
Jens Van der Plas

Incremental Static Program
Analysis through Reified

Computational Dependencies

Dissertation submitted in partial fulfilment of the
requirements for the degree of Doctor of Sciences

4 November 2024

Promotors:
Prof. Dr. Coen De Roover, Vrĳe Universiteit Brussel, Belgium

Prof. Dr. Quentin Stiévenart, Université du Québec à Montréal, Canada

Jury:
Prof. Dr. Dominique Maes, Vrĳe Universiteit Brussel, Belgium (chair)
Prof. Dr. Jens Nicolay, Vrĳe Universiteit Brussel, Belgium (secretary)
Prof. Dr. Wolfgang De Meuter, Vrĳe Universiteit Brussel, Belgium

Prof. Dr. Lynn Houthuys, Vrĳe Universiteit Brussel, Belgium
Prof. Dr. Görel Hedin, Lunds universitet, Sweden

Prof. Dr. Ben Hermann, Technische Universität Dortmund, Germany

Vrĳe Universiteit Brussel
Faculty of Sciences and Bioengineering Sciences

Department of Computer Science
Software Languages Lab



Alle rechten voorbehouden. Niets van deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm,
elektronisch of op welke andere wĳze ook, zonder voorafgaande schriftelĳke
toestemming van de auteur.

All rights reserved. No part of this publication may be produced in any form by
print, photoprint, microfilm, electronic or any other means without permission
from the author.

Printed by
Crazy Copy Center Productions
VUB Pleinlaan 2, 1050 Brussel
Tel: +32 2 629 33 44
crazycopy@vub.be
www.crazycopy.be

ISBN: 978-94-6494-861-5
NUR CODE: 980
THEMA: UMZT



Abstract

Over the last few decades, computers have become an indispensable part of modern
society. As the programs running on these computers play an essential role in
everyday life, for example in banking and communication, it is crucial that they are
reliable. To this end, developers have come to rely on static analysis tools to verify
a wide range of program properties without actually running the program. Static
analyses are typically integrated into modern software development environments
and continuous integration systems to safeguard software quality throughout the
entire development process.

During the development process, software developers continuously apply small
changes to the program. It is therefore not only important for a static analysis
to deliver precise feedback, but also to efficiently update its feedback whenever
the program is modified. To this end, an incremental static analysis avoids a full
recomputation of the analysis result. Instead, upon a change in the program, it
reuses and updates the previously computed result, saving valuable analysis time.

It is challenging to develop an incremental analysis that is sufficiently powerful to
verify a wide range of program properties and that supports complex language
features found in contemporary programming languages. In this work, we present
a novel generic approach to construct such analyses by using reified computa-
tional dependencies. We show how an analysis that reifies the computational
dependencies within the analysed program can be rendered incremental. By
relying on these dependencies, our incremental analysis restricts the impact of a
change to the affected parts of the analysis result. Moreover, we impose minimal
requirements on the analysis itself, allowing a broad applicability of our approach
to incrementalisation.

To preserve the precision of the resulting incremental analysis, we introduce
three complementary result-invalidation strategies that limit the loss in precision.
These strategies are built around the core idea of interleaving invalidation with
computation.
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Samenvatting

Tĳdens de laatste decennia werden computers een onmisbaar deel van de mo-
derne samenleving. Gezien de programma’s die op deze computers uitgevoerd
worden een essentiële rol spelen in het alledaagse leven, bĳvoorbeeld in bankieren
en communicatie, is het cruciaal dat ze betrouwbaar zĳn. Om deze reden be-
gonnen ontwikkelaars op statische analyses te vertrouwen om een breed scala aan
programma-eigenschappen te verifiëren zonder het programma daadwerkelĳk
uit te voeren. Statische analyses worden doorgaans in moderne “integrated devel-
opment environments” en “continuous integration”-systemen geïntegreerd om
de softwarekwaliteit te bewaken gedurende het hele ontwikkelingsproces.

Gedurende het ontwikkelingsproces maken softwareontwikkelaars voortdurend
kleine veranderingen aan het programma. Het is daarom niet enkel belangrĳk
dat een statische analyse precieze feedback geeft, maar ook dat deze efficiënt
haar feedback updatet telkens wanneer het programma aangepast wordt. Om
deze reden vermĳdt een incrementele statische analyse het volledig herberekenen
van het analyseresultaat. In plaats daarvan hergebruikt en updatet ze het voor-
gaande resultaat telkenmale het programma gewĳzigd wordt, waardoor kostbare
analysetĳd bespaard wordt.

Het is uitdagend om een incrementele analyse te ontwikkelen die voldoende
krachtig is om een breed scala aan programma-eigenschappen te verifiëren en
die de complexe eigenschappen van hedendaagse programmeertalen kan onder-
steunen. In dit werk presenteren we een nieuwe generieke methode om dergelĳke
analyses te construeren door gereïficeerde computationele afhankelĳkheden te
gebruiken. We tonen hoe een analyse die de computationele afhankelĳkheden in
het geanalyseerde programma reïficeert incrementeel gemaakt kan worden. Door
op deze afhankelĳkheden te steunen, kan onze incrementele analyse de impact
van een verandering begrenzen tot de getroffen delen van het analyseresultaat.
Daarenboven stellen we minimale vereisten aan de analyse zelf, hetgeen onze
incrementalisatiemethode breed toepasbaar maakt.
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Om de precisie van de resulterende incrementele analyse te bewaren, introduceren
we drie complementaire strategieën voor resultaatrevocatie die het precisieverlies
beperken. Deze strategieën zĳn ontworpen rond het kernidee van het afwisselen
van revocatie en computatie.
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1
Introduction

It is difficult to overemphasise the importance of software in modern society. Over
the course of the past decades, and especially since the turn of the millennium,
the use of software has soared. Now, software is present in almost every aspect
of everyday life, from communication to banking and beyond. Together with
the increased use of software, the potential consequences of software faults have
increased as well. Especially in critical systems, the impact of a software error
may cause a dramatic chain of events, thereby impacting the lives of millions of
citizens. In addition, software must be made secure to protect it and its users from
malicious adversaries.

Already today, there exists a multitude of examples where faulty software caused
significant losses. One example is the Northeast blackout of 2003 [90, 97, 142], where
a race condition in an energy management system was a crucial step in a chain
of events that would cause a blackout affecting approximately 50 million people
spread over an area of around 24 000 square kilometers in the United States and
Canada, with financial losses estimated between 4 billion and 10 billion dollars
in the United States alone. Another example is the maiden flight of the Ariane 5
rocket in June 1996 [10, 34, 50], where a software error in the flight control system
caused the rocket to significantly veer off course, eventually triggering the rocket’s
self-destruction at an altitude of merely 4 kilometers. The root cause of this disaster
was the conversion of a 64-bit floating point number to a 16-bit signed integer,
which caused an integer overflow. The piece of Ada code that caused the error,
shown in Listing 1.1, had been reused from the earlier Ariane 4 rocket but had not
been adapted to suit the conditions under which the newer Ariane 5 rocket would
operate. In addition, part of the diagnostic data ended up in the central on-board

1



Chapter 1. Introduction

1 ...
2 declare
3 vertical_veloc_sensor: float;
4 horizontal_veloc_sensor: float;
5 vertical_veloc_bias: integer;
6 horizontal_veloc_bias: integer;
7 ...
8 begin
9 declare

10 pragma suppress(numeric_error, horizontal_veloc_bias);
11 begin
12 sensor_get(vertical_veloc_sensor);
13 sensor_get(horizontal_veloc_sensor);
14 vertical_veloc_bias := integer(vertical_veloc_sensor);
15 horizontal_veloc_bias := integer(horizontal_veloc_sensor);
16 ...
17 exception
18 when numeric_error => calculate_vertical_veloc();
19 when others => use_irs1();
20 end;
21 end irs2;

Listing 1.1: Excerpt from the code of the Inertial Reference System operating in the Ariane 501
rocket [50]. Once the horizontal bias computed by the system reached 32768.0, a critical overflow
would happen during the type conversion on Line 15. This situation could never arise on an Ariane
4 rocket, which followed a different trajectory just after take off that resulted in lower horizontal
velocities during the operation of this part of the software [10].

computer which interpreted it as flight data, causing the rocket to deviate from
its supposed trajectory. The disaster with the Ariane 5 rocket incurred a loss of
approximately 370 million dollars at the time.

Nowadays, the bugs that lead to these two disasters would probably not have
gone unnoticed. They could, for example, be detected by static analyses, which
are currently widely used by developers, especially during the development
of safety-critical software. A static analysis reasons about and computes the
behavioural properties of a program without executing the program. This allows
to uphold certain quality guarantees for the software that is being developed and
to monitor the code quality throughout the development process, thus even before
the software is deployed. As a result, when static analysis is used appropriately,
organisations can be more confident in the code produced by their developers.

2



1.1. Research Context

1.1 Research Context

In the modern-day software development process, static analyses have become an
indispensable tool for developers to detect mistakes in their programs even before
the programs are executed. Static analyses form the foundation of code smell, bug,
and vulnerability detection tools used in modern software engineering processes.
Over the course of many years, a variety of different static analyses has been
developed for a wide range of application domains. Application domains for static
analysis include purity [95] and coupling [94] analyses for JavaScript, security
analyses for web applications [140, 141], concurrency-bug detection [129, 167],
resource usage analysis [68], alias and points-to analysis [33, 67, 170], worst-
case execution time analysis [1, 20, 75], and many more [15, 87]. Alongside
the development of new analyses, many static analysis frameworks have been
introduced as well. Such analysis frameworks allow developers to instantiate their
analyses, and may also provide various static analyses themselves, in a ready-to-
use environment and therefore facilitate the use of these analyses. Examples of
static analysis frameworks are Doop [18], OPAL [37], Soot [143], PhASAR [114–116],
and Infer [21, 22].

Static analyses can be integrated into different stages of the software engineering
process, such as in the IDE, in the continuous integration pipeline or during code
review, for example [155]. However, the integration of a static analysis within
the development pipeline entails a timing constraint: in order to be integrated,
static analyses must be able to keep up with the development cycle and produce
results in a timely manner. Recent literature has found that timely feedback from a
static analysis can dramatically improve the fix rate of reported defects from 0% to
70% as this avoids expensive mental context switches for developers and thereby
diminishes the effort required from developers to fix the signalled defects [14, 60].
Yet, the execution of complex analyses may require a significant amount of time,
especially when run on large code bases.

During the software development cycle, often, multiple small changes that typically
only impact a limited part of the program are made [5, 6, 61, 104]. Having to
reanalyse a program in full upon every (small) change is costly, especially when
the program under analysis is large. This may impede the fixing of defects by
the developers or even prevent the integration of the analysis (early) in the
development cycle altogether. Instead, incremental static analyses can be used.
Such analyses aim to deliver feedback faster upon program changes by reusing
and updating parts of the result obtained from the analysis of a prior version of
the program. To this end, an incremental analysis must be able to efficiently link the
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code changes to the affected parts of the analysis result and to efficiently update
the analysis result in accordance with the code changes while guaranteeing its
correctness.

1.2 Problem Statement and Research Question

Although incremental static analyses are not new, existing techniques have their
limitations. On the one hand, bespoke incrementalisation techniques are developed
for a specific purpose. Such incremental analyses are tailored to a specific analysis
or application domain and can use domain-specific knowledge, such as e.g., a
transitivity property [76], to efficiently create an incremental analysis. Some bespoke
incremental analyses require the call graph of the program to be known upfront,
for which they cannot analyse programs written in highly-dynamic languages with
dynamic typing, polymorphism, and several forms of late binding and closures. If
the analysis also requires the call graph to be unaffected by the program changes,
it cannot handle all changes incrementally. For example, such an analysis could
not incrementally process the addition or removal of function calls. On the other
hand, incremental analysis frameworks provide a domain-specific language for
the implementation of analyses that are then incrementalised by the framework.
Frameworks are typically restricted to a specific class of analyses that they can
render incremental.

The two approaches just mentioned have been well-explored but require the
reimplementation of an analysis to make it incremental, either in a custom manner
that is to be devised for the problem at hand or in a framework that offers
incrementalisation capabilities. Depending on the problem domain of the bespoke
analysis or on the assumptions made by the incrementalisation framework, the
incrementalisation is only applicable to a certain specific class of analyses.

A recent survey of the broader field of incremental computation [77] categorises
existing work in this field into three broad categories: incremental algorithms,
incremental program-evaluation frameworks, and incremental-algorithm-and-
program derivation methods. As mentioned, in the field of incremental static
analysis, plenty of work exists that falls into the first two categories. These thus
have already been studied well. However, the same seems not to be true for
the third category: there seems to be a lack of work describing approaches to
render existing analyses incremental. With the work presented in this dissertation,
we take the first steps into exploring methods to make existing static analyses
incremental.
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We are unaware of the existence of any systematic design method for incremental
analyses that results in general-purpose incremental static program analyses
applicable to contemporary, highly-dynamic programs with non-deterministic
behaviour. In this dissertation, we investigate a general method to render a general-
purpose static analysis incremental. Concretely, we only assume the analysis to be
effect-driven [96] and that it allows us to track which expressions are analysed,
and investigate how to render effect-driven analyses incremental while preserving
the generality of the approach we develop. An effect-driven analysis can be seen as
a traditional machine-based analysis that performs a fixed-point computation and
where inter-dependent (coarse-grained) states that rely on some global analysis
state are analysed separately.

1.3 Contributions

In this dissertation, we study the first systematic method to render a static analysis
incremental. Concretely, our contributions are the following:

• We start from an effect-driven analysis and show how the computational
dependencies within a program, which are reified by the effect-driven
analysis, can be leveraged to obtain incrementality and to bound the impact
of changes on existing analysis results. The approach consists of two steps: a
change-impact calculation and the updating of the analysis result.

• We formulate our approach as general as possible by imposing minimal
requirements on the analysis itself and essentially treat the actual analysis
as a black box. This assures the generality and broad applicability of our
method.

• We show how precision can be regained by introducing three complement-
ary strategies for result invalidation that do not impose restrictions on
the analysis. Our novel method to remove outdated parts of the analysis
result interleaves invalidation with recomputation, preventing the over-
approximation of outdated results and upholding the view of the analysis
as a black box. (We still require the analysis to be effect-driven as the effects
form the interface between the analysis and our incrementalisation method.)

• We present a formal specification of our approach and implement it in
MAF [152], a research framework developed at our lab to study effect-driven
static analyses.

• Using our implementation, we perform a thorough experimental evaluation
of the incrementalisation method by applying it to several effect-driven
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analyses. To this end, we compile two benchmarking suites of programs
with changes. We show that the resulting analyses are sound and measure
their precision and performance.

The incrementalisation method presented in this dissertation does not fully
preserve the precision of the original non-incremental analysis. We hypothesise
that a small precision loss is acceptable in use cases where performance is
more important than precision. For example, analyses run within the IDE need to
produce results fast to avoid hampering the developer. Here, the incrementalisation
of an analysis could enable running it within the IDE, whereas this may not
have been possible previously. A more precise, from-scratch analysis can be
run afterwards, e.g., as part of a continuous-integration system or after several
incremental updates of the analysis result, or simultaneously in a separate thread.
This includes analyses used for program comprehension, where an incremental
analysis could quickly give developers an information about the code. For example,
an incremental analysis may compute an updated call graph faster than a from-
scratch analysis and identify dead code more rapidly. In these cases, a small
number of false positives is acceptable and the resulting incremental analysis may
not report all dead code reported by the original non-incremental analysis, for
example. However, our method preserves soundness so no false negatives will
occur in the result: the incremental analysis will not report live code as dead
code. To keep the precision loss minimal, we propose three strategies for precision
recovery in Chapter 5.

1.4 Supporting Publications

In this section, we list our work that was published during the course of our PhD
and that supports the material presented in this dissertation. The work listed
below has been peer reviewed and was published at various international venues.
Conference papers have been presented during the respective events by the first
author.

Van Es, N., Van der Plas, J., Stiévenart, Q., and De Roover, C. (2020). MAF:
A Framework for Modular Static Analysis of Higher-Order Languages. In
Proceedings of the 20th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2020, Adelaide, Australia, September 27-28,
2020, Los Alamitos, CA, USA. IEEE Computer Society.

This paper presents the Modular Analysis Framework (MAF), a research framework
for the study of effect-driven analyses. The paper describes the modular design of
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the framework itself, which facilitates experimenting with a variety of analysis
configurations. All our contributions presented in this dissertation have been
implemented in MAF.

Van der Plas, J., Stiévenart, Q., Van Es, N., and De Roover, C. (2020). Incre-
mental Flow Analysis through Computational Dependency Reification. In
Proceedings of the 20th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2020, Adelaide, Australia, September 27-28,
2020, pages 25–36, Los Alamitos, CA, USA. IEEE Computer Society.

In this paper, we present the idea of using reified computational dependencies to
drive an incremental analysis. We introduce a general approach to incrementalise
effect-driven analyses, which support programs written in highly-dynamic pro-
gramming languages with higher-order functions and closures as well as various
analysis configurations, including different lattices and context sensitivies, for
example. The work presented in this paper is the topic of Chapter 4.

Kursun, T. R., Van der Plas, J., Stiévenart, Q., and De Roover, C. (2022).
RacketLogger: Logging and Visualising Changes in DrRacket. In D. Verna,
editor, Proceedings of the 15th European Lisp Symposium, ELS 2022, Porto, Portugal,
April 21-22, 2022, pages 61–68. ELSAA.

This paper presents RacketLogger, a change logger for the DrRacket IDE supporting
the logging of changes made to programs written in Scheme-like languages such
as R5RS Scheme and Racket. RacketLogger can log changes on a textual level
and on the level of the abstract syntax tree. The extraction and representation of
program changes is the topic of Section 3.2.

Van der Plas, J., Stiévenart, Q., and De Roover, C. (2023). Result Invalidation
for Incremental Modular Analyses. In C. Dragoi, M. Emmi, and J. Wang,
editors, Proceedings of the 24th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI 2023, Boston, MA, USA, January
15-21, 2023, volume 13881 of Lecture Notes in Computer Science, pages 296–319,
Cham, Switzerland. Springer.

In this paper, we build on the work disseminated in the paper “Incremental
Flow Analysis through Computational Dependency Reification” and present three
complementary strategies to improve the precision of incrementalised effect-driven
analyses. The work presented in this paper is the topic of Chapter 5.
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Wauters, C., Van der Plas, J., Stiévenart, Q., and De Roover, C. (2023). Change
Pattern Detection for Optimising Incremental Static Analysis. In L. Moonen,
C. D. Newman, and A. Gorla, editors, Proceedings of the 23rd IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM 2023,
Bogotá, Colombia, October 2-3, 2023, pages 49–60, Los Alamitos, CA, USA. IEEE.

This paper presents an optimisation for incremental static program analysis based
on change patterns for which the impact on the analysis result can be predicted.
The paper shows that for such patterns, the analysis result can be updated
using domain-specific knowledge, making a traditional incremental update of the
analysis result unnecessary. Our results show that, for three behaviour-preserving
change patterns, the time needed by an incremental update can be reduced
significantly. We reference this work in Section 4.1.

1.4.1 Other Publications

For completeness’ sake, we also list our other peer-reviewed publications that
were published during the course of our PhD but that do not support directly the
material presented in this dissertation. As before, conference papers have been
presented during the respective events by the first author.

Van Es, N., Stiévenart, Q., Van der Plas, J., and De Roover, C. (2020). A Parallel
Worklist Algorithm for Modular Analyses. In Proceedings of the 20th IEEE
International Working Conference on Source Code Analysis and Manipulation, SCAM
2020, Adelaide, Australia, September 27-28, 2020, pages 25–36, Los Alamitos, CA,
USA. IEEE Computer Society.

Stiévenart, Q., Van Es, N., Van der Plas, J., and De Roover, C. (2021). A parallel
worklist algorithm and its exploration heuristics for static modular analyses.
Journal of Systems and Software, 181, 111042.

This paper introduces a parallelisation strategy for effect-driven modular analyses,
which is based on a novel parallel worklist algorithm. The journal extension of
this paper also presents a comparative study of several worklist algorithms for
parallelised effect-driven analyses to further increase the attainable speed-ups.
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Van der Plas, J., Nicolay, J., De Meuter, W., and De Roover, C. (2023). ModInF:
Exploiting Reified Computational Dependencies for Information Flow Ana-
lysis. In H. Kaindl, M. Mannion, and L. A. Maciaszek, editors, Proceedings of
the 18th International Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE 2023, Prague, Czech Republic, April 24-25, 2023, pages
420–427, Setúbal, Portugal. INSTICC, SciTePress.

In this paper, we employ an effect-driven analysis to perform an information-flow
analysis. We show that the effects generated by an effect-driven analysis model
the inter-component information flow and extend the intra-component analysis to
obtain the full information flow data. We refer to this work in Section 6.3.3 when
describing the future work.

1.5 Outline of the Dissertation

The remainder of this dissertation is structured as follows:

In Chapter 2, we introduce background material to aid the comprehension of
the remainder of the dissertation. First, we introduce the broad concept of static
analysis and the principle of approximation. We then introduce lattices as a way
to represent abstract values in a static analysis. Finally, we introduce effect-driven
static analysis, the analysis method for which we introduce an incrementalisation
approach in this dissertation.

Next, Chapter 3 introduces incremental static analysis, a method to speed up
the analysis of consecutive versions of a given program. Then, we discuss rep-
resentations for program changes that are used in the literature on incremental
static program analysis. Finally, we provide an overview of the literature on
incremental static analysis, and of the literature in the related fields of staged and
demand-driven static analysis and of incremental computation.

In Chapter 4, we first introduce change expressions, the representation for program
changes used in this work. We then present an initial, monotonic approach to
render an effect-driven static analysis incremental by exploiting the computational
dependencies it reifies by means of effects. To demonstrate the generality of the
approach, we apply it to both a function-modular and a thread-modular analysis.
The presented approach, however, does not allow the invalidation of outdated
parts of the analysis result, allowing imprecision to arise in the result.
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Chapter 5 improves upon the above approach by reducing its precision loss. To
this end, three complementary strategies for precision recovery are introduced.
The core invalidation principle of these strategies is to interleave invalidation with
recomputation. This has the advantage that our approach remains general, as the
actual analysis can remain a black box.

Finally, in Chapter 6, we conclude by providing an overview of the work presented
in this dissertation, by recapitulating our contributions, and by presenting possible
directions for future work on this topic.

The research presented in this dissertation was partially supported by the Research
Foundation – Flanders (FWO) under grant numbers 11F4820N and 11F4822N, by the
Cybersecurity Initiative Flanders (CIF), and by the Cybersecurity Research Program
Flanders (CRPF).
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2
Supporting Material

This chapter introduces background material that supports the work presented in
this dissertation. We assume the reader is familiar with the fundamentals of static
program analysis.

This chapter is structured as follows. Section 2.1 first introduces some general yet
important notions related to static analysis. Section 2.2 then introduces lattices,
which are often used in static (dataflow) analyses as a means of value abstraction.
Lattices are not only used in the modular static analysis approach that is used in this
dissertation, but they also play an important role in the Write Invalidation technique
introduced in Chapter 5. Third, Section 2.3 introduces modular static analysis.
In this section, we specifically focus on effect-driven modular static analysis, a
specific method to static analysis that reifies the computational dependencies
within a program, which we leverage in our work to obtain incrementality. Finally,
we conclude in Section 2.4.

An introduction to incremental static program analysis, which lies at the heart of
this dissertation, is given in Chapter 3.

2.1 Fundamentals of Static Analysis

In this dissertation, we improve the run-time efficiency of a static analysis by
rendering it incremental. To this end, we first briefly introduce some important
notions concerning static analysis in general.
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A static analysis is used to infer behavioural, semantic properties of programs
without actually executing the programs under analysis. Instead, a static analysis
reasons about the source code, thereby inferring the program properties of interest,
such as, e.g., the absence of certain types of bugs. Unfortunately, computing any
non-trivial property is undecidable in general [110]. To this end, a static analysis
needs to approximate the actual program behaviour to guarantee its termination.
This means that an analysis may not always produce accurate or conclusive
answers in all situations: due to the approximation, situations may arise where the
analysis is uncertain. To always produce an answer, two types of approximations
are possible: an over-approximation and an under-approximation.

An over-approximating analysis may consider execution paths in the program that
are not reachable, that is, it over-approximates the program behaviour: program
behaviours for which the analysis cannot conclusively say that they cannot
take place are considered during the analysis as well. For this reason, an over-
approximating static analysis reports all programs that exhibit a certain behaviour,
e.g., that contain certain defect, but it may also report programs that, in practice,
can never exhibit the behaviour in question.

An under-approximating analysis only considers execution paths that are guaranteed
to be taken in the program and therefore may not consider all possible paths
of execution, that is, it under-approximates the program behaviour: program
behaviours for which the analysis cannot conclusively say that they will take place
during program execution are not considered during the analysis. For this reason,
an under-approximating static analysis only reports programs that are guaranteed
to exhibit a certain behaviour, but may not report all programs that can possibly
exhibit the behaviour in question.

These two types of approximating behaviour lead to two types of analyses.

Definition 1 A static analysis is sound if it is over-approximating. A static analysis is
complete if it is under-approximating.

In the literature, various definitions for soundness and completeness can be found,
for example in terms of the computation of semantic properties [111, 144]. In
these definitions, however, the property must be chosen carefully, to be e.g., the
absence of certain types of defects. For this reason, we use Definition 1, which
defines soundness and completeness in function of the approximation made by
the analysis and is in line with definitions found in the literature [27, 70, 87].
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In this dissertation, we assume and require soundness for all analyses. A sound
analysis is guaranteed to find all program defects. Therefore, its application in a
development pipeline is useful.

A sound analysis may give rise to false positives, as it may take into account
program behaviour that cannot occur in practice. A complete analysis may, on
the contrary, give rise to false negatives, as it may not take into account program
behaviour that can occur in practice. Clearly, a sound static analysis generating
fewer false positives is preferred over one generating many false positives as the
latter reduces the usability of the analysis. Similarly, a complete static analysis
generating fewer false negatives is preferred over one generating many false
negatives.

Definition 2 The precision of an analysis is a measure to indicate how closely the
approximation made by the analysis approaches all possible program behaviours.

When a static analysis raises alarms that can be inspected for false positives and
false negatives, such as alarms indicating an insecure data flow, precision is often
defined as the ratio of the number of true positives to the total number of alarms
raised, and a related measure called recall can be defined as ratio of alarms raised
to the true number of alarms that should have been raised. A complete analysis is
then fully precise whereas a sound analysis then has a perfect recall. However,
precision often is not or cannot be measured in this way, e.g., when there is no
client analysis available that can generate alarms. As a result, an abundance of
precision metrics can be found in the literature (see e.g., [32, 83, 96, 120, 137, 150]),
reflecting that it is often difficult to quantify the precision of an analysis. Therefore,
precision metrics are normally used comparatively, to quantify the difference in
precision between two analyses on a given set of benchmarks. It is this approach
that we follow in this dissertation.

2.2 Lattices as an Abstract Value Representation

Techniques for static dataflow analysis such as Abstract Interpretation [28] reason
about an abstract state space of which each abstract state represents a subset
of the actual, concrete, and possibly infinite state space in which the program
operates. The abstract state space is conceived in such a way that, when the analysis
operates in it, it is guaranteed to terminate. This can be achieved by designing
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the abstract state space to be finite, to converge in a finite number of steps, or by
providing other mechanisms to guarantee the convergence of the analysis, such as
widening [28, 29].

One element of the infinite state space in which programs operate, are values. For
example, integers are elements of the infinite set Z. In this case, we call Z the
concrete domain of integers. An analysis, in contrast, reasons about values that are
part of an abstract domain of values. Such abstract domains are typically formed
by a lattice structure. The analysis then reasons about the elements of the abstract
domain, i.e., over abstract values, and each abstract value represents a (possibly
infinite) set of concrete values the program can encounter during its execution. An
example of an abstract domain for integers is the sign domain, where integers are
represented by their sign (positive, negative or zero). In this domain, the abstract
value “positive” represents the infinite set of all strictly positive integers, Z+

0 .

In this section, we first introduce some elementary notions related to lattices,
which have been studied and utilised extensively in the mathematical literature
(see e.g., [13, 16, 54, 55]). We then explain how lattices are used in a dataflow
analysis and present the basic structure of two lattices that are frequently used in
this dissertation: the type lattice and the constant-propagation lattice. Finally, we
present some requirements on lattices that ensure the termination of an analysis.

2.2.1 Mathematical Foundation

We first define the notion of a lattice and briefly mention some of its most relevant
properties.

Definition 3 A partially ordered set or poset is a set S on which a binary relation
(⊑) ⊂ S × S is defined that is

• reflexive: ∀x ∈ S : x ⊑ x,
• anti-symmetric: ∀x, y ∈ S : x ⊑ y ∧ y ⊑ x ⇒ x = y, and
• transitive: ∀x, y, z ∈ S : x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z.

The relation (⊑) is called a partial order on S. We denote the partially ordered set as
(S,⊑). Two elements x, y ∈ S are comparable if x ⊑ y or y ⊑ x. Otherwise, they are
incomparable.

Definition 4 A partially ordered set (S,⊑) satisfies the ascending chain condition if
any increasing chain terminates, i.e., if any chain of strictly increasing elements is finite.
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Definition 5 An element u ∈ S is an upper bound of X ⊆ S if ∀x ∈ X : x ⊑ u. An
upper bound u of X is the least upper bound or supremum of X, denoted

⊔
X, if for

every upper bound v of X : u ⊑ v. We define a corresponding binary operator ⊔, called
the join operator, so that

⊔{x, y} can be denoted as x ⊔ y.

Definition 6 An element l ∈ S is a lower bound of X ⊆ S if ∀x ∈ X : l ⊑ x. A lower
bound l of X is the greatest lower bound or infimum of X, denoted

d
X, if for every

lower bound k of X : k ⊑ l. We define a corresponding binary operator ⊓, called the meet
operator, so that

d
{x, y} can be denoted as x ⊓ y.

