow andwhich to ignore. In our slicing, we forego this variable
and consider the entire node in the SDG. Data dependencies are followed indis-
criminately. In certain situations, this will lead to too large slices that include
parts of the SDG that are not relevant. Solving this could be done by determin-
ing which exact variables are affected by a change to the AST and providing that
information to the slicer. Alternatively, an expression dependence graph [132],
which is more fine-grained than the SDG we use, can potentially mitigate this
issue as well.

For the running example, our technique links the change operations described
in Listing 4.2 to the nodes of the system dependence graph in Figure 4.2. We
refer to the nodes in the graph by the number between < and > present in the
node. Change operations 𝑐1 through 𝑐5 are linked to SDG nodes 74…75, 76, 76,
80, and 87, respectively. This leads to slices

𝑆(𝑐1) = {73…94, 74…75}
𝑆(𝑐2) = {73…94, 74…75, 76}
𝑆(𝑐3) = {73…94, 74…75, 76}
𝑆(𝑐4) = {73…94, 74…75, 80}
𝑆(𝑐5) = {73…94, 74…75, 87}

The calculations for change operations 𝑐6 through 𝑐9 happen analogously.

4.3.4 Change Grouping

Finally, our technique needs to decide which change operations belong together.
To do so, we define the equivalence relation≡𝑆 between change operations. Using
the equivalence relation then enables partitioning the set of change operations
into disjunct sets.

To define ≡𝑆, we first define the helper relation ≡′
𝑆.

𝑐𝑖 ≡′
𝑆 𝑐𝑗 ⟺ 𝑐𝑖 ∈ 𝑆(𝑐𝑗) ∨ 𝑐𝑗 ∈ 𝑆(𝑐𝑖)

In other words, change operations 𝑐𝑖 and 𝑐𝑗 are related by ≡′
𝑆 if and only if 𝑐𝑖 is in

the backwards slice on 𝑐𝑗 or vice-versa. Note that the relation ≡′
𝑆 is not an equi-

valence relation. Recall that an equivalence relation is a relation that is reflexive,
symmetric, and transitive. By definition of how slicing works, this relation is re-
flexive. The relation is also trivially symmetric due to its symmetric definition.
The relation is however not transitive. We cannot state that if 𝑐𝑖 ≡′

𝑆 𝑐𝑗 and 𝑐𝑗 ≡′
𝑆 𝑐𝑘,

then 𝑐𝑖 ≡′
𝑆 𝑐𝑘. Consider for this the following simplified situation. 𝑐𝑗 is part of

the root node of a program dependence graph with two successors. 𝑐𝑖 is part of
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one of the successor nodes. 𝑐𝑘 is part of the other successor node. Slicing in this
situation results in

𝑆(𝑐𝑖) = {𝑐𝑖, 𝑐𝑗}

𝑆(𝑐𝑗) = {𝑐𝑗}

𝑆(𝑐𝑘) = {𝑐𝑗, 𝑐𝑘}

Then 𝑐𝑖 ≡′
𝑆 𝑐𝑗 and 𝑐𝑗 ≡′

𝑆 𝑐𝑘, but ¬(𝑐𝑖 ≡′
𝑆 𝑐𝑘). The relation ≡′

𝑆 is thus not an equival-
ence relation.

We use ≡′
𝑆 to define ≡𝑆. Specifically, ≡𝑆 is the transitive closure of ≡′

𝑆:

𝑐𝑖 ≡𝑆 𝑐𝑗 ⟺ ∃𝑐𝑘1,… , 𝑐𝑘𝑛 ∶ 𝑐𝑖 ≡
′
𝑆 𝑐𝑘1,… , 𝑐𝑘𝑛 ≡

′
𝑆 𝑐𝑗

In other words, there is a relation ≡𝑆 between two change operations 𝑐𝑖 and 𝑐𝑗 if
and only if there is a chain of change operations that links 𝑐𝑖 to 𝑐𝑗. Each change
operation in the chain is connected to the next change operation by means of the
relation ≡′

𝑆.
Algorithmically, our technique uses ≡′

𝑆 to build the partition for ≡𝑆. The fol-
lowing steps are followed, given the change operations, their slices, and an empty
set to hold the partition.

1. If a change operation is not in relation ≡′
𝑆 with any change operation in any

of the existing subsets in the partition, create a new subset with that change
operation in it.

2. If a change operation is in a relation with an element (or more elements) of
exactly one existing subset in the partition, place the change operation in
that subset.

3. If a change operation is in a relationwith two (ormore) elements of different
subsets, join the subsets together and add the change operation to it.

In Section 4.1, we hypothesised that related changes affect source code from
the same program slice and thus that a commit may be decomposed into related
changes using the created program slices. We rephrase our hypothesis in terms
of the partition, i.e., in terms of these subsets of change operations: a commit is
a single-task commit if and only if our technique does not split up the commit into
different subsets of change operations.

Applying this relation to the running example, we see that

𝑐1 ∈ 𝑆(𝑐2) ∧ 𝑐1 ∈ 𝑆(𝑐3) ∧ 𝑐1 ∈ 𝑆(𝑐4) ∧ 𝑐1 ∈ 𝑆(𝑐5)

and thus
𝑐1 ≡′

𝑆 𝑐2 ∧ 𝑐1 ≡′
𝑆 𝑐3 ∧ 𝑐1 ≡′

𝑆 𝑐4 ∧ 𝑐1 ≡′
𝑆 𝑐5
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1 5e2cdc061a0572d4007f4bc84382fff80f29e726,
src_new_org_argouml_uml_diagram_activity_ui_FigActionState_java,9,0,0,0,
false,0,9,2

Listing 4.4: Data produced by our prototype tool when applied to the running
example from Listing 4.1. One line is produced per file analysed in
a commit.

giving finally
𝑐1 ≡𝑆 𝑐2 ≡𝑆 𝑐3 ≡𝑆 𝑐4 ≡𝑆 𝑐5.

Similarly, we can see that
𝑐6 ≡𝑆 𝑐7 ≡𝑆 𝑐8 ≡𝑆 𝑐9.

There is no further connection between change operations, so there are two equi-
valence classes. Our algorithm considers the running example to consist of two
distinct parts: the renaming of bigPort and the renaming of cover.

4.3.5 Prototype Output

For completeness sake, we describe the output of our tool when applied to the
running example in Listing 4.1 that was introduced at the start of this section.
In Listing 4.4, we show the output that would be processed by other tools. This
output is a CSV dump containing one line per file analysed in a commit. Here,
there is only one line. The line lists the commit that was analysed followed by
the file that was analysed. Next comes the total number of change operations
found, here this is nine. The three next numbers indicate change operations our
prototype could not properly analyse, namely those modifying a comment, those
producing a certain internal error, and those not within amethod. In the running
example, there are none of these change operations. Next is a boolean indicating
whether somethingwentwrong during analysis, e.g., an error being thrownwhen
trying to create the system dependence graph. In this example, nothing went
wrong. The next number indicates for how many change operations there was
no corresponding node in the system dependence graph of the program before
the commit, again zero in this case. The next number is there as a sanity check
and indicates how many change operations are getting clustered. Adding this
number up with the previous four numbers, which indicated a change operation
could not be handled by the prototype, should result in the very first number.
This is correct here: 9 + 0 + 0 + 0 + 0 = 9. The final number indicates how many
clusters were created. In other words, a number higher than one indicates the
commit was composite.

We also show the more user-friendly output of our tool in Figure 4.4. This is
a diff view where the leftmost column has numbers indicating which cluster of
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Figure 4.4: Diff view produced by our prototype tool when applied to the run-
ning example from Listing 4.1. Key here is the leftmost column,
which indicates the clusters present.

changes each line belongs to. Here we can clearly see the two clusters #0 and #1.
In the interface, the clusters are coloured differently for easier visual scanning.

4.4 Dataset

We now introduce the well-established dataset of commits that we will use to
evaluate our hypothesis. In Section 4.5, we will evaluate our approach on a re-
finement of this dataset, to which we apply data cleansing through automated
filtering and manual commit verification first.

The dataset of commits stems from five Java programs as used by Herzig and
Zeller in [66, 67]. We are not aware of version numbers assigned to this data-
set. The programs in question are: ArgoUML, GWT, Jaxen, JRuby, and XStream.
These projects were chosen by Herzig and Zeller for meeting the following qual-
ity criteria: to be under active development (at the time of their analysis), to have
at least 48 months of active history, to have more than ten active developers, and
to feature a reasonable number of identifiable bug fixes. For each of the projects,
Herzig and Zeller manually identified single-task and composite commits using
commit and issue information. Using the single-task commits, Herzig and Zeller
also created artificial composite commits for each of the five projects. In order to
see how our approach deals with real-world situations, we do not consider this set
of artificial composite commits for our evaluation. Instead, we limit ourselves to
the real-world commits in the dataset. Table 4.1 depicts the number of commits
present for each type of commit in each of the projects. Table 4.1 also provides
the median number of Java files found per commit.

The prototype implementation of our technique is limited in the types of files
it supports. We use this information to perform an automated filtering of the
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commits in the dataset which were known to be affected by these limitations.
In terms of file types, our prototype does not support non-Java files that might
appear in a commit. Our prototype also fails to construct the system depend-
ence graph for some of the Java files. We mark the corresponding commits in the
dataset as causing failures. In the case of two files, moreover, no exception was
thrown but graph construction timed out, i.e., it took longer than an hour.

In terms of changes to the files affected by a commit, there are some limit-
ations too. Program or system dependence graphs do not take comments into
account. It follows that our approach cannot either. Moreover, in our prototype
implementation, the graph construction algorithm only works on code contained
within methods. As such, changes to, for example, class or field declarations
are ignored. Finally, for some change operations, our implementation failed to
identify a matching node in the system dependence graph. This can be the case
when something is inserted without a tie to the original code. By this we mean
a situation where ChangeNodes categorises the change operation as an Insert
rather than a Move or an Update of code that was already in the program. As
our system dependence graph considers the original version of the code, this
Insert cannot be linked to any meaningful node. Taking these limitations into
account, our automated filtering step removes commits for which no files with
valid change operations remain. Only the commits that remain are considered
for any further evaluation. Table 4.1 depicts the number of each type of commit
per project after the automated filtering step. The table also depicts the median
number of Java files per commit for these remaining commits. Finally, Table 4.1
also depicts the median number of valid change operations per Java file.

Following the automated filtering described above, we perform a detailed ma-
nual verification of the 504 commits that remain from the original dataset. We
inspect the code changed by each commit as well their accompanying commit
message. We do not further use commits matching one of the following aspects.

• The commit consists of many changes to statements that TinyPDG cannot
handle, or is centred around such changes. An example is the try-catch
statement.²

• Our approach considers the project before the changes. If the commit con-
sists entirely of new files, then our approach cannot do anything.

• One of the tasks in a composite commit is the fixing of comments, format-
ting, or other style issues. The presence of such a task in a composite com-
mit means our technique would not be able to correctly distinguish tasks.

²While there is code for this present within TinyPDG, we saw no notice of it in the generated
PDGs.
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• The commit consists of many repeated changes in otherwise unrelated loc-
ations. Consider, for example, commit ba2f8bd2³ of the JRuby project. In
this commit, a null check is added to several differentmethods. While con-
ceptually related, this is not a relation our technique can possibly discern.

In case of uncertainty in our analysis, we left the data of the dataset as is. In this
manner, we avoid personally influencing the data. Finally, we also consider for
every commit whether the dataset categorised the commit correctly. By this we
mean the commit was marked as comprising many tasks while it was actually
just a single task, or vice-versa.

Our manual analysis filters out another 116 of the 504 commits. Among the
116, 35 have formatting as one of the tasks, such as whitespace changes. In 13
occasions, TinyPDG would not be able to handle the types of changes. Repeated
changes occur 53 times. Finally, 20 of the commits have a majority of new files
being added. We point out that these numbers do not add up to 116 because some
commits were placed in multiple categories.

We are left with 388 commits for the evaluation of our approach. Of these, 359
commits pass all our scrutiny. We find the other 29 commits to be categorised in-
correctly. The main culprit for incorrect categorisations may be a different inter-
pretation of what a composite commit is. Take, for example, commit 26d69d46⁴
of the GWT project. This commit refers to two issues in its commit message: “Fix
for issues #966 and #867; escapes HTML end tags from string literals in com-
piler output.”. Despite there being two issues mentioned, there is but one fix
that happens to fix the both of them. These types of commits were marked as
being composite in the dataset, but we consider them to only perform a single
task. As such, to perform the evaluation, we switch the categorisation for these
commits.

Table 4.1 describes what is left of the dataset. With these remaining commits,
we will evaluate our approach. As mentioned before, Table 4.1 depicts the num-
ber of commits, the median number of Java files per commit, and the median
number of valid change operations per Java file.

Conclusion. After filtering out commits that cannot be used to evaluate our ap-
proach, the dataset contains 388 commits which will be used for the evaluation.

4.5 Evaluation

To analyse our hypothesis, we consider two research questions.

³The full identifier is ba2f8bd229c62aa68acf176fa5c7578a4e7670e1. As mentioned before, due
to the way Herzig and Zeller [67] constructed their dataset, this hash may only have meaning
within their dataset.

⁴The full identifier is 26d69d46ad7fbb01ac5a2cd9a03084f73e9cff51.
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RQ1 Does our technique correctly identify composite commits?

RQ2 Does our technique correctly identify the single tasks within a commit?

We will use the dataset described in Section 4.4 to answer these research ques-
tions. The remainder of this section consists of the following three parts. We
describe the research method for each research question, provide the results for
each answer, and discuss any threats to validity.

4.5.1 Research Method

In Section 4.1, we hypothesised that related changes affect source code from the same
program slice and thus that a commit may be decomposed into related changes using
the created program slices. Our hypothesis thus concerns entire commits. The
implementation of our technique, however, works on a per file basis. Its output
is the number of sets in the partition of the file, i.e., the number of clustered
changes for that file. Commits may contain many changed files and as such we
need to reconcile the two. We define the following metrics to do this.

Definition. The PARTITIONfile metric is defined as the number of sets in the partition
of the change operations for a given file, as attained by our algorithm described in
Section 4.3.

Definition. The PARTITIONcommit metric is the maximum of the PARTITIONfile for
the files changed in the commit.

PARTITIONcommit = max
file ∈ commit

PARTITIONfile

Using that, we define classification by our technique as follows.

Definition. COMPOSITEcommit is a boolean. When true for a certain commit, the
commit in question is considered composite.

COMPOSITEcommit = (PARTITIONcommit > 1)

In other words, our technique considers a commit composite if at least one file
had more than one set of change operations in the file’s partition.

Composite Commit Identification

We apply our technique to all commits in the dataset. Commits are classified as
either composite or single-task in the dataset. Our technique likewise classifies
a commit as either composite or single-task. Thus there are four possible results
to consider in the evaluation of a commit.
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1. Composite commit correctly identified as composite. A true positive.

2. Single-task commit correctly identified as single-task. A true negative.

3. Single-task commit incorrectly identified as composite. A false positive.

4. Composite commit incorrectly identified as single-task. A false negative.

We will provide the number of times each of these possibilities occurred. We
will also provide the precision⁵ and recall⁶ based on those numbers. Finally, the
F-score⁷, which combines precision and recall into a single number, is provided.
These three metrics provide a number between 0 and 1 where 1 represents a
situation in which the algorithm is entirely correct. Results will be reported on a
per project basis.

Single-Task Identification

Here too our technique is applied to all commits in the dataset. The results from
the previous research question remain relevant here. However, for this research
questionwewill look at the resultswith a focus on the single-task commits, rather
than on the composite commits. If our technique is good at identifying single-
task commits, then that is a strong indication it is good at identifying single tasks.
However, it is not sufficient: what if the technique just overapproximates single
tasks?

