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Abstract

Today’s software-intensive industry uses increasingly complex digital com-
puting infrastructures, possibly comprising hundreds of cloud resources such
as virtual computing instances and managed databases. Manually managing
such infrastructures is laborious and error-prone. Therefore, Infrastructure as
Code (IaC) enables practitioners to automate the provisioning, configuration,
and orchestration of infrastructures through executable code. The correctness
and security of such code are vital, as defects can cause disastrous outages
while security weaknesses leave the infrastructure vulnerable to cyberattacks.
However, existing code quality assurance analyses for IaC are lacklustre and
either underperform by not reasoning about the code’s behaviour or are
resource-intensive to apply. Moreover, they focus solely on the infrastructure
code and ignore its supporting software supply chains, which form a major
cyberattack vector today.

This thesis aims to alleviate these issues through four contributions aimed
at Ansible, one of the most widely-used IaC tools. The first is the Program
Dependence Graph (PDG) for Ansible, a graph representation of infrastructure
code that captures its behaviour. We introduce an analysis to extract a PDG
for Ansible scripts statically, i.e., without executing the code, thereby bridging
the gap between lightweight yet underperforming approaches and accurate
yet resource-intensive approaches.

The second contribution is an application of the PDG representation to detect
behavioural “code smells” that may be indicative of defects in infrastructure
code. By detecting patterns in these graphs, the analysis can uncover six error-
prone coding practices related to Ansible variables. We apply this analysis
in a large-scale empirical study to investigate the prevalence and lifetime of
these smells in open-source Ansible code.

GASEL, the third contribution, is an application of the PDG representation to
detect security weaknesses in IaC. It uses graph queries on the PDG to identify
seven types of “security smells” that may lead to security weaknesses or attack
vectors. The behavioural information encoded in the graphs enables GASEL
to outperform state-of-the-art security smell detectors. We apply GASEL in
a large-scale empirical study investigating security smells in open-source
Ansible code.

The fourth contribution is an empirical study of Ansible’s deployment software
supply chain. We propose an automated analysis that identifies third-party
dependencies of Ansible plugins, and we apply it to study the types of
dependencies that occur in practice.
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The empirical studies presented in this thesis call for improvements to quality
assurance practices in Infrastructure as Code, while the proposed static
analyses pave the way for advanced tooling to this end.
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Samenvatting

De huidige software-intensieve industrie gebruikt steeds complexere digitale
computerinfrastructuren, mogelĳk bestaande uit honderden clouddiensten
zoals virtuele computerinstanties en beheerde databases. Het handmatig behe-
ren van dergelĳke infrastructuren is arbeidsintensief en foutgevoelig. Daarom
stelt Infrastructure as Code (IaC) beoefenaars in staat om de voorziening, con-
figuratie en orkestratie van infrastructuren te automatiseren met uitvoerbare
code. De correctheid en veiligheid van dergelĳke code is cruciaal, omdat
defecten rampzalige onderbrekingen kunnen veroorzaken, terwĳl beveiligings-
zwaktes de infrastructuur kwetsbaar maken voor cyberaanvallen. Bestaande
kwaliteitsborgingsanalyses voor IaC zĳn echter gebrekkig en presteren ofwel
ondermaats door niet te redeneren over het gedrag van de code, of zĳn zeer
middelenintensief om toe te passen. Bovendien richten ze zich alleen op de
infrastructuurcode en negeren ze de ondersteunende softwaretoevoerketens,
die tegenwoordig een belangrĳke vector voor cyberaanvallen vormen.

Deze thesis tracht deze problemen aan te kaarten met vier bĳdragen gericht
op Ansible, een van de meest gebruikte IaC tools. De eerste is de Program
Dependence Graph (PDG) voor Ansible, een graafvoorstelling van infrastruc-
tuurcode die diens gedrag omvat. We introduceren een analyse om een PDG
voor Ansible-scripts statisch te extraheren, d.w.z. zonder de code uit te voe-
ren, en overbruggen hierdoor de kloof tussen eenvoudige maar ondermaatse
aanpakken en nauwkeurige maar middelenintensieve aanpakken.

De tweede bĳdrage is een toepassing van de PDG-voorstelling om semantische
“codegeuren” te detecteren die kunnen duiden op defecten in infrastruc-
tuurcode. Door patronen in de grafen te detecteren, kan de analyse zes
foutgevoelige codeerpraktĳken gerelateerd aan Ansible-variabelen blootleg-
gen. We passen deze analyse toe in een grootschalig empirisch onderzoek om
de prevalentie en levensduur van deze geuren in open-source Ansible-code te
onderzoeken.

GASEL, de derde bĳdrage, is een toepassing van de PDG-voorstelling om
beveiligingszwaktes in IaC te detecteren. Het gebruikt graafqueries op de
PDG om zeven soorten “beveiligingsgeuren” te identificeren die kunnen
leiden tot beveiligingszwaktes of aanvalsvectoren. De gedragsinformatie
omvat in de grafen stelt GASEL in staat om beter te presteren dan bestaande
analyses. We passen GASEL toe in een grootschalig empirisch onderzoek naar
beveiligingsgeuren in open-source Ansible-code.

De vierde bĳdrage is een empirische studie van de softwaretoeleveringsketen
van Ansible-software. We stellen een geautomatiseerde analyse voor die
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afhankelĳkheden van derden van Ansible-plugins identificeert en passen
deze toe om de soorten afhankelĳkheden te bestuderen die in de praktĳk
voorkomen.

De empirische studies die in deze thesis worden gepresenteerd, vragen
om verbeteringen in de kwaliteitsborgingspraktĳken van Infrastructure as
Code, terwĳl geavanceerde tooling hiervoor wordt mogelĳk gemaakt door de
voorgestelde statische analyses.
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Chapter 1

Introduction

Deploying software is a complex endeavour. For instance, deploying a simple
web service already requires substantial effort. First, practitioners need to
acquire a server to host the web service. Moreover, they must install and
configure the software’s environment, including programming language
runtimes, database software, a firewall, and other operating system packages.
They then need to install the software itself, and configure it appropriately. For
instance, they need to provide the software with the database’s port number
and user credentials such that a database connection can be established.
Similarly, the firewall needs to be configured to only allow external traffic to
the application layer and to prevent direct access to the database.

As the software grows more complex, so does its deployment process. To
handle increased load, the database may need to be moved to a separate server.
Similarly, the service may get replicated across several identical servers, each
requiring the same deployment process. This then requires deploying a load
balancer that distributes the load across these replicas. Developers may also
want an isolated instance of the software to test their latest changes on, again
replicating the entire deployment process. They may also want to install and
configure monitoring software to gather resource usage analytics, backup
software for disaster recovery, etc. Soon enough, what once was a simple
web service will require tens to hundreds of individual environments and
machines. This intricately interconnected network of machines makes up the
digital infrastructure that supports the software.

Clearly, managing this infrastructure by hand has become infeasible. There are
too many machines and environments, and the likelihood of human error is
high. Instead, automation is desired. This automation allows the practitioners
to quickly add servers to the infrastructure and set them up to be identical
to existing ones. It also supports changing the existing environments in the
infrastructure, or create variants for testing and development purposes. To
create this automation, the practitioners write executable code scripts, akin to
the source code they wrote for the software they are deploying. In short, they
apply the practice of Infrastructure as Code (IaC).

Infrastructure as Code offers many benefits beside automation. Codifying the
infrastructure processes reifies them to be documented and auditable [78],
and allows the processes to be modularised, reused, and parametrised [67].
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The infrastructure code can be maintained alongside the application code and
included into its version control repository, allowing them to co-evolve [60].
The same well-established software engineering practices traditionally applied
to the software’s source code can now be applied to the infrastructure code,
including testing [45], debugging, reviewing, refactoring, optimising, etc.

Nonetheless, Infrastructure as Code is no silver bullet. Although automation
helps prevent human error, the automation code may itself contain flaws.
Testing IaC is difficult due to the complexity of IaC languages and the
environments they configure [40], causing recurring flaws in infrastructure
tests [154]. Moreover, developers are used to sophisticated development
tooling that supports them in assuring the quality of their software code. For
Infrastructure-as-Code artefacts, tools to support developers are either overly
simplistic or entirely non-existent.

For instance, in general-purpose programming languages, code linters and

bug detectors enable developers to fix errors early [5]. Although research has
suggested ways to improve the quality of Infrastructure-as-Code projects [110],
IaC is plagued by defects [102], the likelihood of which is increased by
certain development antipatterns [103]. Moreover, studies of Q&A forums has
shown that developers have difficulties understanding some aspects of IaC
languages [7, 107].

Similarly, automated security testing can aid developers in preventing security
weaknesses and vulnerabilities from being exploited [75]. For Infrastructure
as Code, research has attempted to understand practitioners’ perceptions of
security alerts [51, 106, 108] and has investigated means to improve security
awareness [35], yet security issues are plentiful [4] and existing security
scanners are inaccurate [113].

Finally, software composition analysis tools can aid developers in securing
their software supply chain to prevent them from being compromised and
causing widespread havoc [84]. Although existing research has attempted to
understand the components in IaC projects [10], IaC software dependencies
remain understudied, inhibiting our understanding of deployment software
supply chains.

1.1 Problem Statement

We have seen that Infrastructure-as-Code files can be plagued by several types
of issues. However, developers lack advanced tooling to identify such issues
in their projects. This dissertation envisions sophisticated tool support for
infrastructure development activities, aiding developers in quality assurance
of their infrastructure code. We formulate the problem statement of this thesis
as follows.

There is a need for sophisticated, domain-specific software quality assur-
ance approaches for Infrastructure as Code.
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1.1.1 Motivating Example

Listing 1.1 illustrates this problem statement using a contrived example script
written in the Ansible IaC language. The script performs a simplified version
of the deployment process described earlier. It is parametrised with two
variables (lines 3–4), containing the database credentials consisting of a name
and a password. The password is initialised with an expression, demarcated
by double braces, that generates a random string of words. The script then
performs six “tasks” that carry out the steps in the deployment process on
each targeted machine. It first installs an operating system package for the
NodeJS programming language runtime (lines 6–9), and then similarly installs
an operating system package for the database engine (lines 11–14). Afterwards,
it configures the database’s user credentials by referring to the previously-
defined variables (lines 16–20), and starts the database engine via a daemon
service (lines 22–26). Subsequently, it installs the application software by
downloading the packaged source code from the Internet and unarchiving it
(lines 28–32). Finally, it configures the application by copying a configuration
file into place (lines 34–39). This configuration file is rendered from a template
that is parametrised with the database credential variables from lines 3–4.

However, this script contains several flaws. First, due to Ansible’s expression
evaluation semantics, which we describe in detail in Chapter 2, the expression
on line 4 is evaluated anew for each variable dereference. As it generates
random values, the password used in the database configuration (line 19)
will be different from the one used to configure the application (line 39),
constituting a defect. Second, the script downloads source code from the
Internet (lines 28–32) but does not check the integrity of the downloaded file.
This constitutes a security weakness, as malicious modifications to the remote
source code would go unnoticed, enabling a software supply chain attack.

1.1.2 Challenges

We posit that advanced software quality assurance approaches could aid
in detecting and alleviating recurring flaws, such as the ones illustrated
above. However, we argue that infrastructure code differs fundamentally
from application code, hindering the applicability of existing approaches.
Specifically, infrastructure code’s main purpose is to specify and manipulate the
configuration data for the infrastructure. As shown in Listing 1.1, infrastructure
code implements very little logic. These differences cause several challenges
that need to be addressed to obtain sophisticated quality assurance approaches:

• First, the semantics adopted by Infrastructure-as-Code languages

may substantially differ from those of general-purpose programming

languages [39]. For instance, the aforementioned expression evaluation
semantics employed by Ansible are unlike those found in general-
purpose languages. Therefore, analysis techniques that have been shown
to be effective for application code may be inapplicable to infrastructure
code.
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1 - hosts: web-service

2 vars:

3 db_user: app

4 db_password: "{{ lookup('random_words') }}"

5 tasks:

6 - name: Install NodeJS

7 apt:

8 name: nodejs

9 state: present

10

11 - name: Install database

12 apt:

13 name: postgresql-server

14 state: present

15

16 - name: Set up database user

17 postgresql_user:

18 name: "{{ db_user }}"

19 password: "{{ db_password }}"

20 state: present

21

22 - name: Start and enable the database engine

23 service:

24 name: postgresql

25 state: started

26 enabled: true

27

28 - name: Deploy application software

29 unarchive:

30 src: https://my.apps.com/my/app.zip

31 dest: /app/

32 remote_src: true

33

34 - name: Configure application

35 copy:

36 dest: /etc/app.conf

37 content: |

38 db_user={{ db_user }}

39 db_password={{ db_password }}

Listing 1.1: Example of an Ansible script that configures an infrastructure for
a web service.
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• Second, the typical bugs and defects in infrastructure code differ

from those of application code. The most common defects in IaC files
relate to the configuration data [102], such as the different password
values illustrated above, rather than incorrect algorithms or faulty
assignments [19]. Therefore, an approach that detects defects in IaC files
needs to account for those domain-specific defect categories.

• Third, similarly to defects, the typical security weaknesses in infras-

tructure code differ from those found in application code. While
vulnerabilities in application code often stem from misuse of low-level
features such as pointers and memory buffers, such features are unavail-
able in IaC languages. Instead, security weaknesses in infrastructure
code are mostly caused by incorrect or poorly-chosen data values, such
as weak passwords, or missing configuration steps, such as missing
firewall rules or missing integrity checks [106].

• Fourth, IaC projects can be divided into two layers, namely an appli-
cation layer containing the infrastructure specifications, and a runtime
layer containing configuration units that interact with targeted platforms
to align their state with the desired state [32]. IaC quality assurance
approaches may need to account for cross-layer interactions between

the application and the runtime layers. For instance, application-layer
infrastructure specifications are typically interpreted on central con-
troller machines, whereas the configuration units may be executed on
the targeted platforms instead. Similarly, application-layer infrastructure
specifications are developed in domain-specific languages, whereas con-
figuration units are often implemented in general-purpose programming
languages (e.g., Python and Ruby).

1.2 Overview of the Approach

To address the problem statement above, this dissertation presents three
approaches to software quality assurance of Infrastructure-as-Code projects
written in Ansible, one of the most popular and versatile IaC tools. Each
approach targets a different aspect of software quality. The first approach
aims to support developers in detecting bugs and defects in Ansible code by
identifying bad coding practices related to variable usages (Chapter 4). The
second approach identifies security weaknesses in Ansible infrastructure code
(Chapter 5). Finally, the third approach identifies dependencies on third-party
software in Ansible infrastructure implementations (Chapter 6).

Each of the approaches transposes concepts and analyses from general-purpose
programming languages to the Ansible Infrastructure-as-Code domain. We
address the challenges mentioned above by integrating domain-specific knowl-
edge and analyses in each approach. We account for the differences in program
semantics by designing a tailored static data-flow analysis. This analysis is
used to build a graph-based representation of infrastructure code (Section 3.3).
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The representation is then used in the first and second approaches to perform
the detection.

To show the feasibility of our approaches, we instantiate them in prototypical
implementations. We apply these tools in several large-scale empirical studies
to gain a better understanding of the quality of Ansible infrastructure code at
large.

1.3 Contributions

This thesis makes the following main contributions:

Program Dependence Graph for Ansible We design and implement a Pro-
gram Dependence Graph (PDG) representation for Ansible, a novel static
representation for Infrastructure as Code. It succinctly models the control
flow and data flow within Ansible code and can be used to implement
sophisticated development tooling (Section 3.3). Moreover, we describe
a static data-flow analysis to build this representation, accounting for
Ansible’s complex semantics.

Sophisticated smell detection approaches for Ansible We propose, imple-
ment, and evaluate two code smell detection approaches for Ansible
based on the PDG representation. The first detects variable-related
code smells to identify possible defects (Sections 4.2 and 4.3), while
the second detects security smells to identify possible weaknesses (Sec-
tion 5.3). These improve upon the state-of-the-art detection approaches
by incorporating semantic information from the graph representation.

Uncovering software supply chains of Ansible deployments We describe a
taxonomy of the types of software that can occur in Ansible Infrastructure-
as-Code deployment software supply chains (Section 6.2). Moreover, we
provide a catalogue of 5 dependency management practices implemented
by Ansible plugins. These are constructed from a manual review of 266
documented requirements.

Software Composition Analysis for Ansible We propose, implement, and
evaluate a Software Composition Analysis that identifies the depen-
dency management practices described in the previous contribution
(Section 6.3). This analysis can automatically identify an Ansible plugin’s
dependencies with high accuracy. It forms a stepping stone towards
automated Software Bill of Materials (SBOM) generation for IaC.

Large-scale empirical studies into Ansible code quality We conduct three
empirical studies in which we apply our approaches on a large scale to
quantitatively investigate Ansible infrastructure code quality in practice.
The first investigates the prevalence and the lifetime of variable-related
code smells in 21 931 open-source Ansible roles (Section 4.4). The second
investigates the effects of semantics within security smells in a dataset
of over 15 000 Ansible scripts (Section 5.4). The final study investigates
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Ansible deployment supply chains to identify the prevalence of different
types of software (Section 6.3) across 187 Ansible collections.

1.4 Publications

This section lists the international peer-reviewed publications made over the
course of this PhD research.

1.4.1 Supporting Publications

This dissertation is supported by 4 papers published in the proceedings of
international, peer-reviewed conferences, 1 journal article, and 1 chapter in a
peer-reviewed book. Their relevance to the dissertation is described below.

Unless noted otherwise, in each of the following publications, I designed, im-
plemented, and evaluated the technical contributions, designed and conducted
the empirical analyses, and wrote and revised the manuscripts. Ahmed Zer-
ouali contributed to the statistical analyses in the empirical studies. Both Coen
De Roover and Ahmed Zerouali contributed to the design of the conducted
experiments, and reviewed and edited the manuscripts.

• Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and
Coen De Roover. “Does Infrastructure as Code Adhere to Semantic
Versioning? An Analysis of Ansible Role Evolution”. In: Proceedings of
the 20th IEEE International Working Conference on Source Code Analysis and
Manipulation. SCAM 2020 (Virtual Event, Adelaide, Australia, Sept. 27–28,
2020). Ed. by Foutse Khomh, Cristina Cifuentes, and Nikolaos Tsantalis.
Los Alamitos, CA, USA: IEEE, 2020, pp. 238–248. isbn: 978-1-7281-9248-2.
doi: 10.1109/SCAM51674.2020.00032

• Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodríguez, and
Coen De Roover. “On the practice of semantic versioning for Ansible
Galaxy roles: An empirical study and a change classification model”.
In: Journal of Systems and Software 182, 111059 (Dec. 2021): Special Section
on Source Code Analysis and Manipulation. Ed. by Wing-Kwong Chan,
Tsantalis Nikolaos, and Cristina Cifuentes, 21 pp. issn: 0164-1212. doi:
10.1016/j.jss.2021.111059

This conference paper and its journal extension empirically investigate the
release versioning of reusable Ansible code. Although the majority of this
research does not support this dissertation directly, these papers introduce the
structural model (Section 3.2) and lay the groundwork for the dataset used in
two of the empirical studies (Sections 4.4 and 5.4).

• Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. “Andromeda:
A Dataset of Ansible Galaxy Roles and Their Evolution”. In: Proceedings of
the 18th IEEE/ACM International Conference on Mining Software Repositories.
MSR 2021 (Virtual Event, Madrid, Spain, May 17–19, 2021). Ed. by
Gregorio Robles, Kelly Blincoe, and Meiyappan Nagappan. Los Alamitos,

https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1016/j.jss.2021.111059
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CA, USA: IEEE, 2021, pp. 580–584. isbn: 978-1-7281-8710-5. doi: 10.
1109/MSR52588.2021.00078

This data showcase paper describes a dataset of Ansible content extracted
from the Ansible Galaxy index. The presented dataset is used in the empirical
studies described in Sections 4.4 and 5.4.

• Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. “Smelly
Variables in Ansible Infrastructure Code: Detection, Prevalence, and
Lifetime”. In: Proceedings of the 19th IEEE/ACM International Conference on
Mining Software Repositories. MSR 2022 (Pittsburgh, PA, USA, May 23–24,
2022). Ed. by David Lo, Shane McIntosh, and Nicole Novielli. New
York, NY, USA: ACM, 2022, pp. 61–72. isbn: 978-1-4503-9303-4. doi:
10.1145/3524842.3527964

This paper presents the Program Dependence Graph representation and
describes the procedure to construct it (cf. Section 3.3). Afterwards, it describes
a catalogue of variable-related code smells and proposes an approach based
on the graph representation to detect these smells. This detection approach
is then used to perform an empirical study of variable-related code smells in
practice. The paper forms the foundation of Chapter 4.

• Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. “Control and
Data Flow in Security Smell Detection for Infrastructure as Code: Is It
Worth the Effort?” In: Proceedings of the 20th IEEE/ACM International Con-
ference on Mining Software Repositories. MSR 2023 (Melbourne, Australia,
May 15–16, 2023). Ed. by Emad Shihab, Patanamon Thongtanunam, and
Bogdan Vasilescu. Los Alamitos, CA, USA: IEEE, 2023, pp. 534–545. isbn:
979-8-3503-1184-6. doi: 10.1109/MSR59073.2023.00079

This paper presents extensions to the Program Dependence Graph repre-
sentation. Then, it describes graph queries on the graph to detect security
weaknesses while taking control-flow and data-flow information into account.
It motivates the need to integrate this semantic information into security
testing for infrastructure code through an empirical study. The paper is the
basis for Chapter 5.

• Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. “Infra-
structure-as-Code Ecosystems”. In: Software Ecosystems: Tooling and
Analytics. Ed. by Tom Mens, Coen De Roover, and Anthony Cleve. Berlin,
Germany: Springer, 2023, pp. 215–245. isbn: 978-3-031-36060-2. doi:
10.1007/978-3-031-36060-2_9

This book chapter provides an introduction to the Docker Hub and Ansible
Galaxy software ecosystems and describes methods to analyse them. The
latter half of this chapter, which describes Ansible Galaxy, provides the basis
for parts of Chapter 2.

https://doi.org/10.1109/MSR52588.2021.00078
https://doi.org/10.1109/MSR52588.2021.00078
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1007/978-3-031-36060-2_9
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1.4.2 Other Publications

Over the course of the PhD research, 3 additional international, peer-reviewed
conference papers have been published. Although not directly supporting
the work presented in this dissertation, the topics are tangentially related and
inspired or were inspired by the presented work. They are described below.

• Ruben Opdebeeck, Johan Fabry, Tim Molderez, Jonas De Bleser, and
Coen De Roover. “Mining for Graph-Based Library Usage Patterns in
COBOL Systems”. In: Proceedings of the 28th IEEE International Conference
on Software Analysis, Evolution and Reengineering. SANER 2021 (Virtual
Event, Honolulu, HI, USA, Mar. 9–12, 2021). Ed. by Rick Kazman,
Yuanfang Cai, and Marouane Kessentini. Los Alamitos, CA, USA: IEEE,
2021, pp. 595–599. isbn: 978-1-7281-9630-5. doi: 10.1109/SANER50967.
2021.00072

This paper describes a graph-based representation of COBOL code and a
means to mine these graphs for patterns. The graph patterns can be explored
to find opportunities to modernise legacy code. This graph representation
partially inspired the Program Dependence Graph for Ansible proposed in
Section 3.3.

• Ahmed Zerouali, Ruben Opdebeeck, and Coen De Roover. “Helm Charts
for Kubernetes Applications: Evolution, Outdatedness and Security
Risks”. In: Proceedings of the 20th IEEE/ACM International Conference on
Mining Software Repositories. MSR 2023 (Melbourne, Australia, May 15–
16, 2023). Ed. by Emad Shihab, Patanamon Thongtanunam, and Bogdan
Vasilescu. Los Alamitos, CA, USA: IEEE, 2023, pp. 523–533. isbn:
979-8-3503-1184-6. doi: 10.1109/MSR59073.2023.00078

This paper presents an empirical study of Infrastructure-as-Code projects in
the Artifact Hub ecosystem. The study investigates several aspects, including
licensing, security, and outdatedness. Parts of the study were inspired by prior
studies that support this dissertation and the experience they provided.

• Ruben Opdebeeck, Jonas Lesy, Ahmed Zerouali, and Coen De Roover.
“The Docker Hub Image Inheritance Network: Construction and Em-
pirical Insights”. In: Proceedings of the 23rd IEEE International Working
Conference on Source Code Analysis and Manipulation. SCAM 2023 (Bogotá,
Colombia, Oct. 2–3, 2023). Ed. by Leon Moonen, Christian D. Newman,
and Alessandra Gorla. Los Alamitos, CA, USA: IEEE, 2023, pp. 198–208.
isbn: 979-8-3503-0506-7. doi: 10.1109/SCAM59687.2023.00029

This paper presents an empirical study of inheritance between Docker images
found in the Docker Hub ecosystem. Similar to the previous paper, parts of
this study were inspired by work that supports this dissertation.

1.5 Outline

This remainder of this dissertation is structured as follows.

https://doi.org/10.1109/SANER50967.2021.00072
https://doi.org/10.1109/SANER50967.2021.00072
https://doi.org/10.1109/MSR59073.2023.00078
https://doi.org/10.1109/SCAM59687.2023.00029
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Chapter 2: Background and State of the Art describes the practice of Infras-
tructure as Code in detail and Ansible in particular. It also reviews the
state-of-the-art in academic literature on quality assurance for Infrastruc-
ture as Code and identifies knowledge gaps.

Chapter 3: Representing Ansible Infrastructure Code Artefacts presents
novel representations for Ansible code, namely the structural representa-
tion and the Program Dependence Graph (PDG). It describes both their
structure and how they are built.

Chapter 4: Detecting Ansible Code Smells describes our catalogue of six
variable-related code smells. It then proposes and evaluates an auto-
mated approach to detecting these smells in PDGs. Finally, it describes a
large-scale empirical study of the code smells’ prevalences and lifetimes
in a large dataset of Ansible projects.

Chapter 5: Detecting Security Weaknesses in Ansible Artefacts proposes
and evaluates our security smell detection approach that leverages the
PDG representation to include semantic information in the detection.
We also conduct a large-scale empirical study to identify the extent to
which semantic information is necessary to detect security weaknesses.

Chapter 6: Software Composition Analysis for Ansible presents a qualitative
empirical study into the dependencies of Ansible plugins. It uncovers
the types of software contained in deployment software supply chains.
We propose an automated Software Composition Analysis leveraging
implementation patterns to identify a plugin’s dependencies. Using this
analysis, we conduct a quantitative study of deployment supply chains
at a large scale.

Chapter 7: Conclusion concludes the dissertation with a summary and a
discussion of opportunities for future work.
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Chapter 2

Background and State of the Art

This chapter introduces the background supporting the topics discussed in
the remainder of this dissertation. First, we introduce Infrastructure as Code
(IaC) in Section 2.1 and discuss its fundamental principles. We also outline the
different types of IaC languages and the activities they support. Subsequently,
in Section 2.2, we delve into Ansible, a versatile IaC language that is among the
most popular today [40, 129, 130], and explain its most important concepts by
example. Then, Section 2.3 reviews the academic literature on state-of-the-art
approaches for quality assurance of Infrastructure as Code. Finally, Section 2.4
concludes with a summary.

2.1 Infrastructure as Code

Nowadays, digital infrastructures routinely comprise hundreds of globally
distributed machines that perform computations, provide storage space, or
route network traffic. Moreover, infrastructure transcends the mere notion of
physical computing machinery, and can also involve combinations of managed
cloud services such as Infrastructure as a Service (IaaS), i.e., computing, storage,
and network resources; Platform as a Service (PaaS), i.e., managed platforms,
such as container orchestration platforms; or Software as a Service (SaaS), i.e.,
applications, such as web or database hosting, managed entirely by a cloud
provider [136].

Infrastructure as Code (IaC) has emerged as an approach to facilitate the manage-
ment of such complex infrastructures. It posits that managing infrastructures
ought to be codified and automated, and transposes DevOps practices to
infrastructure engineering [78, 136]. This enables infrastructures to be more
scalable, reliable, consistent, and maintainable—promises which we shall
return to in Section 2.1.1. IaC considers infrastructure similar to software and
encourages practitioners to apply established principles from Software Engi-
neering to their infrastructure definitions [78]. This includes versioning their
infrastructure definitions in Version Control Systems, automatically testing
the infrastructure, and adopting Continuous Integration [34] and Continuous
Delivery [54] practices.

This section explores Infrastructure as Code in more depth. First, Section 2.1.1
summarises the main principles that lay the foundations of IaC and explores
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the promises and advantages they offer. Subsequently, in Section 2.1.2, we
study the four main activities involved in operating a digital infrastructure.

2.1.1 Principles and Promises of Infrastructure as Code

For Infrastructure as Code to provide benefits, it must adhere to a number of
principles, of which the most important are sometimes referred to as the RICE
principles: reproducibility, idempotence, composability, and evolvability [136].

First, the elements of an infrastructure must be easily reproducible [78, 136]. This
requires processes to be repeatable, i.e., automated as much as possible [78], and
systems to be consistent, i.e., two systems built from the same infrastructure
scripts must behave the same [78]. Second, infrastructure automation must
be idempotent, meaning that running the automation again on a machine that
is already correctly configured should not cause any changes [136]. Third,
infrastructure elements should be composable, i.e., it should be possible to
assemble several resources but maintain each one independently. Finally,
infrastructure should be evolvable and open to modification to accommodate
frequent changes in design and requirements [78, 136].

Adhering to these principles leads to numerous advantages offered by In-
frastructure as Code. First, automating the process of managing a digital
infrastructure may improve its reliability [136] and resilience, since infras-
tructure elements are disposable and can be reproduced effortlessly [76, 78].
Moreover, automation enables scalability, as automation can be applied to 10
or 1000 machines equally, and elasticity, as automation eliminates most need
for manual intervention [136]. Furthermore, documenting the processes in
source code enables knowledge sharing among engineers [136], traceability
through Version Control Systems [14, 78], and auditing and validation with
code reviews [14, 76]. Finally, codifying infrastructure processes into compos-
able parts enables reusing previous efforts [14], whereas openness to change
improves the maintainability of the infrastructure.

2.1.2 Types of Infrastructure as Code

Just like software development encompasses planning, coding, building, and
testing, operating a digital infrastructure involves several main activities. First,
the infrastructure elements need to be provisioned, after which they need
to be configured or instantiated from a template, and finally, the ensemble of
individual elements needs to be orchestrated into a cohesive infrastructure [14].