Definition 7 A lattice is a partially ordered set L in which every subset of two elements
has a supremum and an infimum. A complete lattice is a partially ordered set L where
every subset of L has a supremum and an infimum in L. Every non-empty complete lattice
has a bottom element, denoted ⊥, so that ⊥ =

d
L and a top element, denoted ⊤, so

that ⊤ =
⊔

L.

By definition, any lattice of finite height is complete. Due to the anti-symmetry of
the partial order relation, the supremum and infimum of every X ⊆ S are unique.

Multiple lattices can also be combined to form a new lattice:

Definition 8 We define the product lattice or direct product S × L of two lattices
S and L to be the partially ordered set of all tuples (s, l) with s ∈ S, l ∈ L using the
following partial order: (s1, l1) ⊑ (s2, l2) if and only if s1 ⊑ s2 in S and l1 ⊏ l2 in L.

It is guaranteed that if S and L are lattices, then so is S × L [16, 55]. In this way, a
product of an arbitrary number of lattices can be created.

Definition 9 We call a lattice a power set lattice, or simply a set lattice, if the elements
of the partially ordered set form the power set P(S) of a given set S and the partial order is
given by the set inclusion relation ⊆.

By definition, an ordered set where the elements form a power set and the partial
order is given by the relation ⊆ is a lattice: the ordering relation ⊆ is reflexive,
anti-symmetric and transitive, and therefore it is a partial order on P(S); the
supremum of any subset of two elements can be computed by using the set union
operator, ∪, which is the join operator of the lattice, and the infimum for every
subset of two elements can be computed using the set intersection operator, ∩,
which is the meet operator of the lattice. A set lattice is a complete lattice.

15



Chapter 2. Supporting Material

2.2.2 The Hasse Diagram

A partially ordered set (S,⊑) can be depicted by means of a Hasse diagram, which
visualises the elements of the set and their partial order using a vertical structure.
In the diagram, nodes represent elements of S. If s1 ⊏ s2, then s2 is drawn higher
than s1. A vertex is drawn between s1 and s2 if s1 ⊏ s2 and there is no node s3 ∈ S
for which s1 ⊏ s3 ⊏ s2 holds. Thus, for two elements s1, s2 ∈ S it holds that s1 ⊏ s2
if there is an ascending chain from s1 to s2 in the diagram.

Example. Consider the Hasse diagram shown in Figure 2.1a, which represents
the partially ordered set (P({a, b, c}),⊆). As is shown in the diagram, the ⊆
relation is a partial order on P({a, b, c}) and every subset of P({a, b, c}) has a
supremum and an infimum. Therefore, the partially ordered set is a complete
lattice. The join of two elements can be found by following the vertices in the
diagram upwards. For example, {a} ⊔ {b, c} = {a, b, c}. In this case, the empty set
is the bottom element of the lattice and the set {a, b, c} is the top element of the
lattice. On the contrary, the partially ordered set represented by the Hasse diagram
shown in Figure 2.1b is not a lattice since not every subset of two elements has
a supremum: there is no supremum for the subset {{a, b}, {b, c}}. Similarly, the
partially ordered set shown in the Hasse diagram in Figure 2.1c is not a lattice
because v and w do not have a supremum: x, y and z all are upper bounds for v
and w, but none of them is the least upper bound.

{a, b, c} = ⊤

{a, b} {a, c} {b, c}

{a} {b} {c}

∅ = ⊥
(a) Hasse diagram of the com-
plete lattice (P({a, b, c}),⊆).

{a, b} {b, c}

{a} {b} {c}

∅

(b) Hasse diagram of
the partially ordered set
(P({a, b}) ∪ P({b, c}),⊆).

z

x y

v w

u

(c) Hasse diagram of a par-
tially ordered set with ele-
ments {u, v, w, x, y, z}.

Figure 2.1: Examples of Hasse diagrams as a means to visualise partially ordered sets.
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⊤

− 0 +

⊥
(a) Three-layered sign lat-
tice.

⊤

− 0 +

{−, 0} {+,−} {0,+}

⊥
(b) Four-layered sign lattice.

Figure 2.2: Sign lattices for numbers.

2.2.3 Lattices in a Dataflow Analysis

During the conception of a dataflow analysis, an abstract domain is chosen that is
able to represent the semantic property of interest for the client of the analysis.
For example, to perform a sign analysis, which can e.g., detect division by zero
errors, a special abstract domain that keeps track of the signs of numbers can
be employed. A simple domain that can be used for this purpose is shown in
Figure 2.2a. Then, an abstract value, which in this case corresponds to an element
of the sign lattice, can be related to every variable in the program, for example, to
obtain sign information for all variables.

In a static analysis, elements lower in the lattice (lower in the partial order) are
regarded as representing more precise information, whereas elements higher in the
lattice (higher in the partial order) are considered to represent less precise informa-
tion. Consider again the lattice in Figure 2.2a. The bottom element ⊥ represents
the fact that the value is not a number; it is the most precise representation. The
abstract value 0 indicates that the value is exactly zero, whereas the abstract values
+ and − indicate that the value is strictly positive resp. negative. When the sign
of the number is not known exactly, the abstract value ⊤ can be used, which
represents any number. Clearly, this is the least precise option.

A dataflow analysis also infers the effect of operations on the abstract values by
specifying abstract operations on them, such as e.g., the addition of two abstract
numbers. The exact implementation of these operations is lattice-dependent.
Table 2.1 specifies multiplication for the sign lattice in Figure 2.2a. When one of
the operands is not a number, represented by ⊥, the result of the multiplication
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1 (define x 0) ; x = 0
2 (if condition ; evaluates to ⊤
3 (set! x 1) ; x = +
4 (set! x -1)) ; x = −
5 x ; x = ⊤

Listing 2.1: If the condition evaluates to ⊤, then the information in both branches needs to be
combined and the value of x becomes + ⊔− = ⊤.

cannot be a number either and hence also is ⊥. Multiplying a number by zero
always yields zero. The product of two negative numbers is positive, as is the
product of two positive numbers. On the contrary, the result of multiplying a
positive and a negative number is a negative number. A multiplication with ⊤
always yields ⊤, except when the other operand is zero or ⊥. After all, although
⊤ also represents the number zero, it represent any number, and thus the sign of
the result cannot be derived more precisely as it may be positive, negative, or zero.

∗ ⊥ − 0 + ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ + 0 − ⊤
0 ⊥ 0 0 0 0
+ ⊥ − 0 + ⊤
⊤ ⊥ ⊤ 0 ⊤ ⊤

Table 2.1: Multiplication in the sign lattice.

In a dataflow analysis, the join operator of the lattice is used when information from
multiple possible execution paths need to be combined, e.g., when information of
two branches of an if expression needs to be combined to compute the result of
the entire if expression. Consider for example the code in Listing 2.1, where a
variable x is assigned a positive resp. negative value in the then or else branch of
an if expression. If the value of the condition cannot be analysed exactly (i.e., if
the analysis finds the value ⊤ for the condition), then the the analysis must take
into account the information in both branches of the if expression as it cannot be
certain which branch would actually be taken during the execution of the program.
Thus, the final value for x becomes the join of its value in both branches, i.e., ⊤.

The choice of abstract domain impacts the precision of the analysis: the larger the
(height of) the abstract domain, the more precise different concrete values can
be approximated. For example, in the sign lattice of Figure 2.2a, we could add
another level with the abstract values {−, 0}, {0,+} and {+,−}, for numbers
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that are negative or zero, zero or positive, or non-zero respectively, as is shown in
Figure 2.2b. This, however, enlarges the state space, which can in turn influence
the convergence speed of an analysis [17, 83, 84].

2.2.4 The Type Lattice and the Constant-propagation Lattice

In our evaluation, we make use of two specific lattices: the type lattice and the
constant-propagation lattice. In this section, we briefly consider their general
structure.

A type lattice is used to keep track of all possible types a variable can have, e.g.,
String, Boolean, Integer. A simple product type lattice for these types is shown
in Figure 2.3a. For every type, ⊥ represents that the value cannot be of the given
type, whereas ⊤ represents that the value can be of the given type. We can also
model this lattice as a set lattice, as shown in Figure 2.3b, where the elements of
the partially ordered set (P({Str, Bool, Int}),⊆) denote the possible types of the
value.

Str⊥

Str⊤

Bool⊥

Bool⊤

Int⊥

Int⊤

× ×

(a) Product lattice.

{Str, Bool, Int} = ⊤

{Str, Bool} {Str, Int} {Bool, Int}

{Str} {Bool} {Int}

∅ = ⊥
(b) Set lattice.

Figure 2.3: Hasse diagrams of a type lattice of strings, booleans and integers.

Another simple abstract domain is formed by the constant-propagation lattice [28,
159]. The abstract domain can precisely represent single values of the concrete
domain as it has an abstract value for each possible concrete value. The top value
of the lattice represents all possible values and is used when the exact value is not
known. The bottom value represents the absence of a value. As there can be an
infinite number of concrete values, e.g., in the case of integers, the width of the
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lattice can be possibly infinite as well. However, its height is fixed to three. An
example of a constant-propagation lattice for integers is shown in Figure 2.4. A
constant-propagation lattice for multiple data types can be obtained by creating
the product lattice of the constant-propagation lattices for different data types.

⊤

. . .2−2 −1 0 1. . .

⊥

Figure 2.4: Constant-propagation lattice for integers.

All examples given in this dissertation make use of a type lattice, unless stated
otherwise.

2.2.5 Lattices and the Termination of the Analysis

The choice of the lattice used to represent the abstract domain within the analysis
has an impact on the precision and running time of the analysis. The closer the
abstract domain resembles the concrete domain, that is, the larger the size of the
abstract domain, the more precise the analysis result can be. However, for the
analysis to be guaranteed to terminate, at least one of the following conditions
must hold on the abstract domain [28, 139]:

• the lattice is finite, i.e., it contains only a finite number of elements, or
• the lattice satisfies the ascending chain condition, or
• the lattice is infinite and does not satisfy the ascending chain condition but a

suitable widening operator is used to ensure the termination of the analysis,

provided that the analysis can be stated as a monotone (increasing) function on
the lattice.

A lattice that is not finite but satisfies the ascending chain condition has an infinite
width. As all ascending chains are finite, convergence of the analysis is guaranteed.
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2.3 Modular Static Analysis

Modular static analysis [30] is an approach to static analysis that scales well, and
that can achieve good precision with low memory consumption [53, 69, 85, 96, 126].
The incrementalisation approach presented in this dissertation is enabled by the
design of modular analyses.

In a modular static analysis, the analysis of a program is decomposed into the
analysis of elements of the program called modules. These modules correspond
to static parts of the program and can for example be function definitions [96],
classes, or thread definitions [85, 126]. A module may have multiple runtime
instantiations, e.g., function calls, which the analysis might discern as well. We
refer to the reification of these runtime instantiations in the analysis as components.
For example, a component corresponding to a function definition is a function
call. Other examples of components are class instances and threads. A component
consists of a module and a context used to discern the different instantiations.
Depending on the definition of contexts, more instantiations may be discerned,
increasing the analysis precision (and complexity). Hence, depending on the context
sensitivity of the analysis, one module can correspond to multiple components
created by the analysis.

A modular analysis analyses its components in isolation. In the ideal case, the
analysis result is obtained by composing the analysis results of all components. In
this case, the analysis often is referred to as a compositional analysis. Since modules
are usually a fraction of the program size, the analysis of each component is
performed quickly and can be tuned to have a high precision.

In practice, however, components may interfere with each other: functions can
call each other, objects interact, and threads may spawn other threads or read
from shared variables. In a modular analysis, these interferences are reified
as dependencies between components. When a new dependency is found or an
existing dependency is updated, the analysis schedules the affected components
for reanalysis, possibly triggering the analysis of other dependent components
until a fixed point is reached. Thus, the analysis of one component may trigger the
(re-)analysis of another.

2.3.1 Effect-driven Modular Static Analysis

Recently, ModF, an effect-driven formulation of function-modular analysis has
been introduced [96]. ModF is a control-flow analysis also computing value
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1 WL := {Main}; // The worklist, initially containing the Main component.
2 V := ∅; // The set of visited components.
3 D := λr.∅; // Map of dependencies (read effects).
4 σ := λa.⊥; // Global value store, initially all addresses map to bottom.
5 while WL ̸= ∅ do

6 α ∈ WL;
7 WL := WL \ {α};
8 (C′, R′, U′, σ′) = intra(α, σ); // Intra-component analysis.
9 σ := σ′;

10 V := V ∪ {α};
11 WL := WL ∪ (C′ \ V);
12 foreach r ∈ R′

do D := D[r 7→ D(r) ∪ {α}];
13 foreach u ∈ U′

do WL := WL ∪ D(u);
14 end

15 return (σ, V, D);

Algorithm 1: The inter-component analysis (Inter) of ModF.

information. It reifies the computational dependencies between components using
effects and uses these to drive the fixed-point computation that constitutes the
analysis, where an inter-component analysis schedules components for analysis and
invokes an intra-component analysis which analyses individual components. The
inter-component analysis, which we will henceforth refer to as Inter and which is
shown in Algorithm 1, uses a worklist of components to be analysed. Initially, this
worklist contains the Main component1, a special component which represents
the program’s entry point (Line 1). In every analysis step, a component is removed
from the worklist WL (Lines 6-7) and analysed by the intra-component analysis
Intra (Line 8); the analysis terminates when the worklist is empty, indicating that
a fixed point has been reached.

The store of the analysis maps abstract addresses to abstract values. It abstractly
represents the heap of the program, in which values are stored at certain memory
locations. ModF uses global-store widening [153], i.e., there is a single global value
store σ within the analysis that is shared among all components [96]. For every
component, σ also contains an abstract return value. Critically, upon a function
call, ModF does not step into the function, but retrieves the stored return value
of the component corresponding to the function call (or ⊥ if no value has yet
been stored previously). By not stepping into function calls, the function-modular
character of ModF is obtained.

The intra-component analysis returns three sets of effects together with an updated
store (Line 8). The effects are a reification of the component’s computational

1In formal notations, we use lowercase Greek letters to denote components (e.g., α and β). Otherwise,
we denote them by their respective names in small caps (e.g., Main and fib).
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dependencies and influences on the global analysis state. They correspond to
function calls (generating call effects), and reads from and writes to the store
(generating resp. read and write effects – the latter is only generated when σ actually
changes):2

• A call effect denotes the discovery of a component within the analysis. In
ModF, this happens whenever a function call is encountered by the intra-
component analysis. If the discovered component has not been encountered
before, it is scheduled for analysis, meaning that it is added to the worklist.
Note that no components are created for functions that are built into the
analysis, such as primitive operators (e.g., +).

• A read effect on an address in the store indicates a dependency: the analysis of
the component reading the address is dependent on the value at that address.
These dependencies are used to determine the component(s) to be added to
the worklist, causing components depending on updated information to be
reanalysed.

• A write effect on an address is emitted when the value stored at that address
in the global store changes. These effects thus indicate an update of a part of
the global analysis state – in this case, an update of a value stored at a certain
address in the global store – and cause all components with a dependency
on this updated part to be scheduled for reanalysis.

Next, the state of the analysis is updated (Line 9) and the dependencies are
registered in the dependency map D (Line 12).3 Components are added to the
worklist as follows: all components that have a dependency on an address that
was changed by the analysis of the current component (indicated by the set of
write effects U′) need to be reanalysed (Line 13). This may possibly include the
component just analysed as well. The current component is marked as visited
(Line 10), and all new components, i.e., the components discovered except the
ones that have been visited already, are added to the worklist as well (Line 11).
Then, the algorithm proceeds with the next component in the worklist.

During the analysis, the inter-component analysis Inter keeps track of:

1. the analysis state, comprising solely the global store σ;
2. a set of visited components V;
3. a mapping of dependencies to components D;
4. a worklist of components to visit WL.

2For brevity, in pseudocode, the set C represents the set of all components corresponding to the
emitted call effects, and the sets R and U represent the addresses corresponding to the emitted
read and write effects respectively.

3The notation M[k 7→ v] denotes a map update: the map M[k 7→ v] is identical to the map M
except for the key k which is mapped to the value v.
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The analysis result is constituted by (1) the store σ, (2) the set of components V,
and (3) the dependency map D (Line 15); the worklist will always be empty at the
end of an analysis. We consider all parts of the result equally relevant, though in
practice one might mostly be interested in σ.

Effect-driven flow analyses can be used with any abstract domain, given the
conditions listed in Section 2.2.5, and with any context-sensitivity. All examples
given in this dissertation use no context sensitivity, i.e., they use empty component
contexts for which every function corresponds to one component at most, unless
stated otherwise.

Example. We illustrate how ModF computes the control-flow and value informa-
tion of the Scheme program in Listing 2.2. Assuming the use of a type lattice and
no context sensitivity, ModF analyses the program as follows:

1. The analysis starts with the analysis of the Main component, which represents
the entry point of the program. This component is analysed as follows:

a) When the variable x is bound, its value in the analysis store is updated
(x becomes Int) and, thus, a write effect for this variable is generated.

b) Then, the variables fun and inc are bound. Both become bound to a
closure and, thus, their values in the store are updated. Hence, for both
variables, a write effect is generated.

c) Then, the call to fun is analysed. To do so, the variable fun is read from
the store, which returns the corresponding closure thus generating a
read effect. The component corresponding to the function call, fun,
which has not yet been encountered by the analysis, is added to the
worklist and a call effect is generated. Importantly, the analysis does not
step into the component but retrieves its return value from the store. (If
functions have arguments, which is not the case in this example, the
calling component must write the argument values to the store so they
can be used by the intra-component analysis of the called function.) As
no return value has been computed previously for fun, ⊥ is read from
the store; a read effect on the address of this return value is registered,
which indicates that the component Main depends on this value.

d) Finally, the return value of the Main component, ⊥, is written to the
return address of Main in the store. As this value does not change, no
write effect is generated.

2. Next, fun is analysed as this is the only component currently residing in the
worklist:

a) When analysing the call to inc, first, the value of the variable inc
is read from the store, generating a read effect. As the component
corresponding to the function call, inc, has not yet been encountered
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1 (define x 0) ; Definition of a variable x.
2 (define (fun) (inc) x) ; Function that reads x.
3 (define (inc) (set! x (+ x 1)) #t) ; Function that reads and writes x.
4 (fun) ; Call to the function fun.

Listing 2.2: Example Scheme program containing two functions.

previously, it is added to the worklist. A call effect is generated and
the return value of inc, currently ⊥, is read from the store, thereby
generating a read effect.

b) Then, the variable reference is analysed, causing the generation of a
read effect for x.

c) Finally, as the component fun is now fully analysed, its return value is
written to the store. As the return value in the store changes (it now
becomes Int where it previously was ⊥), a write effect is generated.
This write effect causes the component Main to be added to the worklist
as well, since Main previously emitted a read effect on the return
address of fun, indicating a dependency.

3. Either Main or inc can now be analysed. For the sake of the example, let’s
assume inc is analysed (the worklist order does not affect the result [96]):

a) inc reads x, generating a read effect, and also writes to this variable.
As the value of x in the store is not updated (it remains Int), no write
effect is generated.

b) As the return value of inc is written to the store and there updated to
Bool, a write effect is generated and the dependent component, fun, is
added to the worklist again.

4. The analysis continues in this way until the worklist is empty, which indicates
that a fixed point has been reached.

Note that in this example, for brevity, we omitted that to call the primitive function
plus, first the corresponding function has to be retrieved from the store, thereby
generating a read effect for the corresponding variable +.

Formal Specification of ModF

To clearly define the behaviour of a ModF analysis, we now formally specify a
ModF analysis for a simple language, based on the untyped lambda calculus, with
side effects that is restricted to Administrative Normal Form (ANF). In ANF, a
distinction is made between two types of expressions: (1) atomic expressions, which
can be evaluated to a value immediately and without altering the program state,
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and (2) complex expressions, whose evaluation may require an infinite amount
of time and whose evaluation may impact the program state; ANF requires all
subexpressions of a function application, that is, all operators and operands, to be
atomic expressions [44, 144].

Our formal specification is based on the one of Nicolay et al. [96] but differs,
although not conceptually, to better match our description of the ModF algorithm
and the pseudocode in Algorithm 1. Although a ModF analysis can work with
different intra-component analyses, we present a formal specification for a small-
step intra-component analysis to clearly define and exemplify the generation of
effects during the intra-component analysis.

Syntax. The syntax of the input language we use for the formal definition of ModF
is given in Figure 2.5. Expressions can be atomic expressions, function applications,
set! expressions or letrec expressions. A set! expression modifies the value of
a variable to the value resulting from the evaluation of a given atomic expression.
A letrec expression binds a variable to the result of the evaluation of a given
expression. The scope of this binding is limited to the binding expression of the
variable and to the body of the letrec expression; the former allows recursive
functions to be defined as it allows functions to refer to themselves. An atomic
expression can be a variable reference, a lambda expression, i.e., an anonymous
function, or an integer. As a program only contains a finite number of expressions,
the set of expressions Expr is always finite during the analysis of a program.

e ∈ Expr ::= ae | (f ae) | (set! x ae) | (letrec ((x e)) e)
f , ae ∈ AExp ::= x | lam | n

lam ∈ Lam ::= (λ (x) e)
x ∈ Var = A finite set of identifiers.
n ∈ N = The set of integers.

Figure 2.5: Syntax of the input language used for the formal definition of ModF.

State space. The state space of a ModF analysis is depicted in Figure 2.6. It contains
two types of components: a Main component, corresponding to the program entry
point, and Call components corresponding to function calls. The latter consist of
the module (in this case, the closure corresponding to the called function) and a
context. The store maps addresses to abstract values. In our formal specification,
we represent the address corresponding to the return value of a component by
means of the component itself. We leave the exact definition of contexts, values
and addresses open. We assume, however, that the values are part of a lattice
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which adheres to the termination requirements stated in Section 2.2.5. For the sake
of the formal specification, we assume the lattice approximates integers by their
type (int) and that it contains elements for closures (clo(lam, ρ)). We assume the
existence of a function clos that retrieves all closures corresponding to an abstract
value.

For the small-step intra-component analysis, the state space contains states that
consist of a control component and a stack component. The control component can
either contain an expression together with an environment in which the expression
should be evaluated or a value. The stack is a list of frames; it represents the
continuation of the program execution. ε denotes the empty stack. There are two
types of frames: the let frame indicates that the binding expression of a letrec
has been evaluated to a given value and that the body can be evaluated. For ModF,
the ret frame indicates that a function body has been fully analysed and, thus,
that the return value of the component should be written to the analysis store.
Finally, the analysis uses an environment, which maps variables to addresses in
the analysis store.

α, β, γ ∈ Cmp ::= Main | Call(v, κ)

ϵ ∈ Eff ::= w(a) | r(a) | c(cmp)
σ ∈ Store = (Addr + Cmp) → Val

κ ∈ K = A finite set of contexts.
v ∈ Val = Values from the abstract domain.

a ∈ Addr = A finite set of addresses.

ς ∈ Σ ::= ⟨c, ι⟩
c ∈ Ctrl ::= ev(e, ρ) | val(v)
ι ∈ Stck ::= ϕ : ι | ε

ϕ ∈ Fram ::= let(a, e, ρ) | ret(α)

ρ ∈ Env = Var → Addr

Figure 2.6: State space of a ModF analysis with a small-step intra-component semantics.
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Inter-component analysis. We now define the inter-component analysis Inter. It
has the following signature:

Inter:
WL︷ ︸︸ ︷

P(Cmp)×
D︷ ︸︸ ︷

(Addr → P(Cmp))×
σ︷︸︸︷

Store
→ P(Cmp)︸ ︷︷ ︸

V

× (Addr → P(Cmp))︸ ︷︷ ︸
D′

× Store︸︷︷︸
σ′

Inter takes as argument the worklist WL, a mapping of dependencies to compon-
ents D and the store σ. It produces the analysis result that consists of the set of
visited components V, the collected dependencies D′ and the final store σ′. We
define Inter as follows:4

Inter
(
∅, D, σ

)
=
({

α | α ∈ dom(σ) ∧ α ∈ Cmp
}

, D, σ
)

Inter
(
{α} ⊎ αs, D, σ

)
= Inter

(
αs ∪

⋃
c(β)∈C

β ̸∈dom(σ)

β ∪
⋃

w(a)∈U
γ∈D(a)

γ, D ∪·
⋃
·

r(a)∈R

[a 7→ {α}], σ′
)

where (C, R, U, σ′) = Intra(α, σ), αs are the remaining components in the worklist,
⊎ denotes the disjoint union and ∪· is a pointwise union defined as follows:

d1 ∪· d2 =
⋃

a∈dom(d1)
a∈dom(d2)

(
a, d1(a) ∪ d2(a)

)
∪

⋃
a∈dom(d1)
a ̸∈dom(d2)

(
a, d1(a)

)
∪

⋃
a ̸∈dom(d1)
a∈dom(d2)

(
a, d2(a)

)

The inter-component analysis analyses all components in its worklist separately
by using the intra-component analysis Intra. Whenever a new component is
discovered, it is added to the worklist, and whenever the value of an address in
the store is updated, dependent components are added as well.5 This way, the
inter-component analysis performs a fixed-point computation.

Collecting semantics. Given this definition of Inter, the abstract collecting se-
mantics of a program, i.e., all flow and value information computed by the analysis,
can be obtained by computing Inter({Main}, [], []), where [] denotes an empty
map.

Intra-component analysis. We now formalise a small-step intra-component ana-
lysis for the given input language to clearly define how effects are supposed to be

4To not clutter notation, we omit the curly braces of singleton sets when using the big union
⋃

.
5In the formal specification of Nicolay et al. [96], write effects are always emitted when an address is

written to the store; the inter-component analysis only adds dependent components to the store
when the value at that address changes. In our formal specification, without loss of generality,
we assume write effects are only emitted when the value of an address in the store is changed.
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generated during the analysis of components. We formalise this analysis (1) in
terms of an atomic evaluation function A, which specifies how atomic expressions
are evaluated, (2) in terms of a transition function⇝, which specifies how complex
expressions are evaluated, and (3) by means of a fixed-point computation for the
intra-component analysis, Intra. They have the following signatures:

A: AExp × Env × Store → Val ×P(Eff)
⇝: Σ × Store → Σ × Store ×P(Eff)

Intra: Cmp × Store → P(Eff)︸ ︷︷ ︸
C

×P(Eff)︸ ︷︷ ︸
R

×P(Eff)︸ ︷︷ ︸
U

×Store

The atomic evaluation function takes an atomic expression and an environment
and store in which to evaluate this expression and returns the value resulting
from the evaluation and a set of effects that were generated during this evaluation.
The transition relation takes a state and a store and returns the subsequent state
and a possibly updated store. It also returns the set of effects that are generated
during the transition. Rather than adding this set to the result tuple, we annotate
the transition relation with it as follows: E . Finally, the intra-component analysis
Intra takes a component and a store and returns the effects generated during the
analysis of the component together with an updated store.

Atomic evaluation function. The following rules specify the atomic evaluation
function:

A(x, ρ, σ) = (σ(ρ(x)), {r(ρ(x))})
A(n, ρ, σ) = (int,∅)

A(lam, ρ, σ) = (clo(lam, ρ),∅)

The evaluation of a variable causes its address to be looked up in the environment
ρ, after which the value residing at that address in the store is returned. For this
reason, a read effect is generated for the address. The evaluation of a number
returns an abstract value, in this case int. Finally, the evaluation of a lambda
returns a closure containing the lambda and its definition environment.

Transition function. The transition function describes how complex expressions
are evaluated using the six rules shown in Figure 2.7. The transition function
uses four helper functions: (1) the function allocCtx allocates a context, given the
module and the value store, (2) the function allocAddr allocates a store address for
a variable, (3) the function clos retrieves all closures corresponding to an abstract
value, and (4) the function write writes a value to the store and generates a write
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effect if needed, it is defined as follows:

write(σ, a, v) =


(
σ[a 7→ v], {w(a)}

)
if a ̸∈ dom(σ),(

σ[a 7→ (v ⊔ σ(a))], {w(a)}
)

if a ∈ dom(σ) ∧ v ̸= σ(a),(
σ,∅

)
otherwise.

(v, E) = A(ae, ρ, σ)(
⟨ev(ae, ρ), ι⟩, σ

)
E
(
⟨val(v), ι⟩, σ

) Atomic

(v f , E f ) = A( f , ρ, σ) clo((λ (x) e), ρ′) ∈ clos(v f )
a = allocAddr(x) (va, Ea) = A(ae, ρ, σ) (σ′, Ew) = write(σ, a, va)

mod = clo((λ (x) e), ρ′[x 7→ a]) κ = allocCtx(mod, σ)
α = Call(mod, κ) vr = σ(α) E = E f ∪ Ea ∪ Ew ∪ {r(α), c(α)}(

⟨ev((f ae), ρ), ι⟩, σ
)

E
(
⟨val(vr), ι⟩, σ′) Call

(va, Ea) = A(ae, ρ, σ)
a = ρ(x) (σ′, Ew) = write(σ, a, va) E = Ea ∪ Ew(

⟨ev((set! x ae), ρ), ι⟩, σ
)

E
(
⟨val(va), ι⟩, σ′) Assign

a = allocAddr(x) ρ′ = ρ[x 7→ a] ι′ = let(a, eb, ρ′) : ι(
⟨ev((letrec ((x ex)) eb), ρ), ι⟩, σ

) ∅ (
⟨ev(ex, ρ′), ι′⟩, σ

) Letrec-binding

(σ′, E) = write(σ, a, vx)(
⟨val(vx), let(a, eb, ρ) : ι⟩, σ

)
E
(
⟨ev(eb, ρ), ι⟩, σ′) Letrec-body

(σ′, E) = write(σ, α, v)(
⟨val(v), ret(α) : ε⟩, σ

)
E
(
⟨val(v), ε⟩, σ′) End

Figure 2.7: The transition function for a small-step ModF analysis.

To evaluate an atomic expression, the atomic evaluation function is used and the
transition function is annotated with the effects generated by the atomic evaluation
function (rule Atomic).