To avoid this possibility, we will also look into the number of sets reported by
our technique for composite commits (the PARTITIONcommit metric mentioned
before). The dataset states for some composite commits how many tasks they
comprise. We will compare the numbers reported by our technique to the num-
bers present in the dataset. If the numbersmatch up, this is an indication that the
sets in the partition identify single tasks correctly within a composite commit.

Note that this would just be an indication of correct partitioning, not a cer-
tainty. To be a certainty, wewould need to compare the partitioning as performed
by our approach to the partitioning in the dataset. We cannot make this compar-
ison here as the dataset lacks the data to compare to. That is, the dataset does not
specify which groups of fine-grained changes a composite commit is comprised
of.

To further mitigate this issue, we have three computer scientists evaluate the
output produced by our tool. At the time of the experiment, two of them had
a master’s degree in computer science and the third one had a PhD in the same

⁵Commonly defined as precision = TP/ (TP + FP).
⁶Commonly defined as recall = TP/ (TP + FN).
⁷Commonly defined as F-score = 2 ∗ precision ∗ recall/ (precision + recall), a harmonic mean

between the precision and the recall.
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field. None were authors of the experiment or the paper it produced, but all
three worked in the same department as the authors. For a random selection of
31 commits, the computer scientists are tasked to rate the output of our tool on
a five-level Likert scale: a rating from 1 to 5, a 3 is the middle, anything higher
is a positive response. We will provide the median and mode of their replies
per person. They are also asked whether the clustered change operations should
be further combined, further split up, or neither of the two. To evaluate their
answers, we will consider the number of commits for which they thought the
clustered change operations should go one way or the other. Even if only one of
the reviewers wants to see the clustering done differently, we will still count that
commit as needing improvement. This final question is important in knowing
whether our clusters span across task boundaries or not.

4.5.2 Results

We present the results and a conclusion for research questions one and two.

Composite Commit Identification

Here we answer RQ1: Does our technique correctly identify composite commits?
An overview of the results when identifying composite commits is given in

Table 4.2. As mentioned, this table depicts the total number of commits, the
number of true positives, the number of true negatives, the number of false pos-
itives, and the number of false negatives. It also gives the calculated precision,
recall, and F-score based on those results. All the numbers are provided per pro-
ject.

In interpreting these results, it is important to keep the number of commits
per commit type in mind for each project. This data was provided in Section 4.4,
specifically in Table 4.1. All else being equal, a higher or lower number of com-
posite commits versus single-task commits results in higher or lower precision,
respectively. If the number of single-task commits in the dataset increases, then
the number of false positives increases,⁸ which in turn increases the denominator
when calculating the precision, thus lowering precision. Similarly a decrease in
single-task commits will increase precision. Recall is not affected by this. This is
also not a problem when looking at the total numbers across all projects as our
refined dataset contains an equal number of composite and single-task commits,
as shown in Table 4.1.

In the results, the numbers for the Jaxen project are noticeably lower than for
the other results. Therewere few total commits for this project and themajority of
those commitswere single-task. Only three composite commitswere analysed for

⁸We assume here that the ratio of single-task commits identified as single-task commits compared
to single-task commits identified as composite commits does not change.
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Precision Recall F-score

ArgoUML 0.74 0.67 0.7
GWT 0.5 0.57 0.53
Jaxen 0.93 0.81 0.87
JRuby 0.58 0.77 0.66
XStream 0.77 0.81 0.79

Total 0.67 0.72 0.69

Table 4.3: The precision, recall, and F-score for the identification of single-task
commits. These are calculated using the absolute numbers present in
Table 4.2. The total row is calculated using the totals across the pro-
jects, not by a combination of the numbers in this table.

the Jaxen project. We are thus inclined to attribute this result, at least partially,
to these factors. For the other projects, the numbers are more positive. Both
precision and recall seem to be around 70%. The F-score too is around that ratio.
Here we note that for the GWT and JRuby projects, more composite than single
task-commits are present. This affects the precision in a positive manner.

The results are positive, but not overwhelmingly so. The prototype implement-
ation of our technique correctly identifies a large number of commits, but leaves
room for improvement.

Conclusion. Our technique correctly identifies composite commits. The F-score
of the identification is 67% across all five projects.

Single-Task Identification

Here we answer RQ2: Does our technique correctly identify the single tasks
within a commit?

We consider again Table 4.2, but now from the point of view of the single-task
commits. To do this, we calculate the relevant precision, recall, and F-scores. The
results are depicted in Table 4.3. Besides the GWT project, all resulting F-scores
are over 65%. For Jaxen and XStream the results are even more positive. As in
the previous section, while the result is positive, it is not overwhelmingly so. We
consider the other test results.

The next step is the comparison of the number of tasks our technique identifies
for a commit against the number of tasks in that commit according to the dataset.
While we perform a validation of our dataset in Section 4.4, we note that this
validation does not include validating the number of different tasks attributed
to a commit by the original dataset ours is derived from. Table 4.4 summarises

81



Chapter 4 Untangling Composite Commits Using Program Slicing

Composite
commits

Correct number
of sets

ArgoUML 33 7 (21%)
GWT 28 7 (25%)
Jaxen 0 —
JRuby 65 15 (23%)
XStream 16 4 (25%)

Total 142 33 (23%)

Table 4.4: Identifying the number of single tasks within a composite commit.
Only commits forwhich the number of partitions is present in the data-
set are considered.

the results of comparing our technique to the numbers present in the dataset.
The dataset does not provide any information regarding the number of tasks in
a commit for any of the commits in the Jaxen project. As such, no results are
present for the Jaxen project.

The results we encounter here are negative. Identifying the exact number of
single-tasks in a composite commit proves difficult for our technique. The data-
set’s number of tasks making up the commit was found in only a quarter of the
cases for the four projects for which data was available.

The results of our survey are more positive. The raw results are visualised in
Figure 4.5. As mentioned before, the untangling of 31 commits had to be rated
using a five-level Likert scale: a rating from 1 to 5, a 3 is the middle, anything
higher is a positive response. The median result for each of the reviewers was
5, 5, and 3. The mode was 5, 5, and 3 with 20 (65%), 18 (58%), and 18 (58%)
occurrences, respectively. Two of the reviewers were rather positive about the
output, one remained more neutral. In terms of ways to improve the clustered
changes, 3 of the 31 cases (10%) were considered to need further splitting up of
the created clusters of changes. For 10 (32%) of them the opposite was true: more
changes should be combined into one cluster. No changes should be made in the
other 18 cases (58%).

The earlier negative result may be explained by our slicing being incomplete
(as we described in Section 4.3.2). This incompleteness means the created slices
are too small, which causes less clustering to happen. Indeed, the survey result
corroborates this and, to some extent, mitigates the earlier negative result. The re-
viewers believe changes need to be combined further thanwhat our approach cur-
rently does, implying a created cluster of changes does not span across multiple
tasks in a commit. If the clusters would instead span across tasks, they would no
longer be helpful for a stakeholder using our approach. Our clusters of changes
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4.5 Evaluation

Figure 4.5: Results of a three-person survey. Each person analyses 31 commits
and the result of our change clustering. They need to assess whether
the change clustering makes sense.

are more fine-grained than reality. The individual clusters stay within their tasks
and each manages to identify a part of their task. This ensures the clusters are
not rendered useless when analysing or reviewing a commit. A stakeholder may
still use the different clusters of changes knowing each cluster contains changes
that belong together. The stakeholder can then still further combine the clusters
as they deem necessary.

Conclusion. Our approach is able to identify when a commit performs a single
task with an F-score approaching 70%. Our approach creates more fine-grained
parts than those that are counted in the dataset. A manual review by three com-
puter scientists finds that the clusters of changes are contained within their re-
spective tasks in a commit. As such, the clusters can still be used for code review,
integration, and reversion.
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25% 50% 75% mean std

ArgoUML single-task 0 1 4 66 316
composite 3 11 43.5 199 1079

GWT single-task 1 2 10 26 72
composite 3 7 56 270 819

Jaxen single-task 0 1 2 1 1
composite 8.5 17 23.5 16 15

JRuby single-task 1 2 6.75 10 31
composite 5 19 85 150 617

XStream single-task 0 1 1 1 1
composite 1 4 17 10 11

Total 1 3 19 101 585

Table 4.5: Time in seconds taken to analyse a commit with our untangling ap-
proach. A zero indicates analysis took under one second. The 25%,
50%, and 75% percentiles are listed. Mean and standard deviation are
rounded to the nearest integer.

Time Efficiency

Finally, we have a look into the scalability of our approach. To do so, we consider
the time it takes to analyse a commit. These experiments were run on a Mac-
book Pro from 2013. The times for analysis per commit is depicted in Table 4.5,
grouped by project and by commit type (single-task versus composite). Note that
time was recorded with a precision of seconds, thus entries stating 0 imply a time
under 1 second. The table shows the 25%, 50%, and 75% percentiles as well as
the mean and standard deviation. For the majority of commits, the analysis takes
but a few seconds. There were outliers, however, with 54 commits (14% of all
commits) taking a minute or more and 12 (3%) of those taking over ten minutes.

We list these 12 commits in Table 4.6. We have a deeper look at each of the
commits and conclude that in all cases the longer time spent analysing is due to
one file. This file is listed in Table 4.6 as “Slowest File”. The time taken on just
that file is also listed, as well as the percentage compared to the total time for the
commit. Finally, the last column lists the time taken to create the SDG of that
file and obtain the list of fine-grained changes made to the file. The percentage
indicates that number compared to the total time for that file. The rest of the
time attributed to the file consists of the analysis looping through the change
operations: creating the slice for each and grouping change operations together
using ≡𝑆. For 11 of the 12 slow files, the slow analysis is to be blamed on this
latter step. For commit 87da6cb of the GWT project, however, almost all the
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Chapter 4 Untangling Composite Commits Using Program Slicing

time is spent on creating the SDG and obtaining the change operations. The file
in question seems to consist primarily of comments and several nested classes
without a body. We hypothesise this esoteric case trips up the SDG creation or
the change distiller.

For the 11 slow files where slicing and clustering the fine-grained change op-
erations takes up most of the time, there are always a high number of change
operations. A cursory glance at commits that did not take especially long to ana-
lyse, however, seems to indicate this does not on its own explain when analysis
for a file will be slow. At the time of writing, we lack the structured data to make
more conclusive statements, but hypothesise a combination of a large number
of change operations and bigger files causes the slicing and clustering to be too
inefficient.

4.5.3 Threats to Validity

The evaluation of our approach depends on the correctness of the dataset we use
as a ground truth. This is true in its most basic form: stating whether a commit
is composite or not. This is also true in the number of single tasks it discerns
in a composite commit. As described in Section 4.4, we try to mitigate this to
some extent by performing a manual filtering phase. We were conservative in
this manual filter phase, so errors may still be present. Mistakes in either could
cause an over or under approximation in our evaluation. We mitigated this to
some extent by means of our human survey.

Our implementation may have bugs. This in turn affects the results of analys-
ing commits and the evaluation of those results. Also in our implementation, we
enable binding resolution, as provided by the Eclipse JDT library, to create the
abstract syntax tree. We enable binding resolution in order to resolve method
calls and the like to their definition. In this, we are bound by the precision of this
static binding resolution. This can further influence the results.

In our implementation, the binding resolution only happens within one file,
not across files. In other words, a method call to a method in another file does
not get resolved. This means that related changes across different files cannot get
linked together when they should be.

TinyPDG is not able to handle some Java statements, like try-catch. Our
manual filter phase only removes commits where these statements were the main
part of what was being changed. This results in a possibly subpar analysis. Hor-
witz et al.’s algorithm [75] is not entirely state of the art. Improvements have been
made over the years to enable a better handling of, for example, classes and ob-
jects. Not using the state of the art may negatively affect our results. Using more
recent work [50, 51, 52, 53, 132] would result in more accurate slices, which in
turn affects our change clustering.

In our survey, we did not provide strict guidelines to the participants on how
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to grade clusters. Deciding on a number that encompasses all opinions a parti-
cipant may have on a cluster is not easy. Thus those results may be skewed by the
interpretation of the participants.

It is possible unrelated tasks touch overlapping parts of the code in the same
way. When committed together, our technique is not able to distinguish the two.
We do not see a way around this situation with just our approach.

4.6 Conclusion

We want to help developers, code reviewers, and researchers with tool support
for decomposing composite commits according to the tasks they perform. For
the foundation of this tool support, we start from the hypothesis that related
changes belong to one and the same program slice in a program dependence
graph. The corresponding algorithm performs program slicing on the change op-
erations computed for a commit by a change distiller, and clusters the resulting
fine-grained change operations according to the slices they belong to. We evalu-
ated our technique on a well-established dataset of commits stemming from five
Java projects [67]. We first analysed this dataset and further refined it to fit our
context. We found that our technique is able to identify single-task and compos-
ite commits. We also found that our technique creates more fine-grained clusters
than those counted by the dataset we used. Amanual review indicated that in the
situations where there is no one-to-onemapping from cluster to task, each cluster
of changes still stays within one single task. We conclude that our approach is
capable of alerting developers about commits that are composite, prompting ac-
tion on their part. It also enables identifying the individual tasks of said commit.
This way, the commit can be corrected before being pushed to other members of
the team or the public at large.

4.7 Future Work

In this chapter we sliced on the program dependence graph of the version of
the code before the commit was applied. For larger additions, it may be more
interesting to slice in the program dependence graph for the new version of the
code. This is because a large addition does not have a clear node in the original
AST or SDG to be linked to. A multi-version graph approach such as used by
Pârtachi et al. [127] and by Chen et al. [30] may prove beneficial here.

In future work, we can consider different clustering criteria. For example, em-
ploying a relation similar to the (c) connection we discussed when describing
related work by Barnett et al. [11], which links diff-regions if they used the same
method, could be used after our technique has partitioned the changes to com-
bine some of the newly formed groups. Another consideration could be to vary
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the importance of data and control dependencies when slicing, e.g., by not fol-
lowing certain control dependencies.

Slicing can be done in two directions. We performed backwards slicing, con-
sidering the statements that affect a certain statement. One could also slice for-
wards, considering the statements affected by a certain statement. Forwards sli-
cingmight, however, match larger areas of the programdependence graph, which
might influence precision. Alternatively, a best-of-both-worlds approach might
combine the two directions to perform some sort of “optimal” slicing. This dis-
tinction matters since, as we discussed in Section 4.3.2, TinyPDG does not create
a complete slice when dealing with, for example, partial object definitions.

Applying advancements [50, 51, 53, 132] in program dependence graph cre-
ation and associated slicing would result in more accurate slices. This in turn
would, presumably positively, affect the clustering as performedby our approach.

Our approach is currently applied within files. The alternative of working
across files, e.g., for the entire project or on a per package basis, should be in-
vestigated. Specifically, since this creates larger graphs and longer lists of fine-
grained changes per graph, the trade-offs in time efficiency should be weighed
against the gains in accuracy.

What is or is not a composite commit can depend on the situation and on the
stakeholder looking at a commit. Our approach uses code dependencies, which
may not be applicable in all situations. It would be interesting to explore these
situations and experiment with a combination of our approach with related work
to perhaps tackle such situations too. Alternatively, one could survey developers
on how they would cluster changes and derive what kind of dependencies they
would like to see used.