Provisioning1 involves creating and managing infrastructure resources that
originate from cloud providers. This not only includes computing resources
from Infrastructure-as-a-Service (IaaS) providers, but can also involve Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS) resources like databases,
load balancers, etc. It is the provisioning tool’s responsibility to interact

1 “Provisioning” is an overloaded term in IaC literature, and often also includes configuring or
deploying software on the provisioned resources (e.g., [78]). In this dissertation, we use a
narrower definition to improve the distinction with other activities and tools.
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with the provider to ensure that the requested resources are created. They
typically also delegate to a later step in the process, such as configuration
management or template deployment, once the resources are available. Due to
their coupling to public cloud providers, many provisioning tools are specific
to a single provider (e.g., Amazon’s AWS CloudFormation, Microsoft Azure’s
Bicep, etc.). Nonetheless, several tools support multiple providers, such as
Terraform, Pulumi, or OpenStack Heat.

After provisioning machines, practitioners can use configuration management to
install, configure, and manage software on the machines. For instance, they
may need to tweak the operating system’s settings, install various software
packages, and configure appropriate firewall rules. Although these actions
could be scripted in shell programming languages, configuration manage-
ment tools distinguish themselves by providing domain-specific languages
to configure many machines in parallel. Moreover, these domain-specific
languages offer tailored abstractions to manage specific aspects of a machine’s
configuration. Prominent configuration management tools include Ansible,
Chef, Puppet, Salt, and CFEngine, which differ in various ways. For instance,
Puppet, Salt, and CFEngine enable practitioners to state the desired state of a
machine declaratively whereas Ansible and Chef adopt a more procedural
style. Similarly, Chef and Puppet adopt a pull-based approach, in which an
agent is installed on the machine and pulls the configuration specifications
from a central manager. Conversely, Ansible adopts a push-based approach
where the central manager pushes the required changes to the managed
machines. Specifically, Ansible uploads temporary executable scripts to each
managed host which, when executed, carry out the required changes. By using
standard protocols, such as Python scripts uploaded via an SSH connection,
this can avoid the need for omnipresent agent software.

Rather than installing and configuring software on each machine individually,
infrastructure templating tools allow practitioners to create a machine image
as a template from which the machine can be booted. Tools such as Packer
and Vagrant create virtual machine images which virtualise all aspects of the
host machine, including hardware. This provides high levels of isolation, but
may introduce significant overhead. In contrast, tools such as Docker and
Podman create container images, which reuse the host machine’s hardware
and operating system and only isolate user-level processes. They are more
lightweight than virtual machines, but also provide less security guarantees.
Both types of images enable the immutable infrastructure paradigm, in which
configurations cannot be modified except by redeploying the entire image, as an
alternative to mutable infrastructures resulting from configuration management.

Finally, orchestration tools manage ensembles of infrastructure machines. They
can provide service discovery mechanisms to enable communication between
different services in the infrastructure, and handle incoming network traffic to
apply load balancing and autoscaling according to demand. Moreover, they
can automate the deployment of server and container images on provisioned
machines. Examples of orchestration tools include Kubernetes and Docker
Swarm for container images, or Nomad for virtual machine images.
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This overview shows that different activities are supported by different sets of
tools; therefore, practitioners typically use a combination of various tools [40].
For instance, one may use Terraform as a provisioning tool together with
Packer for server templating, or Docker and Kubernetes as container image and
orchestration tools, respectively. Moreover, although infrastructure templating
and configuration management appear to be mutually exclusive, one can use
a tool like Ansible to specify the contents of an image generated by Vagrant.

2.2 The Ansible Automation Language

Ansible is an IT automation engine whose primary purpose is configuration
management, but can also be used for provisioning and orchestration [76].
Due to Ansible’s simplicity and versatility, it has become a popular tool to
apply Infrastructure-as-Code practices [40, 129, 130]. Ansible practitioners
write scripts, called playbooks, that specify the infrastructure automation steps.
These playbooks are executed on a machine called the controller (such as a
practitioner’s workstation), and configure a collection of remote machines
referred to as hosts.

At its core, Ansible is an interpreter for a domain-specific configuration
language based on YAML. This section reviews Ansible’s most important
concepts, starting with the language’s basic building block, the task, in Sec-
tion 2.2.1. Section 2.2.2 proceeds by exploring how tasks can be organised
using plays and playbooks, after which Section 2.2.3 describes how tasks can
be reused using roles. Subsequently, we detail variables, expressions, and
the intricacies of their semantics in Section 2.2.4. Afterwards, Section 2.2.5
briefly describes Ansible’s extensibility through modules and plugins. Finally,
Section 2.2.6 describes Galaxy, Ansible’s online registry of reusable third-party
content. The terminology presented here is summarised in Table 2.1, found at
the end of this section.

2.2.1 Tasks

Tasks are the fundamental building blocks of Ansible, each describing a step in
a configuration process. Tasks are usually declarative, specifying a part of the
desired state of an infrastructure. For instance, a task could specify that a user
with a certain name should exist on a machine; that certain directories need to
exist on a file system; or that some package should be installed in case the host
is running a certain operating system. Importantly, practitioners do not specify
how the task must achieve this, instead delegating those details to Ansible’s
underlying implementation. This makes the task a powerful abstraction, as
the underlying implementation may provide properties that are desirable for
IaC, such as portability across platforms.

Ansible executes each task by applying the necessary changes over a network
connection in an agentless, push-based manner. It executes a single task on
all remote host machines in parallel. When provided a list of tasks, Ansible
executes each task sequentially, waiting for all hosts to finish a preceding
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1 name: Ensure user exists

2 user:

3 name: ruben

4 group: staff

5 state: present

(a) Simple task.

1 name: Ensure directories exist

2 file:

3 path: '{{ item }}'

4 owner: ruben

5 state: directory

6 loop:

7 - ~/Documents

8 - ~/Downloads

9 - ~/Photos

(b) Looping task.

1 name: Ensure GNU tar package is installed on macOS

2 homebrew: name=gnu-tar state=present

3 when: ansible_facts["distribution"] == "MacOSX"

(c) Conditional task with shorthand argument syntax.

Listing 2.1: Examples of Ansible tasks.

task before continuing to the next. To avoid potential stalling caused by
irresponsive hosts, a task’s execution time can be limited using a timeout.

Listing 2.1 depicts Ansible code for the example tasks described above. As
illustrated, the task’s syntax takes the form of a key-value mapping, where
each key represents a directive that determines the task’s execution semantics.
For instance, the name directive assigns an optional descriptive name, as
exemplified on the first line of each task. In the following, we will explore a
selection of these directives and their semantics.

Actions and Arguments Each task contains a single action which usually2

describes the desired state of an infrastructure element. Actions can be
identified as the task’s directive that does not correspond to any of the pre-
defined directives, of which there should always be exactly one. For instance,
the action in Listing 2.1a is user, which abstracts user accounts on a machine.
Similarly, Listing 2.1b uses the file action to manage files and directories,
whereas Listing 2.1c’s action is homebrew, which interacts with the Homebrew
package manager on macOS systems.

The action’s arguments are provided as the value to the action’s key in the
task mapping. These typically take the form of a nested mapping, such as on
lines 3–5 in Listing 2.1a. The nested mapping’s keys and values correspond to
argument names and values, respectively. For example, Listing 2.1a specifies
that a user named “ruben” in group “staff” must be present on the machine.

2 Not all actions are declarative. Some actions, such as command, imperatively specify a binary
command to run. Ansible also provides some meta-commands, such as include_tasks,
which influence the way scripts are executed.
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Alternatively, arguments may be specified using shorthand syntax, in which the
argument names and values are separated by an equals sign (=) and are listed
in a single string, as exemplified in Listing 2.1c, line 2. Finally, a number of
actions only take a single free-form argument, provided directly as a value to
the action’s key instead of through a nested mapping.

Iteration and Loops An action can be executed iteratively using the loop
directive, as exemplified in Listing 2.1b. Here, the file action will be executed
for all items in the YAML list spanning lines 7–9. In each iteration, the
current list element is exposed through a variable named item. Moreover, the
loop_control directive can be used to influence the iteration behaviour, e.g.,
to change the name of the loop variable.

Conditional Tasks Tasks can be executed conditionally by specifying a
predicate using the when directive, as depicted on line 3 of Listing 2.1c. If the
predicate returns false, the task is skipped and the action is not executed. In
case the when and loop directives are used together, the predicate is evaluated
for every item in the list that is iterated through.

Blocks A sequence of tasks can be grouped into a block, which optionally
supports exception handling mechanisms for failed tasks. Moreover, tasks
will inherit the directives applied at the block level. Ansible evaluates these
directives separately for each task, as if they were defined on each task
individually, rather than once for the entire block. For instance, a block-level
when conditional will be evaluated for each task in the block individually.

Handlers A handler is a special type of task that can be used to react to
changes made by another task. A task can notify a handler through the notify
directive, which registers the handler to be executed at the end of the script
execution. Note that a handler cannot notify itself. If not notified, a handler is
not executed. For instance, a handler could be used to restart a web server
after a preceding task made a change to the server’s configuration file, but
keep the server running normally if the file remained unchanged.

Importing and Including Tasks When task sequences grow, maintaining
them in a single YAML file becomes infeasible. Therefore, task sequences can
be split across multiple files and imported or included. Two meta-actions exist
to achieve this, namely import_tasks and include_tasks, respectively, each
taking the name of the file as the sole free-form argument.

The difference between importing and including tasks lies in when the file
is loaded. When importing, the target file is loaded and included into the
task sequence at parse time. The loaded tasks behave like a block, with
each task inheriting the directives defined on the original import_tasks task.
Conversely, including tasks happens at run time, enabling the file name to
be specified dynamically using variables and expressions (cf. Section 2.2.4).
Moreover, directive inheritance does not apply, meaning that a when directive’s
conditional is only evaluated once, and that the task sequence can be executed
in its entirety for each item in a loop directive’s list. Finally, a dynamically-
included file can recursively include itself, causing Ansible to technically be
Turing-complete [86].
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1 - hosts: database-servers

2 tasks:

3 - name: Ensure database exists

4 postgresql_db:

5 name: app-db

6 state: present

7 - name: Ensure database user exists and has access

8 postgresql_user:

9 db: app-db

10 name: app

11 priv: ALL

12 state: present

13

14 - hosts: web-servers

15 tasks:

16 - name: Install NodeJS

17 apt:

18 name: nodejs

19 state: present

20 - name: Deploy app from git repository

21 git:

22 repo: https://github.com/my/repo

23 dest: /app

Listing 2.2: Example of an Ansible playbook to configure database and web
servers.

2.2.2 Plays and Playbooks

Tasks are assembled into plays, each of which targets a group of machines to
be configured identically. An Ansible script, referred to as a playbook, may
contain several such plays to orchestrate deployments of different types of
machines.

Listing 2.2 exemplifies a playbook containing 2 plays (lines 1–12 and 14–23).
Each play targets a group of hosts, specified using the hosts directive, such as
the database-servers (line 1) and web-servers (line 14) groups. The tasks
to be executed in a play are listed under the tasks directive (e.g., on line 2).

2.2.3 Roles

It is common for parts of different plays to perform similar configuration tasks.
For instance, both web servers and database servers may require network
interfaces to be configured and certain firewall rules to be set up. Similarly,
one may want to set up a test environment with a database server that uses the
same configuration as the production environment. Rather than duplicating
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1 - name: Ensure database exists

2 postgresql_db:

3 name: "{{ database_name }}"

4 state: present

5 - name: Ensure database user exists and has access

6 postgresql_user:

7 db: "{{ database_name }}"

8 name: "{{ user_name }}"

9 priv: "{{ user_privileges }}"

10 state: present

(a) The postgres role’s tasks/main.yml file.

1 database_name: database

2 user_name: app

3 user_privileges: ALL

(b) The postgres role’s defaults/
main.yml file.

1 - hosts: database-servers

2 roles:

3 - role: postgres

4 vars:

5 database_name: app-db

(c) Playbook using the postgres role and over-
riding the database_name parameter.

Listing 2.3: Example of an Ansible postgres role adapted from Listing 2.2.

the tasks across the different plays, it is possible to modularise and reuse them
in roles, akin to “packages” or “libraries” in general-purpose languages.

To execute the role’s task sequence, Ansible offers several mechanisms to
include roles into a play. The roles directive on plays can be used to include
roles statically, akin to import_tasks, causing the roles to be executed before
the play’s task sequence. A role can also be included dynamically using the
include_rolemeta-action. Similarly to include_tasks, this enables the role
name to be specified using an expression, and supports conditional or iterative
execution of the role inclusion.

A role can also contain its own set of handlers, which will be executed at the
end, if notified. Moreover, roles can contain sets of variables, some of which
may be overridden by the play, the exact details of which will become clear in
Section 2.2.4. This mechanism enables roles to be parametrisable, improving
their reusability in different contexts.

Listing 2.3 depicts an example role, which is adapted from the first play in
Listing 2.2. Listing 2.3a depicts the role’s task list, which is similar to the one
of the original playbook. The role’s list of defaults, the default values for its
parameters, is shown in Listing 2.3b. These variables are dereferenced by
expressions in Listing 2.3a, demarcated by double braces, which are explored



2.2. The Ansible Automation Language 19

in more detail in Section 2.2.4. Finally, Listing 2.3c exemplifies a play that uses
this role and overrides the database_name parameter.

Role Structure Rather than a single YAML element, a role is a directory
comprising several YAML files. These directories follow a predefined structure,
in which elements of a certain type (e.g., tasks, variables, or handlers) are
grouped into a certain subdirectory. Most subdirectories contain a main.yml
file, which Ansible loads by default if present, while other files must be loaded
using a meta-action. Each directory is optional and can be omitted in case
there are no elements of the given type. The following provides an overview
of the possible subdirectories and their contents.

• The tasks subdirectory contains files with the role’s task sequences.
When the role is executed, the main.yml file in this directory is loaded
automatically.

• The handlers subdirectory contains the role’s set of handlers. They can
be notified by tasks within the role, but also by tasks from the including
play.

• The defaults and vars subdirectories contain files specifying the role’s
variables. These differ in their precedence, with default variables being
easy to override with new values and serving as the means for the
practitioner to parametrise the role’s behaviour. In contrast, role variables
in the vars subdirectory have high precedence (cf. Section 2.2.4), and
are often used as constants.

• The meta/main.yml file contains metadata for use in the Ansible Galaxy
registry (cf. Section 2.2.6), such as author, description, licence, supported
platforms, etc. It also lists the role’s dependencies on other roles, which
are executed beforehand.

• The files and templates subdirectories contain resources for the role to
install on managed hosts, such as configuration files. Files in the former
are copied verbatim, whereas files in the latter are templated with the
Jinja2 templating language.

• The library subdirectory contains custom modules and plugins to
extend Ansible’s functionality (cf. Section 2.2.5).

2.2.4 Variables and Expressions

Ansible practitioners can use variables to provide names to the data in their
configuration scripts. They can reference these variables in expressions written
in the Jinja2 templating language that is embedded in Ansible. Expressions
can then be passed as values for task directives, such as action arguments or to
produce a list of values for the loop directive. Listing 2.4 depicts a task using
variables and expressions, based on Listing 2.1a. The vars (lines 6–8) directive
is used to define variables in the task’s environment, where variable names
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1 name: Ensure user exists

2 user:

3 name: "{{ user_name }}"

4 group: "{{ user_group }}"

5 state: present

6 vars:

7 user_name: ruben

8 user_group: staff

Listing 2.4: Task from Listing 2.1a adapted to use variables and expressions.

and initialisers are given as a key-value mapping. The argument values lines 3
and 4 exemplify expressions, demarcated by double braces.3

Variable Definitions Ansible supports several mechanisms to define vari-
ables. Users can define local variables at various places in their code, e.g.,
for a single task (cf. Listing 2.4), for all tasks in a block or play, etc. They
can also define global variables, e.g., through inventory files that associate
variables with each managed host. Moreover, before executing the tasks in
a play, Ansible gathers information about every host, such as its IP address,
OS platform, etc., and stores these values in global facts. Roles can define
their own variables that can be reused across plays using files in the defaults
and vars directories (cf. Section 2.2.3). Furthermore, like tasks, variables
can be modularised into separate files and included with the include_vars
meta-action. It defines the variables in a global environment, where they
remain visible for the remainder of the play. Variables in the vars directive on
a task using the include_tasks action are referred to as “include parameters”
and remain defined for all tasks executed as a result of the inclusion. Finally,
practitioners can define their own host facts, referred to as non-persistent facts,
using the set_fact meta-action or the register task directive. The latter
binds a variable to a data structure that represents the result of executing the
task (e.g., whether execution was successful, whether changes were made,
etc.).

Except for variables defined by the set_fact action, which eagerly evaluates
initialisers, a user-defined variable defined with an initialiser expression is
a name for that expression, not the value it produces. The expression is
not evaluated until the variable is dereferenced, and is evaluated anew for
each dereference. Moreover, the initialiser expressions do not close over
the environment in which they are bound to a variable. Instead, variable
references within an initialiser are resolved according to the environment
in which the expression is evaluated, i.e., every environment in which the
variable they are bound to is dereferenced.

3 Line 3 of Listing 2.1c is in fact also a Jinja2 expression. However, double braces are not
required for when directives, as Ansible expects all conditions to be expressions.
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Play vars

Host facts
Included vars

Non-persistent facts

Role defaults*

Role vars*

Include params

Block vars
Task vars

vars directive on play (7)

Host information (OS etc.) discovered by Ansible (8)

Dynamically defined by include_vars action (3)

Dynamically defined by set_fact or register (2)

Variables in role’s defaults/main.yml file (9)

Variables in role’s vars/main.yml file (6)

vars directive on include_tasks/include_role tasks (1)

vars directive on block (5)

vars directive on task (4)

Environment (narrower is more deeply nested) Precedence (higher to lower)

*May be local or global depending on user configuration.

Figure 2.1: Summary of variable scoping and precedence rules. Narrower
rectangles indicate more deeply nested environments.

Variable Scoping and Precedence Variables are bound in a certain envi-
ronment. To illustrate, Figure 2.1 depicts several environments and their
nesting, with lower and narrower rectangles representing more deeply nested
environments. The top 4, including play variables, facts, and variables defined
through include_vars, are global to a play, and their definitions are visible in
each task executed in the play. Role defaults and role variables are defined
automatically when the role is loaded and are visible for all tasks in the
role. By default, these variables also remain visible in the rest of the play
even after the role is left, but this can be disabled by the user of the role.
Furthermore, include parameters on include_tasks actions are in scope for
all tasks executed by the inclusion. Finally, block variables are visible to all
tasks in the block, and task variables are only visible to the task itself.

In lexical scoping, a variable definition in a more deeply nested environment
takes precedence over a definition of the same name in outer environments. In
contrast, Ansible variable precedence is governed by 22 precedence rules,4 the
order of which does not follow the nesting of environments. Figure 2.1 uses
arrows to depict these precedence rules. It shows the possibility of variable
definitions in an outer environment taking precedence over variable definitions
in a local environment. For instance, variables defined by the set_fact action
(i.e., non-persistent facts) or those included via the include_vars action are
globally visible, yet take precedence over variable definitions in local blocks
or tasks.

Expressions Wrapping an expression in double braces and embedding it
into a string turns the string into a template. Ansible evaluates the expression
between double braces, possibly recursively for variable references resolving
to other templates, and substitutes the result into the template string. For

4 https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#
understanding-variable-precedence

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#understanding-variable-precedence
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instance, the result of evaluating the expression on line 3 of Listing 2.4, which
merely refers to a variable, will be “ruben”.

Expressions can be used for more than merely referring to variables. Ansible
uses the Jinja2 templating language, which supports a rich Python-like ex-
pression language, including arithmetic, comparative, and logical operators;
function calls; and array and property indexing. Jinja2 extends this Pythonic
foundation with filter and test expressions. A filter expression can be used to
transform data, e.g., the user_name | upper expression will apply the upper
filter on the result of the left-hand side expression. Test expressions are similar
but apply a predicate and thus always return a boolean value. For instance,
user_group is sequence tests whether the left-hand side is a sequence. Fi-
nally, Ansible defines the lookup function that produces data from external
sources, such as lookup("file", "/etc/hosts") which reads the content of
external files.

2.2.5 Plugins, Modules, and Collections

Ansible’s functionality is extensible through a plugin system. For instance,
additional Jinja2 filters and plugins can be defined using filter plugins and test
plugins, respectively. Similarly, lookup plugins enable defining new sources for
Ansible’s lookup function in Jinja2 expressions. Inventory plugins construct an
inventory, a list of hosts to be configured. Finally, modules are special types of
plugins that implement the logic behind actions executed by tasks. Whereas
other plugins are executed as part of the Ansible process on the controller,
modules execute on the host under configuration. Therefore, plugins have
to be implemented in Python, while modules can be implemented in any
language.

Earlier versions of Ansible curated these plugins in a centralised mono-
repository. As the number of plugins grew, Ansible introduced collections of
plugins and migrated the majority of plugins to dedicated collection reposito-
ries. A collection can be identified uniquely by the combination of a namespace
(author) and name, usually separated by a period. A collection’s content com-
monly shares a single theme, such as the community.docker collection of plugins
for working with Docker, or the amazon.aws collection of plugins to interact
with Amazon’s AWS cloud.

2.2.6 The Ansible Galaxy Registry

Ansible Galaxy5 is a registry operated by Ansible to facilitate reusing open-
source Ansible content. It collects and displays metadata about open-source,
reusable roles (cf. Section 2.2.3) and collections (cf. Section 2.2.5). Ansible
practitioners can discover such content via Ansible Galaxy’s web interface,
while a command line utility can be used to install, update, and manage the
content in a project. As of May 2024, Ansible Galaxy indexes over 33 700 roles
by nearly 15 000 authors, the most popular of which have been downloaded

5 https://galaxy.ansible.com/

https://galaxy.ansible.com/
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Table 2.1: Overview of Ansible terminology.

Term Meaning

Task Specification of a single configuration step, possibly conditionally or in a loop.
Action Step executed by a task on the target machines.
Block List of tasks, with optional exception handling.
Handler Task that only executes when “notified” by another task.
Play List of tasks and blocks, implementing automation steps for a group of hosts.
Playbook Executable Ansible script, consisting of a list of plays.
Role Reusable abstraction that groups related tasks and variables.
Controller Machine that runs the main Ansible interpreter.
Host Machine managed using Ansible tasks.
Fact Variable containing information about a host.
Inventory List of hosts and associated facts.
Jinja2 Template expression language used by Ansible.
Template String containing Jinja2 expressions.
Filter Data manipulation expression in Jinja2.
Test Predicate expression in Jinja2.
Lookup Function for use in templates to retrieve data from external sources.
Plugin Mechanism to extend Ansible functionality.
Module Special type of plugin implementing the logic to execute an action.
Collection Mechanism for 3rd-party reuse and distribution of related Ansible content.

millions of times. Moreover, it hosts nearly 3 000 collections, some with
more than 70M downloads. This makes Ansible Galaxy the largest source of
openly-available Ansible content.

2.3 State of the Art in Quality Assurance for Infras-

tructure as Code

Infrastructure as Code is an emerging research domain, with an increasing
number of works published each year [104]. Because practitioners face several
challenges when performing quality assurance of IaC scripts [40], many
studies have focused on supporting these activities [104]. In this section,
we survey the academic literature for works that propose automated IaC
quality assurance approaches, such as tools and analyses. We classify the
proposed approaches according to two dimensions, namely the quality aspect
considered (Section 2.3.1) and the analysis techniques used (Section 2.3.2).
Section 2.3.3 provides an overview of the existing approaches and identifies
gaps in the literature that will be addressed in subsequent chapters.

2.3.1 Aspects

We discern three high-level quality aspects that have been central to prior
academic studies.
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First, correctness of infrastructure code forms a major concern for practitioners,
and bugs and defects are plentiful [102]. Moreover, practitioners not only
consider IaC to be error-prone, but also difficult to test and debug [40].
Therefore, many studies have focused on means to identify or remediate
correctness issues before they cause service outages. Several studies focus
on typical infrastructure defects, such as misconfigurations or erroneous
logic [102]. Others investigate IaC-specific properties, such as idempotence
(cf. Section 2.1.1) [44, 55, 57], determinism of declarative models [119], or the
validity of deployment topologies [15].

Second, maintainability relates to the ease with which infrastructure code
can be changed and improved, e.g., to accommodate new infrastructure
requirements. Maintainability is negatively affected by the presence of so-
called smells and antipatterns that are indicative of error-prone programming
practices that may encumber future changes to the code or its design [121].
Note that smells are not necessarily defects, so the affected infrastructure code
may continue to function while the negative impacts go unnoticed for long
periods of time. Therefore, prior work has investigated different types of
smells in IaC, the most common being code smells, which manifest themselves
in the infrastructure code’s implementation and design [116, 117, 120, 135].
Moreover, test smells may indicate inefficiencies in infrastructure tests [47],
whereas linguistic inconsistencies indicate divergence between code’s behaviour
and its documentation [12, 13].

Third, security & compliance are increasingly important in the context of
Infrastructure as Code. In particular, insecure coding patterns, often referred
to as security smells, have been subjected to numerous studies [11, 22, 31,
101, 105, 106, 108, 109, 113, 115]. Researchers have also employed IaC
specifications to reduce cloud resource access privileges [122, 123] and to
identify vulnerabilities in cloud infrastructures [16, 69]. Furthermore, prior
work has checked IaC specifications for compliance to laws, regulations, and
internal requirements [36, 66].

2.3.2 Techniques

We identify 6 classes of analysis techniques used in the quality assurance
approaches proposed by prior academic work, summarised in Table 2.2. All but
one of these techniques are static approaches [18], which extract information
from infrastructure scripts without executing them. The final technique
is dynamic, which requires running the infrastructure scripts to collect the
necessary information. As this requires deploying a (virtual) infrastructure,
they may be more costly to apply, and may not be universally applicable.

Syntactic analysis The simplest approach to analysing infrastructure code is
by inspecting a syntactic representation. Such representations can be obtained
by parsing the infrastructure code into structures such as token sequences or ab-
stract syntax trees (AST). This already captures all the considered information,
making these approaches lightweight and easy to implement.
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These syntactic structures can be used in several ways. One of the earliest
applications was to calculate complexity metrics, often inspired by code metrics
from object-oriented programming, and use them to identify code and design
smells. The Puppeteer tool by Sharma et al. [120] implements this technique for
Puppet, while Schwarz et al. [117] and van der Bent et al. [135] extend existing
linters for Chef (Foodcritic) and Puppet (puppet-lint), respectively.

Moreover, antipatterns and security smells can be identified using syntactic
pattern matching, often specified as logical rules and string predicates. This
technique has frequently been applied to identify security smells, including
in tools such as SLIC [106], SLAC [108], GLITCH [115, 116], InfraSecure [113],
SLI-KUBE [109], and KubeHound [31]. Furthermore, the TAMA [47] tool employs
syntactic pattern matching to identify test smells in Ansible testing code.

Finally, approaches can use ad hoc techniques to extract relevant information
from syntactic representations and feed it to pre-existing smell detectors. For
instance, SecureCode [22] extracts shell code from Ansible scripts and checks it
with ShellCheck, an existing security linter for shell code.

Data-flow analysis The syntactic representations described above only com-
prise information on the structure of infrastructure scripts, but lack information
on the relations between different code elements in those scripts. For instance,
ASTs do not relate a variable reference to the definition it resolves to when
evaluated. Such information can be incorporated using a data-flow analysis.

A data-flow analysis requires the script’s control-flow information, usually
specified in a Control-Flow Graph (CFG). The analysis then propagates variable
definitions along the CFG to the usages of that definition. The established
links between definitions and usages provide information that can be used
in subsequent analyses. Nonetheless, the need for a CFG and an additional
analysis pass makes these approaches less lightweight than mere syntactic
analyses.

Data-flow analysis can be employed to identify infrastructure code elements
that are affected by security smells originating from other elements. This
technique is used in TaintPup [105] and TIDAL [101] for Puppet and Ansible,
respectively. These approaches use a data-flow analysis to extract data
dependences, i.e., relations between two infrastructure code elements (e.g.,
two Ansible tasks) in which one uses the data produced by the other. They
then identify security smell instances using syntactic pattern matching as
described above, and propagate these instances along these data dependences
to identify impacted elements.

Semantic analysis Although data-flow analyses provide more information
than simple syntactic analyses, they cannot model the interactions an infras-
tructure script may have with its environment (e.g., file system operations), or
the transitions of infrastructure states caused by executing an infrastructure
script. To overcome this, researchers have used formal semantics for IaC lan-
guages, such as 𝜇Puppet [39], combined with formal verification techniques,
to check properties of IaC scripts.
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For instance, using formal semantics, IaC scripts can be modelled as SMT
(Satisfiability Modulo Theory) formulae and provided to an SMT solver.
Rehearsal [119] uses this approach to check whether the script adheres to
fundamental properties. Tortoise [138] also uses SMT solving to synthesise
patches to update IaC specifications based on the shell commands that
practitioners run on the configured machines. Moreover, Häyhä [69] uses
formal semantics to model the infrastructure state transitions needed to apply
an IaC specification and checks those transitions for security vulnerabilities.

Semantic analyses can provide advanced support for quality assurance activi-
ties. However, they are generally more costly than the lightweight alternatives
described above. Furthermore, they may suffer from limitations that substan-
tially hamper the approaches’ practical applicability, as the formal semantics
often only supports a subset of the IaC language.

Architectural analysis Whereas the approaches described above focus on
the infrastructure code and its behaviour, approaches utilising architectural
analysis instead use the infrastructure code to derive a deployment model, i.e., a
high-level model of the deployed infrastructure. Such models can represent
the topology of the infrastructure, the elements thereof, the services deployed
onto those elements, and the relations among the services. Deployment
models are typically derived from declarative IaC templates, such as from
specifications written in the TOSCA6 [9] standard, but may still require manual
effort to generate [81]. These models serve as the input to infrastructure quality
assurance techniques that perform architectural analysis.

Several approaches exist that perform such architectural analysis. For instance,
Sommelier [15] checks TOSCA topologies against validity constraints, whereas
Krieger et al. [66] check them against compliance rules. Furthermore, Ntentos
et al. check deployment models for architectural smells by calculating archi-
tectural metrics [81, 83] and searching for antipatterns [82]. Kumara et al. [68]
represent TOSCA models as knowledge graphs and use graph querying to
identify smells. Finally, Cauli et al. [16] specify architectural models in formal
logics that can be queried for security properties.