The evaluation of a function application, shown in rule Call, is special, as here,
ModF encounters the component boundary: the analysis may not step into the
function body as components are to be analysed in isolation. First, the atomic
evaluation function is used to evaluate the operator and operand; since our
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language is restricted to be in ANF, both the operator and operand are guaranteed
to be atomic expressions. Using the clos function, a closure is retrieved from the
abstract value to which the operator evaluated. Then, the argument is bound by
allocating an address in the store and by writing the value of the operand to this
address. If this causes a store update, a write effect is generated; this is taken care
of by the write function. Finally, the component corresponding to the function
call is created. To this end, the module is constructed using the closure and the
extended environment, which contains the binding for the operand, and a context
is allocated using the function allocCtx. As ModF cannot step into the function
body, a call effect is generated for the component and its return value is retrieved
from the store, leading to the generation of a read effect. Logically, this return
value is returned from the function call for the analysis to proceed with.

Rule Assign specifies how an assignment is evaluated. First, the value to which
the variable is to be bound is evaluated using the atomic evaluation function
(again, due to the restriction of the input language to ANF, this is guaranteed to
be an atomic expression). Then, the address of the variable is retrieved from the
environment and the new value is written, possibly causing a write effect. The
result of an assignment is the value that was assigned to the variable.

A letrec is evaluated in two steps. First, the binding expression needs to be
evaluated (rule Letrec-binding). To this end, a new address is allocated to store
the value of the binding variable and the environment is extended to bind the
variable to the newly allocated address. By using this extended environment also
during the evaluation of the binding expression, the variable can be referenced
within the binding expression, thereby enabling recursive functions. The stack is
extended with a let frame that contains the body expression of the letrec and the
extended environment, as well as the address to which the value of the binding
variable needs to be written once it has been evaluated. Thus, once the binding
expression has been evaluated, that is, when a value is reached and the top of
the stack contains the let frame, the body of the letrec can be evaluated (rule
Letrec-body). To this end, the value just computed for the binding expression is
written to the address of the variable in the store and the let frame is removed
from the stack, after which the body expression is evaluated.

Finally, rule End specifies what happens when the body of a function has been
entirely evaluated. This is the case when a value has been reached and the top of
the stack contains a ret frame. In this case, the return value of the component is
written to the store at the return address of the component contained in the frame,
the ret frame is removed from the stack and the value is returned.
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Intra-component analysis. The transfer function prescribes how the intra-component
analysis steps from one state to the next one during the evaluation (analysis) of a
component. The intra-component analysis Intra itself explores all reachable states,
and returns the generated effects and the resulting store. (Of course, it is possible
to compute more information depending on the exact analysis to be performed,
such as, e.g., the set of all reachable states.) Intra is defined as the least fixed
point computation of a step function, which, for a given set of states, computes
all successor states and adds them to the given set of states while computing the
updated store and collecting all generated effects:

step(ςs, σ, E) =
{(

ςs, σ, E
)}

∪
⋃

ς∈ςs

(ς,σ) Es (ςs,σs)

(
{ςs}, σs, Es

)

Intra(α, σ) =
( ⋃

c(β)∈Ei

c(β),
⋃

r(a)∈Ei

r(a),
⋃

w(a)∈Ei

w(a), σi

)
where

(
ςsi, σi, Ei

)
= lfp

(
step({ς0}, σ,∅)

)
with ς0 = ⟨ev(e, ρ), ret(α) : ε⟩ (e and

ρ are derived from α), lfp the least fixed point operator and ∪ over tuples the
pairwise union/join. The subscript s denotes the result of a step and the subscript
i denotes the result of the intra-component analysis.

The Component Graph

The analysis of a component generates call effects, each corresponding to a
component discovered by the intra-component analysis. After the analysis of
a component α, Inter collects the set of components called by α, which we will
henceforth denote as Cα. This gives rise to a cyclic directed graph, the component
graph, representing how components are created: for every component β ∈ Cα

there is an edge from α to β. Figure 2.8 depicts the component graph that arises
from the analysis in the previous example. Components are depicted as rounded
squares and the edges between components show the call effects generated by the
analysis. For obvious reasons, in a ModF analysis, the component graph resembles
the call graph of the program.

Figure 2.8: The component graph inferred by the analysis of the program in Listing 2.2: inc is
called from fun, which is called from the program’s entry point. Upon every call to a non-primitive
function, a call effect is generated.
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1 (define (fib n)
2 (if (= n 0) ; Incorrect end condition.
3 n
4 (let ((fib-n-1 (fib (- n 1)))
5 (fib-n-2 (fib (- n 2))))
6 (+ fib-n-1 fib-n-2))))
7 (fib 5)

Listing 2.3: Example Scheme program (incorrectly) computing the nth Fibonacci number.

Figure 2.9: The ModF component graph for the program in Listing 2.3. The analysis uses call-site
sensitivity, that is, component contexts consist of the call expression. In the figure, we therefore
use the call expression to denote the components. Note that no components are created for calls to
primitive functions such as +.

When context-sensitivity is used, multiple components may be created for the
analysis of a single function. Thus, for one module, the component graph may
show multiple components. This is illustrated in Figure 2.9, which depicts the
component graph for an analysis of the program in Listing 2.3 which uses call-site
sensitivity. In the example, the call expression is used as the component context,
thus, components are distinguished by the function that is called and by the
calling expression. As fib is called in three different locations, the analysis result
contains three components for this function.

The Analysis Graph

The component graph shows how components are discovered during the analysis.
However, it does not give any information regarding the use of the global store.
The store, however, is a key component in an effect-driven analysis, as it is the
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state shared by all components and changes to the store lead to the reanalysis of
components. Therefore, knowing how information flows to and is retrieved from
the store is crucial to understanding the functioning of the analysis. To this end,
we can extend the component graph to also include the addresses from the global
store, as well as the corresponding read and write effects, to denote how the store
is used by the different components. We call the resulting graph the analysis graph.

The analysis graph shows how components are created and how values are used
and updated by the components within the analysis. We visualise the analysis
graph by depicting components using rounded squares, as in the component
graph, and by depicting store addresses using circles. The edges visualise the
effects inferred by the analysis, i.e., call effects, read effects, and write effects in
the case of a ModF analysis. Optionally, we can annotate the effects with extra
information (e.g., we can annotate read and write effects with the most recent
(abstract) values read resp. written by the component from/to the given address).
Writes to the store that do not cause the generation of a write effect may be shown
using a dashed line.

Figure 2.10 shows the analysis graph becoming larger after different intra-
component analyses that are performed during the analysis of the program
in Listing 2.2, following the analysis steps described in the example on page 24
and again omitting the lookup of the variable +.

Other Module Granularities

The principle of effect-driven flow analysis, just presented using ModF, is applic-
able to different module granularities, such as threads, as well. In a thread-modular
analysis, a module corresponds to a thread definition, and a component corres-
ponds to a spawned thread. Thread-modular effect-driven analyses are referred to
as ModConc analyses in the literature [126, 128].

In a ModConc analysis, a component is created when a new thread is spawned.
For a concurrent extension of Scheme, a component consists of the expression
to be evaluated concurrently, the lexical environment of this expression, and
an optional context. As in the case of ModF, ModConc knows three types of
dependencies: spawn, read and write, where read effects indicate a dependency and
spawn dependencies denote the discovery of a (new) component (similar to call
effects in ModF).

More generally, any effect-driven analysis needs the following three types of
effects:
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(a) After the analysis of Main.

(b) After the analysis of fun.
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(c) After the analysis of inc.

(d) After the entire analysis.

Figure 2.10: The analysis graph after different stages of the analysis of the program in Listing 2.2,
following the steps described in the example on page 24. The read and write effects are annotated
with the latest values read/written by the components and the lookup of the variable + is omitted.
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1 (define (fib n)
2 (if (< n 2) ; Correct end condition.
3 n
4 (let ((fib-n-1 (fork (fib (- n 1))))
5 (fib-n-2 (fib (- n 2))))
6 (+ (join fib-n-1) fib-n-2))))
7 (fib 5)

Listing 2.4: Example Scheme program computing the nth Fibonacci number in parallel.

Figure 2.11: The ModConc component graph for program shown in Listing 2.4.

• effects that indicate the discovery (creation) of a component, e.g., call effects
in ModF and spawn effects in ModConc;

• effects that indicate a dependency on some part of a shared analysis state,
e.g., read effects in both ModF and ModConc;

• effects that indicate an update of some part of the shared analysis state, e.g.,
write effects in both ModF and ModConc.

Effects of the first kind cause the discovered components to be scheduled for
analysis if the component has not yet been analysed before. Effects of the third
kind cause dependent components, which are inferred using effects of the second
kind, to be scheduled for reanalysis. This way, the updates made to the shared
analysis state by a component are taken into account by dependent components
and propagated.

Figure 2.11 depicts the component graph of a ModConc analysis of a program that
computes the nth Fibonacci number in parallel, shown in Listing 2.4. The figure
shows the components and indicates how components are discovered. Again, in
the example, component contexts are empty. The analysis starts with the Main
component, and a second component is created upon the analysis of fork. This
component encounters the fork expression again during its analysis, but since
component contexts are empty, the same component is encountered and no new
component is created. Therefore, the analysis result only contains two components.
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2.4 Conclusion

In this chapter, we first presented static analysis as a means to infer semantic
program properties and we defined the related concepts of soundness and
precision. We then presented lattices as a fundamental abstraction of values in
data-flow analysis. We presented how lattices are used in such analyses, introduced
the structure of the two main lattices that are used in this dissertation: the type
lattice and the constant-propagation lattice, and discussed termination guarantees.
Subsequently, the concept of modular static analysis was described. In a modular
static analysis, a program is divided into modules, which are reified in the analysis
as components. These components are analysed separately, although the analyses
of components can be inter-dependent. The work in this dissertation makes use of
effect-driven modular analyses, where reified computational dependencies are
used to infer inter-component dependencies. To this end, we presented ModF, a
function-modular effect-driven analysis conceptually, formally, and visually using
the component and analysis graphs. Lastly, we also considered other module
granularities for effect-driven analyses.
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3
State of the Art in Incremental

Static Program Analysis

In this chapter, we introduce incremental static program analysis as a means to
reduce the analysis time for programs that evolve over time. Upon an update to a
program, an incremental analysis reuses and updates the result from the analysis of
the previous program version rather than performing a from-scratch computation.
Reusing the result from a previous analysis run avoids the recomputation of
those parts of the result that were not impacted by the change and thus would be
inferred anew.

The goal of this process is to reduce the time needed to compute the analysis result
for new program versions. When static analyses are integrated in build processes
such as continuous integration pipelines, their running time must not become
prohibitively long. Fast analyses can also be integrated into IDEs, for example, and
recent literature has shown that timely feedback of a static analysis significantly
increases the fix rate of signalled problems, thereby reducing the cost needed to
resolve the reported issues [14, 60]. In the ideal case, an incremental analysis scales
in the size of the program change rather than in the size of the entire program.

This chapter is structured as follows. Section 3.1 first gives a general overview of
incremental static analysis. Every incremental analysis needs a means to represent
and receive modifications made to the subject program under analysis. Therefore,
Section 3.2 gives an overview of change representations that are used in the
literature. We then turn our attention to existing incremental static analyses in the
literature and look at how existing analyses update their result incrementally. To
this end, we divide the existing work into two broad categories, in line with the
categorisation of Szabó et al. [133, 135] and Van Es et al. [149]:
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Bespoke Incremental Analyses. Bespoke incremental analyses are designed with
a specific purpose in mind, that is, they are tailored to a specific type of
analysis and/or to a specific application domain. For these analyses, a
custom, bespoke incrementalisation approach is proposed that is fitted
specifically to the analysis and domain at hand. We discuss this type of
incremental analyses in Section 3.3.

Incremental Analysis Frameworks. Framework-based incremental analyses are
implemented or specified in a framework that takes care of the incremental-
isation of the analyses. Incremental analysis frameworks often are focussed
on, or restricted to, a specific class of analyses which they can render incre-
mental. Analysis designers then use a framework’s infrastructure, e.g., a DSL,
to specify their analysis, and the framework internally provides facilities
to execute the analysis incrementally. Incremental analysis frameworks are
the focus of Section 3.4, in which we also describe some analyses that are
specified in a framework.

Unfortunately, sometimes, there is no clear distinction between an analysis frame-
work to incrementalise a certain class of analyses and a bespoke incremental
analysis that can perform several different yet related analyses. We classify a work
as a framework if it provides or relies on a DSL for the specification of analyses for
which the incrementalisation is then provided by the framework. We also classify
a work as a framework if it refers to itself as being one, if other literature refers to it
as such, or – in the case of analyses specified in a logic programming language – if
the work provides specific provisions for incremental analysis rather than merely
an incremental evaluation engine.

After discussing the literature within these two categories, we also briefly discuss
work on staged static analysis in Section 3.5 and on incremental computation in
Section 3.6. Finally, we conclude in Section 3.7.

It is worth mentioning that many other fields of research also touch the field of
incremental static analysis, e.g., work on incremental parsing [156], tree diffing
and change distilling [39, 45, 124], change logging [73, 162], and on persisting
analysis results [36]. As these topics fall outside the scope of this dissertation, we
do not explore them further in this chapter.

3.1 Introduction to Incremental Program Analysis

The aim of an incremental program analysis is to produce results faster than
a from-scratch analysis of the program. To this end, an incremental program
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analysis stores the result that was produced by a previous analysis of the program
and updates it where needed. To do so, an incremental program analysis uses the
program changes, which can be extracted and represented in various ways (see
Section 3.2). Szabó [130] states that, ideally, the updating of the analysis result
within an incremental analysis should scale in the change size, and not in the
size of the program. As the literature on software development finds that many
changes are small [6, 61, 104], there should thus be a sufficient opportunity for
incremental static analysis to outperform a full program analysis. However, this is
challenging because a change may, in the worst case, impact the entire analysis
result. For this reason, we say that, ideally, an incremental update of an analysis
result should scale in the size of the change impact.

In this dissertation, we use the following terminology. We use the term initial
program to refer to the version of the program before an update and use the term
initial analysis to refer to the full, from-scratch analysis of the initial program.
We refer to the program after the program update as the updated program. A
non-incremental analysis of the updated program is referred to as a full reanalysis,
whereas the incremental updating of the result of the initial analysis by the
incremental analysis is simply referred to as the incremental update. To perform
the incremental update, the incremental analysis makes use of the initial result
and of the program changes. If the incremental update is fully precise, the updated
result matches the result of a full reanalysis. If the incremental update is not fully
precise, its result will be less precise than the result of a full reanalysis. The general
principle of incremental static analysis, using the terminology just introduced, is
visualised in Figure 3.1.

Figure 3.1: Schematic overview of a precise incremental program analysis.
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In the literature, many approaches to incremental static analysis, some of which
we will discuss in Sections 3.3 and 3.4, have been proposed. Fundamentally, an
incremental update of an analysis result typically follows a two-step approach. In
a first step, a change-impact analysis is employed to detect the parts of the analysis
result that are outdated, which are then discarded. If the incremental update needs
to uphold full precision, this detection phase may need to over-approximate which
parts of the result are to be discarded, thereby ensuring that all outdated parts
are removed. This, however, may cause excess parts of the result to be deleted
that have to be recomputed later (see e.g., [12, 102, 113, 133]). In a second step,
recomputation takes place and new analysis result is computed. This step often
starts from the program points affected by a change, e.g., from the tuples added to
the database for Datalog-based incremental analyses.

The incremental analysis presented in this dissertation does not follow this two-
step approach but rather interleaves invalidation with recomputation. This is the
topic of Chapter 5.

3.2 Extraction and Representation of Program Changes

An incremental program analysis updates its analysis result as the analysed
program evolves. In order to do so, the analysis needs a means to identify how the
program under analysis has changed, that is, there needs to be means to extract
and represent changes. The extraction and representation of program changes are
important for a static analysis, though form a different problem and are therefore
not the focus of our work. Nevertheless, as there is a multitude of possibilities
to infer and deliver changes to an analysis and some analysis implementations
support multiple alternatives, this section describes how program changes are
handled in the literature.

Program changes can, for example, be inferred by means of a change distiller,
which produces a list of fine-grained AST changes corresponding to a code update
(e.g., [24, 41, 45, 46, 124]), or by means of a change logger, which records changes
while the developer edits the code in an IDE (e.g., [62, 91, 98, 162] and our own work
Kursun, Van der Plas et al. [73] to log changes in the DrRacket IDE). Techniques
for change distilling and change logging present a complex problem on their own
and therefore fall outside the scope of this dissertation, and, as just stated above,
the techniques for the extraction and representation of program changes also fall
outside the scope of this dissertation.
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The incremental static program analyses in the literature use a variety of change
representations, depending on the analysis and its implementation. In the re-
mainder of this section, we discuss some of the representations used in the
literature. Our own work uses change expressions, which are based on the patch
annotations of Palikareva et al. [101] and which we discuss in Section 4.1.

3.2.1 Incremental Analyses built upon or using Logic Programming

Analyses of logic programs can represent changes to the program under analysis
as the addition, deletion or update of rules, which constitute the logic program [66].
In the work of Saha and Ramakrishnan [113], which uses logic programming to
analyse C programs, the logic program contains clauses which define the analysis
itself and facts which represent the program under analysis. Here, the changes
are represented as the addition or deletion of the facts that represent the program
under analysis.

3.2.2 Incremental Analyses built upon a Projectional Editor

Other incremental program analyses are built on top of a structured program
editor, also referred to as a projectional editor, where AST changes are received
immediately from the IDE, i.e., the editor expresses every change to the program
as an AST change.

The incremental data-flow analysis of Zadeck [165] uses information on the AST
node or block currently being edited and on the variable whose use or definition
is being modified by the user, which is provided by the editor. IncA [130, 133–136]
is built on top of the JetBrains MPS projectional editor, which notifies the analysis
of AST changes. These AST changes lead to updates in the tuple relations that
represent the AST of the program, and which form the extensional database (EDB)
that IncA processes incrementally to compute the updated analysis result, which
corresponds to the intensional database (IDB).

3.2.3 Other Change Representations

There exist numerous works on the topic of incremental (static) program analysis
that use yet other representations for program changes. We now briefly list some
of them.
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In Szabó [130, Chapter 7], the applicability of IncA within a parser-based IDE
is discussed as an alternative to the JetBrains MPS front-end. To this end, hdiff,
a recent and efficient generic AST differencing algorithm applicable to typed
ASTs [86], is used to compute AST differences. These differences are then used to
compute the tuples that need to be inserted and deleted from IncA’s EDB, which
represents the program under analysis. As in this work we do not rely on the use of
typed ASTs, hdiff cannot be used in our setting. Although IncA is Datalog-based,
it does not require changes to be provided directly using the addition or deletion
of facts, like e.g., the work of Saha and Ramakrishnan [113], but IncA also provides
a front end that computes these additions and deletions using the results of the
hdiff algorithm.

To find changes, Andromeda [141] is notified of changes in a compilation unit. It
then employs a change-impact analysis that marks changed compilation units as
modified, added or deleted, and uses this information to process the changes. The
analysis of Reps et al. [108] represents programs as attributed trees and changes
by means of derivation-tree operations like grafting, deriving and pruning.

Reviser [11, 12] uses a differencing algorithm to compare both code versions and to
compute a structural diff, from which it extracts the addition and removal of nodes
and edges in the program’s inter-procedural control-flow graph. Reviser then uses
these changes to the program’s control-flow graph to incrementally update the
analysis result. The graph differencing algorithm does not necessarily compute the
smallest change set, but, at the cost of precision, aims to be fast. The incremental
analysis of Conway et al. [26] also processes changes to the control-flow graph of
the program, but in addition also uses changes to an automaton, which reflect
changes to types and variables.

Nichols et al. [92] on the other hand match different versions of JavaScript programs
at the level of an intermediary representation as part of their approach, by matching
functions, blocks, and instructions. First, corresponding functions are matched
based on an edit-distance calculation which is computed for pairs of functions
in the old and new program. If the edit distance is below a certain threshold,
the functions are matched and the blocks in the function bodies are matched
using a similar approach. Once blocks have been matched, the instructions in
the matched blocks are matched based on the type, allocation sites and variable
names. The correctness of the matching process heavily influences the precision
and performance of their incremental analysis.
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3.3 Bespoke Incremental Analyses

Bespoke incremental analyses are built for a specific type of analysis, often in
a specific domain. Therefore, the incremental algorithms underlying bespoke
incremental analyses are tailor-made to the problem at hand and domain know-
ledge can be used. However, the effort required to develop a bespoke incremental
analysis and the complexity involved in the development of this type of analyses
is higher than when an incremental analysis framework is used: not only does
the analysis itself need to be developed and implemented, a custom increment-
alisation approach for the analysis needs to be devised as well, which is not
a concern for analyses implemented in an incremental analysis framework. As
terminology is not standardised, in the literature, bespoke incremental analyses
are sometimes referred to as manual approaches [149], as specialized algorithms [135],
or as single-analysis algorithms [134].

We first discuss incremental analyses that require a static call graph. Such ap-
proaches to incremental analysis rely on a statically available call graph that is not
impacted by code changes or which is provided again after an update. Afterwards,
analysis techniques that do not rely on such a call graph are discussed. In this
category, we also classify analyses for logic programming languages because logic
programs are declarative and thus do not have a call graph but rather rely on a
precedence graph for their evaluation. Unfortunately, for some related work, it
could not be derived with certainty whether the work requires a static call graph
or not; we classify these approaches as requiring a static call graph, since we are
not certain of the opposite. We opt for this choice, as approaches not requiring a
static call graph are less restricting and thus could also be applied in situations
where a static call graph is present, whereas this does not hold the other way
around.

3.3.1 Bespoke Incremental Analyses with Static Call Graphs

Zadeck [165] presents a lattice-based monotonous dataflow analysis that uses a
given control-flow graph and can be used in a structured program editor. The
analysis splits the data-flow problem into several independent clusters. This
technique can solve a limited set of data-flow problems, such as performing a
reaching-definitions and live-variable analyses. In the incremental setting, Zadeck
assumes the situation in which most programmer edits involve only a single
statement. The analysis can process three types of changes: reference changes
(changes that do not impact the control flow or block structure of the program),
added or removed control-flow paths or added or removed basic blocks. To this
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end, the SearchL algorithm is presented, which computes the nodes in the flow
graph which are affected by a single change. This algorithm is then used as a
fundamental building block in algorithms specific for each of the three types of
changes.

Marlowe and Ryder [79] present an incremental dataflow analysis that produces a
precise result. The approach is said to be hybrid as it uses a graph decomposition
of the data flow graph. To this end, they compute the SCCs of the data flow
graph and make computations locally, and then propagate information across
SCCs to compute the final result. Their analysis can solve a large class of dataflow
problems, but e.g., not constant propagation. The incremental algorithm detects
which regions of the flow graph are impacted and classifies the changes. Then,
again, computations are made locally and information is propagated. Other
bespoke incremental analyses for classical data-flow problems in this category
are [23, 102].

McPeak et al. [80] propose an incremental and parallel static analysis for C
programs. The analysis is split into deterministic work units of which the results
are cached. Upon a code change, the cache is updated so that stale results are
removed. Special care is taken to avoid including in the cache results that may
need to be updated upon code changes, by relying on stable anchor points in the
source code.

Other bespoke incremental approaches relying on static call graphs comprise incre-
mental adaptations of context-free-language (CFL) reachability analyses [78, 118],
alias analyses [164], interval analyses [19], model checking [26], incremental
analyses through novel analysis mechanisms such as diff-graphs [71] and SAT solv-
ing [88] or using function summaries of the callers rather than of the callees [72],
and incremental analyses tailored to specific settings, such as probabilistic pro-
gramming where changes are made to the probabilistic knowledge rather than to
the program itself [168].

3.3.2 Bespoke Incremental Analyses without Static Call Graphs

Reps et al. [108] present an incremental analysis for attribute grammars, i.e., context-
free grammars where attributes are attached to the symbols of the grammar. The
authors want to support building language-based editors, i.e., editors which
enforce syntactic correctness of the program by restricting editing operations.
Programs are represented using attributed trees and attribute grammars allow
context-dependent features of the analysed language to be expressed in the
analysis. Upon a program change, an incremental analysis is performed to update
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the attribute values in the tree. This way, the editor can efficiently flag or undo
program changes that cause a violation of the language constraints. To this end,
two naive algorithms are introduced (change propagation and nullification/re-
evaluation), after which an optimal-time algorithm is introduced which works in
a time linear to the number of affected attributes in the tree. Standard attribute
grammars have several limitations, however. For example, the dependencies
between attributes are limited by the shape of the syntax tree and can only involve
the nodes of a single production rule [65].

Attribute grammars also have been used by Hedin [63] for incremental semantic
analysis of statically-typed object-oriented languages in the Mjølner programming
environment. In this work, constraints allow for side effects to be performed upon
evaluation. The proposed approach makes use of these constraints to perform
incremental updates and lookups in symbol tables. This avoids copying and
propagating information through the tree and allows the incremental update to
work in a single pass. However, the incremental evaluator must make sure to
undo side effects that were performed during the evaluation of constraints. To this
end, constraints performing side effects also have a de-evaluation operation which
cancels the side effects of their evaluation operation. In addition, the propagation
of evaluation is not limited to local nodes, which allows the evaluation to return
when missing information for the evaluation of a declaration is added to the
symbol table. Also, circular dependencies may exist, for which the author foresees
a means to break circular evaluation.

In later work, Hedin [64, 65] formally introduces Door attribute grammars in which
nodes in the AST may have attributes containing reference values pointing to
semantic objects, which is disallowed by standard attribute grammars. More recent
work using reference attribute grammars, where attributes can be references to
AST nodes, includes an approach to incremental evaluation using dependency
tracking [119] and incremental model validation [81, 82].

Liu et al. [76] propose an alternative to incremental points-to analysis that does
not require expensive graph reachability computations. Instead, the authors rely
on what they refer to as a “fundamental transitivity property of Andersen’s analysis”,
allowing them to avoid a graph reachability analysis and redundant computations,
for which the proposed algorithm is more efficient. In addition, the fixed-point
computation within each iteration of the algorithm is parallelised. The approach
remains however limited to flow-insensitive analyses.

Seidl et al. [117] propose to use generic local solvers to provide incrementalisation for
abstract interpretation in an analysis infrastructure without restricting the design
of the analysis (modular, IDE, IFDS). This is achieved by modifying a top-down
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solver to leverage dependencies for incrementality. To reuse parts of the result
from the previous run of the analysis, functions are matched to functions with the
same name in the previous version of the program. For every modified function,
parts of the result corresponding to any of the program points of the function are
invalidated.

Nichols et al. [92, 93] introduce fixpoint reuse to incrementally analyse JavaScript
programs. The analysis creates a mapping of analysis results from the old program
points to corresponding program points in the updated program, allowing reuse
of analysis results for mapped points. The fixed-point computation can then
be restarted and makes use of this mapping to reuse analysis results, thereby
accelerating the convergence of the analysis. The mapping function plays a key
role: more mapped points lead to more reuse and a faster analysis, but incorrect
matches can cause the analysis to lose precision. To ensure soundness, all program
points need to be reanalysed at least once to avoid a premature convergence of the
fixed-point algorithm, implying that the impact of changes cannot be bounded
effectively by this approach.

Andromeda [141] is an analysis tool used to perform taint analyses incrementally
and demand-driven. Upon changes to the program, Andromeda performs a change
impact analysis that computes the part of the analysis result to be invalidated,
and the parts that need to be updated. The change impact analysis determines
the affected data structures, and uses an auxiliary support graph to find outdated
taint facts, which are then removed. This allows the analysis result to remain
precise. Andromeda lends its incremental capabilities to its demand-driven nature.
Therefore, the incremental analysis may not be suitable for use in a non-demand-
driven setting.

Razafintsialonina et al. [107] present two complementary approaches to speed
up the abstract interpretation of C programs. A first approach reuses function
caches. For every function, a pair of abstract states representing the memory at the
function entry and exit are kept. When a function and its entry memory remain
unchanged, the exit memory can be reused to avoid the reanalysis of the function.
The approach, implemented in the monolithic Eva abstract interpreter of the
Frama-C framework, reuses the caches saved by Eva itself and transfers them to
the analysis of the updated program. The caching, however, does not work for
functions that perform dynamic memory allocations. The second approach reuses
previously calculated fixed points for loops by restarting the fixed point of an
updated loop from this previous result, rather than from the usual bottom value.
This speeds up the convergence of the analysis for loops, at the cost of losing
precision.
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Albert et al. [7, 8] introduce an incremental resource usage analysis for a sequential
Java-like language. A three-step process is used, consisting of a pre-analysis
which includes a class analysis which also computes the CFG of the program, the
computation of potentially recursive cost relations, and finally the computation
of cost functions by solving the previously computed cost relations. A multi-
domain incremental fixed-point algorithm that computes information for different
domains separately, taking into account dependencies amongst them, is used. For
each method, a cost summary is computed so that new results can be computed
incrementally by only replacing the affected method costs. The analysis is abstract
interpretation-based and works on a rule-based intermediate representation
which is created during the class analysis. The authors state that their approach is
modular as it stores method summaries although the program is not split into
smaller parts. However, the speed-ups obtained by the incremental analysis are
limited and range from 1.48 to 5.13. Moreover, the highest speed-ups are obtained
in an experiment for which the implementation of a method is replaced by an
identical implementation and no change has to be propagated to calling methods.
The results of the experiments where information needs to be propagated show
a maximal speed-up of 1.8 (on average over all benchmark programs used in an
experiment), with the maximal speed-up for an individual benchmark program
being under 3. Also, the presented analysis is limited to the analysis of sequential
programs.

Yu et al. [163] present an abstract-interpretation-based incremental predicate
analysis used for regression verification. Every point in the CFG is annotated with
an assertion over the predicates that represent the abstract program state. The
incremental analysis syntactically invalidates invalid assertions upon a program
change, and only recomputes these invalidated assertions. To this end, a change-
impact analysis detects at each program point which variables are impacted by
the changes. Then, the algorithm (re-)computes the parts of the result that were
affected. The presented analysis has been implemented for C and reaches, on
average, a speed-up of 2.8. It is unclear how well the analysis would work when
applied to programs written in more dynamic languages, in which data flow and
control flow are intertwined.