For an industrial setting, our technique needs to be able to analyse a commit
reasonably fast. Our analysis only took a few seconds for themajority of analysed
commits. However, several commits took over a minute to analyse. Optimisa-
tions to our research prototype are likely to be in order.
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Chapter 5

Prevalence of Merge Conflicts
In Chapter 3, we introduced the two types of problematic commits that we ana-
lyse in this dissertation. In Section 3.1, we discussed composite commits, their
effects, and their prevalence. In Section 3.2, we provided definitions of various
merge conflicts that can occur in merge commits. The three main categories we
describedwere: (1) textual, where an overlap in changed lines of code leads to the
version control software passing the conflict on to the user; (2) syntactic, where
the code seems to merge correctly, but the result is not syntactically correct; and
(3) semantic, where the conflict appears due to the interaction of behaviour lead-
ing to a bug that is not caught until the tests, or worse, a user, trigger it. In
Section 3.3, we focused specifically on semantic merge conflicts, but withheld
focusing on their prevalence.

In this chapter, we describe the results of our study into the prevalence of syn-
tactic and semantic merge conflicts on a large scale. Specifically, we analyse their
prevalence within the context of continuous integration. Continuous integration
is an industry practice aiming to detect various run-time errors through an ex-
tensive pipeline of successive tests.

We combine data fromTravis CI [162], one such continuous integration service,
with data from GitHub [56], a host for Git repositories. By combining this data,
we can not only determine when a merge conflict occurs, but also walk further
up and down the history of the project to determine when the issue got fixed.

We findmerge commits lead to failure less often than regular commits. Repair-
ing the code is usually done the same day and takes fewer than ten lines of code.
Repairing tends to happen in the source code as opposed to the test code. These
results indicate that applying proper practices, such as having a good test suite,
mitigates many issues associated with code integration. Writing andmaintaining
a good test suite requires a lot of development time and effort, which is why we
look into an automated way to detect semantic merge conflicts in Chapter 6.

In Section 5.1, we introduce three research questions to analyse the prevalence
of merge conflicts. In Section 5.2, we discuss related work. In Section 5.3, we
describe the gathering and refining of our dataset. In Sections 5.4 and 5.5, we
answer the research questions.
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5.1 Research Questions

To study the prevalence of syntactic and semantic merge conflicts in a structured
manner, we seek to answer the following three research questions:

RQ1 How often do code integrations lead to syntactic and semantic conflicts?

RQ2 How much effort is needed to fix conflicts after code integration?

RQ3 What type of files is this effort concentrated in?

5.2 Related Work

We discuss related work that looks into the prevalence of merge conflicts. When
we performed our study, the existing related work did not look at prevalence of
merge conflicts at scale, instead analysing a handful of projects at a time. Due to
the novelty of this study at the time, we include the study as a standalone chapter
in this dissertation and discuss its related work here rather than in a section in
Chapter 3 as we did when describing the prevalence of composite commits.

Brun et al. [23, 24] analysed 3,562merge commits across nine open source pro-
jects. Their study observed that about one in six merge commits leads to a textual
conflict. Three of the nine open source projects were investigated for build and
test conflicts after a merge had been committed. A build conflicts implies build-
ing the projects fails. A test conflict implies one or more of the tests reported
an error. In Section 3.2, we described both in more detail and discussed why we
avoid the terminology in our own work. Build conflicts were found in 0.1%, 4%,
and 10% of merge commits. Test conflicts were found in 4%, 28%, and 3% of
merge commits. The study lacks in two aspects. First, the sample size is small.
Only three projects were investigated in terms of conflicts beyond the textual. In
our study, we will look at commits across 348 projects. Second, the study did not
consider what was done to fix these conflicts. We will try to answer this in RQ2
and RQ3 by looking into the effort needed to fix a conflict and the types of files
the effort happens in.

Kasi and Sarma [82] analysed four projects in a manner similar to Brun et al.
They found that build conflicts were present in 2%, 10%, 15%, and 4% of merge
commits. Test conflicts were present in 30%, 15%, 6%, and 35% of merge com-
mits. Kasi and Sarma also looked into the number of days till a conflict was
resolved. In the case of build conflicts, the median per project was 0.75, 8, 2, and
0.75 days. Test conflicts took longer to resolve, with medians of 14, 3, 2, and 4
days. We report these results while keeping the same order of projects for every
metric. Thus, for example, the first project they looked at, Perl, is the first num-
ber in each of those sequences: the reported numbers for Perl were 2%, 30%, 0.75
days, and 14 days. In this study too, only a few projects are analysed.
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Perry et al. [133] performed their study in 2001. Both terminology and prac-
tices were different then than they are today. Perry et al. investigate the effect
of the maximum number of parallel changes 𝑃𝐶𝑚𝑎𝑥 on the number of defects in
one certain project over several years. In this system, changes are grouped in a
“Modification Request” (MR). A MR has to be tested and approved before being
accepted into the main branch of the project. Until a MR is in the main branch, it
remains open. Perry et al. define 𝑃𝐶𝑚𝑎𝑥 for a certain file as the maximum number
of open MRs at any point in the lifetime of the file. They define the number of
defects for a file as the total number of MRs submitted to fix a bug in the file over
its lifetime. Perry et al. control for variables such as the total number of changes
or the number of defects prior to the time they analysed the project. Perry et al.
find that 𝑃𝐶𝑚𝑎𝑥 significantly affects the number of defects.

Da Silva et al. [36] mine 451 open source Java software repositories in order
to analyse build conflicts in merges. They performed this study in 2022. Da
Silva et al. find fewer build conflicts than they a priori expected. They attribute
this to procedures taken by the developers such as ensuring the project builds
locally before sharing changes with the world. Most build conflicts were caused
by missing symbols. This occurs when, for example, one branch starts using a
variable while the other branch renames or removes it. Da Silva et al. also look
into actions taken by developers to fix the encountered errors.

Amaral et al. [2] study the effect of textual merge conflicts on bug inducing
changes. They locate bug inducing changes using the SZZ algorithm [144]. They
find that 9.5% of commits introduce a bug. They find that this remains at 9.5%
for merge commits where a textual merge conflict had already occurred. In other
words, despite a textual merge conflict getting resolved by a developer, nearly
one in ten of those merges still exhibits a semantic (or syntactic) merge conflict
afterwards.

The numbers from the different studies provide a big range on the occurrence
of semantic merge conflicts. However, the studies do indicate semantic merge
conflicts are a common enough occurrence to demand researchers’ interest.

5.3 Dataset

5.3.1 Origin of the Dataset

To answer the three research questions, we require a dataset of projects and in-
formation on the success of merges. To create this dataset, we combine inform-
ation from two sources: GitHub [56], a version control repository host hosting
primarily projects managed in Git, and Travis CI [162], a continuous integration
service. When configured to do so, Travis CI builds a program, runs its test suite,
and reports the results back to the developers upon a commit to the repository.
We use Travis CI because, at the time that the study was conducted, many pro-
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jects hosted on GitHub had been configured such that the Travis CI continuous
integration pipeline triggered on every commit pushed to GitHub. In the case of
open source projects, Travis CI made these results publicly available. In 2020,
Travis CI stopped offering this service for free to open source projects [161] and
the year prior Github had started offering a similar service, Github Actions, for
free to public projects hosted on their website [49]. The result of these decisions
is that Travis CI has become less popular for open source projects and their con-
tinuous integration needs.

To use the data from Github and Travis CI, we combine two existing datasets.¹
First, GHTorrent [60] provides GitHub data. GHTorrent brings information from
GitHub to researchers in the form of a MySQL database containing over 400 mil-
lion commits. Second, TravisTorrent [13] provides Travis CI data. Travis CI per-
forms continuous integration on projects: it builds a project and runs its tests
after each commit. The TravisTorrent dataset parses the results of the builds and
tests from Travis CI and provides the information in a more structured manner.
TravisTorrent provides this information for about 1300 Ruby and Java projects.
To ensure projects meet a certain standard and to filter out toy projects and in-
active projects, the projects in TravisTorrent meet the following criteria defined
by Kalliamvakou et al. [81]:

• The project must have received a commit in the last six months. This avoids
potentially abandoned projects.

• The project must have public forks on GitHub. In GitHub terminology, a
fork of a project by a certain user is a copy of that project from its original
namespace to the namespace of that certain user on GitHub. On the Git
level, this is similar to the user having the project set up locally with a re-
mote reference (see Section 2.3.2) to the original project. The user can then
start creating new commits, forking the Git history (see Section 2.3.3) from
the original project.

• The project must have received at least one pull request on GitHub. This
explanation of a pull request continues from the example in the previous
bullet. After creating new commits in their project, the user can ask the
original project to merge in these commits. For example because the user
fixed a bug or added a new feature. As the name indicates, a “pull request”
requests that the original project pull in commits from the user’s fork of the
project. As explained in Section 2.3.3, pulling is the combination of fetch-
ing the commits from a remote reference, i.e., the user’s fork, and merging
the commits into your own branch, i.e., the original project. A pull request
inGitHub enables the original project to explicitly review incoming patches

¹Snapshots for GHTorrent and TravisTorrent were taken on 2016-05-04 and 2016-12-06, respect-
ively.
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Figure 5.1: Visualisation of the refinement of the TravisTorrent dataset. In the
end we are left with 348 projects.

to a repository. Contributors can review the pull request, suggest changes,
or comment on it before it is merged into the repository.

• The project must have more than 50 stars on GitHub. Any user can “star”
a project on GitHub, an action akin to bookmarking a website in a web
browser. If a project has 50 stars, then 50 different users bookmarked the
project.

TravisTorrent alone is not sufficient for our study as not enough information
is provided about the commit for which the project was built and tested. We
still need to identify the merge commits. For this we require GHTorrent, which
enables finding information on a commit’s parents commits. As explained in
Section 2.3.1, each commit in a project is identified by means of an SHA-1 hash.
We link commits across both datasets using this SHA-1 hash.
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Commits Merges Team size Branches

Min 138 50 2 1
Q1 360 104.8 9 20.75
Median 566 155 13 53
Q3 1120 288.5 20 117.5
Max 19142 8169 288 1022

Table 5.1: A summary of the 348 projects with 50 or more builds of merge com-
mits and parents as well as a sufficient number of successful builds
across the project.

5.3.2 Refining the Dataset

We perform a three-step refinement on the dataset to ensure its projects have suf-
ficient merge commits and adhere to continuous integration practices. A visual-
isation is provided in Figure 5.1.

First, the refinement eliminates projects with fewer than 50 builds of merge
commits. This step leaves 579 projects.

Second, the refinement filters out projects with a build success rate under 34%.
We suspect these projects of not adhering to continuous integration practices,
which mandate fixing a broken build as soon as possible. The success rate of a
project is the ratio of passed builds compared to the total number of builds. A
“passed” build is one where nothing went wrong during the building or testing
of a commit. In Section 5.4, we will describe the other possible statuses a build
in Travis CI can have. Across the 579 projects, the quartiles of the success rate
are 0.67, 0.81, and 0.89. The interquartile range IQR defines a lower bound 𝑙 for
the success rate:

𝑙 = 𝑄1 − 1.5 ∗ IQR = 0.34

Of the 579 projects, 555 have a sufficiently high success rate. The other 24 pro-
jects have a success rate under this 34% lower bound 𝑙 and are thus excluded for
not adhering to continuous integration practices.

Third, our research method requires information to be present about the build
of a merge commit and that of its parents. This third step eliminates projects
where build information is present for fewer than 50 merge commits and their
parents. This refines the dataset down to 348 projects.

5.3.3 Describing the Dataset

Table 5.1 and Figure 5.2 characterise the 348 projects in the refined dataset by:
the number of commits, the number of merge commits, the maximum team size,
and the number of branches. Due to the presence of some outliers, we also
provide a version of each graph with the outliers removed in Figure 5.2.
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Figure 5.2: Number ofmerge commits plotted against, from top to bottom: num-
ber of commits, maximum team size, and number of branches. Each
graph on the left hand side depicts all 348 selected projects. Each
graph on the right hand side zooms in on a section closer to the ori-
gin. Every dot represents one project.
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5.3.4 Terminology

Before explaining the research method for each of the research questions in Sec-
tion 5.4, we define five concepts in function of the dataset: build status, breaking
commit, fixing commit, merge commit, and breaking merge commit.

build status
The build status is the status assigned to the build of a commit by Travis CI.
This information is included in our dataset by way of TravisTorrent. The
builds in Travis CI can have a status of “passed”, “errored”, “failed”, “star-
ted”, or “cancelled”. “Started” means the continuous integration pipeline
is still running. “Cancelled” is a state triggered by the project’s developers
if they choose to cancel a run of the pipeline. “Errored” means something
went wrong in setting up the project, e.g., a dependency could not be in-
stalled. “Passed” means nothing went wrong during building or testing of
the project. “Failed” means something went wrong either while building
the project or while running the project’s tests. The “failed” build status is
therefore indicative of a syntactic or semantic bug.

breaking commit
Abreaking commit is a commit of which the build has status “failed” and of
which the parent commit(s) have builds with status “passed”. Considering
the build status irrespective of the build status of the parents would skew
results. This is because a build can remain failing for several builds in a
row. Explicitly considering breaking commits in this manner enables us to
ignore situations where a project’s developers are no longer attempting to
keep the build successful.

fixing commit
A fixing commit is the first commit with a build status of “passed” after a
breaking commit. We define the succession of builds of commits in terms of
the available TravisTorrent information. Each build entry in TravisTorrent
has a tr_prev_build field which links to the tr_build_id of its previous
build. We repeatedly follow this link in reverse order until the first build
that passes.

merge commit
As defined in Sections 2.3.1 and 2.3.3, a merge commit is a commit with
usually two, and in rare cases more, parent commits. To identify these
commits in the TravisTorrent dataset, we look up the commit with the cor-
responding SHA-1 hash in the GHTorrent dataset. GHTorrent provides in-
formation about the parents of a commit through its commit_parents table.

96



5.4 Research Method

BREAK%

The ratio for a project of the
number of breaking commits
(“failed” after “passed”) to the
total number of commits after
a passing build (anything after
“passed”). A lower number is
better.

BREAK%R BREAK%M
BREAK% for regular and merge
commits, respectively.

— BREAK%MN BREAK%MPR

Merge commit numbers are fur-
ther split between merges not
resulting from a pull request
and those that do.

Table 5.2: Definition of the BREAK% metrics for RQ1.

breaking merge commit
A breaking merge commit is a merge commit that is also a breaking com-
mit. In this case the build status was “passed” for the parents of the merge
commit, while the status of the merge commit itself is “failed”. In other
words, this situation indicates a syntactic or semantic merge conflict.

5.4 Research Method

5.4.1 RQ1: How Often Do Code Integrations Lead To Syntactic And
Semantic Conflicts?

Our research method for RQ1 consists in analysing the frequency of breaking
commits. For each project in our dataset, we compute BREAK%, the ratio of
breaking commits to all commits. We do this separately for breaking merge
commits, BREAK%M, and for breaking regular commits, BREAK%R. Breaking
merge commits are then further categorised into those resulting from pull re-
quests, BREAK%MPR, and those not resulting from pull requests, BREAK%MN .
In Table 5.2, we provide a hierarchical overview of these BREAK% metrics. We
identify pull requests through the gh_is_pr field present in TravisTorrent.

5.4.2 RQ2: How Much Effort Is Needed to Fix Conflicts After Code
Integration?

Our research method for RQ2 involves the measuring of proxies for the effort
involved in fixing a build. We use three metrics. The first metric is the number
of builds needed to fix a breaking commit. This number is the number of steps
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as described in finding the fixing commit in Section 5.3.4. We prefer to look at
the number of builds over the number of commits. When several commits are
pushed at once, Travis CI will only build the last one. Our reasoning here is that
a developermay take a few commits to fix the bug, butwill not push their changes
until the fix is ready. The second metric is the number of changed lines between
the breaking and the fixing commit. The final metric measures the time between
breaking and fixing commit. The metric considers the gh_build_started_at
field provided by TravisTorrent. gh_build_started_at has a precision of a day.
The measured differences will thus also have a precision of a day.

To summarise:

1. NBTF: The number of builds to fix: howmany builds it takes before a break-
ing commit is fixed. A lower number is preferred.