Predictive models The previous approaches require analysis designers
to encode specific knowledge, such as the properties to check for defects
or particular smell patterns. Predictive models instead rely on Artificial
Intelligence (AI) techniques, such as Machine Learning (ML), to learn defects
and smells by example. They can then be used to make predictions about
previously-unseen examples, e.g., to categorise an infrastructure script as
defective or not defective, referred to as defect prediction.

Numerous techniques have been proposed to perform defect prediction for
Infrastructure as Code. Rahman and Williams use statistical learning models,
first combined with text mining techniques [111], and later with syntactic
properties [112]. Dalla Palma et al. apply Machine Learning techniques to

6 TOSCA, or the “Topology and Orchestration Specification for Cloud Applications”, is an
OASIS standard modelling language for cloud deployments and orchestration.
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complexity metrics counted from syntactic elements [23, 24, 25, 26], a technique
later expanded upon by Quattrocchi and Tamburri [98] and Begoug et al. [8].
Dalla Palma et al. [27] later also apply Machine Learning techniques on metrics
inspired from object-oriented programming. Moreover, we have applied
Machine Learning on infrastructure code changes to predict when wrong
types of version increments have been used in Ansible role updates [93, 94].
DeepIaC [13] and FindICI [12] apply Natural Language Processing to identify
linguistic inconsistencies between the implementation of Ansible tasks and
their natural language description. Finally, Puppet Analyzer by Chen et al. [17]
clusters the syntactic changes made in defect-fixing commits to infer patterns
that represent recurring defects.

Dynamic analysis The prior approaches are all static and refrain from
executing any infrastructure code, which limits the amount and accuracy of
the collected information due to the need for approximations. Instead, dynamic
analysis executes the infrastructure code and monitors its behaviour or the
state of the infrastructure. We discern three main types of dynamic analysis,
namely testing, deployment-time analysis, and post-deployment analysis.

Testing involves executing an IaC script and verifying that it performed the
correct actions. Shimizu et al. use the outcome of existing tests to optimise
access permissions for cloud resources [122, 123]. Other researchers have
instead focused on automating the testing process rather than requiring
practitioners to write test cases manually. For instance, Sokolowski et al.’s
testing framework ProTI combines randomly-generated inputs (“fuzz testing”)
in combination with automated mocking of infrastructure elements [125, 126,
128]. Similarly, Hummer et al. [55], Hanappi et al. [44], and Ikeshita et al. [57]
automatically generate test cases using model-based testing.

Deployment-time analysis employs information gathered during the execution
of the infrastructure code, i.e., at deployment time. Note that the infrastructure
code need not be executed against real infrastructure elements, which can
instead be virtualised. By monitoring the execution behaviour, approaches can
extract traces of calls to system APIs (“syscalls”) performed by the infrastructure
code. Sotiropoulos et al. [127] use these traces to detect missing dependencies
between parts of the scripts, whereas Dozer by Horton and Parnin [49] uses
them to rewrite shell commands to IaC abstractions.

Finally, post-deployment analysis occurs after an infrastructure has been deployed
by an IaC script. These analyses gather information from real-life deployments
and combine it with information extracted from the IaC scripts. IaCMF [36]
uses such information to find compliance issues, while KubeHound [31] uses it
to identify smells in configuration properties.

2.3.3 Overview of Approaches and Knowledge Gaps

Table 2.2 depicts an overview of approaches to quality assurance of Infrastruc-
ture as Code presented by prior academic research, categorised according to
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the two dimensions described above. Note that a single approach may target
several quality aspects, and thus may occur in several columns.

The overview enables us to make various observations about the state of
academic research and to identify gaps therein. First, the table shows that very
few approaches use data-flow analysis, even though this technique provides
more information than mere syntactic analysis, and is more lightweight
and more widely applicable than semantic analysis. Second, we see that
defect detection currently requires more sophisticated techniques than simple
syntactic or data-flow analyses. Third, while predictive models have proved
useful to predict defects and maintainability issues, they have not yet been
used to predict security and compliance issues. Fourth, whereas defects and
security issues have been studied in great depth, considerably less attention has
been given to maintainability issues. Finally, a notably missing quality aspect is
that of software supply chains and third-party dependencies. These have been
studied extensively for general-purpose programming languages [72, 146, 149]
and specific domains such as CI/CD pipelines [30, 85], Docker containers [88,
150], Machine Learning pipelines [52], and microservices [37]. However, these
existing studies focus on runtime and development dependencies, and we
find no research that investigates the deployment dependencies of infrastructure
code.

2.4 Conclusion

This chapter introduced the necessary background for the topics that are
considered in the remainder of the dissertation. To this end, we have introduced
Infrastructure as Code as the practice of managing digital infrastructures
through executable code. We have described the four types of Infrastructure-
as-Code languages and the activities they support: provisioning, configuration
management, infrastructure templating, and orchestration. We explored an
Infrastructure-as-Code language that is central to this dissertation, namely
Ansible, and described its central concepts, including tasks, playbooks, roles,
plugins, and the semantics of variables and expressions.

Moreover, we reviewed the academic state-of-the-art approaches for quality as-
surance of Infrastructure as Code. We described the three main quality aspects
considered: correctness, maintainability, and security and compliance. We
further outlined six analysis techniques employed by these prior approaches.
From this review, we observed several gaps in the academic research that
we shall alleviate in the next chapters. In particular, we identified a distinct
lack of data-flow analysis techniques for Infrastructure-as-Code languages.
We will address this by introducing a representation that captures data-flow
information in Chapter 3, which we employ to detect code smells in Chapter 4
and security weaknesses in Chapter 5. Moreover, we found that prior work has
not investigated the software supply chain of Infrastructure-as-Code artefacts,
a gap which we will bridge in Chapter 6 by investigating the third-party
dependencies of Ansible plugins.
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Table 2.2: Overview of Infrastructure as Code quality assurance approaches.

Quality aspect

Analysis

technique

Correctness Maintainability Security & compliance

Syntactic
analysis —

Puppeteer [120]
Schwarz et al. [117]
van der Bent et al. [135]
TAMA [47]
GLITCH [116]

SLIC [106]
SecureCode [22]
SLAC [108]
GLITCH [115]
InfraSecure [113]
SLI-KUBE [109]
KubeHound [31]

Data-flow
analysis — — TaintPup [105]

TIDAL [101]

Semantic
analysis

Rehearsal [119]
Tortoise [138] — Häyhä [69]

Architectural
analysis Sommelier [15] Kumara et al. [68]

Ntentos et al. [82, 83]

Kumara et al. [68]
Krieger et al. [66]
Ntentos et al. [81]
Cauli et al. [16]

Predictive
models

Rahman and Williams
[111, 112]
Puppet Analyzer [17]
Dalla Palma et al. [23,
24, 25, 26]
Quattrocchi and
Tamburri [98]
Begoug et al. [8]

DeepIaC [13]
FindICI [12]
Dalla Palma et al. [27]
Opdebeeck et al. [93, 94]

—

Dynamic
analysis

Hummer et al. [55]
Hanappi et al. [44]
Ikeshita et al. [57]
Sotiropoulos et al. [127]
ProTI [125, 126, 128]

Dozer [49]

Shimizu et al. [122,
123]
KubeHound [31]
IaCMF [36]
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Chapter 3

Representing Ansible Infrastructure

Code Artefacts

Before one can perform static code quality assurance, one needs to represent
the code in a way that facilitates automated reasoning. Researchers have
proposed countless representations over the last decades, some more complex
than others, many tailored to specific programming languages, paradigms,
or problem domains. Nonetheless, code representations for Infrastructure as
Code are far less studied, yet are crucial to perform quality assurance.

We commence this chapter by reviewing these existing code representations
in Section 3.1. When applied to Ansible, the representations exhibit severe
limitations by not considering Ansible’s particularities in sufficient detail. For
instance, the representations rely solely on YAML parsing, and disregard
Ansible-specific syntax. Moreover, Ansible’s intricate data-flow semantics is
often ignored or overly approximated, leading to inaccuracies. Finally, very
few IaC representations capture control-flow or data-flow information, and
no IaC artefact representation relates the two.

To alleviate these limitations, we introduce two novel representations of
Ansible code. The first is a structural model (Section 3.2), which effectively
combines YAML syntactic information with Ansible-specific knowledge. It
constitutes a hierarchical representation of Ansible code, facilitating automated
reasoning about its syntax and structure. Building upon the structural model,
as a second representation, we introduce a Program Dependence Graph (PDG)
for Ansible (Section 3.3). This graph-based representation encodes and relates
control-flow and data-flow information. We describe a whole-program static
analysis to build such PDGs, accounting for Ansible’s data-flow semantics
and capturing the control-flow interplays between different files in a project.

These representations substantially advance the state of the art in static analysis
of Ansible scripts. They form the foundation of the static quality assurance
approaches that will be the subject of subsequent chapters, and pave the way
for advanced yet practical quality assurance tooling.
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3.1 State of the Art

Prior work has proposed several approaches that perform static analysis of
infrastructure code (cf. Chapter 2). Static analyses share a need to represent
the code they reason about. These representations differ in complexity
depending on the information needed by the analysis. To this end, the
simplest representations, which we refer to as syntactic representations,
merely represent the original source code as data structures that facilitate
automated reasoning, such as sequences or trees. In contrast, semantic
representations encode information derived from the syntactic representations,
such as relationships between different constructs in the source code. In this
section, we describe these two types of representations and how they have been
used in prior work. Note that we do not consider a third type of representation
often considered in prior work, the architectural representation used by
architectural analyses (cf. Section 2.3.2), as these represent the infrastructure
itself rather than the code used to manage it.

3.1.1 Syntactic Representations

Syntactic representations are simple code representations that are the result of
parsing source code into a data structure that provides convenient access to
the code’s constructs. They are used in syntactic analyses (cf. Section 2.3.2)
and thus only represent the code’s syntactic information.

In their simplest form, one can transform source code into lexical token streams by
splitting the source code based on positions of certain character classes, such as
whitespace or punctuation. However, such representations do not distinguish
between different program elements. This makes it difficult to perform an
in-depth analysis of the code. Nonetheless, token stream representations can
be used for tasks such as code smell detection, wherein a detector matches
logical rules against sequences of tokens to highlight potential problems in
code [106].

Parsing enables one to transform token streams into a concrete syntax tree
(CST) or parse tree. This involves assigning a syntactic class to each token and
assembling the tokens into a tree according to the grammar of the programming
language. The internal nodes of this tree represent syntactic classes, whereas
its leaf nodes represent the tokens themselves. However, these trees contain
many syntactic details that, while important for correct and deterministic
parsing, are irrelevant for program analysis (e.g., string quotes, punctuation,
separators, etc.). One can therefore simplify a concrete syntax tree into an
abstract syntax tree (AST), which represents the structure of the program but
elides the unnecessary lexical details found in concrete syntax trees. Its nodes
represent syntactic constructs (e.g., statements and expressions of different
types), with the leaf nodes representing atomic constructs (e.g., values and
names). The tree’s edges represent structural containment. For instance, in an
abstract syntax tree, an Ansible task would appear as a node with subtrees
representing the task’s directives as children. ASTs substantially facilitate
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code analysis. For example, counting the number of tasks that appear in an
Ansible file requires little more than a simple tree traversal. Consequently,
abstract syntax trees have been used in numerous applications, such as code
linting [108, 113, 120] and defect prediction [24].

Nonetheless, syntax trees, both concrete and abstract, are specific to a certain
IaC language, hindering the generalisability of the analyses utilising them.
Language-agnostic representations aim to eliminate this issue by representing
source code in terms of a model of common elements. Saavedra and Fer-
reira’s [115] Intermediate Representation implements such a language-agnostic
representation as a generalised syntax tree for configuration management
languages such as Chef, Ansible, and Puppet. Using this representation, they
design GLITCH, a polyglot approach to detect security smells, overcoming
inconsistencies in prior approaches.

3.1.2 Semantic Representations

Semantic representations incorporate the program’s semantics alongside the
representation of the source code, through behavioural information derived
by prior program analyses. Static analysis tools can then employ the already-
derived information in their own analyses. This enables the use of data-
flow analysis and semantic analysis (cf. Section 2.3.2) in quality assurance
techniques.

Several kinds of semantic information can be considered. Control-flow and
data-flow information are among the most common requirements for in-depth
static analyses. Control-flow information describes the possible paths that a
program may take, and includes information about control order, branching
points, and loops. Data-flow information describes how and where data is
defined and used in a program.

For instance, the Structured Resource Tree representation by Dai et al. [22] is a
tree representation that closely resembles syntax trees. However, SRTs also
contain some semantic information, such as data-flow dependencies between
variables and expressions, and a partial execution order relationship. Dai et al.
[22] employ such models to extract shell commands that are embedded into
Ansible scripts, which they subsequently scan for security weaknesses.

Data-flow information can also be captured as data dependence, which relates
two program elements wherein the first produces data that is needed by the
second. Such relationships can be represented in a data dependence graph, whose
nodes represent program elements and whose edges encode data dependences
among the nodes. They can be used to propagate certain information between
program elements. For instance, a security weakness caused by one program
element can be traced to impacted program elements along the edges of a data
dependence graph [101, 105].

Other representations focus on execution order dependencies between different
program elements. These form a type of control-flow information that is
commonly necessary when analysing Puppet programs, as Puppet employs a
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non-deterministic execution order for “resources”, its equivalent of Ansible’s
tasks. For instance, the resource graph introduced by Shambaugh et al. [119]
represents execution order dependencies specified by the developer in a
Puppet program. These resource graphs can be used to check whether
executing a Puppet program leads to a deterministic outcome, even when
non-deterministic ordering is used. Sotiropoulos et al. [127] similarly build
execution order dependency graphs. Using system call traces obtained
dynamically, they inspect the graphs to identify missing execution order
dependencies between resources.

Finally, semantic representations can also model intermediate states of the
infrastructure and the transitions between them. For instance, Hummer et al.
[55] model the state of infrastructure machines according to some properties
(e.g., whether a certain package is installed or a certain service is running). They
then use a State Transition Graph to derive test cases to test the idempotence of
Chef code. Lepiller et al. [69] build “upgrade states” that capture all possible
intermediate states a cloud topology could transition through when a change
is applied. They then verify the intermediate states to ensure prior security
policies would not be violated during the upgrade.

3.1.3 Limitations

The aforementioned approaches exhibit certain limitations when applied to
Ansible.

For syntactic models, since Ansible code is written in YAML, one can easily
obtain a syntax tree by parsing the YAML file. However, merely parsing
YAML files without incorporating Ansible-specific knowledge exhibits a
number of shortcomings. For instance, the elements of the syntax tree are
unlabelled, i.e., without context, one cannot determine whether a key-value
mapping is a task, a block of tasks, a collection of variables, or a variable
value. Moreover, YAML parsing does not take Ansible-specific syntax into
account, such as the shorthand syntax which allows one to write an action
and its arguments on a single line (cf. Section 2.2.1), or the embedded Jinja2
expressions. Such limitations burden the designer of the analysis, who
has to reconstruct syntactic contexts and may need to perform additional
parsing or transformations. To alleviate these limitations, Section 3.2 will
introduce a novel structural representation for Ansible, which incorporates
such particularities into a syntax tree obtained by parsing YAML files.

For semantic models, we note that existing analyses for Ansible do not
properly account for Ansible’s complex semantics (cf. Section 2.2.4). For
instance, the construction of the Structured Resource Tree [22] relies on
“define-before-use” heuristics that incorrectly approximate data flow. Similarly,
the Data Dependence Graph representation [101] does not capture control-flow
information and can thus not relate control flow to data flow. This renders
it unable to specify how a data value influences control flow (e.g., which
branch is taken in conditionals), or how control flow influences data values
(e.g., conditional definition of variables). Moreover, both representations
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DefaultVarFile

path: String
vars: Mapping

TaskFile

path: String

Task

name: String
action: String
args: Mapping
...

Playbook

path: String

Role

name: String
path: String

MetaFile

path: String
platforms: Sequence
dependencies: Sequence
...

Block

name: String
when: String
vars: Mapping
...

Play

name: String
hosts: String
vars: Mapping
...

HandlerFile

path: String

Handler

name: String
action: String
args: Mapping
...

RoleVarFile

path: String
vars: Mapping

Figure 3.1: Schema of elements in the structural model. Elements are depicted
as rectangles, with darkly-shaded rectangles representing root elements. UML
composition arrows depict the hierarchy among elements. For brevity, not all

possible properties are shown.

only consider a single Ansible file, although a script can include other files
to consume their variables or even execute their tasks. To alleviate these
limitations, Section 3.3 will introduce a novel Program Dependence Graph
(PDG) representation, which combines control-flow and data-flow information,
accounts for Ansible’s semantics, and is built using a whole-program analysis.

3.2 Structural Model of Ansible Code

As mentioned in Section 3.1.3, existing syntactic representations exhibit several
limitations caused by a lack of Ansible-specific knowledge. Therefore, in this
section, we introduce a novel structural model for Ansible that transcends the
syntactic contents of files. It forms a tree of Ansible elements, such as blocks,
tasks, and variables, closely following Ansible’s own internal representation
of its files.

3.2.1 Structure of the Structural Model

Figure 3.1 depicts the schema of the structural model. The model constitutes
a hierarchical tree that closely follows the structure of Ansible projects as
described in Section 2.2. The structure of the model depends on whether the
parsed Ansible project is a playbook or a role, indicated by the distinction
between the two types of root nodes.
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Role

name: postgres

Playbook

name: playbook.yml

DefaultVarFile

name: defaults/main.yml
vars:
database_name: prod
user_names: [alice, bob]
user_privileges: ALL

TaskFile

name: tasks/main.yml

Play

hosts: database-servers
roles:
- role: postgres
vars:
database_name: app-db

Task

name: Ensure database exists
action: postgresql_db
args:
name: {{ database_name }}
state: present

when: database_name | length > 0

Task

name: Ensure database user ...
action: postgresql_user
args:
db: {{ database_name }}
name: {{ item }}
priv: {{ user_privileges }}
state: present

when: database_name | length > 0
loop: {{ user_names }}

tasks_files[0]defaults_files[0] plays[0]

tasks[1]tasks[0]

Figure 3.2: Structural model representation of Listing 3.1.

Playbook nodes have one or more children that represent the playbook’s
plays. Each play node contains a record of the play’s directives, including
the list of hosts it targets, a mapping of play variables, etc. The play’s tasks
are represented as child nodes, ordered according to the order in which they
appear in the code. Like play nodes, task nodes contain a record of the task’s
directives, including its action, a mapping of arguments, and conditionals. The
play’s handlers are represented analogously, yet we make a clear distinction to
emphasise the difference in control-flow semantics (cf. Section 2.2.1). Finally,
when several tasks or handlers are assembled in a block, they are represented
by a block node, also containing a record of its directives. As blocks can be
nested, a block’s child nodes can comprise other blocks. However, tasks and
handlers cannot be mixed in a block’s (transitive) children.

A role node’s children consist of the role’s files, with each child node type
representing a file in either the tasks, defaults, vars, handlers, or meta
directory. There may exist multiple files of each type, distinguished by their
name, except for metadata files. The metadata file node is a singleton that
represents the meta/main.yml file if present, and contains the file’s content,
such as supported platforms and the role’s dependencies. Nodes representing
task files have ordered sequences of task and task block nodes as children, and
analogously for handler file nodes. Finally, nodes representing role variable
and default variable files contain the mapping of variable names to their
initialisers, as specified in the file. Although these two node types are almost
identical, we make the distinction to enforce the differences in precedence (cf.
Section 2.2.4).

To illustrate, Figure 3.2 depicts the structural models for the example role
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1 - name: Ensure database exists

2 postgresql_db:

3 name: "{{ database_name }}"

4 state: present

5 when: database_name | length > 0

6

7 - name: Ensure database user exists and has access

8 postgresql_user:

9 db: "{{ database_name }}"

10 name: "{{ item }}"

11 priv: "{{ user_privileges }}"

12 state: present

13 loop: "{{ user_names }}"

14 when: database_name | length > 0

(a) The postgres role’s tasks/main.yml file.

1 database_name: database

2 user_names:

3 - alice

4 - bob

5 user_privileges: ALL

(b) The postgres role’s defaults/
main.yml file.

1 - hosts: database-servers

2 roles:

3 - role: postgres

4 vars:

5 database_name: app-db

(c) Playbook using the postgres role and over-
riding the database_name parameter.

Listing 3.1: Example of an Ansible postgres role, adapted from Listing 2.3.
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and playbook in Listing 3.1, which is adapted1 from Chapter 2’s example
(Listing 2.3). The left-hand side of the figure contains the representation for
the role, with nodes for the default variable file of Listing 3.1b, the tasks file
of Listing 3.1a, and its two tasks. The right-hand side depicts the structural
model for Listing 3.1c’s playbook and its play. One may observe that the
records of directives contained in the nodes closely resemble the original
YAML specifications. However, we note that the structural model goes beyond
merely tagging the YAML elements, as it also normalises the representation.
An example of such a normalisation can be seen in the task nodes, where the
action and its arguments are separated into explicit properties.

3.2.2 Building a Structural Model

To create the structural model, we build upon the representation constructed by
Ansible’s internal parser, thereby benefiting from the normalisation it applies.
For instance, it transforms different syntactic styles, such as the task argument
shorthand syntax (cf. Section 2.2.1), into the same internal representations.
Moreover, Ansible’s parser identifies the task’s actions and arguments, and
performs type coercion of task directive values where necessary. It also
performs syntax validation, enabling us to reject invalid Ansible files that
a standard YAML parser would allow. Our extractor can operate in two
modes, strict or lenient, which differ in how such invalid files are handled.
The former aborts when a validation error is encountered, whereas the latter
attempts to process as many files as possible by ignoring invalid constructs,
such as malformed files or tasks with invalid or missing directives. We then
post-process Ansible’s internal representation by transforming its objects into
the nodes of our structural model.

However, relying on Ansible’s internals comes at the cost of having to work
around several limitations, as Ansible’s internals are engineered to execute
Ansible code rather than statically analyse it. When parsing files, Ansible
applies some optimisations that render executing the infrastructure code more
efficient. For example, when Ansible encounters a task that statically imports
another task file, it replaces the importing task by the content of this file. Since
we aim for a structural representation, it is important to represent all task files
separately, rather than inlined into another file, meaning this inlining needs
to be undone. Moreover, current Ansible versions have removed support for
deprecated syntactic constructs, which our extractor solves by transforming
them during a pre-processing phase.

In summary, our structural model extractor leverages Ansible’s internals
to create a syntactic, hierarchical representation that offers a convenient
means of reasoning about the structure of Ansible roles and playbooks. This
representation forms a foundation for our static analyses for Ansible, which
we build upon in the next section.

1 The adaptation of example contains two changes to illustrate concepts described in this chapter,
namely the addition of conditionals to both tasks, and the addition of a loop and a list variable
to the second task.



3.3. Program Dependence Graph for Ansible 39

3.3 Program Dependence Graph for Ansible

The semantic representations reviewed in Section 3.1.2 do not relate an IaC
script’s data flow to its control flow or vice versa. Moreover, existing represen-
tations that attempt to model the behaviour of Ansible code fail to account for
Ansible’s intricate semantics regarding template expression evaluation and
variable precedence (cf. Section 2.2.4). Finally, they only analyse individual
files, while Ansible scripts can include several other files, necessitating a
whole-program analysis. Therefore, in this section, we introduce a Program
Dependence Graph (PDG) [38, 95] representation for Ansible code, which cap-
tures and intertwines control-flow and data-flow information. Moreover, we
describe a whole-program analysis that builds such PDGs while accounting
for Ansible’s semantics.

We choose a PDG-based representation not only because PDGs succinctly
represent control-flow and data-flow information between program elements,
but also because PDG-based representations have already proven themselves as
enablers of advanced development tooling for general-purpose programming
languages. Applications include optimisation [38, 96] and program slicing [95,
131, 132], code clone detection [71], refactoring [50, 97], and static security
analysis [43, 62]. Moreover, derivatives of the PDG representation have been
paired with graph mining algorithms to recommend code snippets [80], assess
migration effort [87], mine code change patterns [79], and detect defects in
library usages [3]. These numerous applications provide confidence that a
PDG representation for Ansible will enable developers and researchers to
build tooling for and study software engineering problems of infrastructure
code.

3.3.1 Structure of the Program Dependence Graph

The Ansible PDG is a directed graph whose nodes can be categorised into con-
trol and data nodes. The former represent control-flow structures, whereas the
latter represent data. These nodes are interconnected using edges representing
control flow and data flow. Figure 3.3 exemplifies the different nodes and
edges using the PDG for the Ansible playbook in Listing 3.1. It also highlights
that the PDG representation enables whole-program analyses, as the graph
contains nodes and edges related to the role included by the playbook.

Control Nodes and Control-Flow Edges

Action control nodes represent the action executed by each task. These are
exemplified as two ellipses in Figure 3.3, one for each task. Order (ORDER)
control-flow edges connect these control nodes, representing possible exe-
cution paths. An action node can have multiple outgoing order edges, i.e.,
multiple control-flow successors, which represents a fork in control flow
caused by a conditional branching point. Similarly, an action node can have
multiple control-flow predecessors, representing a join in previously-branched
control flow.
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Figure 3.3: Program Dependence Graph of the Ansible playbook in Listing 3.1.

Data Nodes

Template expressions are represented as expression nodes. Furthermore, we
distinguish between three types of data value nodes in the PDG. Literal
value nodes correspond to concrete literals in the Ansible script. Unnamed
value nodes represent abstract intermediate values produced by an expression.
These can either be used directly by a control node, or they may be bound to a
variable in a definition. Named value nodes represent abstract values produced
whenever a variable is looked up and its initialiser expression is evaluated,
and carry the name of the variable.

Importantly, the named and unnamed value nodes represent abstract values
rather than concrete ones. However, the concrete value associated with one of
these value nodes should remain the same during the execution of a script.
Nonetheless, the same expression may produce different values at run time,
and variables may be redefined. Such different values must not be conflated in
a single named or unnamed value node. While unnamed value nodes always
have unique identifiers, the PDG may contain multiple named value nodes
with the same name. Therefore, we embed two additional identifiers in named
value nodes, which together allow every named value node to represent a
single abstract value.

The first is the lexical definition version, which changes when a new variable
definition with the same name is introduced, enabling us to distinguish
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between homonyms. Second, even for the same lexical definition, the value
produced by dereferencing a variable anew may change due to the expression
evaluation semantics (cf. Section 2.2.4). This can happen because the variable’s
initialiser is impure (e.g., an expression producing the current time), or because
it uses other variables whose values have themselves changed. To distinguish
between potentially different values for the same definition, we also embed a
value version in the named value nodes.

Figure 3.3 depicts numerous data nodes of all aforementioned types. In the
named value nodes, we denote the two additional identifiers as d.v, with
d representing the lexical definition version and v the value version. For
instance, the PDG contains two named value nodes for the database_name
variable, with 1.0 defined in the playbook (Listing 3.1c), and 2.0 originating
from the role’s defaults (Listing 3.1b). Note that due to precedence, the 2.0
variable is never used, yet is still part of the program, and thus represented in
the PDG.

Data-Flow Edges

Data nodes are connected through data-flow edges whose labels indicate the
type of data flow that occurs. These can be categorised into three main types,
namely data definition, data usage, and control/data dependence edges.

Definition (DEF) edges represent definitions of values, such as from an expres-
sion to an unnamed value, or from an unnamed value to a named value. Looped
definition (DEF-LOOP-ITEM) edges are special-case definition edges that connect
a value that is iterated over to the named value node that represents the loop
variable, often named item. Composition/element-of (ELMT) edges connect two
data nodes, in which the value represented by the origin node is an element of
the value represented by the target. These are used to link lists and dictionaries
to their items.

Conversely, use (USE) edges represent usages of values in an expression.
Argument edges (denoted args.argument-name) are special-case use edges
that connect an unnamed value or literal value to action nodes, and represent
action arguments. Note that named values cannot be at the origin of an
argument edge, as variables always need to be dereferenced by an expression
first.

Finally, control/data dependence edges relate data flow to control flow, and
vice versa. Loop (LOOP) edges connect a data node to an action that is executed
iteratively for each item in the value represented by the data node. Conditional
(WHEN) edges connect a data node to a node that depends on the value of the
data node, and represent when directives. The target node may be an action,
indicating conditional execution of a task. It may also be another data node,
indicating that the target data node is defined conditionally, which may occur
when a set_fact or include_vars task is executed conditionally.

The example in Figure 3.3 illustrates these data-flow edges. For instance, we
can see that the named value node labelled database_name (1.0) is defined
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using a literal. Moreover, two outgoing use edges link it to two expressions.
The first simply dereferences the variable, defining the unnamed value node
labelled $1, which is subsequently linked to the two action nodes using
argument edges. The second expression represents the conditional, and
produces an unnamed value node labelled $2. This latter node is then linked
to the two actions using conditional edges. Note that Ansible in both cases
would evaluate both expressions anew for the second task, but both would
produce the same value, and are therefore represented only once in the PDG.
This succinctly represents that the two actions are both data-dependent on the
same data ($1) through their arguments, while also being control-dependent
on the same data ($2) through the conditionals.

A second interesting situation is depicted around the user_names variable,
showing composition and looped definition edges, as well as a loop control
dependence edge. The loop edge represents that the second action is executed
iteratively for each item in the user_names variable. Moreover, through the
looped definition edge, we can see how the action uses the elements over
which it iterates.

Comparison to PDGs in General-Purpose Programming Languages

The design of our PDG for Ansible code diverges from the original defini-
tion [38] of PDGs, both to account for Ansible’s idiosyncrasies and to enable
advanced software quality assurance. Originally, PDGs were described as
graphs whose nodes represent program statements, and whose edges repre-
sent control or data dependence between two program statements [38]. In
fact, the original PDG description does not explicitly represent data values
as nodes. Later, PDGs were built upon in new representations, such as the
Graph-based Object Usage Model (Groum) [80] and the Abstract Control-Data
Flow Graph (ACDFG) [3]. Both of these representations added several new
node and edge types, including data nodes and data-flow definition and usage
edges. This motivated the addition of explicit data nodes and data-flow edges
in our PDG design.