Garcia-Contreras et al. [47] present a context-sensitive incremental modular
analysis which achieves incrementality at the inter-modular and intra-modular
level. The analysis requires an encoding of the program in constrained Horn
clauses. The analysis does not divide the program into modules itself and does
not use components. Instead, a programmer-defined lexical module partitioning
is used, although it is claimed that any partitioning is possible. Thus, as the
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partitioning is lexical, their analysis can, e.g., not be used with thread-modular
analyses. Later work [48] presents an updated approach, also capable of handling
external modules, together with a formal description and a further evaluation.

Other bespoke incremental analyses not relying on static call graph comprise
incremental abstract interpretation based on the invalidation and adaptation of
states [149], on a reified representation of the abstract interpretation [121–123],
or on a system of equations supporting multithreaded C programs [40], specific
analyses such as race detection [167] and use-before-initialisation bug detection
in the Linux kernel [166], analyses of logic programs [66, 103] or for analyses
specified in tabled Prolog [38], and call graph construction in industrial Java
applications [169].

3.4 Incremental Analysis Frameworks

Incremental analyses frameworks are used for the incrementalisation of a specific
class of analyses. An analysis can be implemented or specified in a framework,
and the framework is responsible for the incrementalisation. This category thus
does not comprise bespoke incremental analyses that are incorporated into a
software framework. In this section, in addition to the description of incremental
analysis frameworks, we also describe some framework usages that are present in
the literature.

IncA [130, 133–136] is a Datalog-based DSL for the specification of incremental
analyses. In IncA, analyses are written using pattern functions and an analysis is
constructed by specifying graph patterns of interest. Pattern functions abstract
over graph patterns which express relations between AST nodes using Datalog
rules, where the extensional database (EDB) is formed by the relations describing
the AST and the intensional database (IDB), i.e., the derived relations, is formed by
evaluating the Datalog program specified by the graph patterns. IncA’s runtime
system uses an incremental Datalog solver based on differential dataflow to
perform an incremental graph pattern matching on memoized computation
graphs. Program updates are represented by the addition and deletion of tuples
to the EDB. The IncA compiler translates pattern functions into inter-connected
graph patterns and performs optimisations to ignore AST changes that do not
affect the analysis result. IncA supports inter-procedural analyses with recursive,
monotonic, user-defined aggregations of lattice values of custom lattices. Updating
the lattice values requires an interleaving of the deletion and rederivation phases
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to avoid the excess deletion of some tuples in the case of cyclic relations. IncA
works in JetBrains MPS, a projectional editor, although a textual front end is
available as well.

An application of the IncA framework is given by Szabó et al. [132], in which the
IncA framework is used to resolve static overloading in Featherweight Java. The
authors compare two approaches: co-contextual type checking and IncA. They find
that co-contextual type checking cannot be used efficiently in an incremental setting,
because this type of type checking requires global information, whereas only local
information is present when checking an AST node. Instead, the IncA DSL is used
to implement the overload resolution, relying on the incrementalisation provided
by the framework. The evaluation of the approach on synthetic benchmarks shows
significant speed-ups, where the incremental analysis is about 450 to about 900
times faster than a full analysis.

Pacak et al. [99] make use of IncA to provide the automated derivation of in-
cremental type checking. Starting from the specification of a type checker, an
incremental type checker is produced. The authors provide a DSL to encode the
typing rules and a compiler. First, the compiler applies three transformations to
the typing rules to make them computable in Datalog, to allow efficient incre-
mentalisation, and to improve the handling of ill-typed terms. Then, the compiler
compiles the rules to the IncA variant of Datalog. This way, IncA can take care of
the incrementalisation of the analysis. A preliminary evaluation considers five
types of artificial changes that affect a single subterm for two simple programs
written in an extended simply-typed lambda calculus, four types of which result
in ill-typed programs, and shows that the incremental analysis often is faster than
a non-incremental type checker written in Java on incremental updates, but has a
significantly higher initialisation time.

Another Datalog-based framework for incremental static analysis, created by
one of the authors of IncA, is iQL [131]. iQL is a prototype incremental solver
for analyses written in the CodeQL framework which are used by GitHub to
provide feedback on pull requests. In CodeQL, analyses are specified in a language
called QL, which is compiled to Datalog. The program under analysis is extracted
into a relational database. iQL relies on an existing incremental Datalog solver,
Viatra Query. However, the author finds that CodeQL scales better in terms of
performance than Viatra Query as the latter was not built for analyses at such scale,
for which iQL performs a hybrid analysis: the incremental analysis is combined
with the non-incremental analysis of some parts of the code performed by CodeQL.
Depending on which parts are evaluated incrementally, the analysis can benefit
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more from the incrementality of Viatra Query or from the scalability of CodeQL.
However, the author finds that the iQL framework requires a prohibitively high
amount of memory.

Reviser [11, 12] is a framework for incremental, inter-procedural data-flow analyses,
which is applicable to analyses implemented in the IDE [112] or IFDS [109]
frameworks, where flow functions should be distributive over the merge operator.
To this end, a new solver that handles program changes and solves flow functions
written in a template-driven style is introduced. To perform an incremental update,
first, a diff is generated, indicating how the inter-procedural control-flow graph
of the program was modified. For each affected node in the graph, analysis
information is removed. Then, analysis information is propagated again from
all predecessor nodes of affected nodes. Reviser supports flow-sensitive and
context-sensitive data-flow analyses. Upon a program update, however, Reviser
recomputes the entire call graph from scratch.

Saha and Ramakrishnan [113] present a framework for incremental and demand-
driven analyses based on logic programming. Analyses are specified as Horn
clause rules and the programs under analysis need to be specified as Horn
clauses. As with other analyses built using logic programming, program changes
are represented by means of the addition or deletion of facts. The framework
combines an incremental evaluation technique for logic programs with a goal-
directed query evaluator. The addition of facts is managed by inferring a delta
relation for every rule which defines the analysis. To handle deletions of facts, first
a mark phase is performed, which marks all answers that are potentially affected
by the deletion, and then a rederivation phase is executed, which attempts to
rederive marked answers without the use of the deleted facts. Affected answers
that cannot be rederived are deleted. Internally, a support graph, used to detect
changes to derived relations when tuples of a base relation are deleted, is used to
speed up the second phase.

Dura et al. [35] find that a common problem with static checker frameworks is
that rely on imperative specifications of bug patterns. They present JavaDL, a
declarative language to specify bug patterns for Java code using syntactic pattern
matching and logical rules that allows both from-scratch and incremental analysis.
The authors argue that white-box testing frameworks, which do not rely on
imperative specifications, can automatically enhance bug detection specifications,
e.g., by incrementalisation, which is in line with the fact that almost all frameworks
discussed in this section are based on logic programming. JavaDL avoids fact
extraction from the syntax by providing syntactic pattern matching on the AST.
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It also provides an incremental evaluator for inter-procedural Datalog-based
analyses. However, the incremental cannot consistently outperform the from-
scratch analysis.

As becomes clear in this section, many of the frameworks for incremental static
analysis are based on logic programming, where the program under analysis forms
the EDB and in which the analysis developers should specify their analysis in a
declarative, rule-like manner. An incremental evaluation technique for declarative
languages is then used to obtain an incremental analysis. The only exception to this
pattern which we discussed is Reviser, which incrementalises IDE/IFDS-based
analyses.

3.5 Staged and Demand-driven Static Analysis

Related to incremental static analysis is staged static analysis. In this setting, a
program is not analysed all at once but in different stages, e.g., when portions of
the program become available part by part. In this case, the program gets updated
(extended) incrementally as more code becomes available for analysis. However,
the code that has been analysed does not change and thus no result invalidation is
needed.

An example of a staged analysis is Gulfstream [56], a staged points-to analysis
for web applications written in JavaScript. The authors find that an entire web
application is only available in the browser, as code is downloaded by need.
Gulfstream combines an offline, heavy-weight server-based analysis with an
online, light-weight client-side analsyis. The former is used to analyse the parts
of the code that are available for offline analysis, whereas the latter performs an
on-demand analysis when code is loaded in the browser. The analysis is built in a
declarative manner, where a program is represented as a database of facts and a
solver derives information based on inference rules.

A demand-driven static analysis on the contrary has access to the full program from
the beginning. However, this type of analysis does not compute the entire result
immediately, but only computes the parts of the result that are requested, e.g.,
by means of a query. As such, the analysis saves times. As with a staged static
analysis, no parts of the result need to be retracted as the program does not change.
However, existing results are stored, so that when a new query is launched, they
can be reused and the result grows incrementally.
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In previous sections, we already discussed some incremental analyses that are
also demand-driven, such as the framework of Saha and Ramakrishnan [113]
and Andromeda [141]. An example of a non-incremental demanded analysis
is the work of Yan et al. [161], who propose a demand-driven alias analysis for
Java which expresses the analysis as a CFL reachability problem and does not
rely on an underlying points-to analysis. The analysis is both field-sensitive and
context-sensitive.

3.6 Incremental Computation

The work in this dissertation concerns incremental static analysis. Incremental
static analysis is part of the field of incremental computation, which is used in many
fields. Liu [77] generally describes the domain as the study on how to efficiently
handle continually changing input by storing and reusing previously computed
results, and dubs incrementalisation as “the discrete counterpart of differentiation
in calculus”. We now give a very brief overview of some of the existing work on
incremental computation, but by no means intend or claim to be complete. A
categorised overview of (by now) early work in the field is given by Ramalingam
and Reps [105].

Liu [77] classifies existing works into three broad categories: incremental
algorithms, incremental evaluation frameworks, and incremental program-
derivation methods. The first category comprises algorithms for particular
functions, potentially applicable to a broad class of problems. The second category
concerns frameworks in which (classes of) non-incremental programs can be
expressed and which automatically handle input changes to these programs
incrementally. Finally, the third category concerns methods to derive incremental
algorithms based on a given algorithm and on an expected change representation
using a set of semantics-preserving program transformations. The incremental
analysis frameworks discussed in Section 3.4 can be classified in the second
category, whereas the bespoke incremental analyses discussed in Section 3.3
can be classified in the first category. We classify the work presented in this
dissertation in the third category, as we will present a method to use reified
computational dependencies to achieve incrementality in static program analysis.

Acar [3] presents self-adjusting computation, and later a brief overview thereof
in [4], which is a language-based approach to incremental computation based on
memoised dynamic dependence graphs. In this setting, a program consists of two
components: a core which runs the application with a fixed input and a mutator
which modifies the input and requests a change propagation that propagates
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the data modifications through the core. The change-propagation mechanism is
provided by the language, so that programmers do not need to handle incremental
updates themselves. The change-propagation mechanism relies on memoised
dynamic dependence graphs as well as on modifiable references that store data that
changes over time and which can only be read or written by specific primitives.
To handle side effects, dependencies between certain versions of such modifiable
references are kept.

The work of Acar [3] only considers so-called monotone traces, meaning that the
order of reused subcomputations cannot be changed. Ley-Wild et al. [74] remove
this restriction for pure programs. Their solution is built upon partial traces called
trace slices to support the reordering of subcomputations. A pure source language is
introduced, which is compiled into a low-level language in a continuation-passing
style for which non-monotonic change propagation is supported.

Adapton [58] is a framework for composable and demand-driven incremental
computation. The work is underlain by a demanded computation graph (DCG) which
stores dependencies between computations and mutable reference cells. When
the value in such a cell is updated, recomputation of dependent computations
is needed. However, this computation is postponed until its result is actually
needed, i.e., it is made into a thunk, making the framework demand-driven. In
Adapton, values of thunks are memoized. Together with the DCG, this enables
reusing the results of already evaluated computations. The framework is bi-
layered: inner computations can read reference cells but not modify them, whereas
outer computations can allocate and modify reference cells. As such, inner-layer
computations can be reused incrementally. When a change is made, the DCG
is used to mark computations that need to be re-evaluated when their value is
demanded again. The approach, having explicit primitives for handling thunks
and mutable state, is formalised in a calculus applying demand-driven semantics
to incremental computing. In later work, the framework is extended with first-class
names for identifying computations to increase the possibilities for their reuse [59].

Gupta et al. [57] present two algorithms to incrementally update the result of a
Datalog program, i.e., the IDB, after a change to the tuples in the EDB or to the
rules defining the IDB. The approach supports recursion, negation, union, and
aggregation. Two algorithms for incrementally maintaining views are introduced.
For non-recursive programs, the authors propose the counting algorithm, which
keeps track of the number of derivations for each tuple that are used to infer
which tuples should be deleted upon a change to the EDB. For recursive programs,
the authors present the DRed (delete and rederive) algorithm. DRed works in
three steps. First, the algorithm computes an over-estimate of the tuples in the
IDB that have to be deleted. All tuples for which one derivation becomes invalid
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are deleted. Second, alternative derivations are taken into account and deleted
tuples that have alternative derivations are restored. Third, new tuples that need
to be added are computed. In Section 3.4, we discussed two incremental analysis
frameworks that use adaptations of the DRed algorithm, namely the framework
of Saha and Ramakrishnan [113] and IncA [130, 133, 134, 136].

Recent work on incremental computation includes incremental parsing of natural
language [25], a functional incremental computation framework based on monadic
computations [43], a study of incremental graph computations [42], and an
approach to incremental software architecture recovery based on a Bayesian
classifier [157].

To the best of our knowledge, no work exists on incremental static analyses
that have been implemented in an incremental computation framework such as
Adapton. A reason for this may be that incremental computation frameworks are
general and therefore not tailored to the domain of incremental static analysis. This
lack of domain-specific knowledge within the framework may lead to analyses
with a sub-optimal performance in comparison to bespoke incremental analyses or
analyses implemented in dedicated incremental analysis frameworks. In addition,
it may be cumbersome to implement an analysis in an incremental computation
framework, especially in comparison to incremental analysis frameworks which
provide a DSL for this purpose. For example, in Adapton, computations are lazy
and should be written using mutable reference cells and thunks, which adds an
extra layer of complexity to the implementation of an analysis.

3.7 Conclusion

This chapter introduced incremental static program analysis as a means to speed
up static analysis by reusing and updating the result obtained for a previous
program version. First, we discussed different change representations that enable
an incremental analysis to detect how the program under analysis has been
changed. Second, this chapter reviewed existing work on incremental static
analysis. In line with existing literature, we divided the existing work into two
broad categories: bespoke incremental analyses, which are built for a specific
analysis and setting, and incremental analysis frameworks, in which analyses can
be specified which are then rendered incremental by the framework. A further
distinction between analyses that require the presence of a static call graph and
those that do not was made. Finally, we briefly presented the literature on staged
static analysis and on the general domain of incremental computation.
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Currently, the literature on incremental static analysis thus presents analysis
developers with two options, each belonging to a separate category in the realm
of incremental computation: a bespoke method, that aims to solve a particular
incrementalisation problem, e.g., a specific analysis for a clearly demarcated
application domain, or a general incrementalisation framework wherein analyses
can be specified and that handles the incrementalisation of a certain category of
analyses. However, as far as we are aware, no work on static analysis exists that fits
into the third category identified by Liu [77]: we did not encounter any existing work
on static analysis that presents a general step-by-step incrementalisation method,
applicable to a broad class of existing analyses, with which analysis developers
can give their analysis incremental capabilities without having to reimplement it
in a certain framework or without having to devise an incrementalisation tailored
to their specific analysis themselves. Instead, analysis developers should be able
to reuse as much as possible of their current implementation and they should not
be concerned about devising a custom yet sound incrementalisation method for
their analysis. This reduces their workload and the risks of implementation errors.
In this dissertation, we study this missing option for the class of effect-driven
analyses, i.e., for analyses for which dependencies on the global analysis state can
be reified.
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4
A Monotonic Approach to

Incrementalisation

This chapter is based on our 2020 paper “Incremental Flow Analysis through Computational
Dependency Reification” [145]. The text has been moderately modified and extended for
clarity and completeness. In addition, a formal specification has been added (Section 4.3).

This chapter introduces a novel method for rendering effect-driven static analyses
incremental. The presented incrementalisation method can be used to construct
incremental effect-driven analyses that support dynamic, higher-order languages
as well as changes to the call graph, independently of the specific analysis that
is performed. The approach is instantiated with the modular effect-driven static
analysis from Section 2.3.1, which divides the program under analysis into parts
that are analysed in isolation and reifies the dependencies between these parts,
such as e.g., the use of a shared variable [96, 126, 128]. We observe that these
dependencies can be exploited to track the parts of the result impacted by a change,
and to bound the impact of this change to only those parts of the result that are
directly or indirectly affected.

Concretely, in this chapter, we make the following contributions:

• We present a novel method to incrementalise effect-driven analyses. Our
method makes use of the intra-program dependencies which are reified
by the analysis, and takes advantage of the division into modules and
components to bound the impact of changes (Section 4.2).

• To demonstrate the generality of our approach, we instantiate our method for
two context-insensitive modular effect-driven analyses: a function-modular
(ModF) analysis and a thread-modular (ModConc) analysis.
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• We perform a thorough evaluation of analysis time and analysis precision
using the two instantiations described previously (Section 4.4). We find that
our approach leads to a reduction of the analysis time from 6% to 99% for all
but two benchmark programs, and that the impact on precision is limited
for most programs.

Without loss of generality, we present our method from the viewpoint of a
static analysis for µScheme programs and encode program changes using change
expressions, as explained in Section 4.1. We claim that our method is applicable to
other languages too. Even though we only use context-insensitive instantiations
for the evaluation, the method is also applicable to context-sensitive analyses, as is
shown by the example component graph in Section 2.3.1 (Figure 2.9 on page 33).

We first discuss how we represent program changes in our work.

4.1 Change Expressions

As discussed in Section 3.2, an incremental program analysis has to react to change
in the program under analysis. Thus, every incremental analysis needs a means
to represent or receive changes to which it can react. To represent changes in a
program, we take inspiration from Palikareva et al.’s patch annotations [101], and
annotate programs with change expressions. As such, both the original and updated
version of a program are represented by a single annotated program. The use of
these change expressions avoids the trouble of unifying different program versions
to match corresponding program points in the different versions, allowing us to
focus on the core problem of incrementalisation, rather than on the tasks of change
distilling [41] and change analysis [89, 125]. We assume that, upon a program
change or given information from a version control system, a change distiller
inserts the required annotations in the program AST. To facilitate the evaluation
of our approach, we currently insert change expressions manually in the program
text, prior to the initial analysis.

As an example, consider the annotated program in Listing 4.1, fixing a bug in the
program of Figure 2.9. In this program, the annotation denotes a change to the
condition of the if expression: the condition has changed from (= n 0) in the
original program to (< n 2) in the updated version.

Although the approach discussed in this work is language-independent, we
express program changes in the µScheme programming language and use it for
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1 (define (fib n)
2 (if (<change> (= n 0) (< n 2))
3 n
4 (let ((fib-n-1 (fib (- n 1)))
5 (fib-n-2 (fib (- n 2))))
6 (+ fib-n-1 fib-n-2))))

Listing 4.1: An annotated Fibonacci, fixing a bug in the end condition.

the evaluation of our work.1 We therefore now show how µScheme programs can
be annotated with change expressions. Figure 4.1 shows a reduced formal syntax
of the most prevalent syntactic forms of this language, based on [2], in an extended
Backus-Naur form, where a star (*) indicates zero or more repetitions, a plus (+)
indicates one or more repetitions and square brackets ([.]) indicate an optional
element. Details and other syntactic forms have been omitted for simplicity. Our
additions to support change expressions are shown in blue.

In contrast to the patch annotations of Palikareva et al., our change expressions
really are expressions and not annotations. This way, no invasive changes to the
parser of the analysis are needed. However, some parts of the program cannot be
edited as freely as with annotations: the entire program – including the change
expressions – must still be a valid expression. It is therefore sometimes necessary
to use more coarse-grained changes than with annotations. For example, to change
the parameter list of a function, the entire function definition needs to be put
inside a change expression, and to change a let special form into a let* special
form, the entire let expression must be put inside a change expression. We also
do not explicitly check for nor disallow nested change expressions in the formal
grammar nor in our implementation. Due to their semantics, no issues can arise
should change expressions (accidentally) be nested, although it is not meaningful
to nest change expressions and such a situation is not expected to arise when
change expressions are inserted automatically, e.g., by means of a change distiller.

1µScheme, the language supported by our implementation, is based on R5RS Scheme and
contains all essential constructs of R5RS Scheme, such as closures, higher-order functions,
lists, and quasiquoting. Our implementation supports many of the primitive functions of
Scheme, but the numeric tower is limited to integers and real numbers. The eval prim-
itive, macros, and delayed evaluation are not supported. Our implementation of ModF
also supports the call-with-current-continuation primitive. Although we did not have
to take any special measures for our incrementalisation method to support this primitive,
call-with-current-continuation is not used in our benchmark programs (described later in
Sections 4.4.1 and 5.4.1). We do note that the analysed language and the supported language
features are a concern of the intra-component analysis, and are therefore orthogonal to the
incrementalisation method presented in this work, on the condition that the effects are generated
correctly by the intra-component analysis.
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⟨program⟩ ::= ⟨expression or definition⟩* Programs

⟨expression or definition⟩ ::= ⟨expression⟩
| ⟨definition⟩
| (begin ⟨expression or definition⟩*)

⟨definition⟩ ::= Definitions
(define ⟨variable⟩ ⟨expression⟩) variable definition

| (define (⟨variable⟩ ⟨define formals⟩) ⟨body⟩) function definition

⟨expression⟩ ::= Expressions
⟨variable⟩ variable

| ⟨literal⟩ literal
| (⟨expression⟩+) application
| (lambda ⟨lambda formals⟩ ⟨body⟩) lambda expression
| (if ⟨expression⟩ ⟨expression⟩ [⟨expression⟩]) conditional
| (cond ⟨clause⟩+) | (cond ⟨clause⟩* (else ⟨sequence⟩)) conditional
| (set! ⟨variable⟩ ⟨expression⟩) assignment
| (and ⟨expression⟩*) | (or ⟨expression⟩*) conditions
| (⟨let⟩ (⟨binding⟩*) ⟨body⟩) | (let ⟨variable⟩ (⟨binding⟩*) ⟨body⟩) bindings
| (begin ⟨expression⟩*) sequencing
| (<change> ⟨expression⟩ ⟨expression⟩) change expression

⟨define formals⟩ ::= ⟨variable⟩* | ⟨variable⟩* . ⟨variable⟩ Formal parameters

⟨lambda formals⟩ ::= (⟨variable⟩*) | ⟨variable⟩ | (⟨variable⟩+ . ⟨variable⟩) Formal parameters

⟨body⟩ ::= ⟨definition⟩* ⟨sequence⟩ Bodies

⟨sequence⟩ ::= ⟨expression⟩+ Sequencing

⟨clause⟩ ::= (⟨expression⟩ ⟨sequence⟩) | (⟨expression⟩) Conditional clauses

⟨let⟩ ::= let | let* | letrec Let names

⟨keyword⟩ ::= Syntactic keywords
and | begin | cond | define | else | if

| lambda | ⟨let⟩ | or | set! | <change>

⟨variable⟩ ::= Any identifier that is not a ⟨keyword⟩. Variables

⟨literal⟩ ::= Boolean, number, character, string or quoted data. Literals

Figure 4.1: Partial grammar of the µScheme language, based on [2], with change expressions.
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In general, change expressions may be applied at several levels of granularity.
Consider for example the program in Listing 4.2. Here, the two annotations
together represent the same change as the single one in Listing 4.1.

1 (define (fib n)
2 (if ((<change> = <) n (<change> 0 2))
3 n
4 (let ((fib-n-1 (fib (- n 1)))
5 (fib-n-2 (fib (- n 2))))
6 (+ fib-n-1 fib-n-2))))

Listing 4.2: A Fibonacci with fine-grained annotations.

The usage of change expressions has an extra advantage. Often, the data structures
used by the analysis contain syntactic elements containing e.g., positional inform-
ation or other identifiers which change between program versions. For example, if
a new line is added at a certain point in the program, the positional information
stored in the syntactic elements within the inner data structures of the analysis
does not match any more. In this case, the incremental analysis may consider
all of this information outdated, thus requiring recomputation. To prevent this
situation, it must be avoided that such kind of information ends up in the data
structures of the analysis, or a mapping of old to new AST nodes is needed by the
analysis, which may be used to update the analysis data structures or to retrieve
information stored under an old syntactic element [49, 80, 100, 158].

The use of change expressions avoids this situation entirely, as both program
versions are encoded within a single program and thus no positional information
needs to be updated. This thus avoids the update or remapping step that in a
real-life setting would be needed. However, as in Wauters, Van der Plas et al. [158],
we find that the updating of the analysis data structures takes very little time, in a
more complex setting than ours, we are confident that avoiding this update will
not influence the performance results for our incremental analysis. Alternatively,
a static analysis can also be designed to avoid storing syntactical information
at certain places. For example, McPeak et al. [80] avoid storing defect reporting
information in work units, which are self-contained parts of the input data that
can be analysed independently, and store locations as offsets to some stable anchor
points to avoid excess computations.
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4.1.1 Change Types

There are two types of changes that can appear in a µScheme program and in
programs written in other expression-based languages:

i. Adding an expression to a sequence of expressions.
ii. Removing an expression from a sequence of expressions.

Any change can be regarded as a combination of changes in these categories. For
example, modifying an expression is a combination of removing and adding an
expression.

The change expressions we use can represent all types of changes. Adding an
expression is represented as (<change> #f new-exp), where #f indicates the
absence of an expression, and removing an expression is represented as (<change>
old-exp #f). A perhaps undesired side effect of our encoding using #f is that it
may affect the semantics of a program, as every expression evaluates to a value
in µScheme. For example, in case the last expression of a function body is added
or removed, the return value would be #f in the initial resp. updated program.
Although this may be inadequate in practice, this is acceptable in our setting
as we will investigate the performance and precision of an incremental analysis
in comparison to a full reanalysis, for which the sole requirement is that both
analyses reason over the same program. Also, this situation does not occur when
an expression is updated, since this can simply be encoded as (<change> old-exp
new-exp).

Some changes, such as the addition or removal of a variable, can modify the lexical
environment of expressions. Such changes can be represented by enclosing all
expressions affected by the change in the lexical environment inside the change
expression. For example, defining a new variable may be represented as (<change>
(+ x 1) (let ((y 1)) (+ x y))). This, however, is cumbersome and may lead
to changes that are too coarse-grained. For example, adding a new definition at
the beginning of a program will affect the entire program, and the incremental
analysis will degenerate into a full reanalysis.

Using this kind of coarse-grained changes can be avoided by updating the internal
data structures of the analysis to account for the changes to the environment of
expressions. These updates are difficult as environments may be stored in several
of the internal data structures of the analysis. For example, in lexically-scoped
languages such as µScheme, environments are stored in closures. As closures are
(abstract) values within the analysis, they are present in the store σ of the analysis.
The complexity of these updates depends, for example, on the parameters used to
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tune the precision of the analysis. For example, if component contexts need to be
updated, this may affect the number of components, and hence the dependency
map D, as well as the addresses in the store. Hence, dealing with this kind of
updates to the internal data structures of the analysis may not be trivial and this
is exactly what our use of change expressions aims to prevent.

Therefore, we avoid this complexity by introducing new bindings in the original
program or the updated program as follows. In case a new variable is defined,
we may represent this as (define x (<change> #f 1)), where we again use
#f to denote the absence of an expression. When a variable is removed, we
similarly replace the value it is bound to by #f. The environments therefore remain
unchanged, but the binding is updated. Hence, the data structures of the analysis
do not need to be updated upon a program change.

4.2 Approach

In this section, we describe our method to incrementalise an effect-driven analysis,
which we explain for a modular effect-driven analysis of which the intra-component
analysis infers dependencies, in particular for the ModF analysis of Section 2.3.1,
shown in Algorithm 1 on page 22.

To analyse the initial program, a full ModF analysis, as described in Section 2.3.1, is
performed. As a matter of convenience, the initial analysis already takes a program
annotated with change expressions, as explained in Section 4.1, but ignores these
annotations and treats the program as if it does not contain any changes, that is,
only the initial program is considered and the changes are ignored. Our method
then consists of two steps, which are explained next: a change-impact calculation
to detect which parts of the result have been affected by the program update and
the actual updating of the analysis results.

4.2.1 Step 1: Change-impact Calculation

Upon a change to the program, the analysis result needs to be updated. The result
of a modular effect-driven analysis consists of the global analysis state (in casu,
the global store of the ModF/ModConc analysis), the set of visited components,
and a mapping of dependencies to components. Hence, upon a change within the
program, the analysis has to infer which components are impacted by the change
and reanalyse them.
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Due to the modular and effect-driven design of the analysis, only the components
that are directly impacted by the change must be explicitly scheduled for reanalysis.
Components that are transitively impacted by a change need to be reanalysed
as well. These, however, will be scheduled for reanalysis by the effect-driven
analysis itself when a dependency on which the components depend is triggered.
For example, when the program update causes the value of an address in the
global store of a ModF analysis to be updated, a write effect is generated and
the dependent components, who earlier generated a read effect, are added to the
worklist as well. Thus, the reanalysis of directly-impacted components can cause
other components to be reanalysed as well, thereby propagating the updated
information.

This step in our approach already demonstrates how our incremental analysis
benefits from using reified effects: the analysis will not only ensure that all
components that are impacted directly or indirectly are reanalysed, but also that
only those components are reanalysed. After all, components which are not directly
impacted and which do not depend on a part of the global state that is updated,
are not scheduled for reanalysis. Therefore, our approach restricts the impact of
changes to those components that are affected. An incremental update thus scales
in the size of the change impact and not in the size of the entire program, which is
the ideal scenario as described in Section 3.1.

To infer the components that are directly impacted by program changes, different
approaches are possible depending on the type of analysis that is to be incre-
mentalised. For example, when using a ModF analysis, the components directly
impacted by a change can be inferred lexically from the source code, by inspecting
which function definitions are impacted. All components related to updated
function definitions can thus easily be added to the worklist. This is however not
possible for a ModConc analysis, for example, as threads may execute code from
multiple functions and it thus cannot always be inferred lexically which parts of
the program a thread executes. We therefore propose a general tracking method,
which is applicable to every type of effect-driven analysis with minimal effort.