2. LINES: The number of lines changed between the breaking and fixing com-
mit. A lower number indicates a possibly lower effort.

3. TTF: The time between the breaking commit and its fixing commit. A lower
number may indicate the bug was easier to fix.

For every metric M, we also define M as its median within a project.

5.4.3 RQ3: What Type of Files Is the Effort to Fix Conflicts Concentrated
In?

To answer RQ3, we categorise a fix into one of four categories. To do so, we con-
sider the git_diff_src_churn and git_diff_test_churn fields of TravisTor-
rent. These indicate whether there were changes made to the source code and
the test code, respectively. We take the sum of all the changes between the break-
ing merge commit and its fixing commit. The four categories are then defined in
function of those numbers:

1. the “source” category contains fixes with only changes to the source code,
i.e., git_diff_src_churn is greater than zero and git_diff_test_churn
is zero,

2. the “test” category contains fixes with only changes to the test code, i.e.,
git_diff_src_churn is zero and git_diff_test_churn is greater than
zero,

3. the “both” category contains fixeswith changes to both source and test code,
i.e., both git_diff_src_churn and git_diff_test_churn are greater than
zero, and

4. the “none” category contains fixes with changes to neither source nor test
code, i.e., both git_diff_src_churn and git_diff_test_churn are zero.
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For each project, we count the number of fixes in each category relative to the pro-
ject’s total amount of fixes. Based on the four categories, we define the following
four metrics per project:

1. SRC: the ratio of “source” fixes to the total number of fixes.

2. TEST: the ratio of “test” fixes to the total number of fixes.

3. BOTH: the ratio of “both” fixes to the total number of fixes.

4. NONE: the ratio of “none” fixes to the total number of fixes.

5.5 Results

For each of the three research questions posed in Section 5.1, we provide and
discuss the results, we provide a brief takeaway message, and we discuss threats
to validity.

5.5.1 RQ1: Frequency of Conflicts

For RQ1 we consider the BREAK% metrics. The metric uses the previous build
for regular commits as defined in TravisTorrent. Themetric only considersmerge
commits with exactly two parents. The dataset resulting from Section 5.3 has
exactly one merge commit with more than two parents. This lone merge commit
is not used in further analysis.

Table 5.3 and Figure 5.3 (a) depict BREAK%R and BREAK%M, the 𝐵𝑅𝐸𝐴𝐾%
for regular commits and merge commits respectively. We notice merge commits
break the builds less often than regular commits do. Figure 5.3 (b) splits up the
merge commits into two categories: non pull requests and pull requests. We
believed the pull requests might explain away the good behaviour of the merge
commits. However, this does not seem to be the case. Only 35 of the selected
breaking merge commits across all the 348 projects are marked as a pull request.
Filtering these out does not have a significant impact on the combined numbers.

This result could be explained through our commit selection. We pick breaking
commits, i.e., commits for which the build not just fails, but the build of the
parent commit(s) also passes (see Section 5.3.2). Regular commits are more often
something completely new to the source code. The changes in the regular commit
are directly to blame for the breaking of the build. Breaking merge commits on
the other hand combine two passing versions. The only way for a merge commit
to break the build is to have the source code from both branches interact in an
unexpected way. These errors can be subtle. While new changes can be made in
the merge commit, this is not necessarily the case. Instead, the error then lies in
the way either branch interacts with the other. Furthermore, as we discussed in
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Figure 5.3: A comparison over all projects of the BREAK% metrics. (a) splits up
breaking commits by regular commits and merge commits. (b) splits
up the breaking merge commits by pull request.

BREAK%R BREAK%M BREAK%MN BREAK%MPR
Min 0.00 0.00 0.00 0.00
Q1 4.02 0.00 0.00 0.00
Median 6.90 2.34 2.22 0.00
Q3 11.20 5.78 5.79 0.00
Max 30.67 43.40 43.40 100.00

Table 5.3: A summary of the BREAK% for all 348 projects.
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Section 3.3.4, the potential presence of merge conflicts affects the behaviour of
developers: they coordinate in an attempt to avoid merge conflicts of any kind.

Table 5.3 shows that half of the projects deal with a breaking merge commit at
least once every 43 merge commits.² For a quarter of the projects this occurs at
least once every 17 merge commits.³

Summary. A breaking merge commit happens less frequently than a breaking
regular commit in projects with a continuous integration pipeline that maintain
a 34% or higher success rate.

Threats to Validity. Merge commits are but one form of code integration. The
manual application of a patch or a Git rebase would not show up in the Git his-
tory [33]. As we described in Section 2.3.3, rebasing rewrites the history of a
project to make it seem as if commits were made sequentially rather than in par-
allel over different branches. This study does not consider these forms of code
integration.

TravisTorrent contains projects that adhere to the GitHub workflow. The pro-
jects actively use branches, forking, and pull requests. This limits our analysis to
this type of project.

5.5.2 RQ2: Effort to Fix Conflicts

We start out with 16413 breaking commits (14430 regular, 1983 merge) from
the 348 projects after removal of outlier projects in Section 5.3.2. For 8453 (7664
regular, 789merge) of the breaking commits a fixing commit is found. Themerge
commits are spread out over 203 projects.

The NBTF metric is 1 for 87% of projects. This indicates a breaking merge
commit is usually fixed with the next build. Performing the same analysis on the
number of commits rather than the number of builds gives similar results: 71%
of projects tend to require just one commit.

Figure 5.4 depicts the LINES metric. It has quartiles at 3.25, 9, and 36. The
inset zooms in on the left part of the graph. The inset still shows 88% of the
projects. Half of the projects repair breaking merge commits usually with up to
nine lines.

Table 5.4 summarises the TTF metric. TTF shows 67% of projects usually fix a
breaking merge commit the same day. Within a week, 94% of projects have fixed
a breaking merge commit.

²1/43 ≈ 2.3%, in other words the median for BREAK%M in Table 5.3.
³1/17 ≈ 5.9%, in other words the third quartile for BREAK%M in Table 5.3.
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Figure 5.4: LINES for every project. Despite the long tail, for 75% projects LINES
is less than 36. The inset zooms in on the lower end of the graph. The
inset still shows 88% of projects.

Usually fixed
the same day 67%
the next day 14%

the same week 13%
the same month 5%

more than a month 1%

Table 5.4: An overview of the TTF metric. It shows 67% of projects usually fix a
breaking build of a merge commit within a day.
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Summary. In most projects a breaking merge commit is usually fixed with one
build on the same day by changing fewer than ten lines of code.

Threats to Validity. Our method for identifying the fixing commit relies on find-
ing the next builds in TravisTorrent. However, TravisTorrent does not provide
this information in the case of merge commits. A fixing commit will not be found
if a breaking commit is fixed by a merge commit or a merge occurs between the
breaking and the fixing commit.

We narrowed down our breaking merge commits to just 789 that have an as-
sociated fixing commit. These 789 are spread out over 203 projects. This does
not leave a lot of data per project. This may skew the results in favour of what
happens in those projects with very few data points.

Clearly all metrics are but a proxy for effort. It may take a lot of effort to track
down the exact problem of an issue, while still fixing it with but one line of code
in one commit. The TTF metric used does not necessarily represent the actual
time a developer spent working on fixing the build. The dataset comprises open
source projects which are, in general, developed by volunteers on an irregular
basis.

5.5.3 RQ3: Source vs Test

Figure 5.5 depicts how the metrics defined in Section 5.4.3 are spread out across
all projects. Here we use the same 789 breaking merge commits with associated
fixing commit as were identified in Section 5.5.2. Figure 5.5 showsmost breaking
merge commits are fixed by changes to either exclusively the source code or to
both source and test code. From this we conclude that the developer must indeed
have had certain expectations about the source code, not the test code, and that
those expectations were not met.

Summary. Breaking merge commits are fixed by changes to the source code.

Threats to Validity. This analysis is done for those breaking merge commits for
which a fix was found. Only 789 such cases were found. There is not a lot of
data per project. This may skew the results in favour of what happens in those
projects with very few data points.

This study includes syntactic issues. Syntactic issues in the source code are
necessarily fixed by making changes to the source code. Similarly, a missing im-
port or incorrect references to now renamed variables also require source code
changes. This skews the result away from fixes to the test code.
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Figure 5.5: SRC, TEST, BOTH, and NONE metrics. Breaking merge commits in
the majority of projects are usually repaired by changes to the source
code.

5.6 Conclusion

We looked into the prevalence of syntactic and semanticmerge conflicts on a large
scale within the context of continuous integration. Using data from GitHub and
Travis CI, we analysed breaking commits: commits for which the build fails and
the build of their parent commit(s) passed.

We found that half of analysed projects deal with a breaking merge commit
at least once every 43 merge commits. For a quarter of projects, this occurs at
least once every 17 merge commits. We found breaking merge commits occur
less often than breaking regular commits. Breaking merge commits are repaired
with relatively little effort. Repairing is often done the same day and with just
one build. Fewer than ten lines of code need to be changed to repair a breaking
merge commit. Most of the changes are done in the source code, as opposed to
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test code or other places.
Semantic conflicts are more subtle than textual conflicts and may otherwise go

undetected until all tests are run or a user encounters its effects. Given their ob-
served prevalence, we recommend further research on tools that warn developers
about potential semantic merge conflicts. In Chapter 6, we present such an ap-
proach and prototype tool to detect semantic merge conflicts by means of sym-
bolic execution.
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Chapter 6

Symbolic Execution to Detect
Semantic Merge Conflicts
In Sections 2.2 and 2.3, we described how version control software enables de-
velopers to work on projects in parallel. As each developer works on different
features or bugs, the project history forks into many different branches. Eventu-
ally, the different branches need to be merged together again.

In Section 3.2, we described howmerging branches together can introduce con-
flicts, specifically: textual, syntactic, and semantic conflicts. In Section 3.3, we fo-
cused on semantic merge conflicts: merges where there was no problem textually
or syntactically, but where the interaction of the branches introduces unwanted
behaviour. We also described the negative impact semantic merge conflicts have.
In Chapter 5, we studied their prevalence and found them to be rare, but in com-
bination with their problematic nature common enough to warrant tool support.

In this chapter, we present an automated approach to detecting semanticmerge
conflicts by means of symbolic execution (see Section 2.5). Our approach defines
the program semantics as path conditions, produced by the symbolic execution
engine, and checks whether the conditions satisfy established rules that indicate
a merge conflict. Our usage of symbolic execution to check these rules is novel.
We develop a prototype that warns developers in the case of a semantic merge
conflict and thereby helps developers avoid them.

To evaluate our approach and prototype, we first perform a retroactive study
to detect semantic merge conflicts using heuristics. The results of the retroactive
study are used to evaluate our proactive detection of semantic merge conflicts.
Our evaluation shows that, in specific cases, our approach using symbolic execu-
tion is a promising extension to existing mechanisms to semantic merge conflict
detection.

Section 6.1 sketches our proposed solution and the context inwhich it operates;
Section 6.2 discusses the related work; Section 6.3 explains our approach that
uses symbolic execution to detect semantic merge conflicts; Section 6.4 describes
a prototype implementation of our approach, listing technical details and limit-
ations; Section 6.5 evaluates the prototype; Section 6.6 concludes the chapter.
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Figure 6.1: The four relevant parts when talking about merging and merge con-
flicts: the merge commit M, its direct parent commits A and B, and
their common ancestor commit O. The arrows indicate a child-parent
relation. Reproduction of Figure 3.1.

6.1 Proposed Solution

6.1.1 Context

We reproduce Figure 3.1 here as Figure 6.1 for context. Specifically, we reiterate
the naming convention we use when talking about a merge commit.

• The merge commit M, combining the code from two branches.¹

• The direct parent commits A and B, which represent the state of the two
branches prior to being merged. These will be referred to as either branch
A or commit A (respectively, B).

• The common ancestor commit O, representing the final point before the
histories for A and B diverged. The difference between O and A (respect-
ively, B) represents all the changes made in that branch.

We also require O, A, B, and M to be strictly different commits, thus excluding
both fast-forwarded merges, which cannot be identified as a merge in the Git
history, as well as trivial merges where no change was made in either the A or B
branch. Both of these we described in more detail in Section 2.3.3.

A semantic merge conflict is thus unintended behaviour in M due to an inter-
action of the behaviour in A and B. In this chapter, we target Java and specifically
focus on conflicts that are not already caught by its compiler. Semantic merge
conflicts are a problem (see Section 3.3). There are no standardised tools to de-
tect or solve them, thus forcing developers to come up with ad hoc ways to do so.

¹As in previous chapters, we do not consider the esoteric case where more than two branches are
merged together.
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Merge conflicts also cause more restrictive behavioural changes by developers to
try and avoid situations that could lead to the conflicts. While a comprehensive
test suite can help with semantic merge conflicts, it incurs its own development
and maintenance burden.

6.1.2 Approach

In this chapter, we present an approach to detecting semantic merge conflicts
by means of symbolic execution. As we detailed in Section 2.5, symbolic execu-
tion [26, 86] is a program analysis technique which, as a byproduct of its ana-
lysis, creates path conditions: combinations of constraints placed on symbolic
variables representing input and output. We define the program semantics in
terms of the path conditions as produced by a symbolic execution engine. The
path conditions are collected for each of the four versions in the merge: O, A,
B, and M. Path conditions can be fed to a constraint solver to check satisfiabil-
ity or to provide concrete values meeting the constraints. Our approach checks
equivalency between the path conditions to see whether they satisfy established
rules that indicate a merge conflict. Our usage of symbolic execution to check
these rules is novel. We also develop a prototype implementing our approach.
The prototype warns for semantic merge conflicts and thereby helps developers
on avoiding and solving them.

6.1.3 Situating Our Approach

We envision our approach to be used as part of an existing pipeline of tools
already present in the developer’s toolbox. Figure 6.2 depicts our prototype’s
place in a chain of the minimal set of tools used in a (compiled) programming
language. The goal of our approach is to detect² semantic merge conflicts. The
approach and prototype will be detailed in Sections 6.3 and 6.4. Other steps may
also be present in this pipeline, such as a test suite.

The first step in this pipeline is Git’s default three-waymerge (see Section 2.3.3)
which takes the code in A and B and merges it together to create M. This works
on a textual level and, as we described in Section 3.2, can lead to a textual merge
conflict: the same line is changed in different ways in A and B, when compared
to O, and Git does not know which version to choose. Instead, the developer is
asked to resolve the textual merge conflict.

If Git does not encounter a conflict, or if the developer resolved it, then the next
step is to compile the code in version M. While this is not specific to merges, it
does locate syntactic and certain semantic merge conflicts. Any syntactic merge
conflict will have led to incorrect syntax in M. This cannot be detected by Git’s

²In this chapter, we use the terms detecting and classifying a conflict interchangeably.

109



Chapter 6 Symbolic Execution to Detect Semantic Merge Conflicts

Git’s Default Textual Merge
(detects conflict)

conflict

Compiler
(detects conflict)

conflict

Our Prototype
(detects potential conflict)

no

no

Manual 
Resolution

no

Accept

conflictNEW

resolved

resolved

resolved

Figure 6.2: The pipeline of steps to realise amerge commit that is free of conflicts.
The process eventually leads to an accepted merge.

merge algorithm, but will produce an error by a compiler. As we discuss in Sec-
tion 3.2, there is also research into syntactic merging, but this is yet to see an
uptake by developers. Compiling M will also find some types of semantic merge
conflicts, we give two examples: (1) one branch renaming a variable while the
other branch adds a use of that same variable, and; (2) one branch removing an
included library, e.g., an import statement in Java, that the other branch started
using. Whichever the issue, the developer is once again expected to resolve the
conflict.