Moreover, the original PDG definition includes control-dependence edges, i.e.,
edges between two statements where the second statement is conditionally
executed based on the result of the first statement. In our PDG representation,
such control-dependence edges are replaced by control-flow order edges, as
Ansible does not contain control-flow constructs akin to those typically found
in general-purpose languages (e.g., if-statements and for-loops). Furthermore,
the original PDG definition considers expressions as standard statements
and thus represents them as standard control-flow nodes, whereas our PDGs
instead encode expressions as data-flow nodes.

3.3.2 Building a Program Dependence Graph

Our PDG builder takes as input an Ansible playbook or role. It first parses
it into a structural model representation, either in strict or lenient mode, as
described in Section 3.2. Then, while traversing the structural model in a
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depth-first manner, it adds nodes and edges to the graph to represent the
control-flow and data-flow information. Throughout this, it takes into account
Ansible’s data-flow semantics, while also handling the control-flow jumps
caused by inclusions of other files.

Representing Control-Flow Information

While traversing an Ansible project, the builder maintains context through a
tuple comprising three individual context elements.

• The data-flow context is used to record variable definitions, to manage
environments, and to abstractly evaluate expressions to produce data
nodes. It is described in more detail later, when we discuss how data-flow
information is represented.

• The inclusion context records information about file inclusion, e.g.,
through meta-actions such as include_tasks. It is used to look up
and parse files in the project when one is included, and to raise errors
when a circular dependency is encountered.

• The control-flow context keeps track of control flow during traversal of
the tasks. It contains a set of control nodes that form the predecessors
for the next task processed by the builder. The builder uses these to add
control-flow order edges when processing tasks, and updates this set for
the next task. Moreover, while descending in the depth-first traversal,
the control-flow context stores the data nodes representing the results
of conditional and loop expressions. The builder consults these to add
loop and conditional control/data dependence edges in every task it
processes.

The builder invokes specific routines depending on the type of element
encountered. We describe each of these below. Algorithm 1 illustrates their
working and the interactions with the different contexts using a pseudocode
description of the first of these routines, namely the processing of generic
tasks.

Generic tasks To process a generic task, the builder first uses the data-flow
context to create the task’s environment and to define the task’s variables in
this environment. If the task contains a loop directive, it uses the data-flow
context to abstractly evaluate the loop expression. It stores the resulting data
node in the control-flow context to indicate the loop control/data dependence,
and uses the data-flow context again to define the iteration variable. If the
task contains a conditional directive, the builder equally abstractly evaluates
the conditional expression and stores the result in the control-flow context
analogously. Subsequently, it adds an action node to the graph, and links
the control-flow edges by consulting the control-flow context. Specifically, it
uses the set of predecessors to add order edges, and the conditional and loop
data nodes to add control/data dependence edges. Finally, it updates the
control-flow context’s set of predecessors with the newly-added action node.
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Algorithm 1 Processing of generic tasks.
1: procedure Process-Generic-Task(t, df, cf, g)
2: input: task t, data-flow context df, control-flow context cf, PDG g

⊲ Enter new environment
3: Activate-New-Environment(cf, df)

⊲ Define task’s variables in data-flow context
4: for (name, init) ∈ t.vars do Define-Variable(df, name, init)

⊲ Activate loop, if any
5: if t.loop ≠ ∅ then

6: 𝑛𝑙𝑜𝑜𝑝 ← Resolve-Expression(df, t.loop)
7: Activate-Loop(cf, 𝑛𝑙𝑜𝑜𝑝)
8: Define-Variable(df, “item”, 𝑛𝑙𝑜𝑜𝑝)

⊲ Activate condition, if any
9: if t.when ≠ ∅ then

10: 𝑛𝑤ℎ𝑒𝑛 ← Resolve-Expression(df, t.when)
11: Activate-Condition(cf, 𝑛𝑤ℎ𝑒𝑛)

⊲ Create task’s action node
12: 𝑛𝑎𝑐𝑡𝑖𝑜𝑛 ← Create-Action-Node(g, t.action)

⊲ Link control-flow and control/data dependence edges
13: for 𝑛𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 ∈ cf.predecessors do Add-Order-Edge(g, 𝑛𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 , 𝑛𝑎𝑐𝑡𝑖𝑜𝑛)
14: for 𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∈ cf.conditions do Add-Conditional-Edge(g, 𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 , 𝑛𝑎𝑐𝑡𝑖𝑜𝑛)
15: for 𝑛𝑙𝑜𝑜𝑝 ∈ cf.loops do Add-Loop-Edge(g, 𝑛𝑙𝑜𝑜𝑝 , 𝑛𝑎𝑐𝑡𝑖𝑜𝑛)

⊲ Update predecessors, keeping previous predecessors if task is conditional
16: if t.when ≠ ∅ then Set-Predecessors(cf, 𝑛𝑎𝑐𝑡𝑖𝑜𝑛)
17: else Add-Predecessors(cf, 𝑛𝑎𝑐𝑡𝑖𝑜𝑛)

⊲ Process action arguments
18: for (arg, value) ∈ t.args do

19: 𝑛𝑎𝑟𝑔 ← Resolve-Expression(df, value)
20: Add-Argument-Edge(g, 𝑛𝑎𝑟𝑔 , 𝑛𝑎𝑐𝑡𝑖𝑜𝑛 , arg)

⊲ Process registered variable
21: if t.register ≠ ∅ then Define-Fact(df, t.register, 𝑛𝑎𝑐𝑡𝑖𝑜𝑛)

⊲ Deactivate conditions, loops, and variables added for this task
22: Deactivate-Environment(cf, df)

If the task is executed conditionally, the previous predecessors will also be
kept, to indicate that the newly-added action node may be skipped.

Having processed the control-flow information, the builder turns to represent
the task’s data flow. To this end, it uses the data-flow context to abstractly
evaluate the other expressions in the task’s directives, such as action arguments.
It links the obtained data nodes using argument edges. If the task has a
register directive, which binds a variable to the result of its execution (cf.
Section 2.2.4), the builder defines it in the data-flow context, which links it
to the task with a data definition edge. Finally, to leave the task’s execution
environment, the builder deactivates the task’s environment it added to the
data-flow context and removes any looping and conditional control/data
dependences it added to the control-flow context.
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Tasks with meta-actions Meta-actions are handled as special cases, as they
have an impact on the control flow or data flow of Ansible code. Like for
generic tasks, the builder first defines the task’s variables in a local environment
with the correct precedence2, and extracts conditional and loop control/data
dependences. However, contrary to generic tasks, the builder does not add an
action node for the task. Instead, further processing depends on the specific
meta-action.

For task inclusion meta-actions, including include_tasks and import_tasks,
the builder uses the inclusion context to find and parse the included task file.
If the file cannot be found, e.g., because it is missing or because the file name
is in fact an expression, which cannot be statically approximated, the builder
ignores the meta-action. Otherwise, it proceeds with processing the task
list by delegating to the appropriate routines for tasks or blocks. By having
registered the control/data dependences in the control-flow context, any
conditions or loops applied to the meta-action will automatically be applied
to the included tasks by the other routines. Note that included tasks may
themselves use inclusion meta-actions that are processed identically, thus
establishing a depth-first traversal of the included file tree3.

The role inclusion meta-action (include_role) is processed similarly to task
inclusion. However, the inclusion context not only searches for the role in
the Ansible project itself, but also in a user-configurable search path. This
enables the PDG builder to also consider third-party Ansible roles, further
establishing a whole-program analysis.

The variable inclusion meta-action (include_vars) is also processed similarly.
However, rather than adding new action nodes, the builder uses the data-flow
context to define the variables specified in the file, similarly to how it would
define task variables.

Finally, the set_factmeta-action, which eagerly defines variables, is processed
by first abstractly evaluating the variables’ initialiser expressions, similarly to
action arguments for generic tasks. The builder then defines the variables in
the data-flow context, and links the data nodes obtained by evaluating the
initialisers to the named variable nodes obtained by defining the variables.

Blocks To represent blocks, the builder first uses the data-flow context to
define the block’s environment and its variables. Then, it processes each
contained task or nested block by delegating to the appropriate routine. If
the block contains exception handling mechanisms, the PDG builder also
processes the tasks for these mechanisms, adjusting the control-flow context’s
set of predecessors appropriately.

Playbooks and Plays For playbooks, the builder traverses each play in
a depth-first manner and creates a disconnected subgraph of the PDG to

2 The precedence depends on the type of meta-action. The environment for inclusion meta-
actions have “include parameter” precedence, others have standard “task variable” precedence.

3 Technically, file inclusion can be recursive. However, all recursive inclusions we have
encountered in practice constituted defects. Therefore, the PDG builder considers a circular
inclusion an error.
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represent the play. It uses the data-flow context to define the play variables.
Then, it processes each task, role, and handler in the execution order specified
by the play, delegating to the appropriate routine and using the control-flow
context’s set of predecessors to link them together.

Roles To process roles, the builder first uses the data-flow context to define
the variables in the role’s defaults and role variables files. Subsequently,
it traverses the role’s main tasks file and handlers file, delegating to the
appropriate routines for both.

Representing Data-Flow Information

As mentioned above, to derive data-flow information, the PDG builder main-
tains a data-flow context during its analysis. The data-flow context contains a
collection of environments that store data-flow records which enable the builder
to compute data dependences. This collection starts with an empty environ-
ment for each global environment (e.g., non-persistent facts, host variables,
etc., cf. Section 2.2.4). The environment collection is expanded with new
environments for every local environment entered, such as those for block or
task variables, which are subsequently removed when the builder leaves the
environment. When looking up a variable in the environment collection, the
environments are traversed from higher to lower precedence until a matching
definition is found.

Data dependences are computed from three types of records:

• Variable definition (VDef) records represent variable definitions with their
initialisers. These are stored within the aforementioned environment
collection.

• Expression value (EVal) records uniquely represent abstract values pro-
duced by an expression. To achieve this, they contain the expression’s
data dependences and a version number to distinguish between values
produced by impure expressions. Effectively, these represent unnamed
value nodes in the graph, and any change in an EVal record constitutes a
new unnamed value node.

• Variable value (VVal) records uniquely represent abstract variable values
and combine a VDef and an EVal record. These map to the named value
nodes in the graph. In particular, the VDef part maps to the lexical
definition version contained in the named value node, while the EVal
record maps to the value version.

Two operations govern data dependence computation, namely defining variables
and abstractly evaluating expressions. The former takes a variable name and
its initialiser and inserts a variable definition (VDef) record representing the
definition into the appropriate environment, depending on the definition’s
precedence. For variables defined in global environments, it also consults
the control-flow context and, if any conditions are active, adds condition
edges to signify that the variable is conditionally defined. Note that, since
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Algorithm 2 Abstract expression evaluation.
1: function Resolve-Expression(𝑒, 𝑒𝑛𝑣)
2: input: expression 𝑒, environment collection 𝑒𝑛𝑣

3: output: EVal record 𝑟𝑒
4: 𝑑← ∅ ⊲ Set of data dependences

5: for 𝑛 ∈ Get-Variable-References(𝑒) do ⊲ Resolve all variables
6: 𝑑← 𝑑∪Resolve-Variable(𝑛, 𝑒𝑛𝑣)

7: if Is-Pure-Expression(𝑒) then

8: 𝑟𝑒 ← Create-EVal-Record(𝑒, 𝑑, 0)
9: else ⊲ Different value caused by impure expression

10: 𝑣 ← Get-Next-Value-Version(𝑒, 𝑑)
11: 𝑟𝑒 ← Create-EVal-Record(𝑒, 𝑑, 𝑣)

12: return 𝑟𝑒

13: function Resolve-Variable(𝑛, 𝑒𝑛𝑣)
14: input: variable name 𝑛, environment collection 𝑒𝑛𝑣

15: output: VVal record 𝑟𝑣
16: 𝑟𝑑 ← Find-VDef-Record(𝑒𝑛𝑣, 𝑛)

17: if Initialiser-Is-Expression(𝑟𝑑) then ⊲ Evaluate initialiser
18: 𝑒 ← Get-Expression(𝑟𝑑)
19: 𝑟𝑒 ← Resolve-Expression(𝑒, 𝑒𝑛𝑣)
20: 𝑟𝑣 ← Create-VVal-Record(𝑟𝑑, 𝑟𝑒)
21: else ⊲ Constant initialiser, e.g., set_fact
22: 𝑟𝑣 ← Create-Constant-VVal-Record(𝑟𝑑)

23: return 𝑟𝑣

initialiser expressions are evaluated lazily, the PDG builder does not evaluate
the initialiser at definition time.

The latter operation takes an expression, abstractly evaluates it, produces
and stores the appropriate records, and returns an unnamed value node
representing the result. It also expands the PDG to represent the intermediate
data nodes and data-flow edges resulting from the abstract evaluation. Note
that the algorithm does not evaluate an expression to its concrete run-time
value, but statically analyses the records in the environment collection to
compute a unique abstract data value representing the expression’s possible
run-time values. Algorithm 2 describes abstract expression evaluation in
pseudocode.

At a high level, Algorithm 2 uses two mutually-recursive functions, Resolve-
Expression and Resolve-Variable. The former function resolves all variable
values referenced by an expression using the latter function (lines 5–6), and
produces an EVal record. Conversely, the latter function produces a VVal record
by looking up a VDef record (line 16) and resolving its initialiser through



48 Chapter 3. Representing Ansible Infrastructure Code Artefacts

Resolve-Expression. If the variable definition has no initialiser to be evaluated
(e.g., variables defined through set_fact or the register directive), it returns
a constant VVal record instead (line 22).

The records returned by these functions uniquely identify abstract values used
in the Ansible script. If two subsequent applications of Resolve-Expression
produce identical EVal records, it is guaranteed that the concrete values during
execution will be identical. This enables the PDG builder to represent fine-
grained data dependences, since each EVal and VVal record uniquely maps to
an unnamed or named value node in the PDG respectively.

However, care must be taken with impure expressions, as their value may
change arbitrarily. The algorithm uses the value version stored in the EVal
record to distinguish the different values produced by an impure expression
(lines 10–11). In such cases, the PDG builder will reuse only the expression
node, since data dependences remained the same, but will create new unnamed
value nodes to represent the changed values produced by the expression.

To determine expression purity, our algorithm consults a set of built-in filters,
tests, and “lookup” call names which are known to be pure. We distilled this
set from the Ansible documentation, its source code, and experience. For
example, the first filter, which returns the first element of a sequence, is
contained within this set. However, filters such as random or tests such as
exists (which checks whether a given path exists on the file system) are not
in this set, as they are not pure because of their reliance on internal or external
state. We consider a template expression to be pure if each filter, test, and
“lookup” call it uses is within this set, which necessarily under-approximates
the pure expressions in an Ansible program. Therefore, this straightforward
approach can never mark an expression as pure while it is not, but can suffer
from false negatives when user-defined filters or tests are used within a
template expression.

In summary, using the operations to define variables and abstractly evaluate
expressions, combined with mapping the data-flow records to data-flow
nodes in the PDG, the PDG builder can accurately represent Ansible’s intricate
data-flow semantics. Together with the control-flow information accounted
for, including inclusion of other files and even third-party code, the obtained
Program Dependence Graphs constitute the most semantically-rich and most
accurate code representation for Ansible to date.

3.3.3 Technical Limitations

Certain operations are too dynamic for the PDG builder to statically approxi-
mate. This includes dynamically including tasks (include_tasks) or variables
(include_vars) where the file name of the included file is not a literal. The
builder currently ignores such actions, and any tasks or variables that are
included in this manner may not be represented. Similarly, although we
indicate when variables are conditionally defined, the PDG builder does not
consider the conditions under which variables may be defined when resolving



3.4. Conclusion 49

variable references. It may therefore use the wrong variable definitions under
certain circumstances. We leave properly resolving conditional definitions as
future work.

Finally, the heuristics used to determine whether an expression is pure are
naive and can lead to an under-approximation. For instance, it does not
support user-defined filters and tests, and considers them impure by default.
We do not consider this to be an inherent limitation of our approach, since
the implementation of this algorithm can be interchanged with an improved
implementation without substantial changes to the PDG builder. However,
an improved implementation aiming to automatically determine purity of
user-defined filters and tests would need to perform complicated analysis of
non-Ansible code. Alternatively, if the current algorithm was to be used in a
practical tool implementation, it would be straightforward to allow a user to
configure their own list of pure tests and filters.

3.4 Conclusion

In this chapter, we first reviewed the state of the art in static representations for
Infrastructure-as-Code artefacts. We found that existing representations can
be categorised as either syntactic, resulting from parsing the code, or semantic,
resulting from static analyses and capturing behavioural information. However,
when applied to Ansible, these representations exhibit several limitations.
Syntactic representations fail to take Ansible-specific syntax into account,
resorting to merely parsing the YAML files. Similarly, semantic representations
fail to take Ansible’s semantics into account, resorting to approximations or
heuristics. Moreover, they only consider individual files, while an Ansible
project is usually an ensemble of interacting files. Finally, although existing
semantic representations can represent control-flow or data-flow information,
they do not represent them together, or their interactions. These limitations
lead to inaccuracies and impracticalities, which are undesirable for practical
static quality assurance approaches.

We alleviated these limitations by introducing two new code representations
for Ansible. The first, which we named the structural model for Ansible,
addresses the limitations of syntactic representations by including Ansible-
specific information in the parsing of YAML files. We defined its structure and
how it represents playbooks, roles, their variables, blocks, and tasks through
composition of structural elements. Moreover, we described how Ansible’s
internals can be used to construct this structural representation, offering syntax
normalisation and validation.

Our second representation, the Program Dependence Graph for Ansible, builds
upon this structural model by encoding and intertwining control-flow and
data-flow information in a graph. We enumerated the numerous control and
data nodes, as well as the control-flow, data-flow, and control/data dependence
edges connecting them. Then, we described a whole-program static analysis
to build such PDGs. The analysis processes control-flow information to
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represent the execution order of Ansible code, and to represent multiple files
in a single graph, including files originating from third-party code. Moreover,
by reasoning about the data flow of Ansible code, the analysis builds an
accurate yet succinct representation describing how data values are defined
and used. Finally, by combining the two, the PDG represents interactions
between control and data flow, such as the data values that influence which
control-flow branch is taken, and control flow influencing which data values
are defined.

These representations lay the foundations for advanced static analysis of
Ansible code. We shall therefore use them in the subsequent chapters, to detect
code smells in Chapter 4 and security weaknesses in Chapter 5. Furthermore,
the representations introduced in this chapter may prove useful beyond the
applications presented in this dissertation. For instance, the structural model
may be a convenient representation to carry out code transformations, such as
refactorings or stylistic changes. Moreover, the lightweight yet accurate nature
of the PDG enables its use in practical yet advanced tooling, such as plugins
for code editors, defect detectors, and more.
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Chapter 4

Detecting Ansible Code Smells

The correctness of infrastructure code is critical to the functioning of an appli-
cation. Various outages can be traced back to defects in the infrastructure’s
configuration code. For instance, in 2020, Cloudflare, a major content delivery
network (CDN) provider and hosting company, deployed a faulty network
configuration change that caused severe congestion in their network infrastruc-
ture.1 Consequently, many large online applications that used Cloudflare’s
services, such as news websites and social media platforms, became unreach-
able.2 Similarly, in 2021, engineers at Facebook issued a faulty infrastructure
command that took Facebook’s entire network offline for several hours.3 In fact,
configuration defects constitute one of the major causes of cloud outages [41].
Moreover, defective configuration data is estimated to be the most common
type of defect in infrastructure code [102]. Unfortunately, the lack of test and
verification tools for infrastructure code hampers ensuring its correctness [40].

As described in Chapter 2, Ansible’s variable and expression semantics is
unlike that of many other languages. We posit that this semantics may cause
data-related defects and maintainability issues that are unique to Ansible.
For instance, anecdotal evidence suggests that the precedence of variable
declarations in Ansible causes widespread confusion among practitioners.4,5

Similarly, Ansible’s expression evaluation semantics has already caused defects
in popular Ansible projects.6

Listing 4.1 illustrates the latter through a simplified playbook, which is adapted
from a real-world defect in an open-source project. It first defines a variable,
app_version, whose initialiser produces the current timestamp (line 3). This
variable is then dereferenced twice, first on line 7 to create a directory, and on
line 13 to download source files into the same directory. Recall from Chapter 2
that variable initialisers are evaluated lazily, and are re-evaluated every time
the variable is dereferenced. However, app_version’s initialiser is impure,

1 https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
2 https://techcrunch.com/2020/07/17/cloudflare-dns-goes-down-taking-a-large-p
iece-of-the-internet-with-it/

3 https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
4 https://github.com/ansible/ansible/issues/75616
5 https://github.com/ansible/proposals/issues/127
6 https://github.com/servergrove/ansible-symfony2/commit/2285f4d8e9f4da7b33d08
ade38102869a45f1455

https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
https://techcrunch.com/2020/07/17/cloudflare-dns-goes-down-taking-a-large-piece-of-the-internet-with-it/
https://techcrunch.com/2020/07/17/cloudflare-dns-goes-down-taking-a-large-piece-of-the-internet-with-it/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://github.com/ansible/ansible/issues/75616
https://github.com/ansible/proposals/issues/127
https://github.com/servergrove/ansible-symfony2/commit/2285f4d8e9f4da7b33d08ade38102869a45f1455
https://github.com/servergrove/ansible-symfony2/commit/2285f4d8e9f4da7b33d08ade38102869a45f1455
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1 - hosts: all

2 vars:

3 app_version: "{{ lookup('pipe', 'date +%Y%m%d%H%M%S') }}"

4 tasks:

5 - name: Ensure version directory exists

6 file:

7 path: "/app/{{ app_version }}/"

8 state: directory

9

10 - name: Pull sources into directory

11 git:

12 repo: "https://github.com/my/repo"

13 dest: "/app/{{ app_version }}/"

Listing 4.1: Playbook illustrating a real-world practical defect caused by
Ansible’s expression evaluation semantics.

producing a different timestamp every time. Combined, this causes the two
references to resolve to different values, which causes the two tasks to use
different directories, in turn causing the defect.

Figure 4.1 depicts the Program Dependence Graph (cf. Section 3.3) for the
example playbook. The PDG shows that the initialiser expression defines
two separate unnamed values ($1 and $3) rather than one, indicating that the
expression is impure and the values it produces may differ (cf. Section 3.3.2).
Each of these nodes is then used to define a separate named value node, both
originating from the same definition, as indicated by their lexical definition
version, but having a different value version due to the different unnamed
values. They are then used in separate tasks, showing that these tasks rely on
the same expression, yet use different values, thus indicating the defect. This
example shows that the PDG contains the necessary information to identify
such error-prone code constructs.

Inspired by similar real-world defects, in this chapter, we propose a catalogue of
6 variable smells, which are code smells related to Ansible’s variable precedence
and expression evaluation semantics. Moreover, we present an automated
approach to detect such smells, based on the PDG representation. Using
a prototype implementation, we empirically investigate the prevalence and
lifetime of variable smells in open-source Ansible projects.

The proposed smells can be used by Ansible practitioners to judge the quality
of infrastructure code. Our empirical results show that certain smells are
widespread, calling for tool support to detect and repair these flaws. They
also point to likely misunderstandings about Ansible’s semantics and signify
their negative impact on infrastructure code quality, which may aid language
designers in building safer IaC languages.
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Figure 4.1: Program Dependence Graph for the playbook of Listing 4.1.

The remainder of this chapter is structured as follows. In Section 4.1, we
review existing code smell detectors for Infrastructure as Code, and find
that no existing detector takes the code’s behaviour into account, making
them unable to detect variable smells. Section 4.2 introduces the catalogue
of variable smells we gleaned from Ansible’s semantics. Subsequently, we
describe our PDG-based approach to detect these smells in Section 4.3. We use
this detector to perform a large-scale empirical study described in Section 4.4.
Section 4.5 discusses the empirical study results. Finally, Section 4.6 concludes.

A replication package containing the data and analysis scripts used in this
chapter is available at https://doi.org/10.6084/m9.figshare.18819074.

4.1 State of the Art

Several studies have focused on code smell detection for Infrastructure as
Code. Sharma et al. [120] identify two types of smells for infrastructure code,
namely implementation smells (e.g., complex expressions) and design smells
(e.g., insufficient modularisation). They present a catalogue of such smells
for Puppet and a tool that syntactically analyses Puppet code to identify
them using an ad hoc implementation for each considered smell. Schwarz
et al. [117] generalise Sharma et al.’s catalogue to other IaC languages, and
similarly introduce a tool to detect design and implementation smells for Chef.
Van der Bent et al. [135] perform a survey with Puppet developers to identify

https://doi.org/10.6084/m9.figshare.18819074
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aspects that influence the perceived quality of infrastructure code. Using the
responses, they develop a quality model comprising syntactic source code
metrics, and implement a tool to evaluate Puppet code against this quality
model. Saavedra et al. [116] implement a polyglot code smell detection tool
based on the GLITCH intermediate representation (cf. Section 3.1), which they
extend to also represent Docker and Terraform. Dalla Palma et al. [27] focus on
a specific code smell for TOSCA, namely blob blueprints, which are indicative
of IaC files that are too large or too complex. They detect this smell using
syntactic source code metrics as well as machine learning models. Finally,
Kumara et al. [68] represent TOSCA deployment code as an architectural
knowledge graph, and use graph querying to identify code smells taken from
the aforementioned studies.

Code smells are not the only smells to have been studied. Hassan and
Rahman [47] investigate test quality in IaC, and propose and detect 3 test
smells that are indicative of problematic test cases. Several other studies have
considered security smells [106, 108, 109, 113, 115] that indicate potential security
weaknesses or vulnerabilities. These security smells are detected primarily
through syntactic analyses with a so-called rule engine and a collection of
logical predicates. Each predicate represents a rule to detect a certain smell.
The rule engine traverses an abstract syntax tree of the code and applies
each predicate on every visited node, marking smells when the predicate is
satisfied.

All the aforementioned studies detect smells on a syntactic level. The only
exception is the work by Kumara et al. [67], which uses an architectural model.
Nonetheless, the considered smells are not caused by the semantics of the
infrastructure code. This differs from the smells we are interested in studying
in this chapter, which are directly caused by Ansible’s unique semantics,
and have not been studied before. Moreover, due to the smells being purely
syntactic, the proposed detection approaches do not take an IaC script’s
behaviour into account. Therefore, detecting the behavioural code smells we
are interested in requires a novel detection mechanism.

4.2 Catalogue of Variable-Related Smells

In this section, we describe 6 novel code smells, structured into 3 categories,
concerning the usage and declaration of variables in Ansible code. Due to
Ansible’s unique variable precedence and expression evaluation semantics,
their presence may cause confusion among IaC practitioners and lead to
unexpected consequences and potential defects when the code is executed.
Table 4.1 provides an overview of the smell catalogue, while Listing 4.2 depicts
an example for each smell.

To construct this catalogue, we started from the assumption that the variable
definition and expression evaluation semantics described in Section 2.2.4 may
cause pitfalls for developers who are used to the semantics of general-purpose
programming languages. Then, we used our knowledge of Ansible’s semantics
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1 - hosts: all

2 vars:

3 my_var: "{{ 999 | random }}"

4 tasks:

5 - debug:

6 msg: "{{ my_var }}"

7

8 - debug:

9 msg: "{{ my_var }}"

(a) Unsafe reuse: Impure initialiser (ur1).

1 - hosts: all

2 vars:

3 var_a: "{{ var_b | upper }}"

4 var_b: "abc"

5 tasks:

6 - debug: msg="{{ var_a }}"

7 - debug: msg="{{ var_a }}"

8 vars:

9 var_b: "overridden!"

(b) Unsafe reuse: Changed data dependence
(ur2).

1 - hosts: all

2 vars:

3 my_var: "I'm a play var!"

4 tasks:

5 - set_fact:

6 my_var: "I'm a fact!"

(c) Unintended override: Unconditional over-
ride (uo1).

1 - set_fact:

2 my_var: 123

3 - debug:

4 msg: "{{ my_var }}"

5 vars:

6 my_var: 456

(d) Unintended override: Unused redefini-
tion (uo2).

1 - hosts: all

2 tasks:

3 - set_fact:

4 my_fact: "{{ 1 + 1 }}"

(e) Too high precedence: Unnecessary set_
fact (hp1).

1 - hosts: all

2 tasks:

3 - include_vars: vars/other.yml

(f) Too high precedence: Unconditional
include_vars (hp2).

Listing 4.2: Contrived examples of each variable smell.

and personal experience to derive scenarios in which these semantics can
lead to error-prone or defective code, establishing the first smell category.
We subsequently extended the catalogue by devising new ways in which the
established smells could be triggered, leading to the second and later the third
category.

Unsafe reuse The first variable smell category, unsafe reuse, concerns the reuse
of a variable whose value may have changed since a prior usage. These smells
are derived from potential pitfalls caused by Ansible’s unique expression
evaluation semantics. When present, these smells may be indicative of a
bug in case developers expected different occurrences of the same variable to
evaluate to the same value, as is the case in the example of Listing 4.1.
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Table 4.1: Overview of proposed code smells.

Category Code Smell name

Unsafe reuse ur1 Impure initialiser
ur2 Changed data dependence

Unintended override uo1 Unconditional override
uo2 Unused redefinition

Too high precedence hp1 Unnecessary set_fact
hp2 Unconditional include_vars

We discern two specific smells according to the root cause for the changed
value. First, an unsafe reuse can be caused by an impure initialiser for the
variable definition (ur1), as depicted in Listing 4.2a where the initialiser selects
a random number (line 3). As such, the values used for the msg argument in
the first task (line 6) will most likely be different from that in the second task
(line 9).

Alternatively, an unsafe reuse can be caused by a change in the data depen-
dences of the initialiser (ur2), which occurs when an upstream variable has
been redefined. This is depicted in Listing 4.2b, where var_a’s initialiser refers
to var_b (line 3). However, because var_b is overridden in the second task
(line 9), the value to which var_a’s initialiser evaluates will be different in both
evaluations, even though var_a itself is not redefined.

Unintended override The Unintended override category groups variable
smells related to Ansible’s variable precedence intricacies. We created these
smells by investigating new ways to cause changes in data dependences that
may lead to unsafe reuse smells. We discern two smells in this category, namely
unconditional overrides (uo1) and unused redefinitions (uo2).

Unconditional override smells occur when a new definition overrides a previ-
ous definition at a higher precedence without taking the previous definition
into account. It is inspired by “suspicious variable shadowing” smells for
general-purpose languages. Listing 4.2c exemplifies this smell, where the
definition of a fact through set_fact on line 6 unconditionally overrides an
earlier play variable of the same name, defined on line 3.