Our tracking method works as follows. An intra-component analysis performs a
fixed-point computation during which it steps through the code corresponding
to the component. The analysis steps through the expressions one by one whilst
reasoning over the semantic properties of the program. The goal of the tracking
method is to track for every component the expressions that are encountered
during its analysis. Typically, an analyze function that checks the type of the
expression and acts accordingly is used, as shown in Algorithm 2. (Note that
neither this analyze function nor the case splitting are needed by our method,
but we use them to illustrate how tracking should be incorporated.) During
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1 Function analyze(e: Expr, ρ: Env, cmp: Comp) is

2 // cmp is the current component.
3 // exprToCmps is globally available.
4 // exprToCmps :: Map[Expr → Set[Comp]]
5 exprToCmps := exprToCmps[e 7→ exprToCmps(e) ∪ {cmp}];
6 switch type of e do

7 case variable(id) do return lookup(id, env);
8 case fnCall( f , args) do

9 return analyzeCall( f , args, ρ);
10 end

11 case if(pred, then, else) do

12 return analyzeIf(pred, then, else, ρ);
13 end

14 case . . . do . . . ;
15 end

16 end

Algorithm 2: The analyze function of the intra-component analysis. Our additions for the
tracking of encountered expressions have been coloured blue.

the intra-component analysis, every expression that is encountered is registered
(Line 5). To this end, a mapping of expressions to sets of components is created
(exprToCmps), which links an expression to all components during the analysis
of which the expression was encountered. Hence, an expression that is never
encountered during an analysis will be mapped to an empty set. This also means
that when an expression is not encountered during the analysis of a component,
e.g., when a branch of an if expression is not reached, a change to this expression
does not cause the reanalysis of the component.

After the annotation of the AST with changes, e.g., by a change distiller, the
annotated AST can be traversed to collect all expressions that change (function
findUpdatedExpressions in Algorithm 3). Finding these expressions is easy as
the traversal only needs to retrieve the original expressions from all change
expressions it encounters. Given these expressions, exprToCmps can be used to
infer which components have been impacted directly by the change, by looking up
the retrieved expressions and aggregating the resulting associated components
(function findAffectedComponents in Algorithm 3).23

2In this chapter, we consider a single change and a single incremental update. When multiple
successive incremental updates are possible, expressions may need to be removed again from
exprToCmps, reflecting changes in the program behaviour, to avoid spurious reanalyses.

3A technical limitation of our tracking approach is that, in practice, added expressions cannot
be tracked as they are not present in the initial program. Therefore, exprToCmps contains no
information for these expressions. To find the components affected by an added expression, the
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1 Function findUpdatedExpressions(e: Expr): Set[Expr] is

2 switch type of e do

3 case change(old, new) do return {old};
4 otherwise do

5 return subExpressions(e).flatMap(findUpdated);
6 end

7 end

8 end

9 Function findAffectedComponents() is

10 // program is globally available.
11 affectedExpr := findUpdated(program);
12 affectedComp := ∅;
13 foreach e ∈ affectedExpr do affectedComp := affectedComp ∪ exprToCmps.get(e);
14 return affectedComp;
15 end

Algorithm 3: The findAffected function.

1 (define (fib n)
2 (if (<change> (= n 0) (< n 2))
3 n
4 (let ((fib-n-1 (fib (- n 1)))
5 (fib-n-2 (fib (- n 2))))
6 (+ fib-n-1 fib-n-2))))
7 (fib 5)

Listing 4.3: Fix for the the incorrect Fibonacci number computation of Listing 2.3 on page 33.

Consider for example the change made to the fib function in Listing 4.3. The
components whose analysis encountered the expression that is updated are
(fib 5), (fib (- n 1)), and (fib (- n 2)). Our change tracking algorithm
will thus infer that three out of the four components are directly impacted. Only
the component Main is not directly impacted, as the analysis of this component
did not encounter the changed expression. This is visualised in Figure 4.2. The
second step of our approach will thus restart from these three components.

Due to the way the directly impacted components are computed, the granularity
of the change expressions can have an influence on the number of components
that are inferred to be impacted directly. The reason for this lies in the points of the
program where the control flow may follow one of several branches, as is the case
for an if expression for example. Recall that if the initial analysis for a component

expression whose execution would precede the execution of the added expression can be looked
up, for example. As explained in Section 4.1, our change annotations do support the addition of
expressions as we add them upfront, prior to the initial analysis.
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Figure 4.2: The ModF component graph corresponding to the program in Listing 4.3. Only the Main
component, shown in grey, is not directly affected.

is precise enough to infer that only a specific branch is taken, the expressions of
the other branches will not be related to the component by exprToCmps. Hence, if
a change only spans a branch that was not taken, the corresponding component
will not be inferred as being directly impacted. Therefore, changes spanning fewer
branches may lead to fewer components being reanalysed.

4.2.2 Step 2: Updating the Analysis Result

After the set of directly impacted components has been computed, the analysis
result can be updated, to compute and obtain an over-approximation of the
behaviour of the new program version.

To update the result, the set of directly impacted components is added to the
worklist of the analysis and the analysis is restarted, as shown in Algorithm 4
(the addition to the worklist is denoted using an assignment as the worklist is
assumed to be empty at the beginning of an incremental update). In the example
of Figure 4.2, these are the components corresponding to (fib 5), (fib (- n
1)) and (fib (- n 2)). Remember that no other components need to be added
to the worklist, as components that are indirectly impacted by the changes will be
scheduled for reanalysis by the effect-driven analysis itself. For this, the analysis
relies on the inter-component dependencies that were reified in D during the
initial analysis of the program. Consider again the previous example. If the return
value of the component (fib 5) changes, this will trigger a dependency causing
Main to be reanalysed as well. In contrast, when this value does not change, Main
is not impacted by the change and is not reanalysed. Note that even though a
value within the program may change, the corresponding abstract value used by
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1 Function incrementalUpdate() is

2 // V, D, and σ remain unchanged.
3 WL := findAffectedComponents();
4 computeFixedpoint();
5 end

Algorithm 4: Incremental update.

the analysis may remain the same. For example, if a value is represented by its
type in the abstract, Main does not need to be reanalysed unless the type of the
value changes.

During the updating phase, more dependencies can be inferred and new compon-
ents can be discovered, as a regular effect-driven analysis is performed. The result
of the analysis is monotonically updated until a new fixed point is reached, i.e.,
no parts of the analysis result are cleared or invalidated by the incremental update.
Therefore, the result can never be more precise than the result computed by a full
reanalysis: the incrementally updated result over-approximates both the old and
new program version, whereas a full reanalysis only has to over-approximate the
new program version. Because incremental analyses are run on small program
changes, this is not expected to significantly deteriorate the precision of the
analysis. However, throughout a series of incremental reanalyses, this can result
in a more significant loss of precision. We therefore consider the invalidation of
outdated parts of the analysis result in Chapter 5.

4.3 Formal Specification of the Approach

We now present a formal specification of the method outlined in Section 4.2, in
line with the formal specification of ModF presented in Section 2.3.1 on page 25.
We formalise the use of change expressions, the tracking of expressions during the
intra-component analysis, the initial analysis, and the incremental update. Recall
that we present the formal specification for a small input language, namely for a
language based on the untyped lambda calculus with side effects and restricted to
ANF.

Syntax. The syntax of the input language used for the formalisation of the analysis
remains the same as shown in Figure 2.5. To express changes, however, we add a
new type of expression, i.e., change expressions:

e ∈ Expr ::= (<change> e e) | . . .
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As introduced in Section 4.1, the first argument of a change expression is the
expression in the original (old) program whereas the second argument represents
the corresponding expression in the updated (new) program.

State space. The state space of the analysis also remains the same. We now however
add the concept of an analysis phase to indicate which subexpression of a change
expression should be taken into account when evaluating change expressions, i.e.,
the analysis phase distinguishes the initial analysis from the incremental update
in our approach. We formalise this addition to the state space as follows:

π ∈ Π ::= Old | New

Intra-component analysis. The intra-component analysis is now modified to track
the expressions that it encounters. As mentioned before, our approach aims to
be general, putting minimal constraints on the intra-component analysis which
is treated as a black box. To show this minimal dependency, we do not alter the
small-step ModF transition function,⇝ specified in Figure 2.7 in Section 2.3.1, but
introduce an incremental transition function, denoted⇝I , that uses the transition
function from Section 2.3.1 out of the box. The intra-component analysis function
Intra itself now takes the analysis phase as an extra argument and also returns the
set of encountered expressions. These functions now have the following signature:

⇝I : Σ × Store × Π → Σ × Store ×P(Eff)×P(Expr)
Intra: Cmp × Store × Π → P(Eff)×P(Eff)×P(Eff)× Store ×P(Expr)

As before, the transition relation returns the set of effects generated during the
transition. In addition, it now also returns the set of expressions encountered.
Due to the structure of the transition function, this set will either be empty or a
singleton set. Again, rather than adding the set of effects and the set of expressions
to the result tuple, we annotate the incremental transition function with them as
follows: E,X

I . We use the symbol X to denote sets of expressions as we already
use the symbol E to denote sets of effects.

Incremental transition function. The incremental transition function⇝I uses the
transition function from Figure 2.7 to evaluate complex expressions while keeping
track of the expressions encountered. In addition, the transition function also
provides rules for evaluating change expressions given the current analysis phase.
The incremental transition function is defined by the rules shown in Figure 4.3.

When an expression is evaluated, the ModF transition function is applied and the
evaluated expression is tracked as it was encountered by the intra-component
analysis (rule Eval). To this end, the function is annotated with a singleton set
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I
(
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Figure 4.3: The tracking transition function for a small-step ModF analysis.

containing the evaluated expression. However, the expression may not be a change
expression, as this type of expression requires a specific treatment and is not
supported by the transition function of Section 2.3.1. When the evaluation has
reached a value, the transition function is applied as well. In this case, however, the
analysis does not encounter an expression, so no expression needs to be tracked
(rule Kont).

When a change expression is encountered, the expression to be evaluated is either
the old expression, encoded as the first argument of the change expression, or the
new expression, encoded as the second argument of the change expression. In
this case, the ModF transition function is not used. Instead, a new evaluation state
is created, containing the expression to evaluate next depending on the program
version that is to be analysed. No effects are generated in either case. In addition,
no expressions need to be tracked: the tracked expressions are used to find the
components affected by changes, i.e., the components that rely on an expression
that is the first argument of a change expression. For this reason, it is not needed
to track entire change expressions as well because due to the transition rules, the
subexpression representing the old resp. new expression is tracked in the next
evaluation step as soon as it is encountered by the incremental transition function.4

4On this point, our formal specification deviates slightly from Algorithm 2 and from our imple-
mentation, which track every expression. It is possible, but not necessary, to track entire change
expressions as well.
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Intra-component analysis. The incremental transfer function defines how the intra-
component analysis steps from one state to the next during the analysis of
a component, while keeping track of the encountered expressions and while
selecting the expressions corresponding to the correct program version. As before,
the intra-component analysis Intra explores all reachable states. It now not only
returns the generated effects and resulting store, but also the set of encountered
expressions. Intra is again defined in terms of a step function. Both now take the
analysis phase as an extra parameter, which is passed to the incremental transfer
function. We now define both functions as follows:

stepπ(ςs, σ, E, X) =
{(

ςs, σ, E, X
)}

∪
⋃

ς∈ςs

(ς,σ,π)
Es,Xs

I(ςs,σs)

(
{ςs}, σs, Es, Xs

)

Intra(α, σ, π) =
( ⋃

c(β)∈Ei

c(β),
⋃

r(a)∈Ei

r(a),
⋃

w(a)∈Ei

w(a), σi, Xi

)
where

(
ςsi, σi, Ei, Xi

)
= lfp

(
stepπ({ς0}, σ,∅,∅)

)
with, as before, ς0 =

⟨ev(e, ρ), ret(α) : ε⟩, lfp the least fixed point operator and ∪ over tuples
the pairwise union/join. As before, the subscript s denotes the result of a step and
the subscript i denotes the result of the intra-component analysis.

Inter-component analysis. The inter-component analysis now takes an analysis
phase as an extra argument, to distinguish the initial analysis from the incremental
update (the analysis phase is merely passed to the intra-component analysis). In
addition, it produces a mapping of expressions to components, which has the
function of exprToCmps in Algorithm 2. Since Inter is defined recursively, it also
takes this kind of mapping as an extra argument. As a result, Inter now has the
following signature:

Inter: P(Cmp)× (Addr → P(Cmp))× Store × (Expr → P(Cmp))× Π
→ P(Cmp)× (Addr → P(Cmp))× Store × (Expr → P(Cmp))

We update its definition to pass the analysis phase to the intra-component analysis
Intra. Thus, the fixed-point computation that constitutes the inter-component
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analysis Inter now is defined as

Inter
(
∅, D, σ, T, π

)
=
({

α | α ∈ dom(σ) ∧ α ∈ Cmp
}

, D, σ, T
)

Inter
(
{α} ⊎ αs, D, σ, T, π

)
= Inter

(
αs ∪

⋃
c(β)∈C

β ̸∈dom(σ)

β ∪
⋃

w(a)∈U
γ∈D(a)

γ,

D ∪·
⋃
·

r(a)∈R

[a 7→ {α}], σ′,

T ∪·
⋃
·

e∈X

[e 7→ {α}], π
)

where (C, R, U, σ′, X) = Intra(α, σ, π). We use the symbol T to denote a map
from (tracked) expressions to sets of components.

Collecting semantics. Given this new definition of Inter, we can now specify the
computation of the collecting semantics. We do this both for the initial analysis
and for the incremental update.

The collecting semantics for the initial program can be obtained by computing
Inter({Main}, [], [], [], Old). The incremental update of the analysis result is
computed by Inter(αs, D, σ, T, New), where (βs, D, σ, T) is the result of the initial
analysis and αs is computed as follows:

αs =
⋃
{T(e) | e is updated}

where an expression e is considered to be updated if it is the first argument of a
change expression in the annotated program.

Memory overhead. We now use our formal specification to quantify the memory
overhead of our method. The only memory that needs to be allocated extra in
comparison to a non-incremental effect-driven analysis, is the memory to store
the map T which maps expressions to sets of components:

T : Expr → P(Cmp)

We use the big O notation to express an upper bound for the memory overhead of
our method. Using the function signature of T, we can compute its worst-case size:
T ∈ O(|Expr| × |Cmp|). The worst-case memory overhead of T is thus related to
the number of expressions in components in the program, but in practice, not
all components encounter all expressions and the number of components may
be limited. In addition, as our implementation is written in Scala, a map data
structure contains object references rather than the objects themselves. As the
objects pointed to also exist in the non-incremental analysis, no extra memory is
required to store them.
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Consider now a function-modular analysis. In this case, every expression may
only be encountered by a limited number of components, i.e., by the components
corresponding to the function to which the expression belongs. If the function-
modular analysis is context insensitive, every expression can only be encountered
by at most one component and we can reduce the upper bound for T to T ∈
O(|Expr|). Thus, for a context-insensitive ModF analysis, the memory overhead
grows linearly with the program size.

4.4 Evaluation

To evaluate our approach, we have applied our incrementalisation method to two
different effect-driven analyses for µScheme, a function-modular (ModF) analysis
and a thread-modular (ModConc) analysis. Using these instantiations, we aim to
answer the following three research questions:

RQ 4.1. Does an incrementalised effect-driven modular analysis result in a re-
duction of analysis time in comparison to a full reanalysis of the modified
program?

RQ 4.2. How precise is an incremental update compared to a full reanalysis of
the modified program?

RQ 4.3. What is the impact of the granularity of the components on the effective-
ness of our approach?

4.4.1 Set-up and Benchmark Programs

Our approach, including the change expressions described in Section 4.1 and
the two instantiations described above, has been implemented for the µScheme
language in the Modular Analysis Framework MAF [152], a research framework
developed at the Software Languages Lab for studying effect-driven modular
static analyses. The framework is implemented in Scala in a modular way, allowing
different analysis specifications, e.g., various context sensitivities, different lattice
implementations or different language semantics, to be used and swapped by
changing the Scala traits that are mixed into the analysis. Therefore, the framework
facilitates performing experiments using different analysis implementations and
with various analysis configurations.

Our implementation has been made available online at https://github.com/
softwarelanguageslab/maf/releases/tag/SCAM2020.
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We now describe the two instantiations of the incremental analysis used for
evaluation in more detail, together with the benchmark programs used for each
instantiation. Both instantiations use a type lattice, approximating values by their
type, except for functions and pointers which are approximated as sets of abstract
closures or addresses respectively. Booleans are represented using their respective
value if possible. For our experiments, no context sensitivity is used, i.e., the
contexts of components are empty.

The benchmark programs used for our evaluation are available online at https:
//github.com/jevdplas/SCAM2020-Benchmarks [146].

ModF Analysis for µScheme

The first instantiation used to evaluate our method is a ModF analysis for
µScheme [96]. The implementation of the intra-component analysis follows a
big-step semantics, where the analysis is implemented using a recursive evaluation
function to evaluate and analyse an expression, that is, to evaluate a subexpression
of a given expression, the evaluation function is just called recursively.

With this instantiation, we use a set of seven benchmark programs to which change
expressions have been added. These programs are described in Table 4.1a, which
also indicates their size and explains the changes made to them. For example, in
the peval benchmark, we abstracted duplicated code into a function and replaced
all occurrences of that code by a function call to the newly introduced function.

ModConc Analysis for µScheme

The second instantiation used to evaluate our approach is a ModConc analysis for
µScheme [126, 128]. The ModConc benchmark programs use a version of µScheme
that contains threads and locks, which are the concurrency constructs used in the
ModConc literature. The implementation of the intra-component analysis follows a
small-step semantics, the type of semantics we have used for the formal specification
of ModF in Section 2.3.1 (page 28). In a small-step semantics, the evaluation of an
expression is performed in small steps. These are implemented using evaluation
and continuation states which keep track of the continuation of the evaluation,
manually pushing and popping stack frames on the continuation stack while
progressing the evaluation step by step. Instead of a recursive evaluation function,
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a small fixed-point computation is performed where a state is continuously
removed from a worklist and stepped, except if the state has been encountered
before, yielding one or more successor states which are then added to the worklist.

With this instantiation, we use a set of nine benchmark programs to which change
expressions have been added. These programs are described in Table 4.1b, which
also indicates their size and explains the changes made to them. For example, in
the mcarlo2 benchmark, we halve the number of threads created in the program.

By using a big-step semantics for the ModF analysis and a small-step semantics for
the ModConc analysis, to which we have applied our incrementalisation method,
we illustrate the generality of the incrementalisation method we have developed.

4.4.2 Evaluation Method

To answer the research questions posed above, we use the following metrics:

1. The analysis time: we measure the time needed by (1) the initial analysis of
the program, (2) the incremental update of the analysis result and (3) a full
reanalysis of the updated program. To gain certainty in our measurements,
every measurement is repeated 35 times, of which the first 5 repetitions are
considered warm-up and discarded.

2. The precision of values in the store of the analysis: for every address mapped
in the store, we compare the abstract values computed by the incremental
update and by the full reanalysis.

3. The size of the store.
4. The number of components discovered by the analysis.
5. The number of dependencies inferred by the analysis.
6. The number of intra-component analyses performed.

The size of the store and the number of dependencies and components give an
indication of the number of program paths explored by the analysis and hence
give another view of its precision. The number of intra-component analyses is an
alternative measure for the amount of work required to complete an analysis.

Using the above metrics, we compare the analysis time and result obtained after
an incremental update to those of a full analysis of the updated program. The
lower the number of components and dependencies and the smaller the size of the
store, the more precise the analysis result is. We also compare all abstract values
mapped to in the store. As they are part of a lattice, the partial order relation of
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4.4. Evaluation

ModF

Benchmark Initial
Analysis [ms]

Full
Reanalysis [ms]

Incremental
Update [ms] ∆

mceval-dynamic 226 124 72 -41.94%
leval 1407 1971 489 -75.19%
multiple-dwelling (fine) 8466 8822 2126 -75.90%
multiple-dwelling (coarse) 3527 3533 15694 +344.21%
peval 19753 17644 103 -99.42%
nboyer 1397 1271 98 -92.29%
machine-simulator 54124 57043 24093 -57.76%

ModConc

Benchmark Initial
Analysis [ms]

Full
Reanalysis [ms]

Incremental
Update [ms] ∆

mcarlo2 9 29 27 -6.90%
pc 21 16 11 -31.25%
msort 117 151 194 +28.48%
pps 421 423 1 -99.76%
sudoku 86 90 62 -31.11%
actors 1601 1595 354 -77.81%
stm 5384 5597 745 -86.69%
crypt 7568 7351 2812 -61.75%
crypt2 9315 10277 8340 -18.85%

Table 4.2: Timing results using a timeout. Every measurement is repeated 30 times, of which the
average is shown. The delta shows how the time needed by the incremental update compares to the
time needed by a full reanalysis.

the lattice is used to infer which values are more precise. All experiments were
run on a 2015 Dell PowerEdge R730 with 2 Intel Xeon 2637 processors. We used
OpenJDK 1.8.0_265, Scala 2.13.3 and a maximal heap size of 4GB.

4.4.3 Experimental Results

Table 4.2 contains the results for our evaluation of the analysis time. For ModF,
we note a reduction of the analysis time from 40% up to 99% for all but one
benchmark, multiple-dwelling (coarse), for which the incremental update is
a lot slower than a full reanalysis. For ModConc, we see reductions of the analysis
time ranging between 6% and 99% on all but one benchmark, msort, for which
the incremental update is slightly slower than a full reanalysis. These numbers
indicate that our method overall results in reduced analysis times.
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ModF

Benchmark Equally
Precise

Less
Precise

Less
Precise [%]

Address
Count (∆)

mceval-dynamic 158 220 58.20% 10
leval 187 389 67.53% 10
multiple-dwelling (fine) 851 0 0.00% 0
multiple-dwelling (coarse) 231 817 77.96% 198
peval 919 2 0.22% 0
nboyer 2115 17 0.80% 1
machine-simulator 1676 14 0.83% 7

ModConc

Benchmark Equally
Precise

Less
Precise

Less
Precise [%]

Address
Count (∆)

mcarlo2 28 2 6.67% 1
pc 35 4 10.26% 1
msort 27 9 25.00% 1
pps 99 0 0.00% 0
sudoku 101 0 0.00% 0
actors 136 0 0.00% 0
stm 156 0 0.00% 0
crypt 141 3 2.08% 3
crypt2 140 6 4.11% 6

Table 4.3: Precision results. The table indicates how many addresses in the store after an incremental
update contain a value that is equal or less precise compared to a full reanalysis of the updated
program. 66 addresses corresponding to built-in functions are ignored as they are never assigned
and hence of equal precision in all cases. A fourth column indicates the number of addresses present
in the incrementally updated store minus the number of addresses in the store after a full reanalysis.

There are two versions of multiple-dwelling, as, for this program, the same
changes were applied using different granularities of change expressions. Hence,
the difference between the performance of the incremental update on two versions
is striking as they both represent the same program with the same code changes,
though the granularity of the expressions used to encode the changes differs. In
both versions, an input list is changed; in the coarse-grained version, the entire
list is updated, whereas in the fine-grained version, the change expressions are
put around the elements of the list that change. We find that this difference might
be explained by the fact that our analysis cannot invalidate outdated parts of the
result, which is exacerbated by the exact change: the change to multiple-dwelling
(coarse) causes an entire new list to be allocated by the analyser, thereby creating
a vast amount of pointers. We find that, after the incremental update, the store
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ModF

Components Dependencies Intra-Component
Analyses

Benchmark I R U I R U I R U

mceval-dynamic 86 85 87 2647 2057 2742 1722 1529 273
leval 101 107 109 4999 6683 6840 4155 4413 971
multiple-dwelling (fine) 139 139 139 14138 14538 14538 7442 7442 1245
multiple-dwelling (coarse) 139 139 139 14138 14498 22418 5063 5115 7982
peval 90 91 91 23564 23570 24056 4816 5222 20
nboyer 45 45 45 20366 20364 20376 1360 1310 33
machine-simulator 282 289 289 55452 56166 56173 43460 48502 7633

ModConc

Components Dependencies Intra-Component
Analyses

Benchmark I R U I R U I R U

mcarlo2 3 2 3 90 62 91 7 4 4
pc 3 3 4 66 67 85 8 7 6
msort 3 2 3 105 77 112 11 6 9
pps 3 3 3 138 138 138 6 6 1
sudoku 30 30 30 1051 1051 1051 63 63 35
actors 2 2 2 233 233 233 4 4 1
stm 2 2 2 268 268 268 7 7 1
crypt 2 2 2 293 293 299 8 8 3
crypt2 2 2 2 293 291 303 8 8 6

Table 4.4: Number of components created, number of dependencies inferred and number of
intra-component analyses performed by the initial analysis of the original program (I), the full
reanalysis of the updated program (R) and the incremental update of the initial result (U).

of the analysis contains almost 60% more pointers for the coarse-grained version
than for the fine-grained program version. As pointers cannot be efficiently joined
by our implementation, this possibly causes the slowdown.

Table 4.3 shows the results of our precision evaluation, obtained by comparing the
abstract values at each address in the store. Recall that the incremental analysis can
never be more precise than a full reanalysis. We see however that on a majority of
benchmarks, the precision loss is very small to none. Yet, on some benchmarks, the
loss in precision is more important. For example, multiple-dwelling (coarse)
sees a huge loss in precision, as more than 75% of the values in the store is less
precise. This can again be linked to the fact that the incremental update creates a
lot of pointers while being unable to remove outdated parts of the result, as can be
seen in the fourth column of the table. For the msort benchmark, we find that the
imprecision arises due to the fact that the incremental update does not remove
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components: after the incremental update, the store contains abstract values at 9
addresses related to components that are not created by the full reanalysis. Hence,
the values at these addresses computed by the incremental update are less precise
than those computed by a full reanalysis.

Finally, we consider the results in Table 4.4, which shows the number of com-
ponents and dependencies discovered by the analysis, as well as the number of
intra-component analyses performed for the initial analysis, full reanalysis, and
incremental update of the initial analysis result. On all but three benchmarks, the
incremental update requires less intra-component analyses than a full reanalysis,
and hence overall our approach reduces the work required to reach an updated
fixed point. The result of an incremental update is less precise than that of a
full reanalysis as more components and/or dependencies are inferred for most
benchmarks. However as discussed before, the impact on the abstract values in
the store is limited. The loss of precision can be mitigated by performing a full
reanalysis, e.g., at regular intervals. The point where a full reanalysis is needed may
depend on the actual analysis performed, and should be determined accordingly.
In Chapter 5, we present three strategies to reduce the precision loss caused by
incremental updates to alleviate the need to perform a full reanalysis every once
in a while.

4.4.4 Discussion

Our results show that, in general, the incrementalisation method presented in this
chapter leads to a reduction of the analysis time, compared to a full reanalysis
of the program (RQ 4.1). This is also visible when comparing the number of
intra-component analyses required to reach the fixed point. On two programs,
a slowdown is seen, which is caused by an increased imprecision due to the
incremental update. However, in general, the precision of an incremental update
seems to be comparable to that of a full reanalysis (RQ 4.2). We see that for ModF,
on average, our approach results in higher reductions of the analysis time than for
ModConc (RQ 4.3). This is most likely caused by the fact that the ModF analyses
create more components than the ModConc analyses, given our evaluation set-up.
Also, the components created by ModConc, which correspond to spawned threads,
are generally larger than the ones created by ModF, which correspond to function
calls. Hence, ModConc leads to more coarse-grained incrementality for which the
reduction of the analysis time may be smaller.

Our experiments show that our method leads to a reduction of the reanalysis
time when applied on context-insensitive analyses for µScheme, a highly dynamic,
higher-order language. We find that the approach is sufficiently general to be
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applied to different types of effect-driven analyses, as we have demonstrated using
our experiments. Hence, the method presented in this chapter improves upon
current incremental analyses that require a statically known call graph or are
tailored to specific analyses.

As is shown in the example of Figure 2.9 on page 33, which uses call expressions as
component contexts, effect-driven analyses can also be instantiated with context-
sensitive analyses. Our approach therefore also works for any context sensitivity
as it does not put restrictions on the components, which therefore can contain
arbitrary contexts. We restricted our evaluation to two context-insensitive analyses,
where all components contain empty contexts. If more information is stored
in a context, the analysis may create more components, which both impacts
the incremental update and full reanalysis times. This may also depend on the
abstract domain used, as a component context can contain abstract values. Hence,
extending the evaluation to context-sensitive analyses would require investigating
the influence of the abstract domain on the performance of the incremental analysis
in comparison to a full reanalysis. However, the abstract domain only impacts
the creation of components via the component contexts, hence we do not expect
changes in the results for context-insensitive analyses when using different abstract
domains.

4.4.5 Threats to Validity

We now briefly identify possible threats to the validity of our results, following
the classification of Wohlin et al. [160].

Analysis Framework

A threat to the external validity comes from the framework in which our method has
been implemented. This framework is based on ModF [96] and ModConc [126, 128],
both inspired by the work of Cousot and Cousot [30]. Various precision-improving
optimisations, such as abstract garbage collection [83, 150], exist, but have not
been incorporated in our framework. We do not expect detrimental changes to our
experimental results should they be integrated. Also, our method has only been
incorporated in a research-oriented framework. An incorporation in a production
quality tool may be required to show how our method performs in practice. We
are however unaware of any industry-standard analysis frameworks for dynamic
languages that offer heavyweight analyses and follow a modular design.
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Evaluation

A threat to the conclusion validity of our experiments stems from the low number of
benchmark programs used. In the literature, there is no standard set of benchmarks
used to evaluate incremental static analyses of dynamic languages. We therefore
had to compose a benchmark suite ourselves. To compose this benchmark suite,
we added change expressions to the benchmark programs manually. Another
approach would be to add such expressions programmatically, enabling more
benchmark programs, but such changes might not reflect real changes made by
developers. We nonetheless take this approach for completeness’ sake in Chapter 5
to complement a suite of curated benchmarks.