Finally, we envision our approach to be part of the next and final step. Our
approach aims to detect semantic merge conflicts within parts of the program
by using symbolic execution. The classification of a conflict here depends on
the behaviour of the program. Semantic conflicts are challenging because the
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programs in both branches often differ in behaviour by intention. Our approach
warns the developer about some semantic merge conflicts. As in the previous
steps, the developer is expected to resolve the conflict themselves.

A merge that reaches the end of this pipeline is considered conflict-free.

6.1.4 Evaluation

Semantic merge conflicts are relatively rare in the wild, as we showed through
our study inChapter 5, and standardised datasets for benchmarking aremissing.³
This complicates the evaluation. To evaluate the prototype implementation, we
investigate the following two research questions:

RQ1 Can we classify semantic merge conflicts retroactively by heuristics com-
puted on the full revision history?

RQ2 Can we classify semantic merge conflicts proactively by symbolic execu-
tion?

We use the retroactive classification (RQ1) to get a pool of candidates with a
realistic chance of being a semantic merge conflict. The pool is then used for
the evaluation of our proactive approach by means of symbolic execution (RQ2).
Using a random sample of projects and merge commits is unrealistic due to the
small number of true semantic merge conflicts.

Our evaluation shows that, in specific cases, our approach using symbolic exe-
cution is a promising extension to existing mechanisms to merge conflict detec-
tion.

6.1.5 Contributions

1. We present an approach to detect semantic merge conflicts by symbolic ex-
ecution.

2. We implement a prototype implementation of the approach for detecting
Java merge conflicts that is used for the evaluation of our approach on syn-
thetic and on empirical data.

3. We present an alternative heuristics-based approach to retroactively clas-
sify commits from the full revision history as semantic merge conflicts. We
use this approach to compose a dataset for the evaluation of our prototype.

³The results from the study in Chapter 5 cannot be used either. There we studied using Travis CI
build status, which includes syntactic and semantic merge conflicts.
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6.2 Related Work

We continue with an in-depth discussion of the related approaches. We position
this chapter as the first that classifies (or detects) semantic merge conflicts by
symbolic execution.

We focus on approaches dedicated to three-way merging. We do not discuss
related work that compares two versions of a program, but list some instances
here (see [122, 125, 134]).

We introduce the following three dimensions to structure the related work dis-
cussion. The first two reflect the structure of this section.

• Program analysis vs. data-driven. We see differences in how approaches
classify or resolve conflicts. Approaches can be based on program analysis.
This is the case for our approach. Other approaches are ‘empirically’ mo-
tivated using collected data or existing knowledge on merges.

• Classification vs. resolution. This section distinguishes between approaches
that (1) classify merge conflicts for a subsequent manual resolution, i.e., de-
tection, and approaches that (2) automatically resolve or prevent conflicts.
Approaches for classification and resolution apply related techniques. Our
approach provides a classification.

• Semantic vs. non-semantic. This concerns the different types of merge con-
flicts we discussed in Section 3.2.

We will focus on semantic merge conflicts in this section, but we will mention
alternatives, if they are part of relevant related work.

6.2.1 Program Analysis Approaches

We start with a discussion of approaches that do a classification of conflicts based
on a program analysis. Our approach falls into this category.

Classification of Conflicts

Sousa et al. [145] define semantic conflicts as the introduction of unwanted be-
haviour. This is comparable to our definition. They introduce SafeMerge, a tool
that considers a merge as four modifications to a common base. They apply a
lightweight analysis to the shared parts and verify modifications — in particular
the return values of a program. SafeMerge is evaluated on real-world code, but
the authors note that a semantic conflict is hard to define objectively. They eval-
uate against their own definition of a semantic merge conflict, inherent to their
approach (Definition 4.4, page 7, in [145]). Our qualitative evaluation instead
attempts to mitigate this by judging a conflict through the presence of bug fixing
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commits following a merge commit. Our definition of a conflict is closely related
to the definition used by SafeMerge. They compare returned variables similarly
to our definition, as well will discuss in Section 6.3.2. However, we use symbolic
execution to instantiate the definition.

Da Silva et al. [35] consider static analysis tools, such as symbolic execution,
as too heavyweight. Instead, Da Silva et al. use test generation. Their approach
generates tests using the program versions A and B in order to capture the beha-
viour. The tests are then executed on versions O and M. When a test fails in O
and M, but succeeds in A or B, then there is a possible conflict. We generalise this
definition further in Section 6.3.2. Da Silva et al. report that many false negatives
are produced by their approach. They state this is due to the generated tests not
creating enough assertions to verify all the code, even if the tests do often execute
the code. This reflects the complexity of classifying semantic merge conflicts.

Wuensche et al. [172] classify build and test conflicts. Their approach creates
a directed call graph of the code and its modifications to detect a conflict if: (1)
changes aremade on the same call graph node, (2) there is a path from one change
to another, or (3) there is a path from an unchanged node to two changed nodes.
This is clearly different to symbolic execution and instead operates more on the
syntactic level. In an evaluation, Wuensche et al. show that the approach helps to
catch build conflicts. However, test conflicts are rare in the sample thatWuensche
et al. use for the evaluation. Hence, statements on whether the approach detects
test conflicts are not possible. This reflects a challenge for our evaluation too.
The results of Wuensche et al. show that semantic conflicts are relatively rare.
We resolve this by producing a pool of promising semantic conflict candidates by
means of a retroactive search method which operates on the full revision history.
We use this sample of candidates in the evaluation of our approach.

Pastore et al. [131] use specification mining [3] to generate behavioural pro-
gram models for versions O, A, and B. They run a program’s existing test suite
to collect values for variables, after which pre- and post-conditions are derived
from the observed values. If changed conditions differ between A and B, accord-
ing to a constraint solver, a conflict is reported. In our approach, we generalise
this definition further, as will be described in Section 6.3.2. Our approach does
not require an existing test suite and also takes into account the behaviour of
version M.

Resolution of Conflicts

Another branch of related work focuses on automatically resolving conflicts.
MrgBldBrkFixer [152] is a tool that aims to automatically resolve conflicts,

such as inconsistent symbol renaming. When identifying a renamed symbol that
causes the build to break, MrgBldBrkFixer filters the commits after the last cor-
rect build and uses them to generate patches to resolve the inconsistency.
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Horwitz et al. [74] use program dependency graphs and program slicing to
create graphs representing the changed code in both branches. If the graphs do
not overlap, there is no conflict. Merge conflicts are automatically resolved by
merging overlapping graphs, deriving the merged code from the merged graphs.
This is a more syntactic resolution of a conflict.

Berzins [16] approaches semantic merge conflicts in a similar manner to the
structured merging approach to syntactic merge conflicts. We briefly discussed
structured merging in Section 3.2.2. Berzins creates a formal definition of se-
mantic merging in a language-independent manner. If conditions in this defin-
ition are met, it describes how to construct a semantically conflict-free merge
candidate M. Much like with structured merging, this requires a fallback: if the
conditions are not met, the approach does not create a merge candidate at all.
Another downside is that each language must also be converted to the represent-
ation used by Berzins.

6.2.2 Data-driven Approaches

Other approaches are data-driven instead, using collected data or existing know-
ledge on merges, to classify or resolve conflicts.

Classification of Conflicts

The Bucond tool, presented in [160], creates a program entity graph for version
O, A, and B. The program entity graph contains standard AST information but
also def-use relations. A comparison of the different graphs is searched for pre-
defined conflict patterns. Conflict patterns reflect very specific information that
we consider as empirically motivated. A merge conflict is reported if a pattern
matches. Compared to our approach using symbolic execution, Bucond is lim-
ited to predefined patterns. We rely on the compiler to catch the merge conflicts
that Bucond detects (as depicted in Figure 6.2 and discussed in Section 6.1.3).

Somewhat related is the classification of pull requests. Models that predict the
acceptance of pull requests are trained on empirical data. An example can be
found in [163]. However, non-acceptance of pull requests may not necessarily be
caused by a merge conflict.

Resolution of Conflicts

DeepMerge [44] uses a machine learning model to suggest resolutions for a tex-
tual merge conflict. DeepMerge’s merge resolutions for projects written in JavaS-
cript outperform a structured merging tool (see Section 3.2.2). The authors do
note that structured approaches tend to have more trouble with a dynamic lan-
guage such as JavaScript compared to how they perform in statically typed lan-
guages such as Java. MergeBERT [153] improves on the DeepMerge approach
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and also targets textual merge conflicts. Learning from existing data on resolu-
tions is also employed by, for example, Pan et al. [126] and byAlmostRerere [65].

Our approach does not rely on data. However, we assume the combination of
machine learning with symbolic execution to be promising future work.

6.3 Detecting Merge Conflicts by Symbolic Execution

This section describes our approach to detecting merge conflicts by symbolic ex-
ecution. We structure this section as follows:

• In Section 6.3.1, we describe a merge conflict in terms of a property 𝑃. The
property is a placeholder. We later define the property such that it reflects
the semantics of a program version.

• In Section 6.3.2, we formulate basic rules that describe the merge conflict
given a property 𝑃. This leads to a classification asmerge conflict. The rules
are inspired by the related work.

• In Section 6.3.3, we describe instantiating property 𝑃 using symbolic ex-
ecution. This results in a classification as a merge conflict based on the
semantic notion of symbolic execution.

• In Section 6.3.4, we describe how to decompose a merge conflict that arises
from such a definition, into a more fine-grained notion of a conflict.

6.3.1 Property 𝑃

Our definition of a conflict is based on a property that we denote as 𝑃. The prop-
erty 𝑃 is a placeholder. It is specific to the four program versions involved in a
merge. This can be described as a 4-tuple: (𝑃𝑂, 𝑃𝐴, 𝑃𝐵, 𝑃𝑀).

For illustration, we consider a concrete example in which we analyse the pres-
ence of a particular line of code. We define 𝑃 as a boolean function, checking
whether the line is present in the origin O, the branches A and B, and the merge
M. An example is a program where branch A adds a line which is not present
in the origin O nor in branch B. If the line also shows up in the merge, then the
tuple is (False,True,False,True).

In Section 6.3.3, we switch to a semantic notion of such a property, created by
symbolic execution.

6.3.2 Merge Conflict of Property 𝑃

We now define a merge conflict as a function of the 4-tuple for property 𝑃. We
also report on the intuition why a violation, by our definition, might be a conflict.
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In Section 6.5, we evaluate this definition. Our definition comes close to related
work which compares other properties in a similar manner: Horwitz et al. [74]
and Sousa et al. [145] compare returned variables, Da Silva et al. [35] consider
tests, and Pastore et al. [131] compare conditions obtained through specification
mining, although without considering merge M.

In our definition, a merge conflict arises if one (or more) of the following three
constraints is violated:

CF-A Conflict Freedom A: We say a merge conflict occurs if

(𝑃𝑂 ≠ 𝑃𝐴) → (𝑃𝐴 = 𝑃𝑀)

is violated. The intuition is that if the property differs between the common
origin O and the branch A, i.e., 𝑃𝑂 ≠ 𝑃𝐴, then there was a conscious change
by the developer. As such, we expect the merge property 𝑃𝑀 to reflect this
by being equal to property 𝑃𝐴. This is 𝑃𝐴 = 𝑃𝑀.

CF-B Conflict Freedom B: Analogous to CF-A.

(𝑃𝑂 ≠ 𝑃𝐵) → (𝑃𝐵 = 𝑃𝑀)

CF-AB Conflict Freedom A and B: We face a merge conflict if

(𝑃𝐴 = 𝑃𝐵) → (𝑃𝐴 = 𝑃𝐵 = 𝑃𝑀)

is violated. The intuition is that if the property is the same in both branches,
i.e., 𝑃𝐴 = 𝑃𝐵, then we also expect this property to be present in themergeM,
i.e., 𝑃𝐴 = 𝑃𝐵 = 𝑃𝑀. This covers both the situation where 𝑃𝐴 and 𝑃𝐵 are
unchanged compared to 𝑃𝑂 as well as the situation where 𝑃𝐴 and 𝑃𝐵 are
changed in the same manner compared to 𝑃𝑂, i.e., a special combination
case of CF-A and CF-B.

The definition of equality (=) and inequality (≠) depends on the way we define
the property 𝑃. The arrow → denotes a logical implication.

Consider again the concrete example from Section 6.3.1, where the property 𝑃
is defined as a boolean function indicating the presence of a certain line of code.
Here the equality (=) is the standard boolean equality operator. One possible
reason for a violation of CF-A is that a line is added in branch A, but the line is
not present in the merge M. One possible reason for a violation of CF-AB is that
a line has been added in both branches, but it is not present in the merge M.

Version control systems, like Git, already apply comparable rules when per-
forming a merge requested by the developer. A merge is constructed in a manner
that the above rules are not violated.

In what follows, we switch from the basic example about the presence of a
certain line to a semantic property of the program and thereby to a semantic
conflict.
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6.3.3 Semantic Merge Conflict

We start with a simplified discussion of a program with a single method that
is changed independently in two branches A and B. Both versions are eventu-
ally merged in merge commit M. In Section 6.3.4, we explain how to extend this
idea to make statements about different structural elements of the program and
thereby decompose a semantic conflict.

Symbolic execution typically results in multiple path conditions, due to the
control structures in a program, such as if or while. We avoid this detail in
this section and consider a program with just one path and thus just one path
condition. We then extend this approach to multiple paths in Section 6.3.4.

Our approach uses a symbolic execution engine to define the property 𝑃 as a
path condition. A constraint solver (see Section 2.5) is used to define equality
between path conditions. The property 𝑃 thereby captures the behaviour of the
method.

Equality and inequality, previously denoted as = and ≠, are now defined using
an equivalency check by a constraint solver. To emphasise the difference, we
denote the equality proven by the constraint solver as ⇔ and ⇔/ . The symbol →
still denotes a logical implication.

Our rules thereby instantiate as follows:

CF-A (𝑃𝑂 ⇔/ 𝑃𝐴) → (𝑃𝐴 ⇔ 𝑃𝑀)

CF-B Analogous to CF-A, (𝑃𝑂 ⇔/ 𝑃𝐵) → (𝑃𝐵 ⇔ 𝑃𝑀)

CF-AB (𝑃𝐴 ⇔ 𝑃𝐵) → (𝑃𝐴 ⇔ 𝑃𝐵 ⇔ 𝑃𝑀)

In essence, these rules state that if we face a semantic change in one of both
branches, we expect the new behaviour to be present in the merge too (CF-A or
CF-B). If both branches are semantically equivalent, we expect them to be se-
mantically equivalent to the merge (CF-AB).

We consider again the semantic merge conflict example in Listings 3.9 to 3.12
which was previously discussed in Section 3.2.3. The example is reproduced in
Listings 6.1 to 6.4. In this example, we have the following path conditions as
properties for O, A, B, and M. Here, 𝑥, 𝑦, and 𝑟 are symbolic variables for x, y, and
the return value, respectively.

𝑃𝑂 ∶ 𝑟 = 𝑥 + 𝑦
𝑃𝐴 ∶ 𝑟 = 𝑥 + 𝑦 + 1
𝑃𝐵 ∶ 𝑟 = 𝑥 + 𝑦 + 1
𝑃𝑀 ∶ 𝑟 = 𝑥 + 𝑦 + 2

Substitution of the properties into the rules CF-A, CF-B, and CF-AB indicates
a semantic merge conflict; all rules are violated.
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1 public int myAdd(int x, int y) {
2 int z = x + y;
3 return z;
4 }

Listing 6.1: Version O in a semantic merge conflict. myAdd sums two integers.

1 public int myAdd(int x, int y) {
2 int z = x + y + 1; // Modified
3 return z;
4 }

Listing 6.2: Version A in a semantic
merge conflict. myAdd
sums two integers and
adds one.

1 public int myAdd(int x, int y) {
2 int z = x + y;
3 return z + 1; // Modified
4 }

Listing 6.3: Version B in a semantic
merge conflict. myAdd
sums two integers and
adds one.