The unused redefinition smell manifests itself as the definition of a variable
that can never be used because a previous definition already exists at a
higher precedence. This smell is derived from “unused variable” smells
for general-purpose languages in combination with Ansible’s complicated
variable precedence system. It is illustrated in Listing 4.2d, where the task-local
variable defined on line 6 can never be used, since the fact defined on line 2
will take precedence when the expression on line 4 is evaluated.

Too high precedence The final category, too high precedence, groups bad prac-
tices regarding the scoping and precedence of variable definitions. We created
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these smells by investigating the mechanisms that Ansible provides to define
high-precedence global variables and considering how these mechanisms can
lead to unintended override smells, taking inspiration from “too broad scope”
smells for general-purpose languages.

Recall from Section 2.2.4 that the set_fact and include_varsmeta-actions
allow variables to be defined dynamically, but that these variables have
remarkably high precedences. Both of these meta-actions have valid use cases.
The former can be used to eagerly evaluate impure expressions, whereas
the latter can be used to dynamically decide whether variables need to be
defined. However, executing these meta-actions will cause the variables to
remain in a high-precedence global environment for the entire remainder
of the playbook’s execution. Therefore, we argue that these mechanisms of
defining variables should be used sparingly.

Therefore, the too high precedence smells are intended to suggest possibilities to
refactor such error-prone definitions. Specifically, the unnecessary set_fact
(hp1) smell warns of variables defined through set_fact of which both the
expression and all task conditions are strictly pure. Listing 4.2e depicts a
contrived example, where the initialiser on line 4 performs a simple, pure cal-
culation. Such definitions can be refactored to use lazily-evaluated initialisers
rather than relying on high-precedence global definitions.

Similarly, the unconditional include_vars (hp2) smell indicates a variable that is
defined using the include_varsmeta-action without the use of any conditions.
Line 3 of Listing 4.2f exemplifies such a usage. These unconditionally included
variables can instead be defined through other means, like local variables, role
variables, or play variables.

4.3 Detecting Variable Smells Using PDGs

We employ the PDG representation from the previous chapter (cf. Section 3.3)
to detect the aforementioned variable smells. Our smell detector operates
in two phases. First, it builds a PDG for each Ansible project given as input.
Then, it traverses the PDG’s nodes and applies a detection rule for each smell,
akin to the rule engine design adopted by the state-of-the-art detectors for
security smells described in Section 4.1. Table 4.2 depicts the detection rules
for the smells.

Unsafe reuse smells are detected as pairs of named value nodes that originate
from the same lexical definition (𝑑𝑖) but have different value versions (𝑣𝑖). The
detection rules also compare the data dependences of the initialiser expressions
that define the named values. When the data dependences are the same, the
expression must be impure7, and a ur1 smell is reported. Otherwise, the
change in value is caused by a changed data dependence, leading to a ur2
smell.

7 Otherwise, by construction of the PDG, the named value nodes would be the same.
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Table 4.2: Detection rules for the proposed code smells. In the presented
rules, we assume 𝑛, 𝑛1, and 𝑛2 are named value nodes, and that 𝑛1 and 𝑛2
share the same name. Symbols 𝑑𝑖 and 𝑣𝑖 refer to the lexical definition version

and value version of 𝑛𝑖 , respectively.

Smell Detection rule

ur1 𝑑1 = 𝑑2 ∧ 𝑣1 < 𝑣2 ∧ getDeps(getDefExpr(𝑛1)) = getDeps(getDefExpr(𝑛2))

ur2 𝑑1 = 𝑑2 ∧ 𝑣1 < 𝑣2 ∧ getDeps(getDefExpr(𝑛1)) ≠ getDeps(getDefExpr(𝑛2))

uo1
𝑑1 < 𝑑2 ∧ getPrec(𝑛1) ≤ getPrec(𝑛2) ∧ 𝑛1 ∉ getDeps(getDefExpr(𝑛2))
∧ getDeps(getCondExprs(𝑛1)) ∩ getDeps(getCondExprs(𝑛2)) = ∅

uo2 𝑑1 < 𝑑2 ∧ getPrec(𝑛1) > getPrec(𝑛2)

hp1 isSetFact(𝑛) ∧ isPure(getDefExpr(𝑛)) ∧ isPure(getCondExprs(𝑛))

hp2 isIncludeVars(𝑛) ∧ getCondExprs(𝑛) = ∅
getDeps(e) returns the set of data dependences for expression node 𝑒.
getDefExpr(n) returns the defining expression for named value node 𝑛.
getPrec(n) returns the precedence of 𝑛.
getCondExprs(n) returns the expressions controlling the conditional definition of 𝑛.
isSetFact(n) checks if 𝑛 is defined through the set_factmeta-action.
isIncludeVars(n) checks if 𝑛 is defined through the include_varsmeta-action.
isPure(e) checks if expression 𝑒 is pure.

For Unintended override smells, the detection rules compare two named value
nodes of the same name but originating from different lexical definitions,
indicating name clashes. The two detection rules differ in whether the first
definition has higher precedence than the second (i.e., the first overrides
the second) or vice versa. If the first definition has higher precedence than
the second, then the second definition is unused, leading to the uo2 smell.
Conversely, the uo1 smell triggers when the second definition overrides the
first. However, uo1’s detection rule also checks whether the second definition
is unconditional. It considers the override to be unconditional if the first
definition is not used in the new initialiser, and when there are no common
data dependences in the conditions under which the two definitions exist.

Finally, the too high precedence smell detection rules match for variables that
are defined using the considered meta-actions. The detection rule for hp1
emits a warning for every variable defined by set_fact of which both the
defining expression and all conditions are strictly pure. Similarly, the rule for
hp2 triggers for every variable defined by include_vars that is not defined
conditionally.
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4.4 Variable Smells in Practice

We now present our empirical study into the real-world prevalence and
lifetime of the 6 proposed variable smells. We investigate the following
research questions.

• RQ1: How precise is our code smell detector? Before applying the code smell
detector on a large scale, we need to assess its accuracy. To this end,
we manually review a sample of reported code smells to estimate the
detector’s precision.

• RQ2: How prevalent are the proposed code smells in Ansible roles? We aim
to uncover how frequently these code smells occur in Ansible projects.
Such information can help us understand which smells are the most
problematic and should be prioritised during code maintenance.

• RQ3: Do the proposed code smells co-occur in Ansible roles? We investigate
co-occurrence of smells to gain a better understanding of potential
correlation or causality between different smell types. For example, we
hypothesise that variables defined with too high precedence may lead to
unintended overrides.

• RQ4: What is the lifetime of a code smell in an Ansible role? Understanding
the lifetime of a code smell further aids in estimating the impact of these
smells. For instance, we expect smells that are more defect-prone to
have a shorter lifespan. It also provides insights into the practitioners’
perspective by identifying which smells are fixed more often.

4.4.1 Dataset Collection

Our study focuses on Ansible roles, as roles can be reused by many projects,
and a smell in a role may thus impact numerous client projects. We use
Ansible’s Galaxy ecosystem (cf. Section 2.2.6) to construct our dataset, as
Galaxy is the official ecosystem of Ansible. We expect that it indexes the
majority of the publicly-accessible, reusable roles. Therefore, we scrape the
ecosystem to create a representative dataset comprising all roles on Ansible
Galaxy.

Scraping Ansible Galaxy

To build the dataset, we construct a tool called Voyager.8 Voyager’s data
collection and extraction pipeline goes through a number of phases. We briefly
summarise these phases below.

In the first stage of the pipeline, Voyager polls various endpoints of the Galaxy
API to collect raw metadata, e.g., the role endpoint for role information and the
repository endpoint for git repository information. However, we encountered
occasional internal server errors returned by the API, which we found to be

8 Voyager is available at https://github.com/ROpdebee/Voyager

https://github.com/ROpdebee/Voyager
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unrecoverable. To alleviate the issue, we additionally poll the role search
endpoint, which does not exhibit these errors, and later deduplicate the data
returned by both endpoints based on the role ID.

Voyager subsequently converts and normalises these raw API responses. Most
notably, this phase removes attributes that are redundant in the sense that
they can be derived trivially from already-captured information, e.g., the git
clone URL from the GitHub URL. Moreover, it cleans up certain values, such
as null to 0 when a number is expected, and converts timestamps to RFC 3339
format.

In the next phase, Voyager attempts to clone all git repositories present in the
information collected in the previous phase. Any repository that failed to
clone, e.g., because of invalid URLs or private repositories, is ignored. For the
remaining repositories, it extracts information on the repository’s development
history, such as commit messages and dates.

We performed this collection on January 20th, 2021, and gathered 26 834 roles,
their metadata (e.g., author, description), and their GitHub repositories. This
represents all publicly-accessible roles on Ansible Galaxy at the time. All of
this data, and more, is available in our dataset, named “Andromeda” [89].

Curating the data

The data we collected needs to be curated to remove duplicate roles. There-
fore, we apply additional selection criteria. First, we remove 231 “mono-
repositories”, which are repositories that contain multiple roles. Such reposi-
tories pose a challenge as they may cause duplicate empirical findings, which
would negatively influence our findings or cause bias. Second, we remove
3 438 forked repositories, which may similarly cause duplication and bias.
After applying these criteria, our final dataset comprises 21 931 repositories
and corresponding roles for analysis.

Then, we run the PDG builder (cf. Section 3.3.2) for each commit of each
repository. We configure the PDG builder to parse its underlying structural
model leniently, i.e., attempting to parse as many tasks as possible. Moreover,
we do not provide a role search path, thereby instructing it to not attempt to
resolve third-party included roles. This is necessary as we do not know which
version of the third-party role an old version of the role would use. Running
the PDG builder as instructed produces a total of 629 073 PDGs for individual
snapshots of roles.

We perform a preliminary exploration of this dataset by investigating the types
of variables that are used in the role snapshots. The results of this analysis are
depicted in Table 4.3. We find that 19 661 roles (89.6%) have defined variables
at least once in their history, and 19 393 still feature variables in their latest
commit. Role defaults are the most common, while block variables are rare.

Finally, we run the variable smell detector on the produced PDGs. The
resulting smell instances form the dataset of our study.
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Table 4.3: Summary statistics of the types of variables used in roles.

# unique roles # variables per snapshot

Variable type # % Mean Std. Dev. Median

Block variables 89 0.41 4.2 5.1 2
Include parameters 9 949 45.37 1.2 1.3 1
Included variables 294 1.34 5.3 11.9 3
Role defaults 17 229 78.56 13.5 26.2 6
Role variables 4 780 21.80 5.2 8.3 3
Non-persistent facts 8 638 38.39 4.1 7.9 2
Task variables 1 157 5.28 2.7 4.3 1

Total 19 661 89.65 15.8 29.5 8

Table 4.4: Precision of the variable smell detector for the different smells.

Category Smell # TP Precision

Unsafe reuse
ur1 17 85%
ur2 20 100%

Unintended override
uo1 16 80%
uo2 17 85%

Too high precedence
hp1 20 100%
hp2 20 100%

Total 110 91.67%

4.4.2 RQ1: How precise is our code smell detector?

Research method To validate our PDG builder and smell detector, we
randomly sample and manually validate 20 unique detected instances of each
proposed variable smell (i.e., 120 in total). We consider a smell instance to
be a false positive if the detection rule should not have matched, but do not
take the role developer’s intent into account to eliminate subjectivity from the
validation. For example, we consider unconditional override (uo1) instances to
be true positives even when it seems that the developer intentionally overrides
the variable, since the detector is intended to produce objective warnings, not
all of which may truly be bugs.

Results Table 4.4 summarises the results. The detector achieves good
precision for most smell types. Moreover, all the encountered false positives
stem from limitations of the PDG builder. Specifically, the 3 false positives
for the unsafe reuse due to impure initialiser (ur1) smell are caused by over-
approximations of the PDG builder due to unrecognised filters in expressions,
and can be remedied easily in future work. Similarly, the 4 false positives of
unconditional override (uo1) instances are caused by a builder limitation related
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Table 4.5: Smell instances during the lifetime of Ansible roles. The number
of unique smells per role only considers those roles in which at least one such

smell occurs.

# affected

roles

# unique smells

per role

Category Smell # % Mean Median

Unsafe reuse
ur1 37 0.9 1.8 1.0
ur2 30 0.7 2.2 2.0

Unintended override
uo1 2 124 49.9 5.1 2.0
uo2 14 0.3 2.0 1.5

Too high precedence
hp1 3 345 78.5 5.7 2.0
hp2 184 4.3 6.4 3.0

to multi-level task conditionals. The 3 unused redefinition (uo2) false positives
are caused by the builder not recognising certain dynamic task inclusion
actions, which caused it to assign the wrong precedence to some variable
definitions. Finally, we find no false positives for the too high precedence smells.

Answer to RQ1: A manual validation of 120 random smell instances
shows that the detector achieves a precision of 92%. This precision is
sufficient for the rest of the study.

4.4.3 RQ2: How prevalent are the proposed code smells in

Ansible roles?

Research method We investigate the prevalence of variable-related code
smells in practice. Since subsequent snapshots may contain the same smell
instances, we deduplicate them. To this end, we consider two instances
occurring across two snapshots of the same role to be the same instance if
both are of the same smell type and are caused by the same variable definition.
Then, for each smell type, we calculate how many roles have been affected by
such smells in at least one commit. We also calculate descriptive statistics of
the unique number of these smells per role. Finally, we study the evolution of
the cumulative number of smells over time, including the number of smells
introduced and fixed. To this end, we order the role snapshots according
to their commit date, and compare the set of smells across two subsequent
snapshots to identify additions and removals.

Results Overall, we found 31 334 unique smell instances, spread across 4 260
(19.4%) roles and 109 719 role snapshots. Of these, 21 934 (70.0%) are still
present in the latest version of the roles. Table 4.5 summarises the results.
Unnecessary usages of set_fact (hp1) and unconditional overrides (uo1) are
by far the most prominent smells. Conversely, both types of unsafe variable
reuses occur rarely. This may suggest that ur1 and ur2 are more likely to result
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Figure 4.2: Cumulative number of smell instances over time, per category
(top) and per smell type (bottom).

in defects, and are therefore fixed before they are committed to the repository.
It may also be the case that most variables are only used once.

Figure 4.2 depicts the evolution of the smell prevalence over time. It is clear
from the plot on the top that too high precedence and unsafe override smells
continue to be introduced. The plot on the bottom shows that the hp1 and uo1
smells are the main reasons for the observed trends. Figure 4.3 compares the
cumulative evolution in the number of added and number of fixed smells on a
monthly basis. It shows that the rate at which new smells are introduced far
outpaces that of their fixes.

Answer to RQ2: 19.4% of the roles are affected by the proposed variable
smells, and 70% of smells are still present in the role’s latest snapshot.
Most smells concern definitions with too high precedence, followed
by unintended overrides. Unsafe reuses occur rarely. New smells are
introduced more frequently than existing ones are fixed.
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Figure 4.3: Cumulative number of new and fixed instances.

4.4.4 RQ3: Do the proposed code smells co-occur in Ansible

roles?

Research method We investigate co-occurrence between smells at two gran-
ularities. First, we consider co-occurrence at the role snapshot level, i.e., a
single role snapshot that exhibits multiple types of smells. We calculate the
proportion of roles that have at least one snapshot in which a co-occurrence
exists. Second, to study whether smells co-occur within the same files in an
affected snapshot, we calculate the proportion of files in a role version in which
certain types of smells co-occur. When a file exhibits the same co-occurrences
in different role snapshots, it is only considered in the first snapshot to avoid
overestimating the file-level co-occurrences for roles with many commits.

Results Among the 109 719 role snapshots with smells, we found 43 255
(39.4%) in which at least two smells from different categories co-occurred,
spread across 1 334 roles. Figure 4.4 shows the proportion of roles that had
smells that co-occur within the same snapshot.9 We observe unintended override
smells co-occur with too high precedence smells more often than they occur
alone within the same role snapshot. This finding suggests that variables
defined with too high a precedence may lead to problems, including other
smells. Nonetheless, as shown by the high proportion of roles in which smells
occur alone, both can occur independently. Moreover, Figure 4.4 shows that
many of the unsafe reuse smells co-occur with smells of at least one other type.

We also investigated how frequently smells co-occur in the same file. Figure 4.5
depicts the number of co-occurrences found in the files contained in role
snapshots. We find that unintended override and too high precedence smell
instances more often co-occur in the same file, than they occur in isolation.
Other types of co-occurrences are rare.

9 Note that the totals do not sum to 100% since it is possible for a role to have several snapshots
that exhibit different co-occurrence types.
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Figure 4.4: Venn diagram depicting the number and proportions of role
snapshots that exhibit a type of smell co-occurrence, i.e., co-occurring across

any of the files of a role at a certain commit.

Moreover, we investigated how many of a snapshot’s files are impacted
by co-occurring smells. To this end, Figure 4.6 depicts letter-value plots
describing the proportion of files in a snapshot in which a co-occurrence can
be found, for snapshots exhibiting such file-level co-occurrences. We find that
co-occurrences of too high precedence and unintended override can frequently
be found in most files in the snapshot. On average, such a co-occurrence
impacts 79.2% files in a snapshot, whereas more than half of the co-occurrences
impact all files of the snapshot (median 100%). However, note that many roles
may have only a single file, thus trivially leading to 100% of their files being
impacted. For instance, we only found 2 cases where all three smell types
co-occur in a file, and in both cases, the role only contained a single file. Finally,
when focusing on files without co-occurring smell categories, we find that
the proportion of files impacted by too high precedence smells alone follows a
uniform distribution. The other smell categories tend to impact proportionally
fewer files in the snapshot. Specifically, unintended override smells impact an
average of 45.5% and a median of 50% of files in a snapshot, whereas unsafe
reuse smells impact an average of 32% and a median of 25% of files.

Answer to RQ3: Although only 39.4% of roles exhibit co-occurring code
smells, we find that unsafe reuse smells frequently co-occur with too high
precedence smells. We also find that too high precedence and unintended
override smells frequently co-occur within the same files.
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Figure 4.5: Venn diagram depicting the number of individual role files of a
snapshot that exhibit a type of smell co-occurrence.

4.4.5 RQ4: What is the lifetime of a code smell in an Ansible

role?

Research method To understand the lifespan of variable smells, we investi-
gated when they get introduced in a role and how long it takes for them to be
fixed. First, we study how long it takes for a smell to be introduced into a role.
To this end, we consider both absolute time (number of months) and relative
time (proportion of commits) elapsed since the role’s first creation, to account
for different development speeds. Afterwards, we investigate how frequently
smells are introduced in the role’s first commit, and during the addition of
new code files to the role.

To study fixes for variable smells, we investigate the amount of time required
before a smell is removed since its original introduction. RQ2 showed that
the majority of smells are still present in a role’s last snapshot and have thus
not been fixed. Therefore, we use a survival analysis [64] to estimate the
probability over time for a smell to be removed, with respect to the date of
the first commit introducing the smell. Survival analysis creates a model that
estimates the survival rate of a population over time until the occurrence of
an event, in our case, the disappearance of the smell from the role. We use
log-rank tests to confirm statistical differences between the survival rates of all
considered categories of smells. We determine the 𝑝 value using a Bonferroni
correction. Specifically, starting from 95% confidence (𝛼 = 0.05) and for 𝑛 = 18
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Figure 4.6: Letter-value plots depicting the distribution of the number of files
in a role snapshot in which smell categories co-occurred. Note that each plot
only considers role snapshots that exhibit a file-level co-occurrence, and that

the distributions are depicted proportionally.

tests, we obtained a corrected 𝑝 value of 0.002.

Results Figure 4.7 depicts the cumulative evolution of the first appearance
of smells in function of the lifecycle of the affected role, i.e., the proportion
of commits already made. We observe that smells are introduced at a steady
pace throughout the role’s entire development lifetime. Nonetheless, half
of all smells were introduced in the first 30.7% of the roles’ development
lifecycles, because many smells are already present from the first commit to a
role. Specifically, 16.8% of code smells are introduced in the first commit to a
role. This affects 1 359 roles or 31.9% of all roles with smells. Of these roles,
82.3% contained too high precedence smells, 38.5% contained unintended override
smells, while only 0.66% contained unsafe reuse smells.10

Figure 4.7 also shows that too high precedence smells are the first to appear, at a
median of 27.8% of the role lifetime, opposed to 33.8% and 35% for unintended
override and unsafe reuse, respectively. This may again suggest that too high
precedence smells can cause the other smells. Moreover, as can be seen on
the bottom figure, most hp2 smells are introduced early in the development
cycle, with half being introduced in the first 18.1% of the roles’ lifetimes. In
absolute terms, we find that 50% of all smells are introduced within the first
0.46 months of the role’s lifetime. Specifically, it took 0.3, 0.96, and 4.05 months
for 50% of too high precedence, unintended override, and unsafe reuse smells to
appear, respectively. This large discrepancy between the absolute and relative
time periods for the unsafe reuse smell may indicate that it is more likely to
occur in roles with longer development cycles, and were introduced when
Ansible’s semantics was less understood.

10 Note that a project might have code smells of different categories.
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Figure 4.7: Proportion of code smells in function of the proportional number
of commits made since a role’s first commit, per category (top) and per smell

type (bottom).

In terms of code files, we find that out of the 58 881 code files, only 7 171
(12.2%) contained any smells. Table 4.6 depicts the number and proportion
of those affected files in which a smell of a certain type has been present
since its first introduction, as well as the number of roles and smells these
correspond to. We observe that 55.3% of smelly files already contained these
smells when the file was added to the corresponding role. Furthermore, 42.7%
of too high precedence smells are introduced together with their encompassing
file. Similarly, for 35.5% roles that contain unsafe reuse smells, at least one of
these smells was introduced together with the file.

Finally, we investigated the amount of time required before a smell is removed
since its original introduction. Figure 4.8 shows the Kaplan-Meier survival
curves for our smells. The curves for unintended override and unsafe reuse
overlap, which suggests that there is no clear difference in terms of fixing time
for smells in these two categories. In contrast, the too high precedence curve
does not overlap with any other. It also takes longer before smells of this
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Table 4.6: Statistics about code files whose first version contained at least one
smell.

Files Roles Smells

Category # % # % # %

Too high precedence 3 138 56.8 2 112 61.0 8 667 42.7
Unintended override 1 568 48.2 1 126 52.8 3 333 30.6
Unsafe reuse 25 29.4 22 35.5 35 26.7

All 3 966 55.3 2 580 60.6 12 035 38.4

category are fixed. It takes 17.6 and 12.8 months for 50% of unintended override
and unsafe reuse smells to be fixed, respectively, while it takes 37.4 months
for 50% of too high precedence smells to be fixed. Log-rank tests confirmed
statistical differences between the too high precedence category and the other
two categories. This difference is mainly due to hp1 smells (in the right figure).
Conversely, the tests did not confirm such a difference between the unintended
override and unsafe reuse categories (𝑝 = 0.016). Finally, considering all smells
categories, we found that it takes 26.7 months for half of all smells to be fixed.

Answer to RQ4: Code smells are introduced steadily throughout the
role’s lifetime. Half of the discovered code smells appeared within the
first 30% of a role’s lifetime, with 16.8% already existing in the first
commit. However, smells take much longer to be removed, still having
a survival probability of over 50% after more than 2 years.

4.5 Discussion

In this section, we discuss the practical implications of our findings (Sec-
tion 4.5.1). We also present potential threats to validity in Section 4.5.2.

4.5.1 Practical Implications

The variable smells proposed in this chapter can be used by Ansible practi-
tioners to identify maintainability issues and find potential defects. Almost a
fifth of the roles in our dataset is affected (cf. RQ2), and not seldom from their
first commit onwards (cf. RQ4). Next to a call to arms for better tool support
and safer IaC languages, this suggests that there are likely misunderstandings
about Ansible’s semantics among practitioners.

Practitioners’ perception of smells Although we have not consulted with
practitioners for this study, we found various fixing commits (cf. RQ4) suggest-
ing that practitioners agree with these smells. For instance, one developer fixed
an unnecessary set_fact usage to address an issue where built-in facts were
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Figure 4.8: Kaplan-Meier curves showing the probability for a code smell
to fixed in function of the time since the first commit in which the smell
appeared, grouped by smell category (top) and name (bottom). The shaded
coloured areas represent the confidence intervals (𝛼 = 0.05) of the survival

curves.

overridden.11 Another developer removed three such usages to improve their
role’s quality score,12 a metric computed by Ansible Galaxy to rate roles based
on syntactic linter warnings. Similarly, various smells related to unsafe reuses
of impure expressions correspond to defects that were later addressed.13,14

This suggests that the discovered smells could be used to warn developers
about potential defects and to recommend fixes. We leave this as future work.

11 https://github.com/dj-wasabi/ansible-zabbix-agent/issues/207
12 https://github.com/Senzing/ansible-role-stream-producer/commit/57f0f85f389aa
93677465952d528040082d2cddc

13 https://github.com/MonolithProjects/ansible-github_actions_runner/commit/94
616c56a760f84e5738eac9b8c0534e935c2499

14 https://github.com/servergrove/ansible-symfony2/commit/2285f4d8e9f4da7b33d08
ade38102869a45f1455

https://github.com/dj-wasabi/ansible-zabbix-agent/issues/207
https://github.com/Senzing/ansible-role-stream-producer/commit/57f0f85f389aa93677465952d528040082d2cddc
https://github.com/Senzing/ansible-role-stream-producer/commit/57f0f85f389aa93677465952d528040082d2cddc
https://github.com/MonolithProjects/ansible-github_actions_runner/commit/94616c56a760f84e5738eac9b8c0534e935c2499
https://github.com/MonolithProjects/ansible-github_actions_runner/commit/94616c56a760f84e5738eac9b8c0534e935c2499
https://github.com/servergrove/ansible-symfony2/commit/2285f4d8e9f4da7b33d08ade38102869a45f1455
https://github.com/servergrove/ansible-symfony2/commit/2285f4d8e9f4da7b33d08ade38102869a45f1455
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1 - include_tasks: types/pin.yml

2 vars:

3 # Include param

4 apt__pin: ...

(a) tasks/configure-preferences.yml

- template: ... 1

vars: 2

# UO2: Shadowed by include param 3

apt__pin: ... 4

(b) tasks/types/pin.yml

Listing 4.3: Example of a real-world uo2 smell in the Turgon37.apt role, commit
948c785c.

Common pitfalls During the validation of the smell detector (RQ1), we
discovered certain patterns in the misunderstandings of Ansible’s semantics.
We discuss them as knowing which pitfalls to avoid can be valuable for
practitioners. For instance, many of the unnecessary include_vars (hp2)
instances were caused by practitioners explicitly loading files defining their
default and role variables. Not only is this redundant since these files
are loaded implicitly, it also unconditionally overrides the already-defined
variables (leading to uo1 smells) and leads to unnecessarily high precedence,
which may make it impossible for a client play to override these variable
definitions to customise the role’s behaviour. Moreover, many of the unused
redefinition (uo2) smells were caused by the use of include parameters, which
have the highest possible precedence. This is exemplified in Listing 4.3, where
a task variable in an included file is shadowed by an include parameter defined
on the include_tasks task.

Additional language features We also found apparent workarounds for
a lack of language support for particular variable use cases, which can
serve as the motivation to introduce new language features to address these
use cases. A number of unnecessary include_vars (hp2) smells, although
true positives, would be difficult to address since the dynamically loaded
variable files were used to modularise variable definitions. This is exemplified
in Listing 4.4, where the variables for different Amazon AWS services are
divided into separate files that get included one after the other. Similarly,
many unconditional overrides (uo1) affected variables defined as task results
through the register directive. Although these variables were only used
locally, register defines them globally, leading to conflicts as shown in
Listing 4.5. Finally, all the sampled data dependence changes (ur2 smells)
were caused by a form of dependency injection, where the initialiser of a global
variable depended on a variable defined in the local environment of a task.
Although many of these redefinitions seemed intentional, we classified them
as true positives since the detector correctly identified the change in variable
values and this usage of variables may be confusing. Nonetheless, this smell
uncovered another instance of a real defect in an Ansible role, illustrated in
Listing 4.6.

Additional tool support Our results can also serve to motivate future
research on Infrastructure as Code maintainability. For instance, unnecessary
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1 # Contents of tasks/main.yml

2 - include_vars: infrastructure/subnets.yml

3 - include_vars: infrastructure/security-groups.yml

4 - include_vars: infrastructure/load-balancers.yml

5 - include_vars: infrastructure/instances.yml

Listing 4.4: Example of a real-world hp2 smell in the telus.aws-
infrastructure role, commit 94c2203c.

1 # Contents of tasks/tasks_python_fallback.yml

2 - shell: yum -y install python3

3 register: result # Define `result`
4 until: result is not failed # Use `result` from line 3 locally
5

6 - shell: yum -y install python3-devel python3-setuptools

7 register: result # UO1: Unconditional redefinition of `result`
8 until: result is not failed # Use `result` from line 7 locally

Listing 4.5: Example of a real-world uo1 smell in the softasap.sa_docker
role, commit 96548e70.

usages of set_fact (hp1) are the most common smell we detected (cf. RQ2).
Due to its imperative nature and high precedence, we believe these to have
a negative impact on the clarity and maintainability of infrastructure code.
Moreover, our findings in RQ3 suggest that unintended override smells may be
caused such usages. Future work may investigate set_fact’s use cases, and
possibly recommend refactorings to safer alternatives. Similarly, the results of
RQ2 show that smells are introduced more often than they get fixed, while
RQ4 shows that it may take a long time for a fix to arrive. Therefore, tool
support for IaC practitioners to detect, comprehend, and repair these smells
may be beneficial.

4.5.2 Threats to Validity

We present the threats to validity of the empirical study presented in this
chapter following the classification and recommendations of Wohlin et al.
[140].

The main threat to construct validity stems from the prototypes that we built
to detect the smells. Our PDG builder suffers from technical limitations,
discussed in Section 3.3.3. They may have introduced false negatives and false
positives in our results. However, we have mitigated the threat of the latter by
manually validating the precision of our prototypes on a random sample (cf.
RQ1), and we did not observe a large negative impact of its limitations during
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1 # Contents of tasks/configure-preferences.yml

2 - include_tasks: addkey.yml

3 loop: "{{ keys }}" # Defines `item`
4 vars:

5 # These expressions should use `item` defined on line 3
6 ssh_config_dir: "{{ item.ssh_config_dir }}"

7 ssh_host_usewith: "{{ item.ssh_host_usewith }}"

8

9 # Contents of tasks/addkey.yml

10 - file:

11 path: "{{ ssh_config_dir }}" # OK: Uses `item` defined on line 3
12 - blockinfile:

13 # UR2: New value, expression now uses `item` redefined on line 15
14 path: "{{ ssh_config_dir }}"

15 loop: "{{ ssh_host_usewith }}" # Redefines `item`

Listing 4.6: Example of a real-world ur2 smell in the dottgonzo.add_ssh_key
role, commit 7140f935.

our validation. Nonetheless, we could not measure recall due to the absence
of a ground-truth set of smells, meaning our findings may under-approximate
the number of variable smells in practice. Second, the removal of a smell does
not necessarily imply that it was fixed, as the containing code might have been
deleted. The survival probabilities shown in RQ4 thus form a lower bound.