To each program, we have manually added changes. We did not possess change
histories for the programs. We however made sensible and varied changes that
could reflect actual developer edits. For example, some of the ModF benchmark
programs have been used during university classes. To these programs, the changes
correspond to solving a course assignment. For ModConc, the changes could
correspond to refactorings. We therefore believe that our changes are sufficiently
varied and realistic to validate our approach, even though the number of changes
to some programs is limited.

4.5 Conclusion

In this chapter, we first introduced change expressions, the change representation
used in our work. We then introduced a method to incrementalise effect-driven
analyses based on reified inter-component dependencies. To this end, the intra-
component analysis registers the expressions encountered during the analysis
of each component. A change impact calculation infers the components directly
affected by a change, which are then reanalysed. The reified dependencies en-
sure that transitively affected components are reanalysed as well. Hence, the
effect-driven nature of the analysis leads to a relatively straightforward increment-
alisation, where only the parts of the analysis result for the components directly
or indirectly affected by the changes are updated.

We applied our method to both a function-modular and a thread-modular effect-
driven analysis for µScheme, a highly-dynamic, higher-order programming lan-
guage. We found that an incremental update is faster than a full recomputation of
the result on 14 out of 16 benchmark programs, reducing the analysis time by up
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to 99%. A high precision is retained for most benchmark programs. To reduce the
precision loss and improve the precision of incrementalised effect-driven analyses,
we consider three strategies for precision recovery in the next chapter.

In comparison to existing work, our method results in general incremental effect-
driven analyses that can support highly dynamic, higher-order languages and
program changes that modify the program’s call graph. Our method is not specific
to any particular analysis, and allows the impact of changes to be bounded to the
parts of the analysis results that are affected by program changes. Additionally,
the analyses must not be reformulated, and only a single lightweight auxiliary
data structure is required to keep track of the expressions encountered during the
analysis of each component.

Method to incrementalise an effect-driven analysis.

To incrementalise an effect-driven analysis, add expression tracking to the
intra-component analysis. For every expression, keep track of the components
for which the intra-component analysis encountered the expression.

To perform an incremental update:

1. Collect the set of directly affected components and add them to the
worklist of the analysis. All components for which the intra-component
analysis encountered an expression that is affected by the source code
changes are directly affected.

2. Restart the fixed-point computation of the inter-component analysis.
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5
Three Strategies for Precision

Recovery

This chapter is based on our 2023 paper “Result Invalidation for Incremental Modu-
lar Analyses” [148]. The text has been slightly modified and extended for clarity and
completeness. In addition, a formal specification has been added (Section 5.3).

The previous chapter introduced a general method for rendering any effect-driven
static analysis incremental. Such analyses divide a program into components which
are (re-)analysed separately but whose analyses may be interdependent; these
inter-component dependencies are reified using effects emitted by the analyses of
the components. The effect-driven and modular nature of these analyses facilitates
bounding the impact of changes.

While the evaluation presented in the previous chapter shows that incremental
updates are often faster than a full reanalysis, the incremental updates may be
less precise than a full reanalysis as the presented analysis cannot delete outdated
parts of the analysis result. In this chapter, we improve upon the previous by
making the following contributions:

• We introduce three complementary strategies to regain lost precision. The
idea is to interleave invalidation with recomputation, to maximise reuse of
the previously computed result. The invalidation is based primarily on
the effects emitted by the intra-component analysis, which allows us to
specify the strategies as general as possible without relying on a specific
intra-component analysis, that is, we maintain the view of components and
the intra-component analysis as black boxes to the maximum extent, as we
did in the previous chapter.
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• We implement these strategies and evaluate their impact on the precision and
performance of the incremental analysis, when used alone or in combination.

Without loss of generality, we choose to present the three invalidation strategies for
the incremental ModF analysis from Chapter 4. Our method remains applicable
to other effect-driven analyses that have been incrementalised using the method
of the previous chapter, such as e.g., a ModConc analysis, but for clarity, we now
only focus on a single instantiation for our explanation, examples, and evaluation.

5.1 Sources of Imprecision

The incrementalisation method for effect-driven analyses presented in the previous
chapter can be summarised as follows. For a given set of change expressions,
the affected parts of the analysis result are computed and updated accordingly.
The analysis tracks which expressions within the source code of a module
were encountered during the analysis of the corresponding components. Every
component for which the intra-component analysis encountered a expression
that is changed is added to the worklist, after which the fixed-point computation
is restarted. The effect-driven analysis design ensures that indirectly affected
components are reanalysed as well.

Table 5.1 depicts the three parts of the result of an effect-driven analysis. The method
presented in the previous chapter only updates the prior result monotonically: no
outdated information can be removed; the result of the analysis over-approximates
the behaviour of both the updated and the original program. All parts of the result
may suffer from imprecision, as shown in Table 5.1. This means that components
and dependencies no longer representing the program’s behaviour cannot be
removed. In the value store σ, values cannot become more precise. Note that
imprecision in one part of the result may cause imprecision in other parts. For
example, when a value in σ is imprecise, the analysis may explore more paths and
thus infer more components and dependencies, which may in turn degrade the
precision of the store.
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Components

Explanation Set of components created during the analysis, each abstractly representing an
aspect of the runtime behaviour of the program, e.g., a function call.

Imprecision Components no longer representing the program’s behaviour cannot be removed.

Solution Component Invalidation: remove components that are no longer created.

Dependencies

Explanation Set of inter-component dependencies (read effects) computed during the analysis,
each marking a link between a component and an address in the global value store
σ. Using these dependencies, the analysis of one component takes into account
information computed by the analysis of other components.

Imprecision Dependencies that are no longer valid cannot be removed.

Solutions Dependency Invalidation: remove dependencies that are no longer computed by
the reanalysis of an impacted component.

Component Invalidation: removing a component clears its dependencies.

Value Store σ

Explanation Over-approximates the heap. Mapping of abstract addresses to abstract values.

Imprecision Values in σ are updated monotonically, since they are joined upon updates.

Solutions Write Invalidation: improve the precision of values in the store σ by removing
values that are no longer written.

Component Invalidation: when write invalidation is enabled, the removal of a
component may allow the value store σ to be refined.

Table 5.1: Overview of the parts of the result of an effect-driven analysis, of the sources of imprecision
for each part, and of the corresponding strategies to invalidate outdated parts of the result.

5.2 Strategies for Precision Recovery

We now introduce three complementary strategies that improve the precision of
an incremental analysis result by invalidating the information that corresponds to
outdated program behaviour. The aim is to minimise the precision loss caused by
monotonic updates to a prior analysis result, without increasing the analysis time.

5.2.1 Invalidation Principle

The incrementalisation method introduced in Chapter 4 was conceived to be as
general as possible by solely requiring the intra-component analysis to emit effects
when needed, together with tracking the expressions encountered, and by not
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1 WL := {Main}; // The worklist, initially containing the Main component.
2 V := ∅; // The set of visited components.
3 D := λr.∅; // Map of dependencies (read effects).
4 σ := λa.⊥; // Global value store, initially all addresses map to bottom.
5 while WL ̸= ∅ do

6 α ∈ WL;
7 WL := WL \ {α};
8 (C′, R′, U′, σ′) = intra(α, σ); // Intra-component analysis.
9 σ := σ′;

10 V := V ∪ {α};
11 WL := WL ∪ (C′ \ V);
12 foreach r ∈ R′

do D := D[r 7→ D(r) ∪ {α}];
13 foreach u ∈ U′

do WL := WL ∪ D(u);
14 end

15 return (σ, V, D);

Algorithm 5: The inter-component analysis of an effect-driven analysis. (Repetition of Al-
gorithm 1.) Invalidation happens after the intra-component analysis, i.e., after Line 8.

introducing any other fundamental restrictions. The strategies presented in this
chapter treat the intra-component analysis as a black box as well and thus do
not put any restrictions on the lattice nor on the context-sensitivity used by the
analysis. Again, the intra-component analysis must only compute a set of effects.

The aim is to invalidate as few valid parts of the result as possible, so that the
parts not impacted by a change need not be needlessly recomputed. As explained
in Section 3.1, related work such as the work of Arzt and Bodden [12] and Nichols
et al. [92] often consists of an invalidation phase, which over-approximates and clears
outdated parts of the result, and a recomputation phase, which updates the analysis
result. To avoid over-approximating the outdated parts of the result, we interleave
invalidation with recomputation, maximising reuse. After an intra-component
analysis, Inter computes which parts of the result have become obsolete and
removes them; information is only removed when it is no longer computed
by an intra-component analysis. Mapping this onto the algorithm of the inter-
component analysis, which we have repeated in Algorithm 5, invalidation happens
after Line 8. Our approach leads to a recompute-and-invalidate cycle: the analysis
of a component may lead to a result invalidation, which in turn can lead to more
analyses of components. It is important to note that the computations performed
by the intra-component analysis remain monotonic as we do not alter it, that is,
no invalidation happens during the analysis of a component.
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Upholding the Black-box View

The interleaving of the invalidation phase and the recomputation phase, which
sets it apart from the related work on incremental static analysis discussed in
Chapter 3, also allows us to uphold the black-box view of components: the
strategies presented in this chapter invalidate information merely based on the
effects emitted by the intra-component analysis and on the interactions with the
store. After all, to perform a precise a priori invalidation phase, precise knowledge
on information flow within the intra-component analysis is required to infer which
parts of the analysis result depend on which other parts and thus may need to
be invalidated. However, this information cannot be inferred from the reified
computational effects on top of which our incremental method is built. Hence,
a precise a priori invalidation phase would require us to abandon the black-box
view of components and to impose extra restrictions on the intra-component
analysis, i.e., the intra-component analysis would need to compute and provide
information-flow data. To preserve the generality of our approach, this is not an
option we have taken. In addition, the result of such a precise a priori invalidation
phase would still be an over-approximation.

The other alternative, which does manage to uphold a black-box view of the
intra-component analysis, is to perform an a priori invalidation phase solely
based on the observed effects. However, such an invalidation phase could only be
imprecise, leading to a vast amount of needless invalidation and recomputation
afterwards as there is no causal relation between the emitted effects themselves nor
between the emitted effects and the program changes: the effects do not provide
any information on which reads, writes or component creations are impacted
by the changes in the program as there is no information-flow data available.
Thus, this kind of imprecise invalidation would be very coarse-grained, where all
creation and write effects could cause a cascade of invalidations among dependent
components (even when the order of effects is taken into account or when effects
can be related to specific program elements). For example, to perform a safe
over-approximation of the parts of the analysis result to invalidate, the values in
the store of all addresses written to by a directly affected component would need
to be invalidated, as well as all information transitively written by components
that read the values of any of the invalidated addresses. As this behaviour clearly
is not desirable, this is not an option we have taken either.

As stated before, the interleaving of the invalidation phase and the recomputation
phase avoids the over-approximation typically seen in the former phase, that
is, our strategies only remove information which is no longer computed by an
intra-component analysis and thereby try to remove as few valid parts of the
analysis result as possible. Furthermore, the principle of interleaving which
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1 (define (fac n)
2 (if (< n 2)
3 n
4 (* n (fac (- n 1)))))
5 (define (fac-loop n) ; Executes the `fac` function in a loop.
6 (define (loop i)
7 (if (< i n)
8 (begin
9 (display (fac i))

10 (display " ")
11 (loop (+ i 1)))))
12 (loop 0))
13 (<change> (fac-loop 10) (fac 10)) ; Updated to call `fac` directly.

Listing 5.1: A change causing components to be removed.

governs our invalidation also allows us to uphold the desired black-box view of
the intra-component analysis, ensuring a broad and general applicability of our
incrementalisation approach.

Table 5.1 outlines the developed strategies, one for each part of the result of an
effect-driven analysis: component invalidation, dependency invalidation, and
write invalidation. However, note that invalidations in one part of the result may
also impact the other parts.

5.2.2 Component Invalidation (CI)

Component invalidation (CI) removes components from the analysis result that
are no longer created by any other component, plus the dependencies related to
these components. Consider e.g., the program in Listing 5.1. The initial analysis
creates four components, shown by the component graph on top of Figure 5.1.
The change expression replaces the call to fac-loop by a call to fac; fac-loop
(and transitively loop) are no longer called. The reanalysis of Main now finds that
fac-loop is no longer called, so that fac-loop can be removed. As this was the only
component emitting a call effect for loop, this component can be removed as well.

Component invalidation uses the component graph to detect outdated components:
all components no longer transitively reachable from Main, i.e., from the entry
point of the program, can be removed. Algorithm 6 extends Inter with component
invalidation. For every component α, Inter caches Cα, the set of components called
by α’s last analysis, using a cache C. The set of dependencies Rα, cached in R,
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Figure 5.1: ModF components for the program in Listing 5.1. On top, the components after the
initial analysis of the program; at the bottom, the components after the incremental update. Arrows
depict generated call effects.

enables the efficient removal of the dependencies of deleted components (R holds
the same information as D but in the reverse order, avoiding a full traversal of D).
After the analysis of a component α, the set of components called by the analysis
of this component, C′

α, is returned. Inter then retrieves Cα, the set of components
called during the previous analysis of α, and updates the cache C (Lines 14-15). It
then computes the set containing all components that are no longer called by α.
If this set is non-empty, one or more edges were removed from the component
graph and some components may have become outdated (Line 16). In this case, the
transitive closure of C is computed, starting from Main; all components that are
not part of it are removed (Lines 17-18). All dependencies of these components are
removed too, avoiding the existence of dependencies of non-existent components.
The transitive closure is needed because a component can only be removed if
it is no longer created by any other component. Finally, R is updated (Line 20).
Note that Lines 17 and 18 will never be executed during the initial analysis of
the program. To avoid the needless but possibly expensive computation of set
differences in the condition, we first check whether an incremental update is taking
place (Line 16). For similar reasons, we do the same for dependency invalidation
and write invalidation (see Sections 5.2.3 and 5.2.4).

5.2.3 Dependency Invalidation (DI)

The second result invalidation strategy, dependency invalidation (DI), removes
outdated dependencies. Recall that dependencies correspond to emitted read
effects and thus, in the case of ModF, indicate a dependency of a component
on the value of an address in the global store. Removing dependencies ensures
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1 // Assumes the existence of a cache for the sets C’ returned by the
intra-component analyses of different components, C, initialised as
C := λα.∅ before the initial analysis, and the existence of a cache for
the sets R’ returned by the intra-component analyses of different
components, R, initialised as R := λα.∅ before the initial analysis.

2 Function deleteComponent(β) is

3 foreach r ∈ R(β) do D := D[r 7→ D(r) \ {β}]; // Delete dependencies.
4 // Remove β from all data structures.
5 V := V \ {β}; WL := WL \ {β}; R := R \ {β}; C := C \ {β};
6 end

7 while WL ̸= ∅ do

8 . . . // Same as in Algorithm 5.
9 foreach u ∈ U′

do WL := WL ∪ D(u);
10 if incremental update then

11 R := R(α);
12 foreach r ∈ (R \ R′) do D := D[r 7→ D(r) \ {α}];
13 end

14 C := C(α);
15 C := C[α 7→ C′]; // Update C immediately to use the updated C′.
16 if incremental update and C \ C′ ̸= ∅ then

17 reachable := C(Main) ∪ {β|γ ∈ reachable ∧ β ∈ C(γ)};
18 foreach β ∈ (V \ reachable) do deleteComponent(β);
19 end

20 R := R[α 7→ R′]; // Both for component invalidation and dependency
invalidation.

21 end

22 return (σ, V, D);

Algorithm 6: Inter extended with component invalidation (in blue) and dependency invalidation
(in orange).

that components are not spuriously reanalysed. Consider, e.g., the program in
Listing 5.2. Initially, the component read has a dependency on the address of the
variable x, ax. During the incremental update, the analysis of read will find a new
dependency on ay, whilst the dependency on ax can be removed. This is visualised
in Figure 5.2. Note that the store remains untouched and thus that ax remains
present in the store.

Algorithm 6 also extends Inter with dependency invalidation. The set of depend-
encies computed during the last analysis of every component α, Rα, is cached
using the cache R (also used by component invalidation). After the (re-)analysis of
a component α, Inter collects the computed dependencies, R′

α. It then fetches the
dependencies computed during the previous analysis of α from R and computes
the set of outdated dependencies which are then removed (Lines 11-12). Finally,
as for component invalidation, R is updated (Line 20).
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1 (define x 1)
2 (define y 2)
3 (define (write) (<change> (set! x 7) (set! y 7)))
4 (define (read) (<change> x y))
5 (read)
6 (write)

Listing 5.2: Example program with changing dependencies. Initially read has a dependency on the
address of variable x, ax. In the new version of the program, read solely has a dependency on ay,
the address of variable y.

Figure 5.2: Partial ModF analysis graph for the program in Listing 5.2. After the program update,
no read effect is emitted for the variable x any more. Hence, the dependency from read on ax can be
removed.

5.2.4 Write Invalidation (WI)

Write invalidation (WI) aims to increase the precision of the abstract values in the
store. It is motivated by the code in Listing 5.3. Variable x is changed from storing
symbols to strings. A strong update would overwrite the abstract value Symbol by
String in σ. A monotonic update instead joins the values together, resulting into
the less precise value {Symbol, String}. Clearly, a strong update is desired.

The values in σ are part of an abstract domain, forming a complete lattice (see
Section 2.2.1). Recall from Section 2.2.3 that the higher a value resides in the lattice,
the less precise information it represents. Write invalidation aims to lower all
values as much as possible by monitoring the values computed for every address
in σ, and by lowering values that no longer correspond to the program’s behaviour.
We first describe the required monitoring.
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1 (define (fromBool b)
2 (if b
3 (<change> 'aSymbol "aString")
4 (<change> 'anotherSymbol "anotherString")))
5 (define x (fromBool (some-complicated-predicate)))
6 (display x)

Listing 5.3: Example program. Initially, x only holds a symbol, whereas after the update it can only
contain a string.

Provenance Tracking

Values in the global store σ result from one or more writes, each monotonically
updating the value. In this process, the analysis loses information w.r.t. the
constituents and origins of the resulting values in the store. For example, when
a component α writes 1 to the address a and β writes -1 to the same address a,
σ(a) contains {Int}, without information about the values written by α and β, nor
about which components wrote these values. We introduce provenance tracking to
regain this information. For every component and address in dom(σ), the analysis
maintains the contribution of the component to the address, i.e., the join of all
values written to the address during the analysis of the component. This requires
intercepting write operations to the store but does not require modifications of the
actual intra-component analysis Intra.

Consider the case in Figure 5.3: components α and β read and write two variables,
x and y: both write y, α reads x, and β reads y. When α writes Int to y and β writes
Boolean to y, σ holds join of these values, {Int, Boolean}, for y.

During the analysis of a component α, we track, for each written address a, the
join of all values written to that address. We call this joined value the contribution
of α to a, denoted Pa,α. For every address, the contributions of all components
are cached. We call this cache the provenance of the address, Pa. We define the
provenance value of an address a as the join of all values in its provenance. For the
example of Figure 5.3, this information is shown in (c).

Non-monotonic Store Updates

The intra-component analysis perform all updates monotonically. Inter thus
has to restore precision after it has been lost. Provenance tracking enables write
invalidation to perform non-monotonic updates to σ, improving its precision.
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(a) Example analysis graph.

σ

x String
y {Int, Boolean}

(b) The global store, σ.

Pay : {Int, Boolean}
Pay ,α : Int
Pay ,β : Boolean

(c) The provenance and
contributions for ay.

Figure 5.3: Illustration of the interaction of intra-component analyses with two variables x and y
and their values in σ. The corresponding provenance of and contributions to ay are shown in (c).

This is possible when a previously written address is no longer written by a
component, and when the contribution of a component to an address changes in a
non-monotonic way.1 The code for write invalidation is shown in Algorithm 7.

Outdated writes. The analysis of a component tracks all addresses written to. For
every component α, Inter caches this set, Wα, using a cache W. After the analysis
of a component α, Inter collects the set of written addresses, W ′

α, and computes
the set containing all addresses previously written by the component that are no
longer written (Line 30). Finally, the cache W is updated (Line 32).

When the contribution Pa,α of α to an address a is removed, its provenance value,
no longer influenced by Pa,α, is used as the new value for the address (Lines 3–4).
If the provenance value equals the value at σ(a), the value at this address does
not change and deletion is completed. Else, the provenance value replaces the
value σ, thereby effectively updating the store in a non-monotonic manner. All
dependent components are scheduled for reanalysis (Line 6), allowing the new
value to be taken into account during their reanalysis, possibly leading to further

1Conceptually, the first case corresponds to the second case for which the contribution of the
component to an address has become ⊥. We treat it separately since no write to the address is
performed any more.
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refinements of the result. When an address is no longer written by any component,
all information in the analysis’ data structures related to this address can be
removed (Line 8).

More precise writes. After every intra-component analysis, Inter compares the
contribution of the component for every written address to the corresponding
contribution computed by the component’s previous analysis. Based on this
comparison, the value at the given address in σ may be updated, in which case all
dependent components are added to the worklist (Line 34). The comparison may
yield one of three possible results:

Pa,α = P′
a,α The contribution of α to a does not change. The analysis did not

compute new information and no information can be discarded (Line 14).
The value at address a in the store does not change.

Pa,α ⊏ P′
a,α The new contribution of α to a subsumes the component’s previous

contribution to the address. The update is monotonic, for which no inform-
ation can be discarded. The updated contribution is stored (Line 15) and
a new value for a is computed (Line 17). As the update is monotonic, this
value can be computed using a single join operation.

Pa,α ̸⊏ P′
a,α The contribution changes non-monotonically. In this case, the value for

a in the store can possibly be updated non-monotonically, thereby improving
its precision. The new value for a is computed by calculating its new
provenance value (Line 17), taking into account the updated contribution
P′

a,α (stored in P on Line 15).

In the second and third case, an updated value for a is computed. In the second
case, this corresponds to a monotonic update, whereas in the third case, this
corresponds to a non-monotonic update. However, in both cases there may not
be an actual update of the value of a in σ as the new value computed for a (on
Line 17) can be the same as the value already in σ. Only when the new value is
different, the dependent components need to be scheduled for reanalysis.

Reinforcing Component Invalidation

Section 5.2.2 introduced component invalidation. However, component invalid-
ation does not allow for the removal of information from σ: values written by
removed components cannot be deleted, a limitation that can be remedied by
combining component invalidation with write invalidation as follows. When a
component α is removed, all addresses in the set W(α) are treated as outdated
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1 // Assumes the existence of a cache for the sets W’ computed during the
intra-component analyses of different components, W, initialised as
W := λα.∅ before the initial analysis, and the existence of a cache P,
the provenance, initialised to P := λa.(λα.⊥) before the initial
analysis.

2 Function deleteContribution(α, a) is

3 P := P[a 7→ (P(a) \ {α})];
4 v :=

⊔
β∈dom(P(a)) P(a)(β);

5 if v ̸= σ(a) then

6 WL := WL ∪ D(a);
7 // If an address is no longer written by any component, it is

deleted. Otherwise, the store is updated.
8 if P(a) = ∅ then σ := σ \ {a}; P := P \ {a}; D := D \ {a}; else σ := σ[a 7→ v];
9 end

10 end

11 // updateAddressIncremental compares the new contribution v′ of α to a to
the previous contribution v, and improves the store if possible.

12 Function updateAddressIncremental(α, a, v′) is

13 v := P(a)(α); // Previous contribution of α to a, Pa,α.
14 if v = v′ then return false; // Identical contribution: no precision gain.
15 P := P[a 7→ (P(a)[α 7→ v′])];
16 old := σ(a);
17 new := if v ⊑ v′ then old ⊔ v′else

⊔
β∈dom(P(a)) P(a)(β);

18 if old = new then return false;
19 σ := σ[a 7→ new]; // Update the store.
20 return true;
21 end

22 while WL ̸= ∅ do

23 . . . // Same as in Algorithm 5.
24 // σ := σ′; // This line is now omitted.
25 . . . // Same as in Algorithm 5.
26 // foreach u ∈ U′

do WL := WL ∪ D(u); // This line is now omitted.
27 // W ′ computed during the intra-component analysis. W ′ is the set of

all addresses written during the component’s analysis (i.e.,
U′ ⊆ W ′).

28 if incremental update then

29 W := W(α);
30 foreach w ∈ (W \ W ′) do deleteContribution(α, w);
31 end

32 W := W[α 7→ W ′];
33 // P computed during the intra-component analysis. P maps every written

address to the join of all values written to it during the
component’s analysis.

34 foreach (a, v) ∈ P do if updateAddressIncremental(α, a, v) then WL := WL ∪ D(a);
35 end

36 return (σ, V, D);

Algorithm 7: Inter extended with write invalidation (in purple).
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1 Function deleteComponent(β) is

2 foreach r ∈ R(β) do D := D[r 7→ D(r) \ {β}]; // Delete dependencies.
3 // Remove β from all data structures.
4 V := V \ {β}; WL := WL \ {β}; R := R \ {β}; C := C \ {β};
5 W := W(β);
6 forall w ∈ W do deleteContribution(β, w);
7 W := W \ {β};
8 end

Algorithm 8: Function deleteComponent of component invalidation reinforced with write
invalidation (Lines 5–7 in purple).

writes as just described on page 97. This allows σ to become more precise, which
may in turn invoke the analysis of other components. The updated code for
component deletion is shown in Algorithm 8.

5.3 Formal Specification of the Approach

As in the previous chapter, we present a formal specification of our method.
This formal specification builds on the formal specification of Section 4.3, which
formalises the monotonic incrementalisation method presented in Chapter 4.
As we treat the intra-component analysis Intra as a black box, we only need
to update the formal specification of the inter-component analysis Inter. We
present the formal extension to the inter-component analysis in two steps: first we
formalise component invalidation and dependency invalidation (Section 5.3.1),
before extending the formal specification further by adding write invalidation
and the corresponding reinforcement of component invalidation (Section 5.3.2).
In every step, we also show the updated formal specification of the collecting
semantics, which depends on the inter-component analysis Inter.

5.3.1 Component Invalidation and Dependency Invalidation

Component invalidation and dependency invalidation each make use of a separate
cache to store the set of called components resp. dependencies inferred during the
component’s last analysis. These caches, C and R, and an explicit visited set V
now become parameters of the inter-component analysis, which as a result thereof
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now has the following signature:

Inter:
WL︷ ︸︸ ︷

P(Cmp)×
V︷ ︸︸ ︷

P(Cmp)×
D︷ ︸︸ ︷

(Addr → P(Cmp))×
σ︷︸︸︷

Store×
T︷ ︸︸ ︷

(Expr → P(Cmp))
× Π︸︷︷︸

π

× (Cmp → P(Cmp))︸ ︷︷ ︸
C

× (Cmp → P(Eff))︸ ︷︷ ︸
R

→ P(Cmp)× (Addr → P(Cmp))× Store × (Expr → P(Cmp))
× (Cmp → P(Cmp))× (Cmp → P(Eff))

For clarity, we again annotated the parameters with their role. The three extra
parameters, V, C, and R, are passed to the inter-component analysis so that the
visited set and caches can be used in the computation.

In what follows, we first give the entire formal specification of the inter-component
analysis with component invalidation and with dependency invalidation, which
is explained immediately afterwards. Thus, given the function signature above,
we now define Inter as follows:

Inter
(
∅, V, D, σ, T, π, C, R

)
=
(
V, D, σ, T, C, R

)
(a)

Inter
(
{α} ⊎ αs, V, D, σ, T, π, C, R

)
=

Inter
([

αs ∪
⋃

c(β)∈C′

β ̸∈dom(σ)

β ∪
⋃

w(a)∈U′

γ∈D(a)

γ

]
\ C−, (b)

(
V ∪ {α}

)
\ C−, (c){(

a,
(

βs \ {α}
)
\ C−

) ∣∣∣ (a, βs) ∈ D′ ∧ r(a) ∈
(
R(α) \ R′)} (d)

∪·
{(

a, βs \ C−) ∣∣ (a, βs) ∈ D′ ∧ r(a) ̸∈
(
R(α) \ R′)}, (e)

σ′,

T ∪·
⋃
·

e∈X

[e 7→ {α}],

π,

C− ◁− C[α 7→ C′], (f)

C− ◁− R[α 7→ R′]

)
(g)
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where

(C′, R′, U′, σ′, X) = Intra(α, σ, π)

reachable(βs) = {βs} ∪
⋃

β∈βs
γ∈C[α 7→C′](β)

γ (h)

C− = V \ lfp(reachable(Main)) (i)
D′ = D ∪·

⋃
·

r(a)∈R′

[a 7→ {α}]

and ◁− is the domain anti-restriction operator, which is defined as follows:

A ◁− B =
{
(a, c) | (a, c) ∈ B ∧ a ̸∈ A

}
To avoid confusion, we define the precedence of this operator so that it has a lower
precedence than the binding operator [.] but a higher precedence than ̸= and ∈.

The parts of the formal specification that are specific to component invalidation
have been coloured blue and the parts specific to dependency invalidation have
been coloured orange, matching the colours used in Algorithm 6. In the algorithm,
the variables R and C are used. In the formal specification, they respectively
correspond to R(α) and C(α). To match the names in Algorithm 6, the sets of
effects returned by Intra are now called C′, R′ and U′, in contrast to the formal
specification of Section 4.3 where they are called C, R, and U.

Inter is still defined recursively, where every step of the recursion corresponds to
the analysis of a component followed by invalidation. For some arguments of Inter,
the set-builder notation is used. Here, the predicates correspond to conditions in
the algorithm, e.g., in an if or a foreach. We now discuss the formal specification
in more detail.

After the intra-component analysis, the set of components to be removed is
computed and assigned to C− on Line (i). These are the components not in the
transitive closure of the updated C starting from Main, which is computed in (h).
For every invalidated component, its dependencies are removed (shown in (d)
and (e)), and the component is removed from the worklist (b), visited set (c), call
cache (f) and dependency cache (g). To be able to compute the transitive closure
of C, the cache is updated after every intra-component analysis in (f).