1 public int myAdd(int x, int y) {
2 int z = x + y + 1; // Modified in A
3 return z + 1; // Modified in B
4 }

Listing 6.4: Version M in a semantic merge conflict. myAdd sums two integers and
adds one, then adds one again.

6.3.4 Decompose the Conflict

When applying the previous approach to the program as a whole—which can be
imagined as applying the approach to the single main method — we will almost
always report a conflict. Such a semantic conflict lies in the nature of branching,
since both branches are intended to make semantic changes to the program.

Based on the idea of locality of behaviour, we try to solve this by decomposing
the program into its parts. This enables reporting amoremeaningful insight into
a semantic conflict, by reporting the number and the locations of violations for
the parts.

To this end, we change our rules to operate on 4-tuples of sets. The elements in
these setswill still use the definition of equality that is plugged into our approach.
In the case of path conditions, this is the equivalency used in Section 6.3.3. The
rules are adjusted as follows to work on a 4-tuple of sets:

CF-A This rule now comprises two parts. If either part is violated, there is a
semantic merge conflict. The first part is

𝑃𝐴 ⧵ 𝑃𝑂 ⊆ 𝑃𝑀

whichmeans that all elements added byA,whichwere not previously present
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in O, need to be present in M. The second part is

(𝑃𝑂 ⧵ 𝑃𝐴) ∩ 𝑃𝑀 = ∅

which means that none of the elements in O that were removed by A, may
be present in M.

CF-B Analogous to CF-A, 𝑃𝐵 ⧵ 𝑃𝑂 ⊆ 𝑃𝑀 and (𝑃𝑂 ⧵ 𝑃𝐵) ∩ 𝑃𝑀 = ∅ must hold.

CF-AB If either
𝑃𝐴 ∩ 𝑃𝐵 ⊆ 𝑃𝑀

or
𝑃𝑀 ⊆ 𝑃𝐴 ∪ 𝑃𝐵

is violated, there is a conflict. The first equation means that all elements
that are contained in bothA andBneed to be part ofM. The second equation
means that any found in M, must also have been in A or B.

For a single element set, the rules correspond to the rules we defined in Sec-
tion 6.3.2. This set notation can be transferred into statements about which ele-
ments are missing or superfluous in the merge, giving their locations, and quan-
tifying violations.

For completeness, we list the set operations with the adjusted equality between
path conditions defined by a constraint solver, as we described in Section 6.3.3.

𝐴 ⧵ 𝐵 ∶= {𝑎 ∈ 𝐴 ∣ ∄𝑏 ∈ 𝐵 ∶ 𝑏 ⇔ 𝑎} [Set Difference]

𝐴 ∩ 𝐵 ∶= {𝑎 ∈ 𝐴 ∣ ∃𝑏 ∈ 𝐵 ∶ 𝑏 ⇔ 𝑎} [Set Intersection]

𝐴 ⊆ 𝐵 iff ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 ∶ 𝑎 ⇔ 𝑏 [Subset]

For our semantic approach to detecting conflicts, we partition the behaviour of
the program. This is done by the partitioning of the input space of the program
that is inherent to symbolic execution.

Consider the example in Listings 6.5 to 6.8 with control structures and more
than one path condition given by a symbolic execution engine. The code includes
two checks for a divide-by-zero error: first on line two and again on line five.
Branch A and B do not agree on which check to remove to avoid this redundancy.
Hence, the result is a missing check for the divide-by-zero error after merging,
i.e., a semantic conflict.

Symbolic execution handles the control structures by branching the analysis
and adding new path conditions to, for example, both the consequent and the
alternative of an if. Thus, symbolic execution partitions the input space of the
method under analysis. The 4-tuple of sets of path conditions for the program
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1 int div(int x, int y) {
2 if (y == 0) // Removed in A
3 return 0; // Removed in A
4
5 if (y != 0) // Removed in B
6 return x / y;
7 else // Removed in B
8 return 0; // Removed in B
9 }

Listing 6.5: The original version O has redundant safety checks, i.e., it checks
for a division by zero twice: first on line 2 and then again on line 5.
Branches A and B remove one check. However, they do not agree on
which check is removed. In M, both checks are missing, so the safety
check semantics are missing.

1 int div(int x, int y) {
2 if (y != 0)
3 return x / y;
4 else
5 return 0;
6 }

Listing 6.6: Branch A removes lines
2–4 from O.

1 int div(int x, int y) {
2 if (y == 0)
3 return 0;
4
5 return x / y;
6 }

Listing 6.7: Branch B removes lines 5,
7, and 8 from O.

1 int div(int x, int y) {
2 return x / y;
3 }

Listing 6.8: In version M, both checks are missing, so the safety check semantics
are missing.

versions in Listings 6.5 to 6.8 looks as follows. As before, 𝑥, 𝑦, and 𝑟 are symbolic
variables for x, y, and the return value, respectively.

𝑃𝑂 = {𝑦 = 0 ∧ 𝑟 = 0, 𝑦 ≠ 0 ∧ 𝑟 = 𝑥/𝑦}
𝑃𝐴 = {𝑦 = 0 ∧ 𝑟 = 0, 𝑦 ≠ 0 ∧ 𝑟 = 𝑥/𝑦}
𝑃𝐵 = {𝑦 = 0 ∧ 𝑟 = 0, 𝑦 ≠ 0 ∧ 𝑟 = 𝑥/𝑦}
𝑃𝑀 = {𝑟 = 𝑥/𝑦}

Applying the conflict freedom rules to these sets results in the following:

• CF-A: 𝑃𝐴 ⧵ 𝑃𝑂 = ∅ and thus trivially 𝑃𝐴 ⧵ 𝑃𝑂 ⊆ 𝑃𝑀. Similarly, 𝑃𝑂 ⧵ 𝑃𝐴 = ∅,
thus (𝑃𝑂 ⧵ 𝑃𝐴) ∩ 𝑃𝑀 = ∅. CF-A is not violated.
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• CF-B: Analogous to CF-A. CF-B is not violated.

• CF-AB: Here, however, 𝑃𝐴 = 𝑃𝐵 = (𝑃𝐴 ∩ 𝑃𝐵) ⊈ 𝑃𝑀, so CF-AB is violated.
Equally, 𝑃𝑀 ⊈ 𝑃𝐴 ∪ 𝑃𝐵, which also causes a violation.

The lack of the path condition 𝑦 = 0 ∧ 𝑟 = 0 reflects that the check for a divide-
by-zero error is missing in M. Our approach reports a semantic conflict.

In the following section, we will discuss the technical details of our prototype
implementation of this approach to detecting semantic conflicts. In Section 6.5,
we will evaluate our definition of a semantic conflict on synthetic and real-world
examples. Some examples will be discussed in depth.

6.4 Technical Details

We implement a prototype of the approach that we need for the evaluation in
Section 6.5. This section describes the technical details of the prototype and its
limitations. We separate such details from the description of our approach, since
they can be ignored on a conceptual level. However, they impose technical lim-
itations on the evaluation that follows since that evaluation is based on the pro-
totype.

Symbolic execution is technically challenging and strongly dependent on ex-
isting technology. We reuse a combination of Symbolic PathFinder [130], Gum-
tree [46], andZ3 [39]. We adapt Symbolic PathFinder andGumtree as described
in this section.

6.4.1 Aligning Variables in Path Conditions

The path conditions for each program version result from different runs of a sym-
bolic execution engine. However, there is no clear relationship between symbolic
variables created in the different runs. To show an equivalency between the path
conditions, we create a mapping between the symbolic variables of path condi-
tions in different program versions.

Consider the example of two path conditions, 𝑥𝑂 < 10 and 𝑥𝐴 < 10, resulting
from an analysis of O and A. Variables 𝑥𝑂 and 𝑥𝐴 are symbolic and created during
analysis. Without further information on the equivalence of variables, one cannot
show the equivalence 𝑥𝑂 < 10 ⇔ 𝑥𝐴 < 10. An extra conjunct 𝑥𝑂 = 𝑥𝐴 is needed.

We use a syntactical analysis as a preprocessing step in our approach that re-
solves this problem. The step finds matches between abstract syntax tree (AST)
nodes across different program versions. When using the constraint solver to
find an equivalence, our prototype uses this mapping to add equalities between
symbolic variables, such as 𝑥𝑂 = 𝑥𝐴. While 𝑥𝑂 < 10 ⇔ 𝑥𝐴 < 10 was not provable,
(𝑥𝑂 = 𝑥𝐴) ⇒ (𝑥𝑂 < 10 ⇔ 𝑥𝐴 < 10) is.
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Our prototype uses Gumtree [46] for this step. Gumtree is commonly used to
compute edit scripts between two ASTs: a sequence of add, move, update, and
delete operations that transform the first tree into the second tree.⁴ As a side ef-
fect, Gumtree finds a mapping between nodes of the two ASTs it is given. Our
prototype runs Gumtree on every combination of the ASTs of program version
O, A, B, and M. Our prototype uses the resulting mappings to decide which con-
juncts to add.

6.4.2 Symbolic Execution Engine

For the symbolic execution engine, we use Symbolic PathFinder (SPF) [130], an
extension to the Java PathFinder (JPF) [63]. SPF is still used in recent research,
for example in HyDiff [122].

SPF does have some shortcomings. At the time we started using SPF, it sup-
ported Java 8. New language features have been added to Java since then. SPF
also does not support all Java constructs. It does not model the entire standard
library and misses some language features, such as try-catch. Where required
by SPF, we simplify the code under analysis.

As we described in Section 2.5.3, symbolic execution has limitations, such as
path explosion, that lead to some paths not getting analysed. This negatively af-
fects the conclusions drawn by our tool. Improving symbolic execution is outside
the scope of this work. We minimise the impact of the limitations by decompos-
ing the program into simpler parts (see Section 6.3.4).

Symbolic Variable for Output

To detect equivalent path conditions (previously denoted as ⇔), we require con-
straints on the symbolic input and output variables of a program. SPF does not
create constraints on the output, however. We modified SPF to create an extra
symbolic variable for the output returned by a method.

Source Code Information

In Section 6.4.1, we motivated the need to add equalities between symbolic vari-
ables to show equivalence between path conditions from different program ver-
sions. We also discussed the extra syntactical information our prototype gathers
by means of Gumtree. To link that extra syntactical information to the path con-
ditions produced by SPF, we alsomodified SPF so that it keeps track of additional
source code information on its end.

Specifically, we need to link a symbolic variable back to its corresponding point
in the source code. However, Symbolic PathFinderworks on Java bytecodewhich

⁴Similar to ChangeNodes which we used in Chapter 4.
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does not maintain such information by default. The analysed code instead needs
to be compiled with a debug flag in order to preserve rudimentary source code
information in the compiled .class files.⁵ This flag encodes information regard-
ing variables and at what line they came into scope. The SPF’s bytecode parser
parses the extra debug information when reading in a .class file. However, the
information is immediately discarded and not propagated in the analysis, nor is
it linked in any way to any of the symbolic variables. We modify SPF to inter-
cept and adapt the creation of symbolic variables. Upon creation of a symbolic
variable, our modified Symbolic PathFinder saves any line number and original
name information.

6.4.3 Constraint Solver

As we discussed in Section 2.5, symbolic execution uses constraint solvers to de-
cide on the satisfiability of path conditions and to obtain input from path condi-
tions. We use the constraint solver to establish equivalency between path con-
ditions (see Section 6.3.3). In our implementation, we use the Z3 constraint
solver [39]. In this subsection, we describe how (1) we extend SPF’s built-in trans-
lation of path conditions to queries, (2) we rewrite the way SPF and Z3 commu-
nicate, and (3) we ensure the Gumtree information is used in this step. After
these adjustments, the queries are processable by Z3.

Passing constraints and path conditions to Z3, and to other constraint solvers,
is already built into SPF. We extend the existing SPF implementation to fit our
needs. We patched support for implies and or, which was missing, and support
for not, which was limited.

We rewrite the way SPF communicates with Z3. Originally, SPF posted a con-
straint to the constraint solver as soon as the constraint was encountered and
parsed. Instead, our modified SPF parses the internal constraint representation
into Z3 constraints, but delays sending the constraint to the solver until our pro-
totype needs to check satisfiability of the equivalence between two path con-
ditions. This was necessary because immediately posting the constraints to Z3
created unwanted conjuncts between different constraints, e.g., an ∧ when we
wanted an ∨.

To check for equivalency between path conditions, our tool aligns the links dis-
covered by Gumtree in the ASTwith the source code information of the symbolic
variables in SPF. Note that some discrepancies between line numbers of both can
occur due to the Java compilation process. Our tool applies a heuristic looking for
lines that are close enough to one another, where trial-and-error led to a threshold
of three lines.

⁵In Maven, for example, this is done by passing the -Dmaven.compiler.debug=true flag.
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1 #1: O safe
2 O
3 pc:
4 return: (y_2_SYMINT + x_1_SYMINT)
5
6 ---
7 #2: AB unsafe
8 A
9 pc:

10 return: ((y_4_SYMINT + x_3_SYMINT) + CONST_1)
11
12 B
13 pc:
14 return: ((y_6_SYMINT + x_5_SYMINT) + CONST_1)
15
16 ---
17 #3: M unsafe
18 M
19 pc:
20 return: (((y_8_SYMINT + x_7_SYMINT) + CONST_1) + CONST_1)

Listing 6.9: Output of our prototype when run on the myAdd example in
Listings 6.1 to 6.4 in Section 6.3.3.

6.4.4 Prototype

Our prototype combines the previous technical aspects. It performs a syntactical
analysis of O, A, B, and M. It ensures that each version is symbolically executed.
It finds equivalent path constraints. Finally, it checks whether any violations of
CF-A, CF-B, or CF-AB occur. We list a high-level overview in Algorithms 2 and 3
where the result is a set of path conditions violating our rules.

Results are shown by listing path conditions, their equivalencies, and flagging
those that break CF-A, CF-B, or CF-AB. A further improvement would be to link
these path conditions more explicitly back to the relevant parts of the code, for
example, by using the source code information our prototype already keeps track
of.