Internal validity concerns choices and factors internal to the study that could
influence the observed results. We decided to only study roles that are hosted
on Ansible Galaxy, while there might be other roles available in GitHub but
not distributed via Ansible Galaxy. However, since Ansible Galaxy is Ansible’s
official hub for sharing Ansible content, we believe that the majority of roles
are hosted on it, making our results representative for the majority of Ansible
roles’ developers and users.

Conclusion validity concerns the degree to which the conclusions we derived
from our data analysis are reasonable. Since our conclusions are mostly based
on empirical observations, our work is unlikely to be affected by such threats.
However, it is important to mention that our conclusions concern Ansible role
smells which are not necessarily bugs, but are indicative of bad practices that
may lead to bugs when the role is included in a play.

As a threat to external validity, our findings cannot be generalised beyond
Ansible roles, i.e., to other Ansible components such as playbooks, or to other
Infrastructure as Code languages such as Puppet and Chef. However, it
is possible to replicate the design of our study for the aforementioned IaC
languages, which we leave as future work.
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4.6 Conclusion

Mistakes in infrastructure configuration data are a major cause of infrastructure
defects. The intricate details of Ansible’s variable and expression semantics
may lead developers to unwittingly introduce such defects into their infrastruc-
ture code. Moreover, this semantics encumbers program comprehension and
therefore introduces maintenance difficulties. Nonetheless, existing research
on code smells in Infrastructure as Code has not considered smells originating
from such semantics, and existing detection approaches are not able to detect
them.

Therefore, we have proposed a catalogue of 6 novel code smells related
to the usage of Ansible variables. The smells indicate unsafe reuses of
variables, unintended overrides of variables, and variables defined with
unnecessarily high precedence. We have combined the Program Dependence
Graph representation with a rule engine approach to automatically detect
these code smells. This smell detector traverses a PDG and matches logical
predicates on each node to identify the smells.

Using the detector, we have conducted an empirical analysis into the prevalence
and lifetime of the smells in over 20 000 open-source, reusable Ansible roles.
The results show that these smells are becoming increasingly common, and
are introduced at a steady pace throughout the entire lifetime of roles. Some
smells often co-occur within the same role, suggesting that one smell may
cause another. Nonetheless, it may take a long time before smells get fixed,
even though anecdotal evidence in the form of fixing commits shows that
certain smells may be indicative of infrastructure defects. The proposed smells
and the accompanying detector can therefore serve as a valuable asset for
Ansible practitioners to spot maintainability and reliability issues in their
infrastructure code.
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Chapter 5

Detecting Security Weaknesses in

Ansible Artefacts

Whereas the previous chapter discussed the correctness of Infrastructure-as-
Code artefacts and bad practices that may affect them, this chapter instead
discusses the security of IaC artefacts and the resulting infrastructure. Security-
related bad practices can give rise to security vulnerabilities, which may be
exploited by malicious actors as an attack vector to abuse enterprise systems
hosted on a digital infrastructure. Prior work has identified numerous security
smells, i.e., recurring patterns indicating potential security vulnerabilities, that
can occur in IaC scripts [106, 108, 109, 115]. Various security smell detectors
have been developed to detect such smells, including two tools for Ansible,
SLAC [108] and GLITCH [115]. These detect various security smells, such as
secrets (e.g., passwords) that are embedded in plain text in the infrastructure
code (hardcoded secrets).

However, these existing detectors rely solely on syntactic analyses (cf. Sec-
tion 2.3.2), leading to several limitations. The approaches lack awareness
of Ansible-specific syntactic constructs, and do not take control-flow and
data-flow information into account. These limitations lead them to report false
positives, and worse, may lead to vulnerable Ansible code going undetected
(i.e., false negatives).

To alleviate these limitations, in this chapter, we propose a novel approach to
detect security smells which leverages our Program Dependence Graph (PDG)
representation for Ansible (cf. Section 3.3). As this representation includes
control-flow and data-flow information, our approach is able to address the
latter two limitations. Moreover, as the PDG is constructed from our structural
model (cf. Section 3.3.2), which in turn leverages Ansible’s own parser (cf.
Section 3.2.2), our approach exhibits more syntax awareness. We implement
this approach in GASEL (Graph-based Ansible Security Linter, pronounced
“gazelle”), a prototype detector for seven previously-proposed security smells.

To evaluate our approach, we construct an oracle of 243 real-world security
smells and measure GASEL’s precision and recall. We compare GASEL to
SLAC [108] and GLITCH [115], the two state-of-the-art approaches in security
smell detection for Ansible code (cf. Sections 2.3 and 5.1), and find that GASEL
outperforms the state-of-the-art approaches. However, as our approach is
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more expensive to both implement and apply, we investigate whether the
higher cost is justified in practice. To this end, we empirically investigate the
prevalence of security smells that require control-flow or data-flow information
to detect across a large corpus of Ansible scripts. Our findings show that these
smells are indeed common in practice, motivating the need for deeper static
analysis tools for IaC languages.

The remainder of this chapter is structured as follows. In Section 5.1, we
survey the academic literature for state-of-the-art approaches performing
security smell detection in Infrastructure as Code, and present the catalogue
of security smells considered in our work. Then, Section 5.2 introduces
motivating examples that highlight the need to transcend syntactic analysis
for security smell detection. Section 5.3 addresses this need by introducing
our smell detection approach based on PDGs, and the GASEL prototype that
implements it. We employ GASEL in Section 5.4 to empirically study security
smells on a large scale. Section 5.5 discusses the empirical study’s results and
implications, after which Section 5.6 concludes.

A replication package containing our prototypes, data, and analysis scripts
used in this chapter is available at https://doi.org/10.6084/m9.figshare.
21929856.

5.1 State of the Art

In this section, we review the literature on security smell detection for In-
frastructure as Code. We focus on two aspects, first on the smell detection
approaches (Section 5.1.1) and afterwards summarising a catalogue of security
smells for configuration management languages (Section 5.1.2).

5.1.1 Security Smell Detectors

The earliest work on security smells in infrastructure code is by Rahman et al.
[106], who investigate security weaknesses in Puppet scripts. They devise a
catalogue of several security smells, such as hardcoded secrets and missing
integrity checks on downloaded executable code, and develop SLIC, a tool
to detect them. Rahman et al. [108] replicate this work for Ansible and Chef,
developing a similar tool named SLAC, and later for Kubernetes as well [109].

For Ansible, SLAC parses the Ansible YAML code into dictionaries and lists. It
traverses this representation and checks pairs of dictionary keys and values
in search of smells according to a set of detection rules combined with a set
of string patterns. For instance, to detect a hardcoded secret, SLAC searches
for keys denoting a secret (e.g., keys named “password”) with an associated
value that is a literal string.

SLIC and SLAC implement the same detection rules for the three languages
individually. This redundancy led Saavedra and Ferreira [115] to create
GLITCH, a polyglot detection tool for Puppet, Chef, and Ansible, which they
later extended to Terraform and Docker [116]. Although the detection rules are

https://doi.org/10.6084/m9.figshare.21929856
https://doi.org/10.6084/m9.figshare.21929856
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largely identical to Rahman et al.’s, GLITCH only implements a single version
operating on an intermediate representation. Saavedra and Ferreira also
make numerous improvements to the string patterns proposed by Rahman
et al., enabling GLITCH to outperform SLIC and SLAC. Moreover, GLITCH
implements all applicable rules for all languages, whereas SLIC and SLAC only
detect a subset of the security smells for each individual language. For Ansible,
GLITCH’s intermediate representation is a lightweight abstraction over the
dictionaries and lists obtained by YAML parsing. Ansible-specific concepts,
such as tasks, variables, and expressions, can be tagged in the representation.

Reis et al. [113] replicate SLIC’s evaluation and find that its precision is
substantially lower than originally reported after validation with code owners,
dropping from 99% to 28%. Armed with practitioners’ feedback, they develop
InfraSecure, a smell detector for Puppet which outperforms SLIC. To this end,
they implement several improvements, such as introducing more syntax
awareness and adjusting the detection rules to reduce false positives.

Finally, Rahman and Parnin [105] adapt SLIC to identify which Puppet resources
are impacted by security smells. To this end, they construct a data dependence
graph of a Puppet manifest (cf. Sections 2.3.2 and 3.1.2) and propagate a
security smell detected in one resource to other resources by traversing along
the data dependence edges. They use these propagated defects to empirically
study the impact of weaknesses across resources in an IaC script. Rahman
et al. [101] later replicate this approach and the empirical study for Ansible.
However, the detection approaches employed in both studies remain the
same as in the original SLIC and SLAC tools, operating at a purely syntactic
level. Therefore, the new tools are still unable to detect smells that require
control-flow or data-flow information.

5.1.2 Security Smell Catalogue

Prior work has proposed various catalogues of smells, many inspired by one
another and accompanying a specific detection tool. Of particular interest
to our work is the catalogue described by Saavedra and Ferreira [115], who
combined the smell catalogues of Rahman et al. for Puppet [106] and Ansible
and Chef [108]. The catalogue comprises 8 security smells that are applicable
to Ansible, described below.

Admin by default (admin) Using administrator privileges by default may be
indicative of a violation of the principle of least privilege. Examples
include specifying a user with administrator privileges, running a service
as the root user, or accessing a resource with elevated permissions.

Empty password (empty) Configured passwords must not be empty, as empty
passwords are trivial to crack.

Hardcoded secret (secret) Hardcoding sensitive information such as pass-
words or private keys into code can lead to severe vulnerabilities when
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the code is published online, either accidentally into open-source reposi-
tories or maliciously through leaks. Secrets should therefore be stored
in so-called vaults [100].

HTTP without SSL/TLS (https) Omitting encryption protocols when com-
municating over HTTP allows an attacker to intercept or modify commu-
nications through man-in-the-middle attacks. Communication should
therefore be encrypted with SSL or TLS to prevent tampering and
eavesdropping.

Missing integrity check (integrity) When downloading code archives or
executables, the downloaded file’s integrity should be checked using
cryptographic hashes. Unwanted modifications will otherwise go un-
noticed, enabling attackers to perform software supply chain attacks by
tampering with the code executed on infrastructure machines.

Suspicious comment (comment) Developers may embed comments in their
infrastructure code that may reveal flaws or shortcomings in the system.
These often mention certain keywords, such as “TODO” or “FIXME”. When
these comments concern the system’s security, they are indicative of
security flaws, and may also provide information on how the flaw can
be exploited.

Unrestricted IP address (ip) In network configurations, using the IP address
0.0.0.0 indicates that the server should accept connections from any
network interface, including remote connections. Missing IP address
filters facilitate denial of service attacks.

Weak crypto algorithm (crypto) Some cryptographic algorithms have been
shown to be insecure, as flaws can be used to break their security
guarantees. For instance, using hashing algorithms like SHA-1 or MD5
to hash passwords or perform file integrity checks is insecure, as these
algorithms are prone to collision attacks. Such algorithms should
therefore no longer be used.

5.2 Motivating Examples

The motivating examples depicted in Listings 5.1 and 5.2 highlight the 3 major
limitations exhibited by SLAC and GLITCH.

5.2.1 Lack of Ansible Syntax Awareness

As described in Section 3.2, Ansible features extended syntax that is not
handled by standard YAML parsing. The most notable example of this is
the inline task module arguments syntax (cf. Section 2.2.1). YAML parsing
therefore does not suffice to create the key-value pairs required for existing
tools to check these arguments for smells. For example, existing tools cannot
properly parse the task arguments in Listing 5.1, and thus miss the HTTP
without SSL/TLS and missing integrity check smells, as they cannot identify the
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1 - name: Download nginx-{{ version }}.tar.gz

2 get_url:

3 url=http://nginx.org/download/nginx-{{ version }}.tar.gz

4 dest=/usr/local/src/nginx-{{ version }}.tar.gz

Listing 5.1: Task adapted from personium/Ansible exhibiting HTTP without
SSL/TLS and missing integrity check smells requiring Ansible-specific syntax

awareness to detect.

1 - hosts: ...

2 roles:

3 - role: overdrive3000.percona

4 root_password: _password_

5

6 # In overdrive3000/percona role

7 - name: Update MySQL root password

8 mysql_user:

9 name: root

10 password: '{{ root_password }}'

Listing 5.2: Play adapted from CenturyLinkCloud/clc-ansible-module
exhibiting a hardcoded secret smell requiring control-flow and data-flow

information to detect.

URL. Moreover, since existing approaches do not fully support expressions,
they may miss the smells even when standard YAML notation is used.

5.2.2 Lack of Data-Flow Information

Existing approaches do not take the flow of data within an Ansible script
into account. This can lead to false negatives when smells feature indirection
through variables and expressions. In Listing 5.2, for instance, a password
is specified as an expression (line 10) that refers to a variable (line 4). The
latter is initialised with a literal, thus forming a hardcoded secret. Lacking
data-flow information also causes tools to report false positives for smells that
cannot be harmful in practice, e.g., due to dead code or unused variables.

5.2.3 Lack of Control-Flow Information

Recall from Section 2.2.1 that Ansible scripts can be structured as separate
YAML files which are dynamically included at run time. Moreover, they can
dynamically include Ansible roles originating from third parties, as depicted
in Listing 5.2, where a play (lines 1–4) dynamically includes a role from a
third-party dependency. Existing approaches do not inspect the control flow
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root_password {{ root_password }} $1

_password_ root mysql_user

DEFUSE

DEF

args.name

args.password

Action Expression Named value Unnamed value Literal Control flow Data flow

Figure 5.1: Program Dependence Graph of the example depicted in Listing 5.2.

within Ansible scripts, and must instead rely on scanning all YAML files and
assuming they contain Ansible code. However, not every YAML file contains
relevant Ansible code. The tools therefore report false positives, such as for
test code which developers often consider harmless [108], or for non-Ansible
YAML files.

Furthermore, dynamic inclusion can cause the aforementioned data-flow
indirection to cross files, where a variable is defined in one file and used in
another. For instance, in Listing 5.2, the hardcoded secret smell is actually
spread across different files, with the password being defined in one file (line
4) but used in another (line 10). Due to Ansible’s variable and expression
semantics (cf. Section 2.2.4), detecting such indirect smells requires accurately
tracking both control and data flow, and thus necessitates a whole-project
analysis.

5.3 Graph-based Security Smell Detection

To address the above limitations, we introduce an approach to detect the
previously-proposed security smells in Ansible using graph queries on the
Program Dependence Graph representation (cf. Section 3.3). Our approach
addresses the first limitation because the PDGs are built from our structural
model, which is aware of Ansible’s extended syntax. Furthermore, the data-
flow information embedded in the PDG enables our approach to overcome
the second limitation. Finally, as our PDGs are built using a whole-program
analysis, they contain information about several files as well as third-party
code, addressing the third limitation of state-of-the-art detectors.

To illustrate, Figure 5.1 depicts the PDG of Listing 5.2, showing that the PDG
comprises the code from all involved files. Moreover, it makes clear that there
exists a data-flow path from the literal value to the password argument of the
task, indicating a hardcoded secret smell with data-flow indirection.

Our approach operates in two phases. First, it builds a PDG for an “entry
point”, either an Ansible playbook or an Ansible role, using the PDG builder
described in Section 3.3.2. Then, it runs Cypher graph queries on each entry
point’s PDG. We devise 7 such Cypher queries, each detecting the instances of
one type of security smell that may be present in an Ansible playbook or role.
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Table 5.1: Detection rules for security smells. The symbol 𝑛 denotes any
node, 𝑙, 𝑣, and 𝑡 denote literal, variable, and task action nodes, respectively,
and 𝑎 denotes argument edge labels. The notation 𝑛1 ... 𝑎−→ 𝑛2 denotes the
existence of a data-flow path of arbitrary length between 𝑛1 and 𝑛2, ending

with an edge labelled 𝑎.

Smell type Query description

admin 𝑙 ... 𝑎−→ 𝑡 ∧ isAdmin(𝑙) ∧ isUser(𝑎)

empty (
(𝑙 ... 𝑎−→ 𝑡 ∧ isPassword(𝑎)) ∨ (𝑙 ...−→ 𝑣 ...−→ 𝑡 ∧ isPassword(𝑣))

)
∧ isEmpty(𝑙)

secret (
(𝑙 ... 𝑎−→ 𝑡 ∧ isSecret(𝑎) ∧ ¬isSecretWhitelist(𝑎)) ∨
(𝑙 ...−→ 𝑣 ...−→ 𝑡 ∧ isSecret(𝑣) ∧ ¬isSecretWhitelist(𝑣))

)
∧ ¬isEmpty(𝑙)

https 𝑛 ...−→ 𝑡 ∧ (isLiteral(𝑛) ∨ isExpression(𝑛)) ∧ isHTTP(𝑛)
∧ ¬

(
isHTTPWhitelist(𝑛) ∨ (𝑙 ...−→ 𝑛 ∧ isHTTPWhitelist(𝑙))

)
integrity (

𝑙1 ...−→ 𝑡 ∧ isDownload(𝑙1) ∧¬(𝑛 ... 𝑎1−→ 𝑡 ∧ isChecksum(𝑎1))
)
∨(

𝑙2 ... 𝑎2−→ 𝑡∧((isCheckFlag(𝑎2)∧¬𝑙2)∨(isNoCheckFlag(𝑎2)∧𝑙2))
)

ip 𝑛 ...−→ 𝑡 ∧ (isLiteral(𝑛) ∨ isExpression(𝑛)) ∧ isBadIP(𝑛)

crypto 𝑛 ...−→ 𝑡 ∧ (isLiteral(𝑛) ∨ isExpression(𝑛)) ∧ isWeakCrypto(𝑛)

We instantiated this approach into GASEL, a prototype detector implemented
in Python using RedisGraph as an in-memory graph database that answers the
Cypher queries.

Cypher Queries

We design a Cypher query for 7 of the 8 smells supported by GLITCH (see
Section 5.1.2). We omit the suspicious comment smell, as comments are not
represented in the PDG and control-flow and data-flow information will not
improve its detection.

To design the graph queries, we took initial inspiration from the matching
rules of the GLITCH tool. However, our queries match paths in the graph rather
than keys and values of a tree-based representation. A major advantage is
that our queries can account for data-flow indirection in the code by matching
variable-length definition-use chains. As a result, our queries report the
indirectly hardcoded password exemplified in Listing 5.2, thus addressing the
limitation described in Section 5.2.2.

Table 5.1 summarises our graph queries for security smell detection. Listing 5.3
depicts a simplified example of a corresponding Cypher query. In the table,
the operation 𝑛1 ... 𝑎−→ 𝑛2 finds definition-use paths of arbitrary length between
nodes 𝑛1 and 𝑛2, where the final edge in the path is denoted by 𝑎, which may
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Table 5.2: String patterns used in graph queries.

Function String pattern

isAdmin admin, root

isUser user, role, uname, login, ...

isPassword pass, pwd

isSecret pass, pwd, token, secret, ssh.*key, ...

isSecretWhitelist generate, update

isHTTP http://

isHTTPWhitelist localhost, 127.0.0.1

isDownload http.+.tar.gz, http.+.dmg, http.+.rpm, ...

isChecksum checksum, cksum

isCheckFlag gpg_check, check_sha

isNoCheckFlag disable_gpg_check

isBadIP 0.0.0.0

isWeakCrypto md5, sha1, arcfour

1 MATCH (l:Literal)-[:DEF|USE*0..]->()-[a:ARG]->(t:Action) // 𝑙 ... 𝑎−→ 𝑡

2 WHERE
3 (a.value CONTAINS "user" OR a.value CONTAINS "role") // isUser(𝑎)
4 AND (l.value = "admin" OR l.value = "root") // isAdmin(𝑙)
5 RETURN l.location;

Listing 5.3: Simplified graph query for admin by default smells.

be omitted if the edge label is irrelevant. Functions isExpression and isLiteral
check the node type of their argument, while functions such as isPassword or
isUser check the label of a given node or edge. Similarly to SLAC and GLITCH,
the latter functions use string patterns, summarised in Table 5.2.

Our string patterns are inspired by those of GLITCH, which have previously
been shown to outperform those of SLAC, but we slightly refined the patterns
using our Ansible domain-specific knowledge. For instance, we add a whitelist
to the hardcoded secret query to account for common string-valued arguments
that are used as flags rather than secrets (e.g., update_password, which
specifies a boolean value indicating whether a password must be updated).
Importantly, for the hardcoded secret smell, we do not consider usernames to be
secret, following the practitioner feedback reported by Reis et al. [113].

5.4 Security Smells in Practice

This section presents our empirical study into the prevalence of security smells
in real-world Ansible projects. We investigate the following research questions.
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• RQ1: How accurate is our security smell detector? This RQ serves as the
evaluation of our approach. We construct an oracle of real-world security
smells, use it to determine precision and recall of our approach, and
compare it to two state-of-the-art security smell detectors for Ansible,
namely SLAC [108] and GLITCH [115].

• RQ2: How prevalent are security smells in open-source Ansible codebases?
In this RQ, we investigate how often security smells of different types
are manifested in Ansible repositories, entry points, and files. The
results will provide insights into the prevalence of security smell types
in practice.

• RQ3: How often do security smells cross file boundaries? In this RQ,
we investigate the instances of security smells detected in RQ2 which
require a whole-program analysis to detect. Such instances involve
multiple Ansible files (e.g., a hardcoded password variable defined in
one file but used in another) or are partly or wholly situated in third-
party dependencies, and may be undetectable to single-file analyses.
Answering this RQ provides insights into the importance of whole-
program analyses in security smell detection.

• RQ4: How prevalent is data-flow indirection in security smells? Our final RQ
investigates how frequently smell instances involve data-flow indirection
through the use of variables and expressions. Similar to before, the
answer to this question will determine the need to account for data flow
to accurately detect security smells in practice.

5.4.1 Dataset Collection

To answer these questions, we need a dataset of Ansible repositories. Whereas
in the previous chapter, we used a dataset of reusable Ansible roles, i.e.,
“libraries”, we now expand our scope to also include Ansible playbooks, i.e.,
the end user’s scripts. However, identifying openly-accessible playbooks is
difficult, as they are not hosted on dedicated indexers such as Ansible Galaxy.
Moreover, as Ansible files can have arbitrary names and do not carry a unique
file extension, instead using the YAML extensions, searching based on file
names is impractical. Instead, we start from the dataset previously collected
by Saavedra and Ferreira [115]. They collected a list of 681 repositories from
GitHub and applied various filtering criteria focused on development charac-
teristics (number of contributors, number of commits) to discard irrelevant
projects. However, we argue that their dataset collection procedure may have
missed several relevant, frequently-used repositories, while simultaneously
retaining irrelevant projects. Therefore, we aim to augment this initial dataset
in two ways.

First, using our dataset of Ansible roles previously collected from the Ansible
Galaxy registry in Section 4.4.1, we add popular repositories that were missed
in Saavedra and Ferreira’s [115] dataset. However, rather than using all roles,
we aim to curate the dataset to omit low-quality or rarely-used Ansible roles.
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Table 5.3: Dataset statistics.

Attribute Original Extension Total

# repositories 448 524 972
# owners 285 196 449
# YAML files 74 862 8 932 83 794
# non-test YAML files 64 311 6 449 70 760
# playbooks 7 744 219 7 963
# roles 7 490 527 8 017

Therefore, from the dataset of Ansible roles, we identify the most popular
repositories that cumulatively represent 95% of all role downloads in the
Ansible Galaxy ecosystem. We found a total of 710 repositories, from which
we omit 64 that are already present in the original dataset, and a further 34
which are forks. Thus, we obtain 612 new relevant repositories.

Second, we apply additional criteria to remove repositories that are rarely
used and are thus not representative. To this end, we employ GitHub’s “stars”
metric, which counts the number of people who have “starred” a repository.
We remove all repositories that have no stars on GitHub, which indicates a lack
of popularity. This removes 272 repositories from the dataset, 199 of which
originate from the original dataset by Saavedra and Ferreira [115]. Moreover,
we remove 49 “hidden” forks, 34 of which originate from the original dataset.
These are repositories that are not marked as forks on GitHub but share an
initial commit with another repository in the dataset. Such repositories may
share a lot of code with another repository in the dataset, and their inclusion
may skew our results. For each group of forks, we retain the most popular
repository as indicated by the number of stars.

We obtain a final dataset of 972 Ansible repositories comprising 15 980 entry
points (playbooks or roles). A summary of this dataset is depicted in Table 5.3.

5.4.2 RQ1: How accurate is our security smell detector?

Research method To calculate precision and recall and compare to the state
of the art, we require a set of true security smells in Ansible scripts. Although
prior work provides such a manually annotated oracle [108], it does not serve
our needs for three reasons. First, the oracle considers individual files, whereas
our approach performs a whole-project analysis. Second, for several security
smells, the oracle contains very few or no true positives, which may lead to
unrepresentative results. Third, the oracle is constructed of files belonging to
a single project, which hinders generalisability.

Instead, we create a new ground-truth oracle by sampling the results of the
three detectors on a corpus of Ansible projects and by pooling [74] the true
positive reports. Specifically, we first run the three detectors on the entire
corpus of Ansible repositories. We run GASEL on each playbook and role
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in each repository and rely on its ability to resolve and subsequently scan
included files. We configure it to search for third-party role dependencies in a
search path containing all roles in the Ansible Galaxy dataset from Chapter 4.
Then, we run SLAC and GLITCH on each repository in the corpus using the
configurations from their respective replication packages. We filter out all
reports of suspicious comments and hardcoded usernames, since these are
not implemented in GASEL, as motivated in Section 5.3.

Next, we randomly select a sample of reports for manual review. However,
since SLAC does not report line numbers, and line numbers reported by GASEL
may differ slightly from those reported by GLITCH, we cannot automatically
relate the reported smells. Instead, we sample entire files and manually review
all reported smells for those files.

To obtain a varied set of files that is representative of all detectors, we first
group the files into three categories for each security smell: files for which
GASEL reports the same number of smells as another tool, files for which GASEL
reports more smells, and files for which GASEL reports fewer smells. The aim
is to review both smells that are commonly found, and smells that are missed
by at least one tool. As noted above, GASEL relies on resolving dynamically
included files to perform a whole-project analysis, but resolving such files
statically is not always possible. As such, it may occasionally overlook files
that were scanned by SLAC and GLITCH, which do not rely on control-flow
information and simply scan all YAML files. Conversely, SLAC and GLITCH
may mistakenly scan irrelevant files, such as non-Ansible YAML files, which
would degrade their results. To reduce this bias, we decided to only consider
the files that were scanned by all three tools. Subsequently, we randomly
select 10 files of each category for each security smell, leading to a total of 210
files to be manually reviewed. Note that each file can contain multiple security
smells of the same type.

We then manually label each sampled smell as a true or false positive. We
consider smells to be false positives if they cannot cause a security weakness in
the project (e.g., a reported hardcoded secret that is not a secret, or a variable
containing a smell while that variable is never used). Through the resulting
oracle, we will be able to calculate each tool’s precision and recall. Note that
the obtained recall values will be an approximation, since the oracle will lack
smells that are missed by all detectors.

Results In total, we manually reviewed 390 unique potential smells from 662
reports by the three detectors. We find 243 true positives, ranging between 11
and 64 per smell type. A summary of the manual investigation and the oracle
is provided in Table 5.4.

Table 5.5 depicts the precision and recall for the three detectors on the oracle
set of security smells. Note again that the recall values are an approximation,
since the oracle does not contain smells missed by all detectors.

GASEL achieves the highest recall for 6 of the 7 smells, by an often substantial
margin. For all smells, GASEL finds more than 75% of their instances in the
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Table 5.4: Oracle construction results.

Smell type

# checked

reports

# unique

reports

# unique true

positives

Admin by default 96 65 64
Empty password 74 37 15
HTTP without SSL/TLS 145 99 35
Hardcoded secret 65 42 11
Missing integrity check 60 37 27
Unrestricted IP address 143 61 47
Weak crypto algorithm 79 49 44

Table 5.5: Precision (P) and recall (R) for GASEL, SLAC, and GLITCH on the
oracle dataset. Highest precision and recall for each smell are marked in bold.

GASEL GLITCH SLAC

Smell type % P % R % P % R % P % R

admin 98.11 81.25 100.00 67.19 N/A N/A
empty 44.44 80.00 42.86 60.00 30.77 53.33
https 100.00 88.57 54.84 48.57 22.89 54.29
secret 45.45 90.91 56.25 81.82 33.33 81.82
integrity 96.15 92.59 50.00 33.33 75.00 44.44
ip 76.60 76.60 82.98 82.98 81.63 85.11

crypto 97.67 95.45 86.11 70.45 N/A N/A
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sample set. GASEL also achieves the highest precision for 4 of the 7 security
smells, and only a slightly lower precision than GLITCH for another.

We further observe that for 4 smells, namely empty password, HTTP without
SSL/TLS, missing integrity check, and weak crypto algorithm, our tool achieves both
the highest precision and recall of all detectors. For HTTP without SSL/TLS and
missing integrity check, our tool substantially outperforms SLAC and GLITCH.
For the admin by default and hardcoded secret smells, the improvement in recall is
paired with lower precision, possibly indicating a trade-off between precision
and recall. Finally, we note a substantial decrease in both precision and recall
for the unrestricted IP address smell, where GASEL performs worst.

Apart from precision and recall, a secondary yet important concern in security
smell detection is the time taken to scan a project. Unsurprisingly, because
GASEL needs to perform more in-depth analysis, it takes more time than the
other tools. In our experiments, SLAC and GLITCH took 8 and 22 minutes
respectively to scan the entire dataset, while GASEL took slightly over 2
hours. Nonetheless, GASEL’s mean running time is around 220ms to scan an
entire repository and around 65ms to scan a single playbook or role, which
is acceptable. However, large projects may form large outliers, with some
repositories taking multiple minutes, upwards of 40 minutes for a single
repository. For such projects, GASEL may need to scan the same Ansible file
many times if the file is included multiple times in the repository (e.g., a role
included by multiple playbooks). Another factor is the use of a graph database
in GASEL’s prototype implementation. We observe that a large portion of time
is spent merely importing the built PDG into this database. We theorise that
performance tuning of the database may aid in improving the performance on
large projects and consequently, large PDGs.