The set of dependencies to be removed from D is the set R(α) \ R′, i.e., the set of
read effects no longer emitted by the intra-component analysis of α. For all these
dependencies, α is removed, which is formalised in (d); all other dependencies
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remain untouched, as denoted in (e). Finally, to be able to perform this computation,
the dependency cache R is updated after every intra-component analysis, which
corresponds to (g) in our formal specification.

Up until now, we did not explicitly model the visited set V in the formal specifica-
tion, but we relied on the return addresses present in the store to reconstruct a
visited set in the first clause of the definition of Inter on Line (a). However, in
the presence of component invalidation without write invalidation, this approach
would result in a visited set containing too many components. The reason for this
is that without write invalidation, the return addresses from deleted components
cannot be deleted from the store. Hence, the visited set would contain deleted
components as well. For this reason, we explicitly include a visited set V in this
version of the formal specification, thereby ensuring that this set only contains
non-invalidated components at the end of the analysis as shown in (c).

In line with Algorithm 6 on page 94, deleted components are not filtered out from
T, the map from tracked expressions to sets of components. In practice, this is
necessary to avoid spurious recomputations and to preserve precision in case there
are multiple successive incremental updates. We omit this for brevity, focussing
on the core aspects of the presented invalidation strategies. We also ignore the
tests in the code to check whether an incremental update is taking place, as these
are mere optimisations. Finally, to be complete, we pose that if an unmapped
element of a map is looked up, the empty set or bottom is returned, whichever is
applicable (e.g., R(α) returns ∅ if α is has not explicitly been mapped in R).

In the formal specification of the collecting semantics, we now take into account
the extra arguments required by Inter and the extra values in the tuple it returns.
The collecting semantics for the initial program can therefore be obtained by
computing Inter

(
{Main}, [], [], [], [], Old, [], []

)
, and the incremental update of the

analysis result is computed by Inter
(⋃{T(e) | e is updated}, V, D, σ, T, New, C, R

)
,

where (V, D, σ, T, C, R) is the result of the initial analysis.

5.3.2 Write Invalidation

We now extend and adapt the formal specification of the inter-component ana-
lysis from the previous section to also incorporate write invalidation, shown in
Algorithm 7, and reinforced component invalidation, shown in Algorithm 8.

In our formal specification of write invalidation, we ignore some of the branches
and optimisations that are present in the pseudocode algorithms when they can
safely be ignored. For example, in the formal specification of the updated store σ
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and provenance cache P, we can ignore the condition in the function deleteContri-
bution which checks whether the value without the removed contribution differs
from the value residing in the store (Algorithm 7, Line 5). However, we cannot
ignore this condition in the formal specification of the worklist, as components
only need to be added to the worklist when the values are different. Another
example is the condition in the function updateAddressIncremental that checks
whether the new contribution to an address subsumes the old contribution, and
thus whether the new value for the address can be computed by a simple join of
the contribution with the value in the store or whether all contributions need to be
joined (Line 17). As this is just an optimisation, we only consider the else branch
in the formal specification.2

Write invalidation makes use of two additional caches, i.e., the write cache W and
the provenance cache P. As before, these caches are added to the parameters and
to the result of Inter. As we explicitly formalised the visited set V in the previous
paragraph, we keep it although it is not strictly needed anymore in the presence
of write invalidation. As a result, the incremental inter-component analysis with
the three result invalidation strategies incorporated has the following signature:

Inter:
WL︷ ︸︸ ︷

P(Cmp)×
V︷ ︸︸ ︷

P(Cmp)×
D︷ ︸︸ ︷

(Addr → P(Cmp))×
σ︷︸︸︷

Store×
T︷ ︸︸ ︷

(Expr → P(Cmp))
× Π︸︷︷︸

π

× (Cmp → P(Cmp))︸ ︷︷ ︸
C

× (Cmp → P(Eff))︸ ︷︷ ︸
R

× (Cmp → P(Addr))︸ ︷︷ ︸
W

× (Addr → (Cmp → Val))︸ ︷︷ ︸
P

→ P(Cmp)× (Addr → P(Cmp))× Store × (Expr → P(Cmp))
× (Cmp → P(Cmp))× (Cmp → P(Eff))× (Cmp → P(Addr))
× (Addr → (Cmp → Val))

in which we again annotated the parameters with their role. We now first show
the entire formal specification of the inter-component analysis with all three
invalidation strategies incorporated, and give the explanation immediately after-
wards. Thus, we now define Inter as follows, colouring the parts of the formal
specification specific to write invalidation purple and the parts for reinforced
component invalidation blue:

Inter
(
∅, V, D, σ, T, π, C, R, W, P

)
=
(
V, D, σ, T, C, R, W, P

)
2One condition we did not ignore is the check to see whether the provenance of an address has

become empty, meaning that an address is no longer written to by any component (Line 8).
Although this condition only serves to avoid mappings to ⊥ or empty sets, this changes the
domain of the store and the provenance cache in the implementation. Therefore, we find it
sufficiently important to formalise it as well.
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Inter
(
{α} ⊎ αs, V, D, σ, T, π, C, R, W, P

)
=

Inter
([

αs ∪
⋃

c(β)∈C′

β ̸∈dom(σ)

β (a)

∪
⋃

(a,v)∈P

{
γ
∣∣ γ ∈ D(a) ∧ σ(a) ̸=

⊔
δ∈dom(P(a)[α 7→v])

P(a)[α 7→ v](δ)
}

(b)

∪
⋃

a∈W−

{
γ
∣∣ γ ∈ D(a) ∧ σ(a) ̸=

⊔
δ∈dom(P(a))\{α}

P(a)(δ)
}]

\ C−, (c)

(
V ∪ {α}

)
\ C−,{(

a,
(

βs \ {α}
)
\ C−

) ∣∣∣ (a, βs) ∈ D′ ∧ r(a) ∈
(
R(α) \ R′)}

∪·
{(

a, βs \ C−) ∣∣ (a, βs) ∈ D′ ∧ r(a) ̸∈
(
R(α) \ R′)},{(

a,
⊔

(β,v′)∈C−◁−P(a)[α 7→v]

v′
) ∣∣∣ (a, v) ∈ P

}
(d)

∪
{(

a,
⊔

(β,v)∈(C−∪{α})◁−P(a)

v
) ∣∣∣ a ∈ W− ∧ (C− ∪ {α}) ◁− P(a) ̸= ∅

}
(e)

∪
{(

a,
⊔

(β,v′)∈C−◁−P(a)

v′
) ∣∣∣ (a, v) ∈ W ′ ◁− σ ∧ a ̸∈ W− (f)

∧ C− ◁− P(a) ̸= ∅
}

, (g)

T ∪·
⋃
·

e∈X

[e 7→ {α}],

π,
C− ◁− C[α 7→ C′],
C− ◁− R[α 7→ R′],
C− ◁− W[α 7→ W ′], (h){(

a, C− ◁− P(a)[α 7→ v]
) ∣∣∣ (a, v) ∈ P

}
(i)

∪
{(

a, (C− ∪ {α}) ◁− P(a)
) ∣∣ a ∈ W− ∧ (C− ∪ {α}) ◁− P(a) ̸= ∅

}
(j)

∪
{(

a, C− ◁− βs
) ∣∣ (a, βs) ∈ W ′ ◁− P ∧ a ̸∈ W− ∧ C− ◁− βs ̸= ∅

})
(k)
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where
(C′, R′, U′, σ′, X) = Intra(α, σ, π)

reachable(βs) = {βs} ∪
⋃

β∈βs
γ∈C[α 7→C′](β)

γ

C− = V \ lfp(reachable(Main))
D′ = D ∪·

⋃
·

r(a)∈R′

[a 7→ {α}]

W ′ = dom(P)
W− = W(α) \ W ′

and for which we assume the existence of a map P : Addr → Val, which is
computed during the intra-component analysis and which maps every written
address to the join of all values written to that address during the intra-component
analysis of α.

The definition of Inter is still recursive but has now become more complex. As
write invalidation modifies the store, it does not only impact the store but also the
worklist as impacted components need to be scheduled for reanalysis. In addition,
the provenance cache P needs to be kept consistent. As addresses can be refined
for two reasons (outdated writes and more precise writes), the updated worklist,
store, and provenance cache are constructed from multiple subsets which each
correspond to one situation. We now go into more detail on their construction.

As before, the worklist is extended with newly encountered components (shown in
(a)). However, the components to be added to the work list are no longer computed
using the dependencies of the addresses in U′. After all, more addresses may
be updated due to write invalidation than the ones updated monotonically by
the intra-component analysis. (This corresponds to the omission of Line 26 in
Algorithm 7.) Instead, dependent components need to be added to the worklist
for every written address that is updated (monotonically or non-monotonically)
and for every address that is no longer written and which is therefore refined by
write invalidation:

• In the first case, dependent components are added to the worklist when
an address is written to by the intra-component analysis of α and causes
the store to be updated (Line 34 of Algorithm 7). This corresponds to the
set constructed on Line (b) in our formal specification. This set contains all
components that depend on an address written by α and for which the value
in the store changes due to the updated contribution of α.

• In the second case, dependent components are added to the worklist when
the contribution of the component α to an address is deleted (outdated write,
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see page 97) and causes the store to be updated (Line 6 of Algorithm 7). This
corresponds to the set constructed on Line (c) in our formal specification.
This set contains all components that depend on an address no longer written
by α and for which the value in the store changes due to the retraction of the
contribution of α.

The updating of the store is the core focus of write invalidation. In contrast to
before, we no longer pass the updated store returned from the intra-component
analysis, σ′, to the recursive call of Inter as σ′ has only been updated monotonically
with regard to σ. (This corresponds to the omission of Line 24 in Algorithm 7.)
Instead, the provenance is used as explained in Section 5.2.4:

• For all addresses that are written to by the analysed component, the new
provenance value is computed using the new contribution of the compon-
ent. This corresponds to (d) in our formal specification and to Line 19 of
Algorithm 7 (ignoring the optimisation of Line 17).

• For all addresses that are no longer written by the analysed component, the
new provenance value is computed, thereby omitting the contribution of
the analysed component. This is formalised in (e) and corresponds to Line 8
of Algorithm 7.

• Finally, all other values in the store are retained, as formalised in (f).

To adhere to the condition on Line 8, in all three cases, extra conditions are placed
on the addresses to be added to the updated store, as e.g., the condition in (g).

Similar to the construction of the updated store, the updated provenance cache is
formalised in (i)–(k). Both formal specifications closely follow each other; their
construction is entirely similar (consider e.g., the equal conditions when building
the subsets forming the new store and provenance cache). In addition to the
provenance cache, the write cache also needs to be updated. This is shown in (h)
and corresponds to Line 32 of Algorithm 7.

Finally, the additions for the reinforcement of component invalidation with write
invalidation, corresponding to Algorithm 8, are shown in blue in (d)–(k). The
contributions from invalidated components are ignored when computing the
updated store and information related to these components is deleted from the
write cache and from the provenance cache.

In the final version of the collecting semantics, we again take into account the
extra arguments required by Inter and the extra values in the tuple it returns. The
collecting semantics for the initial program can now be obtained by computing
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Inter
(
{Main}, [], [], [], [], Old, [], [], [], []

)
. The incremental update of the analysis

result is computed by Inter
(⋃{T(e) | e is updated}, V, D, σ, T, New, C, R, W, P

)
,

where (V, D, σ, T, C, R, W, P) is the result of the initial analysis.

5.3.3 Memory Overhead

As in the previous chapter, we now use our formal specification to quantify the
memory overhead of the three strategies presented in this chapter. To support
these strategies, we introduced multiple data structures:

C : Cmp → P(Cmp)
R : Cmp → P(Eff)

W : Cmp → P(Addr)
P : Addr → (Cmp → Val)

Based on their signature, we can again derive their worst-case memory overheads.
For C, we find that C ∈ O(|Cmp|2). In the case of R, this is R ∈ O(|Cmp| × |Eff|)
and thus R ∈ O(|Cmp| × |Addr|). For both W and P we find a worst-case
complexity of O(|Cmp| × |Addr|) (in P there is one value per combination of a
component and an address so we do not add a term for it).

To get an indication about how much memory would be used in practice, we
can use these worst-case complexities to compute an upper bound for space
needed by the contents of the added data structures. Our implementation in
MAF is written in Scala, so that the map data structures we use contain object
references (pointers). The components and addresses pointed to also exist in the
non-incremental analysis and thus require no extra memory; only the values
stored in P may require extra memory as these values are not stored by the
non-incremental analysis. As Scala runs on the JVM, pointers typically use 8 bytes
of memory on a 64-bit architecture. Using the data on the number of addresses
and components from the previous chapter (Tables 4.3 and 4.4), we estimate that
the worst-case memory consumption of our method is in the range of (few tens of)
megabytes and that therefore the memory consumption of our method does not
become prohibitively high.

R contains the same information as D but in the reverse order. Should the memory
footprint of the incremental analysis need to be reduced, only one of both can be
kept, but the lookup of information will be slower. In addition, the information in
the store σ can entirely be derived from P as well as the information in W. At the
cost of performance, σ and W could be removed as well.
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5.4 Evaluation

We evaluated the presented strategies to answer the following research questions:

RQ 5.1. How well do the three invalidation strategies improve the precision of the
analysis, both when applied individually and when applied in combination?

RQ 5.2. What is the impact of the invalidation strategies on the time needed to
perform an incremental update?

RQ 5.3. How much does the incremental analysis reduce the analysis time com-
pared to a full reanalysis of the program?

We tested soundness of the initial analysis and the incremental update experi-
mentally (1) by ensuring that the analysis over-approximates multiple runs of
a concrete interpreter [9, 152], and (2) by comparing the incremental analysis
result to the result of a non-incremental analysis. We performed these tests for
a thread-modular analysis for a concurrent µScheme, for a function-modular
analysis, for all possible combinations of the invalidation strategies, and using
both a constant-propagation lattice and a type lattice; no unsound results were
encountered.

5.4.1 Experimental Design

Our evaluation uses a context-insensitive ModF analysis for µScheme, with a
LIFO-ordered worklist and a product lattice3. As for Chapter 4, we implemented
our contributions in the open-source MAF framework [152]. Our implementation
can be found online at https://github.com/softwarelanguageslab/maf in the
branch incremental-experiments.

Our evaluation is run on a 2015 Dell PowerEdge R730 with 2 Intel Xeon 2637
processors and 256GB of RAM, running OpenJDK 1.8.0_312 and Scala 3.1.0. The
JVM was given a maximum of 32GB RAM, and all analyses used a timeout of 30
minutes.

To evaluate the precision of the incremental update (RQ 5.1), we inspect the store
σ at the end of the analysis. For each address, we measure the precision of the
incremental update by comparing its value to its counterpart in the store of a

3The lattice represents primitive values by their possible types, except booleans which are
represented as their respective value when possible. Pointers are represented as sets of addresses
(in dom(σ)); closures and primitives are represented using sets as well. A join of two values is
the pointwise join of the corresponding elements of the product, where the join of two sets is
their union.
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full reanalysis. The proportion of addresses in the final store that contain values
equally or less precise than the values obtained by a full reanalysis shows us
how much precision can still be improved. We also compare to the store resulting
from an incremental analysis without result invalidation. Here, the proportion
of addresses in the final store that contain values equally or more precise than
the values obtained by an incremental update without invalidation shows us how
many addresses have an improved precision thanks to our strategies. We perform
these comparisons for all possible combinations of the invalidation strategies.

To evaluate the performance of our strategies (RQ 5.2 & RQ 5.3), we measure
the time needed to (1) analyse the initial program, (2) fully analyse the updated
program, and (3) perform the incremental update given a set of enabled strategies.
For (1) and (2), no strategy is enabled; the analysis will not maintain the caches
required by any strategy. For (3), the initial analysis initialises all caches used by
the strategies. Each measurement is repeated 15 times preceded by a warm-up of
up to 3 repetitions (every warm-up is limited to maximally 30 minutes). Garbage
collection is forced prior to each analysis.

To investigate a trade-off between precision and performance, we compare the
precision and performance of an incremental update using all strategies to (1) an
(imprecise but fast) update without invalidation, (2) an update using only one or
two strategies, and (3) a (precise but slow) full reanalysis.

Benchmarking Suites

Our evaluation uses two benchmarking suites.4 Each benchmark program is a
µScheme program containing real-world code, annotated with change expressions.
As such, a benchmark corresponds to program changes.

Curated Benchmarks. We extended the set of benchmark programs used for
the evaluation of the incremental ModF analysis in Chapter 4 (excluding the
machine-simulator benchmark) and curated a suite of 32 programs to which
we manually added changes resembling possible developer edits, shown in
Table 5.2. The programs originate from different sources, e.g., courses at our
university with programming exercises in Scheme, together with the solutions for
solving particular exercises, and benchmarking suites used by other researchers.
Example edits include changing representations of data structures (e.g., replacing

4In our online repository, which is available at https://github.com/softwarelanguageslab/maf
in the branch incremental-experiments, the curated benchmarks can be found in the
folders /test/changes/scheme and /test/changes/scheme/reinforcingcycles. The gener-
ated benchmarks can be found in the folder /test/changes/scheme/generated.
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Benchmark LOC #Changes Benchmark LOC #Changes

baseline 6 1 primtest 43 11
browse 164 1 cycleCreation 3 1
collatz 18 1 higher-order-paths1 4 2
fact 5 1 higher-order-paths2 4 1
fib-loop 15 1 implicit-paths 3 1
fib 5 2 ring-rotate 32 2
freeze 327 11 sat 16 4
gcipd 9 2 satCoarse 17 1
leval 379 11 satFine 13 3
matrix 617 3 satMiddle 16 3
mceval-dynamic 246 4 satRem 20 2
multiple-dwelling (coarse) 434 1 slip-0-to-1 123 6
multiple-dwelling (fine) 404 3 slip-1-to-2 117 3
nbody-processed 1252 10 slip-2-to-3 397 9
nboyer 636 2 tab-inc 317 3
peval 507 38 tab 307 3

Table 5.2: The curated benchmark suite, retrieved from various sources. For every benchmark, we
list the lines of code as counted with cloc and the number of change expressions.

lists by vectors in nbody-processed, as shown in Listing 5.4), or updating a
meta-interpreter (e.g., adding the ability to make variables immutable in freeze
or making procedures dynamically scoped in mceval-dynamic). In programs
like slip-0-to-1, slip-1-to-2, and slip-2-to-3, edits convert the program to
a later version. A new abstraction is introduced and used throughout peval,
which is shown in Listing 5.5. Some edits were constructed to be tricky for an
incremental update to process accurately, as they trigger cyclic reinforcement of
lattice values [130, 133] (see Section 5.4.2). Also, certain programs contain the same
changes but use a different granularity of change expressions; this is e.g., the
case for multiple-dwelling (coarse) and multiple-dwelling (fine), and for
satFine, satMiddle, and satCoarse. The runtimes of the initial analyses of the
programs in the curated benchmarking suite vary from 0s to 117s.

Generated Benchmarks. We automatically generated 5 mutations for each of
190 programs, originating from various sources, obtaining 950 programs. We
use a set of edit patterns of one or more change expressions that are inserted
randomly, with a certain probability and at an arbitrary depth in the program. We
consider the following patterns: expression deletion (7.5%), inserting a random
sub-expression, possibly wrapped in a call to display (5%), swapping expressions
(10%), wrapping an expression with a call to the identity function (7.5%), negating
the predicate of an if (7.5%), and swapping the branches of an if (7.5%). A
valid mutation has at least one edit, is unique, and does not lead to an error after
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1 ...
2 (define make-raw-pt
3 (lambda (pt-1 pt-2 pt-3)
4 ((<change> list vector) '<pt> pt-1 pt-2 pt-3)))
5 (define pt?
6 (lambda (obj)
7 (if ((<change> list? vector?) obj)
8 (if (= ((<change> length vector-length) obj) 4)
9 (eq? (<change> (car obj) (vector-ref obj 0)) '<pt>)

10 #f)
11 #f)))
12 (define pt-1
13 (lambda (obj)
14 (if (pt? obj)
15 (void)
16 (error 'pt-1 "~s is not a ~s" obj '<pt>))
17 (<change> (cadr obj) (vector-ref obj 1))))
18 ...

Listing 5.4: Excerpt from the nbody-processed benchmark program.

1 ...
2 (define tagged-list? (<change> #f (lambda (l tag) (eq? (car l) tag))))
3 ...
4 (define (beta-subst exp env)
5 (define (bs exp)
6 (cond ...
7 ((or (<change> (eq? (car exp) 'let) (tagged-list? exp 'let))
8 (<change> (eq? (car exp) 'letrec) (tagged-list? exp

'letrec)))↪→

9 (list (car exp)
10 (map (lambda (x) (list (car x) (bs (cadr x)))) (cadr

exp))↪→

11 (bs (caddr exp))))
12 ...
13 (else
14 (map bs exp))))
15 (bs exp))
16 ...

Listing 5.5: Excerpt from the peval benchmark program.

running it with a µScheme interpreter for one minute. The runtimes of the initial
analyses of the programs in the generated benchmarking suite vary from 0s to
148s, most programs complete in under 10s.
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An excerpt from a benchmark program with generated code changes is shown in
Listing 5.6.

1 (letrec ((false #f)
2 (true #t)
3 (create-stack
4 (lambda (eq-fnct)
5 (let ((content ()))
6 (letrec (...
7 (dispatch
8 (lambda (m)
9 (if (eq? m 'empty?) empty?

10 (if (eq? m 'push) push
11 (if (eq? m 'pop) pop
12 (if (eq? m 'top) top
13 (if (eq? m 'is-in) is-in
14 (error "unknown request --

create-stack"
m)))))))))

↪→

↪→

15 dispatch)))))
16 (let ((stack (create-stack =)))
17 (if ((stack 'empty?))
18 (if (<change> (begin ((stack 'push) 13) (not ((stack 'empty?))))
19 (not (begin ((stack 'push) 13) (not ((stack

'empty?))))))↪→

20 (if ((stack 'is-in) 13)
21 (<change>
22 (if (= ((stack 'top)) 13)
23 (begin
24 ((stack 'push) 14)
25 (= ((stack 'pop)) 14))
26 #f)
27 #f)
28 (<change>
29 #f
30 (if (= ((stack 'top)) 13)
31 (begin
32 ((stack 'push) 14)
33 (= ((stack 'pop)) 14))
34 #f)))
35 #f)
36 #f)))

Listing 5.6: Excerpt from the R5RS_ad_stack-4 benchmark program. In this program, two change
patterns were inserted: the predicate of an if expression is negated (Lines 18–19) and the branches
of another if expression were swapped (Lines 21–34).
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5.4.2 Precision Evaluation (RQ 5.1)

We evaluate the precision improvement caused by our invalidation strategies
as follows. On every benchmark program, and for all possible configurations,
we count the percentage of addresses in σ that are less precise than a full
reanalysis. Figure 5.4 depicts the results of our precision evaluation. These allow
us to (1) evaluate the precision improvement caused by the application of the
presented strategies, and (2) to see whether additional opportunities for precision
improvement are possible. As a precision improvement of σ can only be expected
when write invalidation is enabled, we only show results for an incremental
update without result invalidation, with write invalidation, and with all strategies
enabled (where component invalidation is reinforced by write invalidation).
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Figure 5.4: Precision of values in σ after an incremental update compared to a full reanalysis. Bars
represent the percentage of addresses in σ of an incremental update whose values match a full
reanalysis. In grey, precision of an incremental update without invalidation is shown. In dark green,
the additional percentage of matching addresses due to write invalidation (WI) is shown. In light
green, the further additional percentage of matching addresses using all strategies is shown. The
rightmost bar shows the geometric mean of all benchmarks in the generated suite.
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Configuration Q1 Q2 Q3

No invalidation 73% 98% 100%
WI 97% 100% 100%
CI-DI-WI 100% 100% 100%

Table 5.3: Precision of values in σ after an incremental update compared to a full reanalysis.
Percentages indicate the number of addresses in σ of an incremental update whose values match
a full reanalysis. The table shows the quartiles of the distribution of these percentages among
all programs in the generated suite, for an incremental analysis without invalidation, with write
invalidation, and with all strategies.

Precision Improvements over Naive Incremental Analysis

For the curated suite, in some cases such as higher-order-paths1, we observe a
big precision improvement. On other programs, the improvement remains minor.
fib-loop shows that reinforcing component invalidation with write invalidation
can lead to additional precision improvements. On benchmarks such as browse
and nbody-processed, the benefit is smaller, though browse now reaches full pre-
cision. Unexpectedly, and only for slip-0-to-1, the reinforcement of component
invalidation with write invalidation decreases the precision: when only write
invalidation is enabled, 115 out of 193 values in σ (59.6%) are precise but when
all strategies are enabled, just 112 out of 192 values (58.3%) are precise (this is
not shown on the figure). The reason for this seems to be that, although sound,
the obtained fixed-point depends on the analysis order of the components. On
the generated suite, the number of imprecise values in the store is reduced by
15%pt.-20%pt. on average (geometric mean over all generated benchmarks): there
is an improvement of about 10%pt. with write invalidation and an additional
improvement of about 10%pt. when using all strategies.

Table 5.3 shows the quartiles of the distribution of the store’s precision among
all benchmarks in the generated suite for the same configurations. Without
invalidation, more than 50% of all benchmark programs do not achieve full
precision. However, using all strategies, the analysis reaches full precision on
most benchmarks. The table shows the added benefit of reinforcing component
invalidation with write invalidation.

Remaining Imprecision in the Analysis Result

Figure 5.4 also shows remaining possibilities for precision improvement. On 13
curated benchmarks for which the incremental update without invalidation did
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not achieve full precision, the update with all strategies now does (indicated by a
bar reaching 100%). However, on other benchmarks, more improvements remain
possible.

The precision of σ influences the control flow explored by the analysis, and
so the number of components and dependencies: precision gains due to write
invalidation can lead to the invalidation of components and dependencies when
all strategies are enabled. Of course, component invalidation and dependency
invalidation can also be beneficial without write invalidation, though only write
invalidation can propagate precision gains to other components through the store.

The imprecision in σ is worsened by our change representation: change expressions
always require an old and new expression. For example, to introduce a new variable
in a program, a placeholder value for the old program needs to be used, e.g., #f
(false): (define x (<change> #f 10)). As this value will reside in σ and cannot
be removed by the incremental update when write invalidation is not enabled,
some values in σ may be artificially imprecise. However, imprecision still remains
for some benchmarks when write invalidation is enabled. One reason we found
is cyclic reinforcement of lattice values [130, 133], which arises when, due to the
abstractions in the analysis, the computation of a value at an address is influenced
by the value at that address itself, thereby influencing its own provenance.5 Write
invalidation cannot restore the precision of values in such a cycle. We also believe
that this phenomenon causes the result to depend on the worklist order, e.g., when
a value is refined before being introduced into a cycle, the cycle will be more
precise than when refining would have taken place afterwards. This, however,
does not have a negative impact on the soundness of our method.

Remark on Component Invalidation

For completeness’ sake, we find it important to note that when component
invalidation is used without write invalidation, the worklist order may affect
the analysis result and thus the precision of the analysis. In this case, situations
may arise where a component α that is to be deleted may cause a store change,
depending on whether this component gets analysed first and thereby causes
the store change or on whether another component β is analysed first and causes
component invalidation to remove α. When write invalidation is enabled, this
situation is avoided as the contributions of deleted components are removed. Since

5Some programs in our curated suite, such as cycleCreation and implicit-paths, have been
created explicitly to contain this behaviour.
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write invalidation has always been enabled for the results shown in Figure 5.4 and
in Table 5.3, this situation thus could not arise and thus could not have affected
our results.

As stated above, only in the presence of cyclic reinforcement of lattice values, there
may be an influence of the worklist order in a limited number of cases. As we only
noticed a minor effect for one benchmark program, we do not expect this matter
to influence our results nor our answer for RQ 5.1.

Answer RQ 5.1. Only write invalidation can improve the precision of the
global value store, σ. Write invalidation significantly improves the precision
of values for a limited number of curated benchmarks. Maximal precision is
reached for 13 extra benchmarks when using all strategies, i.e., using reinforced
component invalidation. For other curated benchmarks, a large percentage of
addresses remains less precise. We also observe a large improvement on the
generated suite, though several addresses still remain imprecise. Once again,
the combination of component invalidation and write invalidation leads to a
substantial additional precision improvement.

5.4.3 Performance w.r.t. No Invalidation (RQ 5.2)

Figure 5.5 shows the results of the performance evaluation for RQ 5.2. Times
are shown relative to an incremental update without invalidation. Component
invalidation and dependency invalidation do not cause a significant slowdown
of the incremental analysis. A slowdown appears when using write invalidation,
but, overall, the incremental update remains faster than a full reanalysis (see
Section 5.4.4). This slowdown can be explained as follows. As write invalidation
refines σ, updates may trigger the reanalysis of components, leading to further
reanalyses and impacting performance. On the curated benchmarks, this increase
in running time is more moderate for the combination of component invalidation
and write invalidation.

Component invalidation and write invalidation combined reduce, in some cases,
the analysis time as outdated components are not analysed anymore. Also, write
invalidation may create more opportunities for component invalidation: when
values become more refined, this may lead to more outdated components, which
may in turn lead to an improvement of values in σ.

117



Chapter 5. Three Strategies for Precision Recovery

CI WI CI-DI-WI
Curated (32 programs)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Ti

m
e 

re
la

tiv
e 

to
 n

o 
st

ra
te

gi
es

CI WI CI-DI-WI
Generated (950 programs)

10 2

10 1

100

101

102

Ti
m

e 
re

la
tiv

e 
to

 n
o 

st
ra

te
gi

es

Figure 5.5: Analysis time of the incremental update relative to an incremental update without
invalidation. Benchmarks for which the incremental update completed in 0ms have been omitted
from the graphs because a relative time cannot be computed. The horizontal red line at 1 marks the
normalised analysis time needed by an incremental update without invalidation. Data points below
this line indicate execution times that are shorter than an incremental update without invalidation,
whereas data points above this line indicate execution times that take longer than an incremental
update without invalidation.