In Listing 6.9, we provide the output of our prototype when run against the
myAdd example depicted in Listings 6.1 to 6.4 in Section 6.3.3. Results are shown
by grouping paths that are equivalent to one another. In this example, that gives
three such groups: 𝑃𝑂, {𝑃𝐴, 𝑃𝐵}, and 𝑃𝑀. These are shown in Listing 6.9 at #1:
O Safe, #2: AB unsafe, and #3: M unsafe, respectively. For each group, an
assessment of that combination of equivalent paths is shown. In this case, the
{𝑃𝐴, 𝑃𝐵} and 𝑃𝑀 groups aremarked unsafe as they violate CF-A, CF-B, and CF-AB.
For each group, the path conditions for every version in that group are listed. The
path conditions are split up in regular path conditions and an expression indic-
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1 Function findConflictingPaths(merge: CommitId): Set[(PC, PC, PC, PC)] is
2 O, A, B, M ← fourPartsOfMerge(merge);
3 pcsO ← getPathConditionsFromSymbolicExecution(O);
4 … // Do the same for A, B, and M
5 OtoA ← findVariableMapping(O, A);
6 … // Repeat for O-B, O-M, A-B, A-M, B-M
7 crossVersionPaths ← ∅;
8 foreach 𝑜 ∈ pcsO do
9 // Each of a, b, and m can be null

10 a ← findAndRemoveEquivalentPc(o, pcsA, OtoA);
11 b ← findAndRemoveEquivalentPc(o, pcsB, OtoB);
12 m ← findAndRemoveEquivalentPc(o, pcsM, OtoM);
13 crossVersionPaths ← crossVersionPaths ∪ (o, a, b, m);
14 end
15 foreach 𝑎 ∈ pcsA do
16 b ← findAndRemoveEquivalentPc(a, pcsB, AtoB);
17 m ← findAndRemoveEquivalentPc(a, pcsM, AtoM);
18 crossVersionPaths ← crossVersionPaths ∪ (null, a, b, m);
19 end
20 foreach 𝑏 ∈ pcsB do
21 m ← findAndRemoveEquivalentPc(b, pcsM, BtoM);
22 crossVersionPaths ← crossVersionPaths ∪ (null, null, b, m);
23 end
24 foreach 𝑚 ∈ pcsM do
25 crossVersionPaths ← crossVersionPaths ∪ (null, null, null, m);
26 end
27 return crossVersionPaths.filter(isViolatingCombination);
28 end

Algorithm 2: High level overview of the steps taken to get from a merge
commit SHA-1 hash to a set of violating path conditions. The definition of
isViolatingCombination can be found in Algorithm 3.
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1 Function isViolatingCombination(cvp: (PC, PC, PC, PC)): Boolean is
2 isPresent ← cvp.map(isNotNull);
3 // This function checks every combination
4 switch isPresent do
5 // Path is in every version
6 case (true, true, true, true) do return true;
7 // Path removed in B, still gone in M
8 case (true, true, false, false) do return true;
9 // Path removed in A, still gone in M

10 case (true, false, true, false) do return true;
11 // Path removed in A and B, still gone in M
12 case (true, false, false, false) do return true;
13 // Path added in A and B, present in M
14 case (false, true, true, true) do return true;
15 // Path added in A, present in M
16 case (false, true, false, true) do return true;
17 // Path added in B, present in M
18 case (false, false, true, true) do return true;
19 // ——
20 // Path in O, A, and B, not present in M
21 case (true, true, true, false) do return false;
22 // Path removed in B, returns in M
23 case (true, true, false, true) do return false;
24 // Path removed in A, returns in M
25 case (true, false, true, true) do return false;
26 // Path removed in A and B, returns in M
27 case (true, false, false, true) do return false;
28 // Path added in A and B, disappears in M
29 case (false, true, true, false) do return false;
30 // Path added in A, disappears in M
31 case (false, true, false, false) do return false;
32 // Path added in B, disappears in M
33 case (false, false, true, false) do return false;
34 // Path does not exist in O, A, or B, appears in M
35 case (false, false, false, true) do return false;
36 // Extra case to be exhaustive, should not happen
37 case (false, false, false, false) do return false;
38 end
39 end

Algorithm 3: Annotated implementation of isViolatingCombination called in
Algorithm 2.
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ating the special return variable. In this example, there is only an expression for
the return variable. These are shown with symbolic variables whose names help
a developer determine where a certain value comes from. Here there are eight
symbolic variables, each startingwith an origin name, a number indicating the or-
der in which the symbolic variable was created, and a specification of the type of
the symbolic variable. Because of the mapping between symbolic variables that
is performed, A and B were deemed equivalent despite the symbolic variables
y_4_SYMINT and x_3_SYMINT having no symbolic relation to y_6_SYMINT and
x_5_SYMINT prior to the mapping. This mapping was also performed between,
e.g., A, y_4_SYMINT and x_3_SYMINT, on the one hand and B, y_8_SYMINT and
x_7_SYMINT, on the other hand, but this does not lead to equivalent path condi-
tions due to the difference in CONST_1s being added.

We also run our prototype against the div example depicted in Listings 6.5
to 6.8 in Section 6.3.4. We modify the output slightly for depiction here because
SPF has extra built-in checks for its path conditions when it comes to division
by zero. This built-in check does not change the assessment of the merge by our
prototype, but it does make the output by the prototype more confusing when
shown unmodified. The result is shown in Listing 6.10. Recall that while the
path condition and return expression are shown separately, they are combined
prior to checking equivalence with a path condition of another version. Here,
#1: OAB unsafe represents the path in O, A, and B when 𝑦 = 0, leading to the
program returning 0, #2: OAB unsafe represents the path in O, A, and B when
𝑦 ≠ 0, leading to the program returning 𝑥/𝑦, and finally #3: M unsafe is the one
path in M which returns 𝑥/𝑦 without any checks. All three are marked unsafe as
they violate CF-AB.

Our prototype requires a user to explicitly state the method and inputs of the
program that need to be analysed symbolically. We also need to inject a main
method into the code that is subject to analysis. This custom main guides sym-
bolic execution to the relevant part of the code. This is relevant to the decom-
position of the program. We assume that future work can automate and resolve
these limitations of our prototype.

We avoid an evaluation of the time our approach needs because it is very sensit-
ive to the technical details listed in this section. Due to our decomposition of the
problem (Section 6.3.4), possible simplifications (Section 6.4.2), and addition of
a mainmethod, the time taken for the actual analysis in our experiments is short
(typically under 10 seconds). However, we do not know how this performance
generalises to more realistic cases.

6.4.5 Future Automation

We envision our prototype to warn developers of potential problems in merges
and pull requests when working with standard version control systems. How-
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1 #1: OAB unsafe
2 O
3 pc: y_2_SYMINT = CONST_0
4 return: 0
5
6 A
7 pc: y_4_SYMINT = CONST_0
8 return: 0
9

10 B
11 pc: y_6_SYMINT = CONST_0
12 return: 0
13
14 ---
15 #2: OAB unsafe
16 O
17 pc: y_2_SYMINT != CONST_0
18 return: (x_1_SYMINT / y_2_SYMINT)
19
20 A
21 pc: y_4_SYMINT != CONST_0
22 return: (x_3_SYMINT / y_4_SYMINT)
23
24 B
25 pc: y_6_SYMINT != CONST_0
26 return: (x_5_SYMINT / y_6_SYMINT)
27
28 ---
29 #3: M unsafe
30 M
31 pc:
32 return: (x_7_SYMINT / y_8_SYMINT)

Listing 6.10: Slightly modified output of our prototype when run on the div
example in Listings 6.5 to 6.8 in Section 6.3.4.
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ever, applying our current prototype still requires high manual effort.
We envision the following more automated sketch of a workflow to remove

most manual effort:

• Configuring the build and compilation of the program will remain manual
work. It can be set up once for a repository if the build process does not
change.

• From this point on, a merge can automatically trigger the following steps.

• We can produce possible decompositions of the merged program. This step
may consider dependencies between code and use program slicing [115].
The decomposition needs to be matched over the involved program ver-
sions of a merge.

• Code can be generated with a main method that calls one or all methods in
a component.

• Conflicts can be identified by our approach and warnings are reported.

6.5 Evaluation

We evaluate our approach on synthetic and empirical data. The synthetic data is
used to show the technical validity of our prototype. We use data generated by
mutation testing. The empirical data is used to show the empirical relevance of
our approach. This data is gathered from GitHub. The data can be found online.⁶

6.5.1 Technical Validation

This section evaluates the technical validity of our prototype on synthetic data.

Method

We generate a dataset using software mutation testing [41]. The original pro-
gram version O is defined to be a Java program. We run the mutation testing tool
Major [80] on the program to generate a set of mutations 𝒰 of O. We form the
Cartesian product of set 𝒰 with itself, and define branches A and B accordingly.
Finally, we use Git’s default merge to produce the merge commit M.

Most program versions O, A and B merge without problems. However, Git’s
textual merge potentially produces semantically conflicting program versionsM.
Our approach should detect such semantic merge conflicts.

⁶https://github.com/ward/semantic-merge-conflicts-scam2023
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1 SIM <- 20000
2 hits <- NULL
3
4 # Our true lables identified by manual analysis.
5 Ytrue <- c(1,1,1,0,0,0,0,0,0,0)
6
7 for(i in 1:SIM){
8
9 # Classify conflict randomly.

10 Y <- rbinom(10, size = 1, prob=0.3)
11
12 hit <- sum(Y == Ytrue)
13 hits <- cbind(hits, hit)
14 }
15
16 hist(hits, breaks = 10, xlab = ”Number of correct lables”, main = ”Histogram of

 hits”)
17
18 table(hits)

Listing 6.11: Small simulation showing the probabilities of correctly labelling ten
merges.

For the resulting 4-tuples (𝑂, 𝐴, 𝐵,𝑀) that we have generated, we manually
classified the merge M as a semantic merge conflict or not. We run our prototype
and compare the output to this manually tagged baseline.

Results

For the input programO,weuse code fromProject Euler, awebsite centred around
mathematical programming challenges [45].

We generate a set 𝒰 with 34 different mutants of the original program. The
Cartesian product results in 561 combinations for pairs of A and B with corres-
ponding merge M. We exclude symmetric pairs. We also exclude 123 pairs (22%)
that are reported as a trivial textual conflict by Git’s default merge. We randomly
sample ten pairs from the remaining 438 (78%) for a manual analysis.

We manually classify three of the corresponding merges as semantic conflicts
and seven as valid. Our tool classifies all merges correctly.

The chance of labelling ten merges correctly using a random classifier is smal-
ler than 0.2%. We refer to Listing 6.11, a small simulation showing this.

Threats to Validity

The low complexity of the input program is a threat to validity for this technical
evaluation. We used an existing program instead of creating an input program
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as part of this evaluation. This makes the results more realistic. However, the
technical limitations, described in Section 6.4, constrain the selection of our input
program.

Our manual classification of semantic conflicts may be influenced by our un-
derstanding of our approach. This threat is hard to mitigate. We deploy our
dataset online to enable the replication and revision of our approach.

The mutation generation is limited in that every mutation introduces exactly
one change to the program. However, both changes affect the same parts of the
program which is still a challenging situation.

6.5.2 Empirical Validation

The empirical evaluation of our approach is challenging because real semantic
merge conflicts are relatively rare. There is no standard dataset that can be used
for benchmarking. Our empirical evaluation is therefore split into two parts.

1. In a first part, we aim to classify semantic merge conflicts retroactively. We
use heuristics on the revision history following a merge. We do this to get
promisingmerge candidates that are interesting for an in-depth discussion.
We need this alternative to a regular sample from GitHub, since semantic
merge conflicts are relatively rare. Manually tagging a rare class on a reg-
ular sample is unrealistic due to the small number of positive (or negative)
cases.

2. In a second part, we apply our tool to such candidates and check if we can
identify the conflicts proactively using our approach. This is done without
having the subsequent commit history that indicates a conflict. We discuss
these cases in-depth in Table 6.1.

We structure this part of the evaluation accordingly.

Retroactive Method

We use a dataset of Java projects that use Maven as their build tool, introduced
by Cavalcanti et al. [27]. The dataset lists merges, their parents, and metadata
on the build and test success for the merge commits.⁷ However, Cavalcanti et
al. study syntactic merge conflicts by comparing structured and semi-structured
approaches to merging. Hence, this dataset does not immediately work for the

⁷The dataset did not contain build and test outcomes for the parents of the merge commits. As
Cavalcanti et al. [27] note, and as we discussed in our study in Chapter 5, this is not enough
information to confirmwhether a conflict caused a failure or whether the prior commits already
had failing builds.
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evaluation of our approach. We use the same projects as Cavalcanti et al., but do
not use their list of merges.

For the Java projects, we collect all merges M, the corresponding parents A, B,
and the first common ancestorO.We ignored rare situationswhere there aremore
than two parent commits. We also ignored trivial merges where A is a parent of
B, or vice versa (see our discussion accompanying Figure 2.7 in Section 2.3.3). To
identify O, we use Git’s built-in common base finding algorithm.

We apply the following heuristics to filter for interesting candidates that can
potentially be classified as a semantic merge conflict.

• We filter for merges with an overlap in the modifications. We apply strati-
fication (or group-by) to diversify the commits we consider. For one half of
the merges, we require that versions A and B change the same file. For the
other half, we require that the same line was changed.

• We filter for merges with a suspicious commit history following the merge.
We apply a light-weight version of the SZZ algorithm [144] (also used by
Mockus andVotta [110] and Ray et al. [135]) to determine whether the commit
directly following the merge is a bug fixing commit. Notably, this light-weight
approach does not require a well-used issue tracker to identify bug fixing
commits. Instead, bug fixes are identified by means of containing certain
strings in their commit message, e.g., fix or bug.

We do not go for the alternative of considering bug fixing commits further
down in the tree of descendants. In previous experiments, we noticed that
this introduces noise both due to an overlap between merges and due to a
general increase in the number of fixes unrelated to the merge commit.

• The bug fix following the merge does not always relate to a bug introduced
in the merge. Hence, the changes by the fix and the merge need to overlap,
too. We filter for bug fixing commits that change at least one line or file (see
earlier discussion on stratifications) of the lines or files changed between
versions O and M.

The heuristics are relevant to reduce the candidates subject to our subsequent
manual tagging of conflicts. They produce a pool of candidates with a realistic
chance of being a semantic merge conflict. Executing a manual analysis on a ran-
dom sample of real-world merges on GitHub would be unrealistic. Our method
corresponds to a standard practice in evaluating information retrieval systems,
referred to as relevance judgement or pooling method (see Spärck Jones and Rijs-
bergen [146, page 13] or more recently Baeza-Yates and Ribeiro-Neto [10, page
158]).
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Real vs. Violating PCs

Synthetic Project Merge at merge after fix

R google/j2objc [59] 79781f8 6 / 6 4 / 6

R tcurdt/jdeb [34] e9ceff5 3 / 15 3 / 15

R welovecoding/
editorconfig-netbeans [168]

99578c4 2 / 11 1 / 11

R larsga/Duke [54] 7c65f5e — —

R spotify-web-api-java/
spotify-web-api-java [147]

675a0d2 — —

R/S google/j2objc 79781f8’ 2 / 2 0 / 2

S — — 0 not 0

Table 6.1: Overview of the cases studied in RQ2. The first five cases are extracted
from real-world projects by means of a manual examination following
our retroactive semanticmerge conflict identification. Case six is a syn-
thetic adjustment of one such real-world case. Case seven is a synthetic
case added to indicate a limitation in our approach.

Retroactive Results

We manually examined 500 merges in 152 projects identified by our retroact-
ive method. We identified 55 semantic merge conflicts (11% of manually ex-
amined merges). Of these, 50 were caught by the compiler (91% of semantic
merge conflicts, 10% of manually examined merges) and include cases such as
imports getting out of sync, a method with the same signature being added
twice, and a variable rename in version A while version B added a usage of the
old variable name. The five remaining semantic merge conflicts are the inter-
esting ones for our approach (9% of semantic merge conflicts, 1% of manually
examined merges). These five conflicts can be found in Table 6.1. The two right-
most columns are part of our proactive evaluation. The project name is as it
appears in the original dataset by Cavalcanti et al. [27] and corresponds to the
username/projectname pattern used by Github. The two final rows in Table 6.1
represent two synthetic cases we use to expand the discussion in our proactive
evaluation.
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All five semanticmerge conflictswere identified by the heuristic of overlapping
changes to files, not overlapping changes to lines (see the stratification discussed
in the retroactive method above). All five conflicts include a bug fixing commit
message using the keyword fix. Two of themessages also use the keyword merge.

Proactive Method

In the following part, we evaluate our proactive approach using symbolic execu-
tion empirically by running it on the pool of candidates that we have identified
in the previous part of the evaluation.

To get a more exhaustive discussion, we complement the candidates by (1) one
adaptation that simplifies the control flow and (2) another synthetic case where
our approach does not work as expected.

Furthermore, we also apply the prototype implementation of our approach on
another five merge commits that are not followed by a fix, i.e., merge commits
that did not cause a conflict. We chose them randomly and manually verified
there was no (obvious to us) conflict present. They are not included in the table
that follows, but we do discuss the results for these merge commits in the text.

We first provide an overview of the results and then discuss each semantic
merge conflict case in the table in more detail.