Answer to RQ1: Our approach achieves consistently high recall (above
75% for all smells). Its precision is also often high (>95% for 4 smells),
except for empty password and hardcoded secret smells. It achieves the
highest precision and recall for 4 and 6 smell types, respectively, but
performs considerably worse for unrestricted IP address.

5.4.3 RQ2: How prevalent are security smells in open-source

Ansible codebases?

Research method We run GASEL on the entire corpus of repositories accord-
ing to the same setup as detailed in RQ1. However, we additionally instruct it
to produce a sink location for each smell, i.e., the location of the task that it
affects. This is different from the smell’s own location, which we shall from
now on refer to as the source location, in part because of control-flow and
data-flow indirection.

Note that since GASEL scans each entry point separately, it may report dupli-
cates when smells are reachable from multiple entry points in a repository,
e.g., because both entry points include a common file. Since duplicate reports
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Figure 5.2: Letter-value plots depicting the distribution of the number of
smells per repository, entry point and sink file. Outliers are omitted for space

considerations.

would skew our results, we eliminate them by not considering the entry
point through which the smells are reported, except when investigating the
proportion of entry points exhibiting smells.

Results GASEL detected a total of 7 933 unique security smells impacting
472 repositories (48.56% of our corpus) and 3 457 entry points (21.63% of the
corpus). The mean and median number of affected entry points per repository
are 7.32 and 1, respectively, while the mean and median number of smells per
affected entry point are 4.42 and 2.

These smells are spread across 3 145 source files, impacting a total of 3 613
sink files, indicating that certain smell sources are used by multiple sinks. The
distribution of the number of smells per repository, entry point, and sink file
are summarised in Figure 5.2. We observe a mean and median number of
smells per sink file of 2.2 and 1, respectively. For repositories, we find that
the mean and median number of smells are 16.8 and 4. The high difference
between the two suggests the presence of outliers with many smells, which
can be seen in the letter-value plot. Indeed, we found repositories with as
many as 802 smells. Similarly, the maximum number of smells in a single
entry point is 247.

Table 5.6 summarises the number of smells, affected files, and affected repos-
itories per smell type. We find that hardcoded secret is the most common
security smell across all three metrics. However, note that our approach
achieves low precision for this smell type (RQ1), and its prevalence is thus
likely an over-approximation. In terms of number of smells, hardcoded secret is
closely followed by admin by default, yet in terms of number of affected files
and repositories, missing integrity check ranks second. This may suggest that
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Table 5.6: Number of smells, affected repositories and sink files grouped by
smell type. Percentages of affected repositories and sink files are relative to

the total number of affected repositories and files.

Smells

Affected

sinks

Affected

repos

Smell type # % # % # %

secret 2 155 27.17 1 235 34.18 211 44.70
admin 2 043 25.75 766 21.20 190 40.25
https 1 369 17.26 765 21.17 198 41.95
integrity 1 084 13.66 803 22.23 200 42.37
crypto 577 7.27 234 6.48 94 19.92
ip 418 5.27 289 8.00 120 25.42
empty 287 3.62 163 4.51 65 13.77

repositories or files often contain multiple admin by default smells while missing
integrity check more often occurs alone. The table also shows that smell types
are not evenly distributed across all repositories, since the highest number
of repositories impacted by a smell type (211) is less than half of all affected
repositories (472).

Finally, Figure 5.3 depicts the distribution of the number of smells per repos-
itory and sink file, grouped by smell type. Note that for each group, we
only focus on those repositories or files that exhibit at least one smell of
the given type, so the minimum number in each is 1. We observe that the
median number of smells per entry point is 1 for all smell types, whereas the
median for repositories ranges between 2 and 4 per smell type. This figure
also confirms that repositories or files frequently have multiple admin by default
instances, explaining the observation described above.

Answer to RQ2: 49% and 22% of the repositories and entry points in
our dataset are affected by 7 933 unique security smells. Hardcoded secret
is the most prevalent, followed by admin by default and missing integrity
check.

5.4.4 RQ3: How often do security smells cross file boundaries?

Research method To study control-flow indirection, we build upon the
instances collected in RQ2 and focus on those whose source file differs from
their sink file, indicating a control-flow indirection through file inclusion. We
also investigate smells of which the source or sink file is located in third-party
code (role dependencies), and thus get included into the client code indirectly.

Results We observe that 2 594 (32.7%) instances have a source file different
from the sink file and thus cross file boundaries. The proportion of such
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Figure 5.3: Letter-value plots depicting the distribution of the number of
smells per repository and sink file, grouped by smell type. Outliers are

omitted for space considerations.

instances is the highest for empty password (51.92%) and weak crypto algorithm
(51.13%) smells. Conversely, admin by default (21.34%) and unrestricted IP
address (23.68%) exhibit the lowest proportion of such instances. For all smell
types, more than 20% of their instances affect tasks defined in different files.

Moreover, we find that 510 smells (6.43%) are situated entirely within third-
party code. The majority of these are admin by default (150) and HTTP without
SSL/TLS (109) smells, whereas weak crypto algorithm (12) and empty password
(13) represent the lowest number of smells. The smell type with the highest
proportion of smells in third-party code is unrestricted IP address (15.55%), while
weak crypto algorithm has the lowest (2.08%). Each smell type has instances
situated in third-party roles.

Finally, GASEL detected 20 smells (0.25%) that cross the boundaries of first-
party and third-party code. Specifically, we find 9 missing integrity check, 8
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hardcoded secret, and 3 HTTP without SSL/TLS smells where a variable defined
in first-party code is used by a task in third-party role code.

Answer to RQ3: 33% of smell instances involve file inclusion, while
6.5% partly or fully involve third-party code. While admin by default and
unrestricted IP address exhibit the lowest proportion of instances crossing
file boundaries, they comprise large numbers of instances involving
third-party code. Conversely, weak crypto algorithm and empty password
exhibit the highest proportion of instances crossing file boundaries, yet
rarely involve third-party code.

5.4.5 RQ4: How prevalent is data-flow indirection in security

smells?

Research method We again run GASEL on the entire corpus of repositories
using a similar setup as before. However, we now instruct it to produce a
“data-flow indirection level” for each smell, which resembles the length of
the definition-use chain between a smell’s source and sink, counted as the
number of variables in this chain. For instance, indirection level 2 indicates
that the sink refers to a variable which in turn depends on another variable,
the latter constituting the source of the smell. Indirection level 0 indicates that
the smell occurs directly as a task argument, without variables. For example,
the hardcoded secret smell in Listing 5.2 has an indirection level of 1.

Results We find that 55.5% (4 402) of the detected smells involve some level
of indirection through variables and expressions. Table 5.7 depicts the number
of smells, repositories, and sink files, grouped by the smell’s indirection
level. We observe that the majority of indirect smells only use one level of
indirection, with higher indirection levels becoming increasingly rare. The
highest indirection level observed is 6, which occurred only 7 times. However,
a manual investigation of these smells with high indirection levels suggests
that many are false positives.

Figure 5.4 depicts a heatmap of the proportion of indirection levels per smell
type. We observe that a majority of admin by default (77%) and unrestricted
IP address (66%) instances do not contain data-flow indirection. Conversely,
the 5 other security smells contain data-flow indirection more often than not.
For empty password, we observe that the vast majority (85%) of its instances
exhibit one level of indirection. We further find that large proportions of HTTP
without SSL/TLS (31%) and weak crypto algorithm (28%) instances exhibit two or
more levels of indirection.
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Table 5.7: Number of smells, affected repositories and sink files grouped by
smell data-flow indirection level. Percentages of affected repositories and

sink files are relative to the total number of affected repositories and files.

Indirection

level

Smells

Affected

sinks

Affected

repos

# % # % # %

0 3 531 44.51 1 759 50.40 326 69.07
1 3 227 40.68 1 565 44.84 304 64.41
2 957 12.06 456 13.07 134 28.39
3 181 2.28 70 2.01 36 7.63
4 17 0.21 11 0.32 10 2.12
5 13 0.16 7 0.20 7 1.48
6 7 0.09 3 0.09 2 0.42

Answer to RQ4: Over 55% of security smells contain data-flow indirec-
tion. While admin by default and unrestricted IP address rarely contain
data-flow indirection, the remaining types more often than not ex-
hibit data-flow indirection. Data-flow indirection mostly involves one
variable, while indirection through more than 3 variables is rare.

5.5 Discussion

In this section, we discuss the practical implications of our results and how
they impact the prevalence of security smells reported by prior work. We
furthermore discuss limitations of our approach and potential directions for
future work. We start by investigating the causes for differences in the smells
reported by the studied detectors.

5.5.1 Causes for Differences in Detector Reports

While evaluating GASEL’s precision and recall, we determined the root causes
for GASEL finding smells where other detectors did not, and vice versa.

Syntax Awareness

Awareness of Ansible syntax is a major reason for new true positives found by
our approach. The ability to correctly parse the inline task module arguments
syntax (see Section 5.2.1) contributes substantially to the improved recall for
admin by default and HTTP without SSL/TLS smells. Among others, the smell
exemplified in Listing 5.1 was found by GASEL but missed by other tools.
Furthermore, awareness of the register directive enabled our approach to
avoid numerous false positives of weak crypto algorithm. This directive, whose
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Figure 5.4: Heatmap showing the proportion of smells of each group (by
type) and its indirection level.

value is a variable name used to store the outcome of a task, led GLITCH to
falsely report instances because of the use of md5 in the variable name.1

Data-flow Information

Support for expressions and indirection uncovered 8 new instances of miss-
ing integrity check smells. For instance, the real-world example depicted in
Listing 5.4 was not detected by other tools due to the indirection between the
task and the variable containing the source URL. Moreover, GASEL uncovered
one new instance each for admin by default, hardcoded secret, and weak crypto
algorithm, among which the motivational example depicted in Listing 5.2.
Apart from new true positives, it also avoided false positives (i.e., new true
negatives) for HTTP without SSL/TLS, where localhost is used indirectly
through an expression to construct a URL, as exemplified in Listing 5.5. Note
that this example is heavily simplified. In reality, both variable definitions
were in separate files and thus also required a whole-program analysis. Finally,
data-flow information also allowed GASEL to avoid a handful of false positives
caused by variables that are not used in a project.

However, the inclusion of data-flow information also caused new false positives
to be reported by GASEL. Specifically, it reported multiple instances of paths to
secret files (e.g., certificates and key files) that are constructed using expressions,
exemplified in Listing 5.6. Although the content of such files is secret, the

1 Note that the affected tasks often did exhibit the use of weak crypto algorithms, which were
caught by both tools, but GLITCH reported these twice.
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1 # Contents of defaults/main.yaml

2 webapp_operator_tmp: '/tmp/webapp-operator'

3 webapp_operator_release_tag: '0.0.63-workshop-1'

4 webapp_operator_resources:

5 'https://github.com/.../v{{ webapp_operator_release_tag }}.zip'

6

7 # Contents of tasks/provision-webapp.yml

8 - name: Download example files

9 unarchive:

10 src: '{{ webapp_operator_resources }}'

11 dest: '{{ webapp_operator_tmp }}'

12 remote_src: yes

Listing 5.4: Simplified example of a missing integrity check smell that uses
data-flow indirection, adapted from redhat-cop/agnosticd.

1 - ini_file:

2 path: "{{ opensds_conf_file }}"

3 section: osdslet

4 option: "prometheus_push_gateway_url"

5 value: "{{ prometheus_push_gateway_url }}"

6 vars:

7 prometheus_push_gateway_url: 'http://{{ host_ip }}:9091'

8 host_ip: 127.0.0.1

Listing 5.5: Simplified example of a false HTTP without SSL/TLS smell avoided
using data flow, adapted from sodafoundation/installer.

reported values only contain the path and are thus false positives. Further
improvements to the string patterns may aid in avoiding these false positives.

Control-flow and Contextual Information

Since control-flow information is used mainly in the PDG building and not
directly in our queries, we do not find new true positives or true negatives
directly related to it. Nonetheless, several of the new true positives for missing
integrity check described above involve data-flow indirection crossing files and
are only detectable using a whole-project analysis.

We also find a number of false positives caused by a lack of control-flow
information in all detectors. Specifically, for empty password smells, the main
reason for high false positive rates is the existence of control-flow constructs
that prevent the empty password from being used, either by skipping tasks or
asserting that a variable is not empty. Listing 5.7 depicts an example in which
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1 - community.crypto.openssl_csr:

2 privatekey_path: "{{ registry_dir_cert }}/domain.key"

3 vars:

4 registry_dir: /var/kubeinit/registry

5 registry_dir_cert: "{{ registry_dir }}/certs"

Listing 5.6: Simplified example of a false hardcoded secret smell with data-flow
indirection, adapted from kubeinit/kubeinit.

1 # Contents of defaults/main.yml

2 bamboo_user: ''

3 bamboo_pass: ''

4

5 # Contents of tasks/main.yml

6 - name: create user

7 user:

8 name: "{{ bamboo_user }}"

9 password: "{{ bamboo_pass }}"

10 when: "bamboo_pass != ''"

Listing 5.7: Simplified example of a false empty password smell, adapted from
openmrs/openmrs-contrib-itsmresources.

the variables initialised with empty values are meant to be overridden, and
a conditional in the task prevents the user account from being created if the
password is empty. All evaluated detectors report this as an empty password
smell, but we consider this a false positive as the empty password can never
be used in practice. Such false positives may be remedied in the future by a
flow-sensitive analysis, which may be aided by the PDG representation.

Similarly, a lack of contextual information may lead to false positives of the
unrestricted IP address smell. Listing 5.8 exemplifies a usage of the 0.0.0.0
IP address in a deny-rule in a firewall configuration that is falsely flagged as
a security smell by all evaluated detectors. This rule instructs the firewall
to block all traffic from any IP address by default, which is the opposite of
the security weakness that the unrestricted IP address smell attempts to detect.
However, all evaluated detectors ignore the type of firewall rule and simply
report any usage of the IP address, causing false positives. Future work should
investigate taking more contextual information into account to avoid such
false positives.

String Patterns

Our improvements to the string patterns both uncovered new true positives
and avoided other tools’ false positives, e.g., in missing integrity check smells.
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1 - name: Create Extended acl deny_all

2 arubaoss_acl_policy:

3 acl_name: deny_all

4 source_ip_address: 0.0.0.0

5 destination_ip_address: 0.0.0.0

6 protocol_type: PT_IP

7 acl_action: AA_DENY

8 acl_type: AT_EXTENDED_IPV4

Listing 5.8: Simplified example of a false unrestricted IP address smell, adapted
from aruba/aruba-ansible-modules.

Although these improvements enabled GASEL to avoid many false positives in
hardcoded secret, it also caused new false positives (not reported by other tools)
for this smell. This again indicates a trade-off between precision and recall.
Note that all three detectors suffer from low precision for hardcoded secret,
possibly indicating that the string patterns are too general. Although refining
the string patterns further may be a possible strategy to improve precision, we
doubt that much can still be gained and question the maintainability effort
required for such patterns. Future work could investigate whether an approach
more akin to taint analysis, with literals as sources and specific parameters of
a task module as vulnerable sinks, can improve these results. We believe that
the data-flow information contained in the PDG representation could facilitate
such an approach. Furthermore, instead of using manually-crafted string
patterns, future work could train a machine learning model to predict whether
a task argument name is security-sensitive (e.g., indicates a password).

For unrestricted IP address, we find that 5 of the false reports are caused by a
bad string pattern which erroneously matched the IP 10.0.0.0. Similarly, a
number of false negatives for admin by default are because our string pattern
requires a full match for the value, while GLITCH allows partial matches. Both
regressions can easily be fixed in future work.

Composite Data

A major limitation of the PDG builder is that it considers composite data
structures (lists and dictionaries) as mostly opaque data and does not always
split their constituents into separate nodes. Therefore, GASEL lacks the ability
to perform in-depth checking of this data. For instance, for unrestricted IP
address, it misses many usages of bad IP addresses inside the composite
data structures. Similarly, for admin by default, GLITCH can find a number of
instances inside dictionary key-value pairs, which are not checked by GASEL.
This limitation could be addressed by extending the PDG representation and
smell queries further.
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5.5.2 Files Ignored by GASEL

For RQ1, we only focused on files that were scanned by GASEL. However, since
GASEL relies on resolving dynamic inclusions in Ansible code, which is not
always possible, it may miss files checked by other detectors. To investigate
this limitation, we sampled 10 files per smell type that were checked by the
other tools but not by GASEL, and investigated why GASEL ignored them.

We found that the main reason why GASEL fails to scan certain Ansible files is
because of dynamic values that are difficult to approximate statically. GASEL
ignores file inclusion if the file name depends on an expression, such as
one that depends on the operating system name of the targetted machine.
Although these files may contain security smells, GASEL cannot find them.
Future work should investigate whether these dynamic file inclusions can be
statically approximated so that their contents can be represented in the PDG.

Nonetheless, since GASEL only scans files it knows are reachable via a control-
flow path from a playbook, it managed to avoid scanning a substantial number
of irrelevant files. SLAC and GLITCH on the other hand, did scan these files,
leading to many false positive reports. A majority of such files were test files,
which developers often consider irrelevant [108]. Moreover, we observe that
SLAC and GLITCH scanned Ansible files that are never included through an
entry point, thus never executed and ignored by GASEL. Finally, we found a
number of reports by the other tools in YAML files that do not contain Ansible
code, such as Docker Compose and Kubernetes files, or even files containing
plain data.

5.5.3 On the Importance of Control and Data Flow

Our investigation suggests that more than half of the security smells in Ansible
are impacted by data-flow indirection (see RQ3). However, this does not imply
that detectors lacking data-flow information cannot detect such instances.
Indeed, SLAC and GLITCH leverage variable naming to find potential secrets,
and detection of unrestricted IP addresses or weak crypto algorithms does not
require knowing where these values are used. Nonetheless, our evaluation
(RQ1) and consequent manual investigation (cf. Section 5.5.1) shows that taking
data-flow information into account can lead to substantial improvements in
both precision and recall, and we therefore recommend future research to
follow this direction.

Although indirection through control flow is less prevalent (see RQ3), we
note that accounting for control flow is a necessity to accurately approximate
data flow. Furthermore, several instances with indirect data flow require a
whole-program analysis to detect. Moreover, we have shown that control-flow
information can avoid scanning irrelevant files (cf. Section 5.5.2). Finally,
control-flow information would be vital to address the low precision for empty
password smells (cf. Section 5.5.1).

We note that missing integrity check, which was the least prevalent smell
according to Saavedra and Ferreira [115], ranks fourth in our investigation.
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Although our results are gathered from a different dataset and are thus not
directly comparable, the substantially higher recall and precision obtained by
GASEL still suggests that their approach has severely under-approximated the
prevalence of this smell in practice. As shown earlier, data-flow information
was the major reason for the improved recall for this smell, providing another
motivation for its importance in security smell detection.

We also note that our approach detects much fewer hardcoded secret instances
proportional to the total number of smells than prior research. This is likely
in part because we do not consider usernames to be secret, per practitioner
feedback [113]. However, we reiterate that our approach achieves the highest
recall of all detectors for this smell, yet achieves low precision. This suggests
that our results already over-approximate the number of hardcoded secrets,
and prior research may over-approximate this even more.

5.5.4 Threats to Validity

We present our threats to validity according to the recommendations of Wohlin
et al. [140].

A threat to construct validity stems from previously-discussed technical limita-
tions and potential bugs in our PDG builder and smell detector which may
cause false positives and negatives. To mitigate this threat, we conducted an
extensive evaluation of our prototypes in addition to rigorous testing during
its development.

The selection of the studied dataset may form a threat to internal validity. To
mitigate, we applied well-established filtering criteria to maximise the quality
of projects in this dataset. The construction of the oracle in RQ1 exhibits
some more threats to internal validity. First, we only considered files that
were scanned by all three tools and may thus omit files that our approach
missed. We partially mitigate this risk by qualitatively studying the missed
files (Section 5.5.2). Second, we note again that the recall values reported in
RQ1 are an approximation, since our oracle is an under-approximation of the
ground truth. Finally, the manual labelling of smell reports may introduce bias.
However, this is mitigated by the labelling process being an objective binary
decision following strict criteria, leaving little room for subjective influence.

As a threat to external validity, our findings cannot be generalised to other IaC
languages such as Chef and Puppet. Nonetheless, we believe our approach to
be sufficiently general to transpose to other languages.

5.6 Conclusion

The security of digital infrastructures and, by extension, the Infrastructure as
Code scripts that configure them, is essential. However, existing approaches
to detecting security smells in Infrastructure as Code disregard the analysed
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scripts’ control and data flow, and lack awareness of specific syntactic con-
structs. This causes them to miss numerous security smells, which may allow
security weaknesses in IaC scripts to go unnoticed.

To address these limitations, this chapter presented an approach based on the
Program Dependence Graph representation combined with Cypher graph
queries to detect 7 security smells in Ansible code. The PDG provides vital
data-flow information and can account for Ansible’s syntactic particularities.
Moreover, because its construction follows the control flow of Ansible scripts,
our smell detection approach can disregard irrelevant and non-Ansible YAML
files. We showed that these improvements enable our approach to outperform
two state-of-the-art detectors on an oracle of 243 real-world security smells,
with recall above 80% on 6 of the 7 considered security smells, while precision
is above 90% for four smells.

We further investigated the prevalence of indirection caused by control and
data flow in 7 933 security smells detected across 472 repositories and 3 457
Ansible entry points. Our findings show that over half of security smells
involve data-flow indirection, and one in three smells involve dynamic file
inclusion. A comparison of the frequency of security smells found by our
approach to those reported in previous work suggests that previous work
has severely underestimated the prevalence of security weaknesses. These
findings strengthen the motivation to include control-flow and data-flow
information into future security smell detection approaches.
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Chapter 6

Software Composition Analysis for

Ansible

Understanding software supply chains, i.e., the software components that
make up a final product, is vital, especially from a security point of view.
Attacks on software supply chains have become increasingly common [84] and
their alarmingly high risk has led to new government legislations aimed at
strengthening them, including in the United States1 and the European Union2.
Although this has attracted attention in the academic community, in Chapter 2,
we found that the supply chain of infrastructure code remains an unstudied
topic (cf. Section 2.3.3).

Because infrastructure code is used to deploy application code and its de-
pendencies, we hypothesise that IaC’s deployment supply chains may fun-
damentally differ from those for other software. In fact, deployment supply
chains are more complex than those of application code, as they comprise
third-party software from multiple independent software ecosystems. This
includes not only third-party IaC artefacts within the code’s own ecosystem,
but also third-party software from other ecosystems. For instance, to provision
a cloud machine, infrastructure code may need to depend on OS packages
(e.g., to create cryptographic keys), the remote API of the cloud service (e.g.,
Amazon’s AWS APIs), and development libraries (e.g., a language-specific
wrapper around the remote API). This poses a challenge to practitioners, who
may need several dependency management strategies for their deployment
automation due to the different origins of its dependencies.

Ansible forms a particularly interesting case because of its reliance on collections.
Recall from Section 2.2.5 that collections aggregate plugins that extend Ansible
with new operations. A collection may depend on other collections, which
can be specified in the collection’s metadata manifest. Moreover, because
a collection’s plugins are implemented in a general-purpose programming
language, usually Python, they can depend on development libraries from the
ecosystem surrounding that language, such as Python libraries. Finally, they

1 https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecuri
ty

2 https://www.consilium.europa.eu/en/press/press-releases/2022/10/17/the-counc
il-agrees-to-strengthen-the-security-of-ict-supply-chains/

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.consilium.europa.eu/en/press/press-releases/2022/10/17/the-council-agrees-to-strengthen-the-security-of-ict-supply-chains/
https://www.consilium.europa.eu/en/press/press-releases/2022/10/17/the-council-agrees-to-strengthen-the-security-of-ict-supply-chains/
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1 - hosts: web-servers

2 tasks:

3 - name: Install NodeJS

4 apt:

5 name: nodejs

6 state: present

7 - name: Deploy app from git repository

8 git:

9 repo: https://github.com/my/repo

10 dest: /app

Listing 6.1: Example of an Ansible playbook with plugin dependencies.

can also depend on other types of software, such as binaries installed through
OS packages.

Listing 6.1 exemplifies a deployment playbook for an application. It installs
the nodejs OS package through the apt package manager, and clones a
git repository. Both are part of the application’s run-time software supply
chain. However, Ansible’s apt module (line 4) depends on the apt Python
package, whereas the gitmodule (line 8) requires the git binary. As these are
dependencies of the deployment code, they form the application’s deployment
software supply chain.

As illustrated, the deployment supply chain caused by Ansible playbooks com-
prises various types of third-party software from several sources. Although
Ansible comes with a tool to manage dependencies on a collection, that tool
does not manage the collection’s dependencies on third-party software from
other ecosystems. Furthermore, Ansible offers no mechanism to specify and
coordinate these dependencies in a structured manner; they can only be speci-
fied informally in the plugin’s documentation,3 as exemplified in Figure 6.1.
Moreover, as module plugins execute on remote hosts, their dependencies
are to be installed on that remote host, rather than with the collection on the
controller. Not installing these dependencies will cause the execution of the
Ansible playbook using the plugins to fail partway, leaving the remote hosts
in a partially configured state.

This lack of structured dependency specifications and automated dependency
management may hamper the reliability and reproducibility of Ansible au-
tomation code. In fact, missing packages have been identified as the leading
cause of crashes in automatically-generated Ansible playbooks [46]. Practi-
tioners may also avoid adopting modules because of their dependencies,4
instead opting to replace it with imperative commands, which are considered
a bad practice [65]. Moreover, changes to a collection’s dependencies can

3 https://github.com/ansible/ansible/issues/62733
4 https://github.com/manala/ansible-roles/commit/134766b

https://github.com/ansible/ansible/issues/62733
https://github.com/manala/ansible-roles/commit/134766b
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Figure 6.1: Example of an Ansible plugin’s documentation, specifying
requirements in unstructured semi-natural language.

cause problems for the collection’s clients.5 For instance, after an update to
the hetzner.hcloud collection, its developers received several bug reports of
the collection causing a crash.6 The root cause was that the update requires
a newer version of a Python dependency. Although this was noted in the
collection’s changelog, a lack of dependency management automation caused
this to become a breaking change for numerous clients, eventually leading
to the collection being pinned to an earlier version in the upcoming Ansible
release.7

Without dependency management automation, Ansible effectively shifts re-
sponsibility to plugin developers and to plugin users. Moreover, without
structured dependency specifications, identifying which third-party depen-
dencies are needed and from where they originate becomes a challenge.

Therefore, in this chapter, we conduct an empirical study of deployment
dependencies of Ansible Infrastructure as Code. Specifically, we manually
study a large sample of documented requirements, from which we construct
a taxonomy of the types of dependencies that participate in the deployment
supply chains of Ansible plugins. Moreover, we qualitatively study the
practices related to dependency management adopted by Ansible plugin
developers. We focus on how they check whether dependencies are satisfied,
and the steps taken when a dependency is not satisfied, from which we
derive a catalogue of dependency management practices. As the unstructured
dependency-specifying requirements do not lend themselves well to automated

5 https://github.com/ansible/ansible/issues/35612
6 https://github.com/ansible-collections/hetzner.hcloud/issues/211
7 https://github.com/ansible-collections/hetzner.hcloud/issues/217

https://github.com/ansible/ansible/issues/35612
https://github.com/ansible-collections/hetzner.hcloud/issues/211
https://github.com/ansible-collections/hetzner.hcloud/issues/217
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analysis, we design a Software Composition Analysis (SCA) that automatically
identifies the dependencies of an Ansible plugin from its implementation. We
implement and apply the SCA in a large-scale quantitative investigation of
Ansible deployment supply chains.

The remainder of this chapter is structured as follows. Section 6.1 introduces
the research questions investigated in this chapter and describes the design
of our empirical study. Then, in Section 6.2, we present the results of our
qualitative study, including the taxonomy of dependency types and depen-
dency management patterns. Subsequently, in Section 6.3, we propose a
Software Composition Analysis that employs the dependency management
patterns to automatically identify dependencies from plugin implementa-
tions; we describe its evaluation, and we apply it in a large-scale quantitative
analysis. Section 6.4 discusses the implications of our findings, providing
recommendations to manage dependencies in Ansible plugins and conceptu-
alising applications of our Software Composition Analysis. Finally, Section 6.5
describes related work, and Section 6.6 concludes.

A replication package containing the data, our analysis scripts, and the
dependency extractor is available at https://figshare.com/s/3e30dddab0f
c7e00ee82.

6.1 Empirical Study Design

In this section, we describe the design of our empirical study. We investigate
the following research questions:

• RQ1: Which types of third-party software do Ansible plugins depend on? We
first perform a manual qualitative analysis of the types and characteristics
of third-party software dependencies of Ansible plugins, to gain a better
understanding of the types of software making up deployment supply
chains.

• RQ2: How do Ansible plugin developers manage dependencies? Since Ansible
shifts dependency management to plugin developers, we qualitatively
investigate whether and how plugin developers implement those respon-
sibilities, to gain a better understanding of the state of the practice.

• RQ3: Can Ansible plugin dependencies be identified automatically? As Ansible
does not provide structured dependency specifications, we aim to design
a Software Composition Analysis (SCA) that automatically identifies the
diverse types of dependencies from Ansible plugin implementations.

• RQ4: How common are Ansible plugin dependencies? Using the SCA
resulting from RQ3, we conduct a large-scale study of Ansible collection
dependencies. We quantify the extent to which plugins depend on
other software, through which we will gain a better understanding of
how frequently plugin users may be faced with challenges caused by
deployment supply chains.

https://figshare.com/s/3e30dddab0fc7e00ee82
https://figshare.com/s/3e30dddab0fc7e00ee82
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6.1.1 Data Collection

To collect a representative dataset of Ansible collections, we scrape the Ansible
Galaxy registry (cf. Section 2.2.6). For each collection, we use the registry’s
API to gather information such as its GitHub repository, its releases, and
the number of times it has been downloaded from the registry. Then, we
augment this data with information from the collection’s GitHub repository
(if specified), including the number of commits, issue count, star count, etc.
We collected the data on January 26th, 2024, discovering 2 817 collections and
1 867 GitHub repositories. We could not collect the information of 175 of these
GitHub repositories, e.g., because the repository was removed or set to private.