Answer RQ 5.2. Component invalidation and dependency invalidation have
no substantial negative impact on the running time of an incremental update.
Only write invalidation causes a slowdown: as write invalidation regains
precision, changes to σ may cause components to be scheduled for reanalysis.

5.4.4 Performance w.r.t. a Full Reanalysis (RQ 5.3)

Figure 5.6 shows the results of our performance evaluation for RQ 5.3. Times are
shown relative to the time needed by a full reanalysis.

For the curated suite, overall, the incremental update is faster than a full reanalysis.
The medians are consistently under 0.2, meaning that on more than half of the
benchmark programs, the incremental update is more than 5 times faster. When
both component invalidation and write invalidation are used, we see one outlier
which corresponds to the primtest benchmark for which the running times are
very low, meaning that there is no opportunity for the incremental analysis to
gain time.
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Figure 5.6: Analysis time of the incremental update relative to a full reanalysis. Benchmarks for
which the full reanalysis completed in 0ms are counted but have been omitted from the graphs
because a relative time cannot be computed. The horizontal red line at 1 marks the normalised
analysis time needed by a full reanalysis of the updated program. Data points below this line
indicate execution times that are shorter than a full reanalysis, whereas data points above this line
indicate execution times that take longer than a full reanalysis.

The results of the generated suite are grouped based on the time taken by the initial
analysis and the full reanalysis. The slowdown caused by write invalidation is most
outspoken for short-running generated benchmark programs, where the overhead
of the strategies may be relatively high. When both the initial analysis and full
reanalysis complete in under a second, and when both analyses run a second
or longer, overall, the incremental update remains faster than a full reanalysis.
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Although write invalidation may cause minor slowdowns, the incremental update
can be more than 10× faster compared to a full reanalysis. On programs that
have an initial analysis taking a second or more but a shorter full reanalysis,
the incremental update is slower: for almost all configurations, the incremental
analysis takes at least as long as a full reanalysis for most benchmarks, with
median slowdowns of up to 100 and outliers showing slowdowns larger than 1000.
It is difficult to pinpoint the exact root cause for each performance difference. We
list several possible reasons that may explain this behaviour:

• The change representation may cause less result reuse. In our implement-
ation, change expressions cannot be placed at any program point. Some
changes must be represented through coarse-grained change expressions.
For example, to rename a function parameter, the change expression must
wrap around the entire function definition, thus components corresponding
to the function cannot be reused.

• The generated programs may contain too many changes, leading to a lot of
impacted components: 25 programs have over 30 changes and 79 programs
have over 20 changes. On almost half of the programs, more than 20% of the
components is directly affected. This impacts the ability of the incremental
analysis to efficiently update the result. As many components are affected,
the incremental analysis has to reanalyse all these components. Moreover,
lots of other components may be indirectly affected so that the analysis may
not be able to benefit from its effect-driven modular design which bounds
the impact of the changes.

• Changes may significantly alter program behaviour. 33 benchmarks had
a long-running initial analysis and short-running full reanalysis. In these
cases, the incremental analysis performs very poorly. It is possible that
the randomly inserted changes prune away a lot of program functionality,
leading to a very fast reanalysis, whereas an incremental update needs to
propagate information deletion. Although we haven’t verified the behaviour
of all benchmarks individually, the reduced running time of the full analysis
indicates that in these cases, an incremental update is inadequate due to the
nature of the program changes.

• No dedicated worklist algorithm is used. Components may be scheduled for
analysis due to newly inferred information or due to invalidation, but neither
is prioritised. By intertwining recomputation by invalidation, information
may be added or removed in an unspecified order; information may be
removed that is later readded, or vice versa. We assume that the analysis
of components in an unordered way may negatively impact the analysis
performance.
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To improve performance, future work should consider imposing an order on the
worklist. It may also be useful to investigate heuristics to determine which changes
would better be processed by a full reanalysis, e.g., when a program update leads
to a big removal of program functionality.

Answer RQ 5.3. On the curated suite, on the short-running generated bench-
marks, and on the generated benchmarks with a long-running initial analysis
and reanalysis, overall, the incremental update is faster than a full reanalysis.
Yet, on the generated benchmarks with a long-running initial analysis but
with a short-running full reanalysis, almost all incremental updates are slower.
The nature of the changes may be to blame for this: a very fast reanalysis
may indicate a serious reduction in program behaviour, in which case the
incremental update has to invalidate many parts of the result, causing high
relative runtimes.

5.5 Conclusion

This chapter presented three complementary invalidation strategies to improve
the precision and performance of the method to incremental effect-driven static
analysis presented in Chapter 4. These strategies are built on top of an invalidation
principle that interleaves the reanalysis of components with invalidation. The
first strategy, component invalidation, removes outdated components and their
dependencies, and, when combined with write invalidation, can also improve the
precision of the values in the store σ. The second strategy, dependency invalidation,
removes outdated dependencies. Finally, the third strategy, write invalidation,
uses provenance tracking to retract and replace outdated contributions from
components to the global value store σ, enabling non-monotonic updates.

We tested our strategies for unsoundness and evaluated their precision and
performance empirically on real-world programs using a small suite of 32 programs
with possible developer edits and a large corpus 950 of programs with generated
edits. Our strategies allow the incremental analysis to reach the same result as a
full reanalysis on 13 more programs in the curated suite in comparison to when
none of the proposed strategies is used. On other programs, the precision loss
is reduced, yet the results did not match the precision of a full reanalysis. For
the generated suite, using all strategies, on average, the number of less precise
addresses in σ is reduced from 30% to about 10%. The best improvements were
realised by the combination of write invalidation with component invalidation.
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Performance-wise, overall, the incremental analysis scores well. We did find
some benchmarks with particular program changes for which the incremental
update proved to be slower than a full reanalysis, e.g., in 33 of the 950 programs
in the generated suite where the changes removed a big part of a program’s
functionality. Future work should include handling cyclic reinforcement of lattice
values, stratifying the worklist of the analyses, and investigating heuristics for
triggering a full reanalysis rather than an incremental update.

Method to incrementalise an effect-driven analysis (part 2).

To improve the precision of an effect-driven analysis incrementalised according
to the method presented in Chapter 4, take the following steps:

• Intercept calls to the global store of the analysis and keep track of
all values written by the components. For each address, store the
contribution of every component that has written to it.

• After every intra-component analysis, collect the set of generated effects
and use them to determine the outdated parts of the analysis result.

– Determine which components and dependencies are outdated and
remove them. For every deleted component, remove its dependen-
cies and retract its contributions to the global store.

– For every address that is no longer written by the intra-component
analysis, remove the contribution of the component.

– For every address that is written by the intra-component analysis,
compute the new value based on the new contribution of the
component and the provenance.

If the store is updated while executing the above steps, add the depend-
ent components to the worklist of the analysis.

• Ensure that all caches are updated after the invalidation step.
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6
Conclusion

Static analysis is a widely-used technique to ensure the quality of software and
the absence of certain bug types prior to the execution of a program. However,
complex static analyses on large code bases may take a long time to run, certainly
when a high precision is required. This may make such analyses difficult to fit
into the development process. To increase the usability of analyses and the fix rate
of defects, developers must receive analysis feedback fast, preferably as part of
their build or within their IDE.

To speed up static analysis in the presence of program updates, incremental
analyses can be employed. Upon a program change, such analyses reuse and
update the previous analysis result, thereby avoiding needless recomputations and
aiming to produce the analysis result faster. In the literature, bespoke incremental
analyses are tailored to a specific purpose and application domain. Incremental
analysis frameworks provide incrementalisation for analyses specified within the
framework. In this dissertation, we took a different approach and presented a
method to incrementalise existing effect-driven static analyses.

This chapter summarises the dissertation, recapitulates our contributions, and
presents possible directions for future research on this topic.

6.1 Summary of the Dissertation

Chapter 1 presented the context of our research and introduced the need for
incremental static analysis.
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In Chapter 2, we covered supporting material. First, we introduced the broad,
general principles of static analysis and approximation. Second, we zoomed in
on lattices as a means to represent abstract values in a static analysis. Third, we
covered effect-driven static analysis, the analysis design for which we provide an
incrementalisation method in this dissertation, and presented a formal specification
of and a visual representation for this analysis design.

Chapter 3 surveyed the state of the art in incremental static program analysis. First,
we introduced the concept of incremental static analysis as an analysis technique
that reuses and updates results when changes are made to the analysed program.
Next, we gave an overview of the change representations used in the literature. We
divided the related work on incremental static analysis into two main categories
– bespoke incremental analyses, which are designed for a specific purpose, and
incremental analysis frameworks, which take care of the incrementalisation of
analyses specified in the framework – and discussed the literature for both. We
found that a gap in the literature on incremental static analysis is a step-by-step
incrementalisation method, applicable to a broad class of existing analyses, which
precludes the need to redevelop an analysis from scratch to render it incremental.

In Chapter 4, we first introduced change expressions, which we use to represent
program changes. We then presented a monotonic approach to render effect-
driven analyses incremental. The presented method consists of two steps. First, a
change-impact calculation infers which components have been impacted directly
by the changes and adds them to the worklist. Then, the analysis result can be
updated by restarting the fixed-point computation of the inter-component analysis.
Due to the effect-driven nature of the analysis, all directly and indirectly affected
components are reanalysed, thereby propagating the changes through all parts of
the analysis result. However, the result is updated monotonically, meaning that
outdated parts of the result cannot be invalidated and, therefore, imprecision may
arise in the result.

To improve the precision of the resulting incremental analysis, Chapter 5 in-
troduced three complementary strategies for result invalidation: component
invalidation, dependency invalidation, and write invalidation. Each strategy re-
fines one part of the analysis result: the set of components, the dependencies, and
the contents of the global value store σ. At the heart of these strategies lies the
principle of interleaving the invalidation and the recomputation phases of the
incremental analysis. This allows maintaining a black-box view of components
and avoids over-approximation in the invalidation phase, ensuring the broad
applicability of our approach and allowing as many parts of the analysis result to
be reused by an incremental update as possible.
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6.2 Recapitulation of the Contributions

In this dissertation, we made several contributions to the state of the art in
incremental static program analysis.

In Chapter 4, we presented a novel method to incrementalise effect-driven analyses.
Our approach is based on computational dependencies within the program, which
are reified by the analysis. The division of the program into modules and of the
analysis into components enables bounding the impact of changes to the parts
of the analysis that are affected. We kept our approach as general as possible by
treating the actual analysis and the components under analysis as black boxes.
This allowed, for example, applying our method to both a function-modular and
a thread-modular effect-driven analysis.

In Chapter 5, we presented three complementary strategies to improve the precision
of the resulting incremental analysis. In contrast to many other incremental static
analyses, the analysis interleaves the invalidation phase with the recomputation
phase and thereby allows us to uphold the black-box view of components.

We presented a formal specification of our method and evaluated it for sound-
ness, precision, and performance in different settings. To evaluate the resulting
incremental analysis, we compiled two sets of programs with change expressions:
a smaller curated suite containing programs with real-world changes and a bigger
suite containing programs with generated changes. Our results show that our
method is sound, and that, overall, the resulting incremental analysis outperforms
a from-scratch analysis although, only in the presence of cyclic reinforcement of
lattice values, imprecision may still occur in the analysis result.

6.2.1 Recipe for the Incrementalisation of Effect-driven Static Analyses

We now summarise the incrementalisation method for effect-driven static ana-
lyses presented in this dissertation. The following steps need to be taken to
incrementalise an effect-driven analysis using our method:
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• Add expression tracking to the intra-component analysis to track which
expressions are encountered during the analysis of every component. For
every expression, store the components for which the intra-component
analysis encountered the expression (see Section 4.2.11).

• Intercept write calls to the global analysis state, i.e., to the global store,
during the intra-component analysis. For every written address, keep track
of the join of all values written during the intra-component analysis.

• After every intra-component analysis, collect the set of generated effects and
use them to determine the outdated parts of the analysis result as follows:

– If some call/generation effects are no longer inferred, compute the set of
live components by computing the transitive closure of the component
graph starting from Main. Remove all components not in this set as
well as their dependencies (see Section 5.2.2). In addition, retract the
contributions from the deleted components to the global store (see
Section 5.2.4, page 98). If the store is updated, add the dependent
components to the worklist.

– For every read effect no longer inferred, remove the corresponding
dependency (see Section 5.2.3).

– For every address that is no longer written by the intra-component
analysis, remove the contribution of the component (see Section 5.2.4).
If this updates the store, add the dependent components to the worklist.

– For every address that is written by the intra-component analysis,
compute the new value for the address based on the tracked written
values and the provenance (see Section 5.2.4). Again, if this updates the
store, add the dependent components to the worklist.

• Ensure that all caches are updated after the invalidation step.

Once the analysis has been incrementalised, the following steps are to be taken to
perform an incremental update (see Sections 4.2.1 and 4.2.2):

1. Determine the set of expressions that are affected by the source code changes.
Add all components for which the intra-component analysis encountered
an affected expression to the worklist of the analysis. Depending on the
contents of the analysis data structures, update these data structures first if
necessary, e.g., to account for new source code locations. (In this dissertation,
we avoided this necessity by the use of change expressions.)

2. Restart the fixed-point computation of the inter-component analysis.

1As mentioned in this section, for some types of effect-driven analysis, e.g., for a ModF analysis,
the affected components can also be inferred lexically from the source code. In this case, the
tracking of expressions is not needed.
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6.3 Limitations and Future Work

In this section, we put forward some possible directions for future work on our
incrementalisation method.

6.3.1 Applying the Method to Other Analyses

The method to incrementalisation which we introduced in this dissertation is
focussed on effect-driven analyses. One of the key points of our method is its
generality, as we kept a black-box view of components and ensured that the
method does not rely on a specific client analysis, lattice, or context-sensitivity. In
Chapter 4, we applied it to both a function-modular and a thread-modular analysis;
in Chapter 5, we focused on a function-modular analysis alone. Consequently, we
think a first interesting avenue for future work is the application of our method to
multiple different effect-driven analyses, allowing for a comparative study on the
impact of module granularities, for example.

Another possibility is to render the intra-component analysis incremental as well.
In earlier work [144], we already incrementalised an AAM-based intra-component
analysis that was used by a thread-modular effect-driven analysis. However, in this
work, the inter-component analysis remained non-incremental. Future work could
hence explore the influence of the use of incremental intra-component analyses
in combination with the incremental inter-component analysis presented in this
dissertation.

Finally, we think that it would also be interesting to see how well the method
suits several other types of analyses. Applying (and adapting) our method to
different types of analyses and in different settings can be useful to demonstrate its
applicability and generality in practice, although the performance and precision
of the resulting incremental analyses in these settings need to be investigated
for every situation. Moreover, this also yields a concrete comparison between
the incremental analyses resulting from the application of our method and
other incremental analyses. In this sense, our incrementalisation method could
present an alternative to the development of bespoke incremental analyses for a
broader range of analyses, thereby reducing the development effort for incremental
analyses. The remainder of this paragraph discusses two possible domains to
which our method may be (adapted and) applied to demonstrate its generality.

The original motivation for the effect-driven analysis design is to avoid the presence
of a visited set in machine-based analyses which needs to be traversed for every
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state that is removed from the worklist [96]. However, in practice, effect-driven
analyses require the traversal of the set of visited components to determine
whether a discovered component, indicated by a call effect in ModF, needs to
be added to the worklist. In this sense, effect-driven analyses can be seen as
traditional machine-based analyses, such as e.g., Abstracting Abstract Machines
(AAM) [52, 153, 154] and Abstracting Abstract Control (AAC) [51] analyses, with
global-store widening, larger states, and where states are selectively added to the
worklist upon a change of the global store. The latter contrasts with AAM and AAC
analyses, where states may be revisited due to non-relevant changes in the store.
Also, since states are larger in effect-driven analyses, the set of visited components
is smaller than the visited set in AAM and AAC analyses. Thus, as effect-driven
analyses are related to AAM and AAC analyses, we think it would be interesting
to investigate (1) whether our method scales well to an effect-driven analysis
with fine-grained states, like the states of an AAM analysis, and (2) whether our
method can be applied directly to AAM and AAC analyses without global-store
widening. In the latter case, we exclude global-store widening as AAM analyses
do not reify the computational dependencies related to the use of the store; only
the discovery of new states is explicit. This, however, creates a different setting for
the application of our method, with many small states and no read or write effects.
In this case, the techniques of dependency invalidation and write invalidation
would therefore become obsolete.

In Section 2.3, we defined a modular static analysis as an analysis that is de-
composed into the analysis of possibly inter-dependent parts called components,
which are analysed separately. When dependencies between components are
circular, the reanalysis of components may be needed. In their seminal paper
on modular static analysis, however, Cousot and Cousot [30] adhere to a more
strict definition of modularity, that is essentially compositionality, where circular
dependencies between components must be broken and for which methods are
presented in their work. For this reason, we think that an interesting direction for
future work may be to investigate how well our incrementalisation method can
be applied to (other) modular analyses, where no circular dependencies between
components arise and where the structure of a possible global analysis state may
differ.

6.3.2 More Flexible Change Representation

To represent changes, we introduced change expressions in Section 4.1. Although
this change representation was sufficient for our study of incremental static
analysis, we found that change expressions provided no flexible means to represent
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changes. First, change expressions could not be placed everywhere. This hampered
result reuse, as e.g., the addition of a parameter to a function would need to be
encoded using an entirely new function definition, meaning that the corresponding
component(s) could not be reused by an incremental function-modular analysis.
Second, change expressions always require an old and a new expression. When
no old or new expression was available, e.g., upon the addition of an expression,
the expressions #f or ()were used to indicate the absence of an expression.

Engineering wise, the benefit of change expressions is that both program versions
are stored as one, meaning that the internal data structures of the analysis do not
need updating. Although we argued that this does not have an impact on our
results, we think that a different change representation would facilitate a more
extensive evaluation of the presented method: another change representation
may not only approach a real-life operation setting for incremental analyses (e.g.,
an IDE or continuous-integration system) more closely and, ideally, allow easy
integration; it could also facilitate the curation of benchmarks to support the
evaluation for different settings and allow the representation of some fine-grained
changes that were not easily expressible using change expressions.

6.3.3 Handling Cyclic Reinforcement of Lattice Values

Even when applying the three strategies for precision recovery introduced in
Chapter 5, incremental updates may still lose precision. Although the precision
loss may be acceptable for a single incremental update, successive incremental
updates may exacerbate the precision loss, leading to a degraded precision and
usability.

In Section 5.4.2, we pinpointed the cause of this precision loss to be cyclic reinforce-
ment of lattice values [130, 133], a situation in which the computation of an abstract
value in the analysis is influenced by the abstract value itself, directly or indirectly.
Such a situation can arise due to the abstractions made by the analysis, which
allow circularities to arise.

Listing 6.1 shows a very simple program that causes cyclic reinforcement of
lattice values in the analysis. It consists of a function that subtracts one from its
argument, using assignment, and returns the new value. The fact that the function
uses assignment is critical, as it affects the data flow (and thus the information
flow [31, 147]) within the analysis as follows. When the function f is called, the
abstract value of the literal 10 is bound to the variable n and therefore stored in
the global store σ at the address of n. Upon the assignment of n, the value stored
at the address of n is read from the store, 1 is subtracted, and the resulting value
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1 (define (f n)
2 (set! n (- n 1))
3 n)
4 (f 10)

Listing 6.1: Simple example program causing cyclic reinforcement of lattice values in the analysis.

is written to the store at the address of n, where the original value was read from.
Hence, a value flow is created from (the value at) the address of n to itself, that is,
the flow is now cyclic: the value at the address of n is computed using the value
at that address itself! Afterwards, the value at the address of n is assigned to the
return value of f after which it gets assigned to the return value of Main.

Due to this cyclicity, write invalidation cannot remove reinforcing cycles as the
intra-component analysis remains monotonic. Suppose a type lattice is used.
Continuing the previous example, two components contributed to the value of n,
that is, both Main and f wrote Int to the address. Assume the program is now
updated and f is now called with 10.5. In this case, the contribution of Main
is updated in a non-monotonic manner as it becomes Real. However, although
ideally we expect the value of n to become Real, this non-monotonic update results
in write invalidation generating the value {Int, Real} for n, as the contribution
of f remains Int. Even though the only original source of the value Int has
disappeared, this value cannot be removed due to the cyclic information flow
within the analysis.

We have, however, already started research on the invalidation of reinforcing
cycles. Next, we briefly describe this preliminary, unpublished research, and its
challenges, on a high level. Although our approach to handle reinforcing cycles
has not been finalised, we have already obtained promising first results. Yet, the
finalisation of this approach remains future work.

To detect where cyclic information flows are present within the analysis, the
information flows need to be tracked. We track the flows of information between
values in the store, to determine how the values at certain addresses in the store
influence each other. This data constitutes a graph, the information flow graph,
where the nodes are the addresses in the store and the edges (transitively) indicate
that the value at an address depends on the value at another address. This graph can
then be checked for cycles, or, more precisely, for strongly-connected components
(SCCs), which indicate cyclic reinforcement of lattice values. After every intra-
component analysis, the strongly-connected components in the information flow
graph can be computed, and it can be established which SCCs need to be refined.
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We refer to these SCCs of addresses as strongly-connected addresses, or SCAs for
short: the value of every address in an SCA influences the value of every other
address within the SCA.

Unfortunately, to accurately compute the information flow graph, the black-box
view of components can no longer be held: to compute the information flow
graph, the intra-component analysis may need to be modified to trace how values
influence each other, if this information flow is not already computed as part of
the analysis. In our preliminary work, we have managed to do this with minor
modifications. For this, we rely on the labelling of values with the set of addresses
they are influenced by. When a value is read from the store, it is labelled with the
address it is read from. When a value is written to the store, its labels are removed
and stored separately, indicating that the written address was influenced by the
addresses in the labels. Labelling the values should not cause any updates to the
actual semantics of the analysis. However, some changes are required, taking into
account the differences between explicit and implicit information flow [31, 147]:

• Explicit information flow or data dependence can be traced by propagating
the labels in the semantics during value computation. If an operation is
executed, e.g., an addition of two numbers, the result carries the union of
the labels of all arguments. If two values are joined by the analysis, then so
are their labels.

• Implicit information flow or control dependence is caused by branching and
dynamic function calls. For example, the execution of a conditional branch is
dependent on the condition, although there is no explicit information flow.
To this end, the labels of the condition need to be taken into account during
the analysis of the branch and in the result of the conditional.

• In addition, it needs to be traced how literal values and data structures in
the program influence the values in the store. Although literal values are
lexical elements of the program text, their corresponding value may end up
in the store in addresses that are part of an SCA.

In prior work, we already presented the computation of intra-component informa-
tion flow along these lines but in a non-incremental setting [147].

An SCA needs to be refined if one of three conditions is met:

• an externally incoming value, i.e., a value at an address in the store that is not
part of the SCA but from which there is a flow of information to an address
in the SCA, is updated non-monotonically;

• a value in the store is no longer externally incoming or the SCA is (partially)
broken;
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• a literal value is no longer used to compute the value for an address in the
SCA.

To refine an SCA, the values of the addresses within the SCA don’t need to be set all
the way to bottom. This would remove all information at the addresses in the SCA
even though part of the information may come from outside the SCA. Moreover,
this may cause a big invalidation pass if the intra-component analysis halts when
bottom is encountered (as is the case in our implementation). A better approach
is to remove information only if the information is influenced/affected by the
SCA itself. The provenance can be used to infer which writes to the addresses in
the SCA were not influenced by the values in the SCA itself, thereby allowing
the reuse of more results. After all, for every address, the analysis knows (1) the
contribution per component, and (2) the information flows inferred by the analysis
of the component. To refine an SCA, contributions of components to addresses
within the SCA can be removed if they were affected by information in the SCA
itself and retained otherwise. In this case, not only dependent components need
to be scheduled for reanalysis, but possibly also all components that wrote to
the refined addresses (as their contribution may have been removed and needs
to be replaced). Note that the computation and refinement of the SCAs needs to
happen after every intra-component analysis: values flowing into the SCAs may
be refined, and SCAs may be formed or broken up.

Our preliminary results show that this approach leads to full precision on almost
all of the 982 benchmark programs from Chapter 5; on less than 10 benchmarks, the
analysis remains imprecise. We identified that imprecision still occurs in programs
in which the program changes introduce an infinite loop in the program under
analysis. In this case, a cycle is created but not detected. The reason for this is to
be investigated further. We hypothesise that non-termination sensitive control
dependence [106] may be required to achieve full precision. Yet, our preliminary
solution still needs further elaboration, as well as conceptual refinement and
validation.

Although this preliminary solution significantly improves the precision of our
incrementalisation, even when full precision is achieved, several questions remain
to be investigated, such as the following:

• How does the detection and refinement of SCAs impact the performance of
the analysis?

• Are there possibilities to mitigate an eventual performance hit?

The refinement of an SCA may cause multiple components to be scheduled for
reanalysis, both reading and writing components. This may impact the perform-
ance of the incremental analysis. Moreover, components are analysed in an order
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determined by the worklist algorithm, such as last in first out (LIFO), first in first
out (FIFO), or a random order. However, a smart scheduling algorithm that takes
into account the reason for which components have been added to the worklist as
well as their dependencies may be more optimal.

In addition, the computations of SCAs themselves also needs to be efficient. For
this, incremental graph algorithms may need to be applied, as it is computationally
expensive to run e.g., Tarjan’s SCC algorithm [138] in full after every intra-
component analysis given the many information flows there are between the
addresses in the store, even in small programs.

6.3.4 Improved Worklist Algorithm

Currently, an effect-driven analysis incrementalised using the method presented in
this dissertation uses the worklist algorithm of the original, non-incrementalised
analysis. We already hinted in the previous section that we assume that this may
not always be optimal when cyclic reinforcement of lattice values is handled. The
same may be true even without the handling of cyclic reinforcement of lattice
values. We think it would be worthwhile to investigate whether a custom worklist
algorithm is beneficial for derived incremental analyses. Such a “smart” scheduling
algorithm could take into account the following, among other things:

• The reason for which a component has been added to the worklist, e.g.,
due to invalidation or recomputation. A smart worklist algorithm may e.g.,
prioritise components scheduled for reanalysis due to invalidation. This
prioritises invalidation over recomputation and may avoid invalidations late
during the incremental update.

• The number of dependencies of a component or the number of addresses a
component writes to. For example, components with many dependencies
could be scheduled later as they may be influenced by many other compon-
ents, whereas components that write to many addresses could be scheduled
early as they may influence many other components.

• An ordering of the components according to their dependencies. Components
that depend on a certain address could be scheduled after components that
write to that address.

• A fallback algorithm to order components that have the same priority
according to the other criteria, such as the original worklist algorithm of the
non-incremental effect-driven analysis, for example.

In previous work [127, 151], we have already performed a comparative study on
worklist algorithms for a parallel effect-driven modular static analysis. However,
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the setting of incremental updates performed by an incremental static analysis
is very different from the non-incremental and parallel context in which our
previous research was conducted, for which the results may not be transferable
and additional research is needed on this topic in the setting of our method.

6.3.5 Heuristics for Performance Improvement

The goal of an incremental analysis is to outperform a full reanalysis of a program
upon a program update. To this end, we have proposed a method that starts from
the previous analysis result and tries to extend and/or refine it, according to the
program changes. However, arguably, the performance gain that is to be expected
does not only depend on the quality of the incrementalisation technique, but also
heavily depends on the exact program and changes at hand; we believe that for
some types of changes, an incremental analysis will always be slower unless it
can detect these situations and act accordingly. For example, a program update
may cause a significant alteration of program behaviour. In this case, it may not
be possible for an incremental analysis to outperform a full reanalysis.

To handle situations in which the execution of an incremental update may not
be beneficial, it may be expedient to develop heuristics that assess the potential
benefits of an incremental update and suggest to perform a full program analysis
in case an incremental update may not be advantageous. Such heuristics could
take into account e.g., the possible impact of the changes based on which parts
of the program have been updated, given a dependency graph, or based on the
type of change. Underlying this is an idea that we also employed in earlier work
(Wauters, Van der Plas et al. [158]), where particular program changes that match
a specific pattern are treated separately: an entire incremental update may not
always be the most efficient way to handle certain changes. This is also related to,
but different from, work of Szabó et al. [134], who define a metric to empirically test
the incrementalizability of Datalog computations, whereas we propose a heuristic
to estimate the benefit of an incremental analysis for specific program changes.

6.4 Closing Remarks

It is difficult to overemphasise the importance of software in modern society.
As a result, the consequences of software faults may be immense. To avoid
such mistakes, static analyses support software developers during the software
engineering process. However, to be of most use, analysis results need to be
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produced timely. This can be challenging in large software ecosystems and when
complex analyses are performed. To this end, incremental analyses, which update
pre-existing analysis results upon a program change, can be employed.

In this dissertation, we presented a novel method to incrementalise existing
effect-driven static analyses. Effect-driven analyses support the analysis of pro-
grams written in highly-dynamic programming languages with dynamic typing,
polymorphism, and several forms of late binding and closures, in which control
flow and data flow are intertwined. This complicates the efficient and precise
updating of a previous analysis result. Our method makes use of the compu-
tational dependencies within the program under analysis, which are reified by
the effect-driven analysis. The dependencies enable the propagation of updated
analysis results and are also used to detect which parts of the result have become
outdated and therefore can be removed. Moreover, the effect-driven design allows
to easily bound the impact of program changes.

We introduced three complementary strategies to invalidate outdated parts of the
analysis result. The invalidation of outdated information within the analysis result
is built around the core idea of interleaving invalidation with recomputation, which
enhances reuse of analysis results as it avoids excess invalidations. Moreover, this
interleaving allows us to uphold a black-box view of components, which ensures
a broad applicability by instating minimal requirements on the intra-component
analysis.

We evaluated our method for soundness, precision, and performance on two
benchmarking suites. We found that incrementalised effect-driven analyses pro-
duce sound results, although the analysis result may not always match the result
of a full program analysis. Performance-wise, overall, the incremental analysis
outperforms a from-scratch analysis of the updated program.
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