Proactive Results

The results are described in Table 6.1. The table only includes the merges that
are followed by a fix and that we have manually tagged as a conflict. The online
dataset contains all candidates. We structure the table as follows:

• The first column (Real vs. Synthetic) indicates a discussion of a real-world
or synthetic case. The majority of the cases are real. Two synthetic cases are
added to make the discussion exhaustive.

• The second column (Project) reports on the GitHub project name in the
format username/projectname.

• The third column (Merge) lists the abbreviated SHA-1 of the merge.

• Column four and five (Violating PCs at the merge or after the fix) give the
actual classification in terms of number of violating path conditions. This
number is either given for the merge or for after the fix. Eventually, we
expect this number to decrease after a fix if our approach works correctly.
The number of violations can be derived from our merge conflict definition
in terms of set semantics (see 6.3.4).
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We sum up the insights to be gained from the table. Our approach using
symbolic execution correctly detects the decrease in number of violations from
merge commit to bug fixing commit for three of the merges. For one of those
three merges, the violations disappear entirely in the bug fixing commit. For one
merge, our approach reports no change in the number of violating path condi-
tionswhen comparingmerge commit to bug fixing commit. In one synthetic case,
the number of violating path conditions actually increases once the bug is fixed.
Two merges cannot be processed due to technical limitations, see the description
that follows for more information.

For the five merge commits that did not have a semantic merge conflict, i.e.,
there was no bug fix commit following themerge conflict andwe did not discover
anything in a manual validation, the prototype implementation of our approach
produces no warning in four cases. In one of the five, our prototype incorrectly
detects a semantic merge conflict. These five merge commits are not listed in the
table.

Summary This shows that in specific cases, our approach using symbolic ex-
ecution is a promising complement to existing techniques for detecting merge
conflicts. However, there are some cases for which the approach does not work
as expected.

Proactive Results — Details

Wedescribe each of the cases in Table 6.1 in further detail. The order here follows
the order of the rows in Table 6.1.

1. In our first case, the branches A and B add the same behaviour. In branchA,
the behaviour is added through a method call, protected by a boolean flag.
In branch B, the behaviour is directly added to the method’s body and not
protected by a boolean flag. The merge includes both modifications, which
is a clear semantic conflict. In the bug fix commit, the code added in branch
A is removed. However, the code of branch A includes a boolean flag, but
the fix does not. Hence, our prototype still reports on some violations after
the fix, but fewer violations compared to the merge M. This real-world ex-
ample is comparable to our example in Listings 6.1 to 6.4 which we discuss
in Section 6.3.3.

2. In the second case, branch A and Bmove code around andmake some other
changes. The result is code duplication in the merge M which renders the
code added by branch A unreachable. The fix removes the unreachable
code. Our prototype tool warns about the behaviour from branch A disap-
pearing for themergeM due to it being unreachable. However, after the fix,
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the behaviour is still missing, so the number of violations does not change;
our tool still warns about behaviour from branch A disappearing. This is a
case where our prototype does not work as expected. This situation can be
worth exploring in future work.

3. In the third case, a bug is present in the origin O. In branch A, the method
that contains the bug is fixed. In branch B, the call to the method is com-
mented out. In merge M, the method was thus fixed (due to A), but not
called (due to B). The bug fixing commit uncomments the method call. Our
tool reports that the changes fromAdisappear inM. In the fixed version, the
tool reports that the effect of B’s commenting out of code has disappeared.
The fix decreases the number of reported violating path conditions.

4. In case four, the changes causing a semantic merge conflict involve a try-
catch and the exception being raised within it. Our prototype cannot ana-
lyse this case due to the technical limitations of Symbolic PathFinder, which
does not handle try-catch statements. We see no obvious way to simplify
this case into something that can be analysed in the context of our proto-
type.

We assume that our approach can spot such a conflict if try-catch state-
ments were to be supported by Symbolic PathFinder; we do not see an
inherent theoretical limitation for this in our approach.

5. In case five, branch A modifies the method’s return type. In branch B,
a method with the same name is added, overloading the old method by
adding a new parameter. The return type of this new method in branch
B is the same return type as in the original method before the change of
branch A. In merge M, both methods are present: (1) the method from A
with the new return type and (2) themethod fromBwith the old return type
and the added parameter. The fix updates the return type of the method of
branch B to match the return type of branch A.

This conflict is something our approach is unable to spot. There are no path
conditions to compare and calling it a bug relies on guessing whether the
developer intended to have different return types or not.

6. Case six is an adaptation ofmerge 79781f8 from google/j2objc, the first case
we discussed. The boolean flag that was added in version A of the original
case, is not added here. Instead, the added method is always called. Thus,
A and B behave entirely the same, while the behaviour is duplicated in M.
The fix removes the method call from A. The fix behaves exactly like A and
B. We detect no more violations after the fix.
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7. Case seven is synthetic. Consider branch A and B, which add a parse and
a sanitise function, respectively. The plan of the developers is that, once
merged, parse will make use of sanitise to clean up its input. When
merging, however, this call is not added to parse. Our tool reports no viol-
ations. In the fix, parse does call sanitise. Our tool reports a conflict: the
behaviour of parse changes in M (the “fix” here) compared to its behaviour
in branch A. We add this synthetic case to our dataset for our evaluation to
show the limitation of our prototype.

Threats to Validity

Comparable to the technical part of this evaluation section, our manual classi-
fication of merge conflicts may be biased by our expectations. We mitigate this
by the explicit discussion when describing our proactive results. We also deploy
our dataset online⁸ to allow replication and revisions of our approach.

Different to the technical part of the evaluation that uses mutations, we can-
not make any objective statements on the developer’s original intention in the
real-world cases. In our evaluation, we try to mitigate this problem by manually
inspecting all involved commits and the commitmessages in depth. In real-world
usage, we believe that a developer will easily be able to judge warnings by our
approach due to their familiarity with the code.

While we examined 500 merges, the low size of positive cases is another threat
to this analysis and illustrates the rare nature of semantic merge conflicts. We are
not computing any confidence intervals for which such sample size matters. We
try tomitigate the problemof a lownumber of positives by favouring a qualitative
and exhaustive discussion of real cases, including synthetic cases that logically
follow from the real cases we have spotted.

6.6 Conclusion

In this chapter, we developed an approach that detects semantic merge conflicts
by means of symbolic execution. We defined the program semantics as path con-
ditions, as produced by a symbolic execution engine, and checked whether the
conditions satisfy established rules that indicate a merge conflict. Our usage of
symbolic execution to check these rules is novel. We implemented a prototype
for the evaluation of our approach.

We evaluated the technical validity of our prototype using synthetic data. We
generated the synthetic data through mutation testing.

We evaluated our approach empirically by following our research questions:

⁸https://github.com/ward/semantic-merge-conflicts-scam2023
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RQ1 We needed empirical data from GitHub to show the empirical relevance
of our approach, but semantic merge conflicts are relatively rare and hard
to spotmanually. Hence, we defined a retroactivemethod to perform an ap-
proximate classification of semanticmerge conflicts that scales. Themethod
is based on the commit history following the merge. We used the method
to compute a pool of 500 potential semantic merge conflicts, which we ex-
amined manually and used for answering RQ2.

RQ2 We used the pool of manually classified semantic merge conflicts to evalu-
ate our approach to detect semantic merge conflicts by symbolic execution.
We discussed the application of our prototype qualitatively for five cases
from our pool of real-world semantic merge conflicts.

Our approach using symbolic execution correctly detects changes in semantic
violations in three out of five semantic merge conflicts. The evaluation showed in
specific cases, our approach using symbolic execution is a promising extension
to existing mechanisms to merge conflict detection.

Our prototype is limited by the technical constraints of the symbolic execution
engine we used. Future work needs to focus on automation and the integration
of our approach into the continuous integration pipeline. We also consider the
combination of symbolic execution and data-driven approaches, such as deep
learning, to be promising future work.
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Conclusion
At the beginning of this dissertation, we discussed the need for automated tech-
niques for problematic commits in version control software. In particular, we
focused on two types of problematic commits: (1) composite commits, which
contain changes belonging to different unrelated tasks, and (2) merge commits,
whichmay give rise to semantic merge conflicts due to an unintended interaction
in the behaviour of the two branches being merged together.

We performed a large-scale study into the prevalence of syntactic and semantic
merge conflicts. We found that half of the 348 analysed projects dealwith a break-
ingmerge commit at least once every 43merge commits. For a quarter of projects,
this is at least once every 17 merge commits. We found that breaking merge com-
mits occur less often than breaking regular commits and are often repaired the
same day with fewer than ten lines of code.

We proposed an automated approach to identify and reduce the two afore-
mentioned types of problematic commits. Our first approach is data flow driven
and comprises an algorithm for untangling composite commits. Our second ap-
proach is control flow driven and comprises an algorithm for detecting semantic
merge conflicts by looking for potentially undesired changes in execution paths.

We evaluated both approaches by means of a prototype that we developed. To
evaluate our commit untangling approach, we first analysed and further refined
an established dataset of composite commits. Our technique identifies composite
commits, but creates more fine-grained clusters of changes than expected. Each
cluster of changes does stay within one single task. To evaluate our approach to
detect semantic merge conflicts, we gathered our own dataset. We defined and
evaluated a retroactive method to identify semantic merge conflicts based on the
commit history following a merge commit. We computed a pool of 500 poten-
tial semantic merge conflicts and examined them manually. We evaluated our
approach using the manually classified semantic merge conflicts. We discussed
our prototype qualitatively through a case study in which we applied the proto-
type to five real-world semanticmerge conflicts. Our approach detected semantic
conflicts in three of the five cases. The evaluation showed that our approach is a
promising complement to existing techniques for detecting merge conflicts.
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7.1 Revisiting the Contributions

Composite Commit Untangling
We proposed an automated approach for untangling composite commits.
The approach considers fine-grained changes made to an abstract syntax
tree. It connects each change to a node in a program dependence graph.
Our approach then slices around the nodes in the program dependence
graph. Based on an overlap in the produced slices, our approach decides
which changes belong together. We applied this technique in two ways: (1)
we used it to decide whether a commit is composite or single-task and (2)
we used it to untangle composite commits into clusters of related changes.
We evaluated this technique on a dataset of composite commits (see the fol-
lowing contribution) and found that it identifies single-task and compos-
ite commits. We also found that the technique creates more fine-grained
clusters of changes than the tasks in a composite commit. A cluster of
changes does generally stay within its task.

Composite Commit Dataset Refinement
To evaluate the above approach, we started from a well-established dataset
of composite commits originating from five Java projects. We performed
an automated cleaning step of the dataset. Afterwards, we performed a
manual verification of the commits and whether they were correctly clas-
sified. The resulting dataset forms a contribution on its own as it provides
researchers with a refined set of composite commits to evaluate techniques
on.

Empirical Study into the Prevalence of Merge Conflicts
We performed a large-scale study into the prevalence of syntactic and se-
manticmerge conflicts. Combining information fromGithub andTravis CI,
we identified merge commits and their build status in a continuous integ-
ration service. We found that half of the 348 analysed projects deal with a
breakingmerge commit at least once every 43merge commits. For a quarter
of projects, this occurs at least once every 17 merge commits. We found
breaking merge commits to occur less often than breaking regular com-
mits. Repairing them was often done the same day and by changing fewer
than ten lines of code. The effort was concentrated in the source code as
opposed to test code or other project files.

Semantic Merge Conflict Detection
We proposed an automated approach for detecting semantic merge con-
flicts using symbolic execution. We defined the program semantic in terms
of the path conditions as produced by a symbolic execution engine. Our
technique uses the path conditions from the different versions in a merge
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and checks whether they satisfy established rules that recognise the pres-
ence of a merge conflict. We evaluated the technical validity of our tech-
nique through synthetic data. We evaluated the technique empirically by
means of a case study of five real-world semanticmerge conflicts. We found
that in specific cases our approach is a promising extension to existing
mechanisms to merge conflict detection.

Retroactive History-Based Semantic Merge Conflict Detection
We defined a heuristics-based retroactive method to perform an approxim-
ate and scalable classification of semantic merge conflicts. This retroactive
method is based on the commit history following a merge. We used the
method to compute a pool of 500 potential semantic merge conflicts, which
we manually examined and categorised.

Prototype Implementation of Untangling and Detection Algorithms
Wedeveloped a prototype implementing our composite commit untangling
technique and another prototype implementing our semantic merge con-
flict detection technique. Both are written in Java and work on Java code.
The prototypes are used in the evaluation of both techniques. The proto-
types are open source and made available at [113].

7.2 Limitations and Future Work

We discuss some of the limitations we encountered in our approaches and con-
sider future avenues of work.

For an industrial setting, our techniques need to perform their analysis reason-
ably fast. Our composite commit untangling prototype only took a few seconds
for the majority of analysed commits. However, several larger commits took
over a minute to analyse. The time taken for the actual analysis of our semantic
merge conflict detection prototype in our experiments is short (typically under
ten seconds). However, this can at least partially attributed to the technical de-
tails and setup we described. We do not know how the observed performance in
this controlled setting generalises to more realistic cases, but we are aware that
symbolic execution time can easily grow exponentially. Optimising the code of
both research prototypes is likely to be in order, but requires engineering effort.

Equally important for an industrial setting is a certain amount of automation.
For our semanticmerge conflict detection algorithm, this is not currently the case.
As we have described, we still perform various manual setup tasks. We believe
these can be automated, but the engineering effort first has to be made.

We built our prototypes on top of other tools that come with their own limita-
tions. Both TinyPDG and Symbolic PathFinder cannot handle some types of Java
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statements, such as a try-catch. This makes our prototypes unusable in an in-
dustrial setting. As with time optimisations and automation, supporting more of
the Java language or its standard library requires a significant engineering effort.
This is outside the scope of this dissertation.

Separate from technical limitations in the tools we built on top of, our pro-
totypes cannot handle some cases. Some of these limitations may be inherent
to our approaches. Future work should aim to delineate these limitations ex-
actly, providing an opportunity to conceive different approaches for those cases.
For our untangling technique, this includes ideas such as considering different
clustering criteria for the fine-grained changes or experimenting with different
slicing techniques. In our semantic merge conflict detection technique, we could
look into defining a more relaxed equivalency between path conditions or adjust-
ing the merge conflict rules we check against. Alternatively, it is worth exploring
how to combine our approaches with related work and identifying any that prove
to complement them.

We believe there is also an opportunity to explore a combination of both our
techniques to improve semantic merge conflict detection. The underlying idea
here is as follows. A merge combines the features, bug fixes and refactorings
from two branches. A composite commit too is a combination of different fea-
tures, bug fixes and refactorings. Our untangling algorithm might be used as a
first step, to identify parts of the merge that potentially interact. Our semantic
merge conflict detection technique can then run on the resulting clusters across
different versions. This could help point the heavier symbolic execution analysis
in the direction of smaller parts of the code by first running themore light-weight
untangling algorithm.

7.3 Closing Remarks

In this dissertation, we focused on a backbone of tools in a contemporary de-
veloper’s toolbox: version control software. Specifically, we looked into two types
of problematic commits: composite commits and merge commits. While follow-
ing proper practices canmitigatemany of the issues associatedwith both types, in
reality developers do not necessarily know about these or are unwilling to spend
the time and effort upfront to avoid them. We performed a study into the pre-
valence of syntactic and semantic merge conflicts at a large scale. We explored
data flow and control flow driven approaches to untangle and detect the prob-
lematic commits, respectively. We proposed and evaluated a commit untangling
technique based on a combination of fine-grained changes and slicing in pro-
gram dependence graphs. We proposed and evaluated a semantic merge conflict
detection technique which combines path conditions, produced by a symbolic
execution engine, across the different program versions in a merge and validates
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them against certain rules that indicate a merge conflict. We have shown that
both approaches can be an addition to a developer’s setup and can mitigate fur-
ther problems down the line.
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