As our goal is to study unique, open-source Ansible collections, we exclude
1 125 of the 2 817 collections because they do not have a public GitHub
repository. Furthermore, to avoid considering duplicates, when two collections
specify the same GitHub repository, we only retain the one with the highest
download count. This eliminates another 242 collections.

Second, we apply filtering to ensure that our dataset contains only mature
and actively-maintained collections. We exclude 8 collections that are marked
as deprecated on Ansible Galaxy. We further exclude another 584 whose
repository has not been committed to in the year leading up to the data
collection date, and are thus no longer actively maintained. To retain only
those that are mature, we exclude 122 collections with fewer than 10 commits.
Similarly, we exclude another 165 that have been active for less than half a
year, measured as the time between the date of the first and last commit to the
repository.

Finally, we want to focus on collections that are widely used in practice.
Therefore, we retain only the top 10% most downloaded collections according
to Ansible Galaxy statistics. This excludes another 384 collections that have
been downloaded less than 15 700 times.

After filtering, the resulting dataset counts 187 widely-used, mature, open-
source Ansible collections, representing a total of 92.3% of all downloads in
the Ansible Galaxy ecosystem. Table 6.1 depicts their summary statistics. For
the empirical analysis, we download the latest version of each collection. We
also add the ansible.builtin collection to the dataset. It is shipped with Ansible
and therefore should be included, but is missed by our data collection strategy
since it is not distributed through Ansible Galaxy. Our final dataset contains
188 collections.

6.1.2 Parse Collection Documentation

We proceed to extract the requirements specified in the embedded docu-
mentation of Ansible collection plugins. The documentation for a plugin
is embedded into its Python implementation as a YAML document. We
create a script that, given a collection, first enumerates the collection’s plugins,
then extracts documented requirement lists for each plugin individually. For
instance, for the plugin whose documentation is depicted in Figure 6.1, the
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Table 6.1: Dataset statistics, excluding ansible.builtin.

Property Minimum Median Mean Maximum

# downloads 15.7K 136.3K 2.11M 62.5M
# commits 10 269 767 33.7K
Last activity 0 days 18 days 53 days 362 days
Active time 233 days 1 370 days 1 355 days 3 984 days

script would produce a list of 6 items, each containing the text for one bullet of
the highlighted requirements list. For both steps, the script leverages Ansible’s
ansible-doc command, which processes the embedded documentation. We
run the script on the latest version of the 188 collections in the dataset. We
enumerate 13 721 plugins and successfully parse the documentation of 13 164
plugins. In total, we identify 10 960 requirements belonging to 5 537 plugins,
forming the population for our study.

6.1.3 Open Coding of Collection Dependencies

We manually investigate a statistically significant sample of collection re-
quirements to identify the types of third-party software on which plugins
depend (RQ1), as well as dependency management patterns in the plugin
implementations (RQ2). For the latter, we intend to focus on how plugins
check whether dependencies are satisfied, and on what steps plugins take if a
dependency is not satisfied.

We first deduplicate documented requirements across different plugins in the
same collection, because these plugins may use common implementations,
which would introduce bias in our results. This results in 866 unique com-
binations of a collection and an individual documented plugin requirement.
We then take a random sample of this deduplicated population, using a
sample size obtained from Cochran’s formula for categorical data, adjusted
for small population sizes [21] with 95% confidence, 5% margin of error, and
an estimated population proportion of 50% to maximise the sample size. This
results in a sample of 266 requirements spanning 51 collections. Then, we
apply open coding to qualitatively answer RQ1 and RQ2. To avoid subjective
bias which could be caused by the use of a single labeller, we only label purely
objective properties for which any ambiguity can be resolved by consulting
the online documentation.

For RQ1, the labeller determines whether the documented requirement repre-
sents a valid software dependency (e.g., “This plugin requires the “requests”
Python package”), as opposed to requirements that do not contribute to the
supply chain and are thus outside the scope of this study (e.g., “This plugin
requires root privileges”). Valid requirements state the type of dependency,
such as the source ecosystem, and related properties, such as whether the
dependency has a version constraint. When the dependency type is unclear,
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Table 6.2: Example output of the open coding for RQ1.

Requirement Valid? Type Where? Version? Conditional?

ncclient >= 0.5.3
when using netconf

✓ Package: Python Host ✓ ✓

cqlsh ✓ Package: OS Host ✗ ✗

scp if using
protocol=scp with
paramiko

✓ Package: Python Controller ✗ ✓

owner or
maintainer rights
to project on the
GitLab server

✗ — — — —

the labeller refers to online documentation for the specified dependency. In
subsequent iterations, they generalise the labels to create categories of depen-
dencies, and derive the general properties exhibited by dependency-specifying
documented requirements.

Table 6.2 illustrates this process using an excerpt of the results. For instance, in
the first requirement, we identify ncclient as a valid dependency, and based
on its online documentation, we determine it to be a Python package. We
also identify that the requirement contains a version constraint (“>= 0.5.3”)
and is only needed when a certain condition is met (“when using netconf”).
Finally, based on the type of the plugin, we have determined the requirement
to be needed on the Ansible hosts rather than the controller. Similarly, for
the second requirement, we identify cqlsh as a binary executable that is
installed from an Operating System package, and for the third requirement,
we identify scp as a Python package required on the Ansible controller. Finally,
we determine that the fourth requirement does not specify a valid software
dependency, and thus mark it as invalid for our purposes.

For RQ2, for each dependency, we randomly select one plugin whose require-
ment list contains the dependency. The labeller then inspects the entirety of
this plugin’s implementation for dependency management concerns. They
summarise the means through which the plugin checks whether the depen-
dency is satisfied, and the behaviour the plugin exhibits in case the dependency
is not satisfied. Both summaries are assigned as distinct codes for the depen-
dency. After coding each dependency, the labeller generalises the codes to
a set of high-level properties that characterise the dependency management,
and iteratively refines the properties to capture variations in similar codes.
The result of this process is a set of commonly-occurring implementation
patterns related to collection dependency management.

To exemplify, Listing 6.2 depicts a dependency management implementation
for a dependency on the selinux Python package. During labelling, we
note several aspects in this implementation. First, we identify that the
implementation wraps the import statement for this dependency in a try-except
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1 SELINUX_IMP_ERR = None
2 try:
3 import selinux
4 HAS_SELINUX = True
5 except ImportError:
6 SELINUX_IMP_ERR = traceback.format_exc()
7 HAS_SELINUX = False
8

9 ...
10

11 def main():
12 ...
13 if not HAS_SELINUX:
14 module.fail_json(
15 msg=missing_required_lib('libselinux-python'),
16 exception=SELINUX_IMP_ERR)
17 ...

Listing 6.2: Example of a dependency management implementation in the
selinuxmodule of the ansible.posix collection.

block, and sets a flag and an exception variable in case the import fails. We also
note that this flag is checked in the plugin’s main function. This constitutes
the plugin’s mechanism to check whether the dependency is satisfied. Then,
we turn to the behaviour it exhibits when the dependency is not satisfied,
and determine that the plugin fails execution through the module.fail_json
function. We also note that it uses the missing_required_lib function and
the exception variable to construct a failure message. We construct such
summaries for all checked implementations, and afterwards generalise them
to abstract common aspects into dependency management patterns.

6.1.4 Automated Software Composition Analysis

After the qualitative analysis in RQ2, we will have identified code patterns
whose presence in a plugin’s implementation are indicative of its management
of a dependency. As unstructured dependency-specifying requirements
cannot be used to reliably extract deployment supply chains, we now use
these patterns to design a Software Composition Analysis that automatically
extracts managed dependencies from Ansible plugin implementations.

To find pattern instances in a plugin implementation, we will use Joern [61], a
multi-language static analysis framework. Joern represents projects as code
property graphs (CPGs), the nodes of which represent program elements such
as statements and expressions. The edges capture properties of and relation-
ships between these elements, including abstract syntax tree containment,
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calls between functions, control flow, data flow, and type information. Our
approach will build a CPG for all plugins in an Ansible collection, and will
evaluate Joern queries against the CPG that find instances of dependency
management patterns and thereby identify dependencies (cf. Section 6.3).

To answer RQ3, we will measure the precision and recall of our Software
Composition Analysis. For recall, the ground truth comprises the manually-
validated dependency-specifying documented requirements from RQ1. We
run the SCA on the implementation of the plugins from the ground truth, and
manually compare its output to the ground truth to identify true positives.
When the SCA reports multiple results that belong to the same dependency
(e.g., individual binaries from one OS package), we manually merge the
reports into one, consulting online documentation where necessary. We do
not distinguish between optional and mandatory dependencies, and do not
consider version constraints, as we only need to determine whether and which
third-party software plugins rely on.

To compute recall, we mark those entries from the ground truth that are
missing from the SCA output as false negatives. Note that when a plugin
implementation does not check for the presence of its dependencies, the SCA
will fail to identify them. Therefore, we calculate an upper and lower bound
on recall. The upper bound is defined as the ratio of identified dependencies
over the number of dependencies in the ground truth for which the plugin
checks whether the dependency is satisfied. The lower bound is the ratio of
identified dependencies over the entire size of the ground truth, including
unchecked dependencies.

To calculate precision, when an entry in the SCA output is not in the ground
truth, we further inspect the plugin documentation and implementation to
determine whether it is a true or false positive. This is necessary because some
plugin dependencies may not have been documented, and are therefore missing
from the ground truth which is constructed from the plugin documentation.
Moreover, some dependencies may be on built-ins, such as built-in Python
libraries or OS packages. Although such built-in dependencies are likely to
be considered as false positives by plugin users and maintainers, they are
depended upon by the plugin. Moreover, dependencies that are typically
considered built-in may turn out to be unavailable after all, e.g., the Python
ssl library may be missing if Python is compiled without SSL support.

Therefore, whether built-in dependencies should be considered true positives
depends on context. To avoid subjectivity, we again calculate an upper and
lower bound on precision. For the lower bound, we assume that all built-in
dependencies are false positives, which would be appropriate for developer-
oriented tooling. For the upper bound, we do not distinguish between built-in
and other dependencies, which would be appropriate to extract the entire
supply chain.
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Figure 6.2: Taxonomy of dependencies in Ansible collections. Host and
controller counts are mutually exclusive.

6.1.5 Quantitative Analysis of Collection Dependencies

To answer RQ4, we apply the SCA resulting from RQ3 to all 188 collections
in the dataset, obtaining lists of dependencies for each plugin. We map each
code pattern identified in RQ2 to the most common dependency type the
pattern is used for. We use the mappings to automatically identify the types
of third-party software in the SCA results. Using the results, we investigate
and compare how many plugins depend on the types of third-party software
identified in RQ1.

6.2 Qualitative Analysis

In this section, we present the results of our manual qualitative study into the
dependencies of and the dependency management implemented by Ansible
plugins.

6.2.1 RQ1: Which types of third-party software do Ansible

plugins depend on?

Among the sample of 266 requirements from the embedded plugin docu-

mentation, we manually identify 221 valid dependency-specifying ones. The
other 45 requirements specify generic preconditions, such as user permissions
or conditions on the Ansible configuration. We note that the dependency
specifications in the plugin documentation are highly unstructured, ranging
from merely the dependency name (e.g., “requests”) to full sentences (e.g.,
“Requires lzma (standard library of Python 3) or backports.lzma (Python 2)
if using xz format”).

In the valid dependencies, we discern 7 distinct types, grouped into 3

categories. The resulting taxonomy is depicted in Figure 6.2. The most
common category is Package, comprising third-party software that is typically
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installed through managers. Python libraries form the majority of this category,
followed by operating system packages for package managers like dpkg
(Debian, Ubuntu, . . . ) or rpm (CentOS, Fedora, . . . ). The Misc subcategory
encompasses other package dependencies that are less common, such as
Terraform packages. The second category is Platform, consisting of operating
systems (e.g., macOS) and APIs. The latter refers to interfaces the plugins
communicate with, either locally (e.g., the Docker API) or remotely (e.g.,
remote management systems). The final category consists of runtime version
dependencies, encompassing minimum versions of Ansible and Python.

We identify 3 orthogonal properties of the 7 categories of collection depen-

dencies. First, we can classify dependencies according to whether they should
be installed on the host that is being configured or on the Ansible controller
(cf. Section 2.2), which depends on the type of plugin. 86% (190) of the studied
dependencies must be satisfied on the remote host machines. We note that
host dependencies are more diverse than controller dependencies. Indeed,
most controller dependencies are Python packages, while certain types of
dependencies, such as those in the Platform category, are only needed on the
remote host. Second, only 37% of dependency specifications (81) include
some form of version constraint, with API and runtime dependencies always
specifying a version constraint. These are denoted by > in the taxonomy.
Finally, while the majority of dependencies are mandatory, we find 18 (8%)
that are either optional or only need to be installed depending on certain
conditions, e.g., depending on the arguments given to the plugin. These are
denoted by ? in the taxonomy.

Answer to RQ1: Plugin documentation does not always specify depen-
dencies, nor in a structured manner. We discern 7 types of Ansible
plugin dependencies in 3 categories. Python libraries and OS packages
are the most prevalent. Most requirements are needed on hosts. Version
specifications are uncommon.

6.2.2 RQ2: How do Ansible plugin developers manage depen-

dencies?

We find that for the majority of dependencies (174 of 221), the plugins check

whether the dependency is satisfied. The majority of these checks (67%)
happen inside the plugin file itself, while the remaining 33% occur in shared
utility files that can be used by multiple plugins which may have different
dependency or version requirements.

However, for 47 dependencies (21%), the plugin does not check that it is

satisfied, and only 36% of specified version constraints are verified by the

plugins. In the Runtime category, only 2 Python version requirements are
validated by plugins, with the remaining 14 Python versions and 1 Ansible
version remaining unchecked. Omitting these checks may lead to run-time
crashes with confusing error messages.
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Table 6.3: Catalogue of dependency management implementation patterns.

Pattern Use cases Example Detection pseudo-query

Guarded
import

Python
packages,
Python
version

HAS_LIB = True
try:
import lib

except ImportError:
HAS_LIB = False

if not HAS_LIB:
<error>

tryStatement
.where(
_.exceptBlock
.contains(_.isAssignment))

.tryBlock.children

.filter(_.isImport)

.map(_.importedName)

Dynamic
import

Python
packages

try:
importlib
.import_module("lib")

except ModuleNotFoundError:
<error>

callTo("import_module")
.arguments(0)
.resolveString()

community.
general deps

Python
packages

with deps.declare("lib"):
import lib

deps.validate(module)

withStatement
.where(
_.expression
.isCallTo("deps.declare"))

.body.filter(_.isImport)

.map(_.importedName)

get_bin_path OS packages,
OS, Python
packages

bin = module.get_bin_path(
"binary_name")

callTo("get_bin_path")
.arguments(0)
.resolveString()

community.
general
CmdRunner

OS packages runner = CmdRunner(
module, "binary_name")

callTo("CmdRunner")
.arguments(1)
.resolveString()

Dependency Management Patterns

We identify 5 common implementation patterns for checking whether depen-
dencies are satisfied. Table 6.3 summarises them with an example, whereas
Figure 6.3 depicts their frequency per dependency type.

The most common pattern is the guarded import, in which developers wrap an
import of a Python package in a try-except block. They then assign a variable
to indicate whether the import was successful, and check this variable to
abort with an error message. Its frequent usage for Python packages is not
surprising, as it is recommended in the Ansible documentation8. Dynamic
import is a closely-related but less common pattern in which developers import
a Python package dynamically with the importlib library that is built into
Python.

A common pattern for OS packages is to use the get_bin_path function
provided by Ansible, which takes the name of a system binary and resolves it
to an absolute path. If the binary cannot be found, it either returns an empty
value or raises an exception, depending on its arguments. These results can
be inspected to check whether a binary exists on the system, and is thus often
used to check for OS packages and platforms.

Finally, we find two patterns specific to the community.general collection, a
prominent collection in our dataset. This collection offers two utilities to

8 https://docs.ansible.com/ansible/latest/dev_guide/testing/sanity/import.html

https://docs.ansible.com/ansible/latest/dev_guide/testing/sanity/import.html
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Figure 6.3: Frequency of dependency management patterns.

interact with dependencies. The deps utility offers an abstraction on top of
the guarded import pattern using a context manager, whereas the CmdRunner
class is an abstraction to interact with system binaries which internally calls
get_bin_path. Since their usage may be widespread across the community.
general collection, we include them in the catalogue.

We do not find any implementation patterns for runtime versions, API plat-
forms, or miscellaneous packages as these are either not checked, or rely on
ad hoc implementations. We also note that in rare cases, a plugin may use
multiple mechanisms to check the same dependency.

Failure Patterns

Of the 174 plugin dependencies that are checked, in 166 cases the plugin
simply fails if the dependency is not satisfied. We only found 5 cases in which
the plugin automatically installs the dependency, and 3 cases in which the
plugin proceeds with degraded functionality.

We recognise 3 patterns in the failure behaviour of plugins. For 105 depen-
dencies, the plugin aborts through Ansible’s fail_json function, which fails
the module’s execution and returns structured output describing the failure
reason. In another 26 dependencies, the plugin raises its own exception,
whereas in the last 35 cases, the plugin propagates an exception from one
of the implementation patterns (e.g., an exception raised by a get_bin_path
call).

Orthogonally, to create an error message, the plugin can use Ansible’s
missing_required_lib function, which takes the name of a dependency
and constructs an error message explaining the missing dependency and
how it can be installed. However, we found it is only used in a third of all
failure behaviours. Specifically, we observe such a call with 54 instances of the
fail_json pattern, and with 3 instances of the exception raising pattern.
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Answer to RQ2: While 79% of Ansible plugins check their dependencies,
only 5 automatically install them. Only 36% of specified version con-
straints are verified. Checks for Python and OS packages often follow a
discernable pattern.

6.3 Automated Software Composition Analysis

RQ1 showed that dependency types are diverse and that the documentation
that specifies dependencies is informal and unstructured, hindering the
ability to automatically extract dependencies from documented requirements.
Having identified 5 dependency management patterns in RQ2, we investigate
whether the dependencies of a plugin can be extracted automatically from its
implementation instead (RQ3). To this end, we create a Software Composition
Analysis (SCA) for Ansible plugins based on the Joern framework [61]. The
analysis operates in two phases. First, it matches the patterns against individual
functions in a collection’s source code. However, these patterns may occur
in common utility functions instead of the plugin implementation itself (cf.
RQ2). Therefore, in the second phase, the SCA propagates the identified
dependencies to each function’s transitive callers, thereby propagating the
dependencies from common implementations to each plugin that uses them.

6.3.1 Semantic Matching of Dependency Management Pat-

terns

We implement CPG queries for each of the 5 patterns, which the last column
of Table 6.3 summarises as Scala-like pseudocode. As the concrete imple-
mentation of a pattern can vary in source code, the queries rely on semantic
information such as data-flow information to overcome the limitations of
purely syntactic pattern matching.

The query for guarded imports finds try-except blocks that contain an import, and
extracts the variables assigned in the block. It then uses data-flow information
to find usages of those variables inside of conditions (e.g., in an if-statement),
indicating conditional execution based on the result of the import. Finally,
it marks the function containing the condition with the dependency names
extracted from the import.

The query for the community.general deps pattern identifies with statements
using the deps.declare function. It marks the functions containing a call
to deps.validate with the dependency names extracted from the import
statements in the with-block.

The queries for the dynamic import, get_bin_path, and community.general
CmdRunner patterns all search for calls to the respective function. Functions
containing such calls are marked with the dependency name obtained from
the call’s arguments. When the argument is a string literal, the name can be
extracted straightforwardly. However, the argument can also be a variable
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reference, in which case the query attempts to resolve this reference to a single
constant definition of a string literal. In case the reference cannot be resolved,
resolves to multiple possible definitions, or is not a string literal, we cannot
confidently extract the dependency name and therefore under-approximate
by omitting the call.

6.3.2 Match Propagation

Because multiple plugins may use the same utility functions (cf. RQ2), depen-
dencies in such functions need to be propagated to the plugins that use them.
Therefore, we transitively propagate the dependencies backwards along the
call graph to the function’s callers. Due to Python being dynamically typed,
the call graph constructed by Joern is an approximation. Specifically, if Joern
cannot infer type information for the receiver of a method call, it resolves
calls by name. This can lead to a vast over-approximation for generic method
names like “run”, which risks generating many false positives. Therefore, our
propagation mechanism is conservative, and only propagates dependencies if
the callee’s receiver type is known, or if the function name is unique in the
project.

We also noticed several shortcomings in Joern’s call graph construction for
object-oriented Python, such as missing call graph edges for super calls and
self calls. As these limitations hamper our dependency propagation, we
implement additional post-processing passes on the CPG to add the missing
edges.

6.3.3 RQ3: Can Ansible plugin dependencies be identified

automatically?

The ground truth, constructed from the manually-investigated sample of
valid dependency-specifying documented requirements of RQ2, comprises 221
dependencies spread across 166 plugins. Running the Software Composition
Analysis for these plugins results in 300 dependencies for 127 plugins. 57 of
the results reported by the SCA are individual parts of the same dependency,
e.g., individual Python packages such as win32pipe and win32event, both
belonging to the pywin32 Python dependency. We aggregate these 57 results
into 17 groups, as described in Section 6.1.4, leading to 260 unique extracted
dependencies.

Recall

The SCA correctly identified 135 dependencies out of the 221 unique depen-
dencies in the entire ground truth, leading to a lower bound on recall of
61.09%. However, considering only those dependencies for which a check
is implemented, the ground truth size decreases to 176, leading to an upper
bound on recall of 76.7%. Table 6.4 depicts lower and upper bounds for indi-
vidual dependency types. Python packages, the most common dependency
type, can be identified with high recall, while around half of the OS packages
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Table 6.4: Recall per dependency type.

Dependency type Lower bound Upper bound

Package: Python 79.3% 111/140 87.4% 111/127
Package: OS 45.2% 19/42 57.6% 19/33
Package: Misc 0.00% 0/2 0.00% 0/2
Platform: OS 30.8% 4/13 57.1% 4/7
Platform: API 0.00% 0/7 0.00% 0/5
Runtime: Python 6.25% 1/12 50.0% 1/2
Runtime: Ansible 0.00% 0/1 N/A 0/0

1 IPTABLES = {'ipv4': 'iptables', 'ipv6': 'ip6tables'}
2 module.get_bin_path(IPTABLES[ip_version], True)

Listing 6.3: A missed dependency due to complex data flow.

can be identified. Other dependency types are often managed ad hoc and
thus cannot be detected with high recall.

We investigated the root causes of false negatives in more detail. In 13 cases, the
false negatives were caused by the SCA failing to match a dependency pattern
because the dependency was checked with an ad hoc implementation. For
another 8 false negatives, the SCA failed to match their code against a pattern
because the data flow was too complex. Listing 6.3 provides an example of an
implementation that was not matched because the argument to get_bin_path
could not be resolved to a single literal definition. In another 12 cases, the
SCA matched the implementation with a pattern but failed to propagate the
dependency through the call graph due to a lack of type information on
the receiver objects of method calls. Further improvements to Joern’s type
inference could likely alleviate this issue without requiring changes to our
approach.

Precision

Across the 260 grouped results, we find 193 non-built-in true positives, and
27 built-in true positives. This corresponds to a precision between 74.2% and
84.6%. We also find 30 dependencies (13.7%) that are managed by the plugin
but not mentioned in the documentation.

We again identify root causes for false positives. The most common root
cause (23 false positives) occurs only in the ansible.builtin collection. As its
implementation is part of Ansible itself, the SCA inspects the entire Ansible
implementation. This caused it to extract Ansible’s own dependencies, which
it then erroneously propagated to the built-in plugins, although they are not
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dependencies of the plugins themselves. In practical applications, omitting
ansible.builtin would raise precision to between 89.5% and 95.0%.

Answer to RQ3: Dependency management patterns can be used to
automatically extract Ansible plugin dependencies, with recall between
61% and 77%, and precision between 74% and 95%. The dependency SCA
complements the plugin documentation by identifying undocumented
dependencies.

6.3.4 RQ4: How common are Ansible plugin dependencies?

To investigate the dependencies of Ansible collections at scale, we applied
the Software Composition Analysis on 11 241 plugins from 187 of the 188
collections in the dataset. We exclude plugins from ansible.builtin as they
caused too many false positives in RQ3 due to the SCA reporting Ansible’s
own dependencies. To map dependency management patterns to depen-
dency types, we consider usages of guarded imports, dynamic imports, and
community.general deps to signify Python packages, whereas get_bin_path
and community.general CmdRunner signify OS packages.

Across the 11 241 plugins, we find no dependency management pattern in

62% of plugins, meaning many plugins might not use any dependency.

Another 35.9% depend on Python libraries, whereas 1.8% depend on OS
packages. A mere 30 plugins (0.2%) depend on both. The large difference in the
number of Python library and OS package dependency management patterns
is consistent with our qualitative findings in RQ1, especially considering that
around 1 in 3 OS package dependencies are either not checked, or checked
ad hoc. These results show that most plugins do not have (identifiable)
dependencies, and when they do, they depend only on one type of third-party
software.

However, when aggregating all plugins in a collection, we find that 51%
of the collections have at least one dependency. 40.6% of the collections
depend on Python libraries, 6 collections (3.2%) depend on OS packages, and
14 collections (7.5%) depend on both. Users of Ansible code that depends
on a collection thus transitively depend on the collection’s dependencies,
creating extensive deployment supply chains sourced from multiple software
ecosystems.

Figure 6.4 depicts the distribution of the number of unique Python library
and OS package dependencies for plugins and collections. Each letter-value
plot considers only plugins or collections with at least one dependency of the
given type. We observe that the majority of plugins and collections depend
on multiple Python libraries, sometimes as many as 10 individual libraries in
a single plugin. Plugins generally depend on fewer OS packages, yet of the 20
collections that depend on OS packages, 19 depend on multiple. However, the
SCA may report multiple binaries of the same OS package separately (cf. RQ3)
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Figure 6.4: Letter-value plots depicting the distributions of the number of
unique extracted dependencies for plugins and collections with at least one
dependency pattern for a given type. An extreme outlier caused by the

community.general collection is omitted.

which we cannot group automatically, so the number of OS packages required
is likely lower in practice.

Table 6.5 lists the 10 most downloaded collections, the number of unique
dependencies in the collection, and descriptive statistics on the number of
dependencies of their plugins. We observe an extreme outlier (hidden in
Figure 6.4), namely the community.general collection, which depends on 126
Python packages and 205 OS binaries. This collection was created to house
many miscellaneous, unrelated plugins that used to be part of the Ansible core
codebase, but are now all installed together through the same collection. Many
of these plugins have their own unique dependencies, as suggested by the
low number of mean and median dependencies per plugin. Other collections,
such as amazon.aws and community.docker, instead rely on few dependencies,
yet most of their plugins use several of them.

Finally, Table 6.6 lists the Python and OS packages that occur most frequently
as collection dependencies. In terms of Python packages (Table 6.6a), we
observe that most dependencies are utility libraries, such as requests, which
facilitates network requests, lxml, which parses XML, and cryptography,
which performs cryptographic operations. We also identify other types of
commonly-checked packages, such as ansible and ansible_collections,
indicating that collections import utilities from either Ansible or other collec-
tions. For OS packages (Table 6.6b), we observe a range of different tools, such
as development binaries (e.g., git and make), OS commands (e.g., mount and
umount), and package managers (e.g., rpm and pkg). However, we note that
even the most popular binaries are depended on by few different collections.
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Table 6.5: Dependency statistics for the 10 most downloaded collections.

# unique

packages

# dependencies

per plugin

Collection # downloads # plugins Python OS Mean Median

community.general 62.54M 724 126 205 0.83 1.00
ansible.posix 32.54M 24 4 12 0.71 0.00
amazon.aws 29.16M 118 5 0 2.88 3.00
ansible.netcommon 22.82M 26 16 0 0.88 1.00
ansible.utils 22.56M 65 8 0 1.55 2.00
community.docker 20.97M 41 13 2 5.12 4.00
ansible.windows 18.49M 44 0 0 0.00 0.00
kubernetes.core 15.95M 24 3 1 0.71 0.00
awx.awx 14.80M 48 4 0 1.06 1.00
community.crypto 14.49M 40 5 8 1.61 1.00

Table 6.6: Top 10 most common dependencies.

(a) Most common Python packages.

Package # coll. # plugins

requests 22 865
ipaddress 14 59
yaml 13 71
ansible_collections 10 942
cryptography 10 318
lxml 9 65
ansible 8 278
xmltodict 8 63
paramiko 7 29
packaging 6 470

(b) Most common OS packages.

Package # coll. # plugins

openssl 3 10
git 3 5
rpm 3 3
make 3 2
mount 2 5
terraform 2 4
umount 2 4
gpg 2 3
pkg 2 3
ssh 2 3
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Answer to RQ4: 38% of Ansible plugins and 51% of Ansible collections
depend on software originating from other software ecosystems. Plugins
often depend on multiple Python libraries, yet rarely on multiple OS
packages.

6.4 Discussion

In this section, we discuss the implications of our findings.

6.4.1 Implications for Ansible Plugin Users

The results of RQ1 show that the supply chain of an Ansible playbook may
consist of software originating from multiple ecosystems. Within the Ansible
ecosystem, practitioners may depend on Ansible itself, third-party Ansible
code (e.g., Ansible roles), and Ansible collections. Our study has shown
that they may also depend on Python libraries, OS packages, platforms, and
runtime versions via a collection’s plugins. In RQ4, we uncovered that nearly
40% of plugins and over half of collections have at least one such dependency.
Moreover, RQ2 showed that plugins rarely install their dependencies them-
selves, and often fail to thoroughly check whether dependencies and their
version constraints are satisfied. Although the dependencies of individual
plugins mostly originate from single ecosystems (cf. RQ4), deployment code
can depend on many plugins, expanding the deployment supply chain.

This may complicate managing deployment supply chains of Ansible

projects. Practitioners not only need to ensure that these dependencies are
satisfied, they also need to ensure that these dependencies are up-to-date with
patches for bugs and security vulnerabilities, while maintaining compatibil-
ity with the collections that require the dependencies. For general-purpose
programming languages, this is facilitated by dependency management tools,
such as Python’s pip, Java’s Maven, or JavaScript’s NPM. In contrast, although
Ansible’s dependency management tool manages dependencies within the
Ansible ecosystem, it does not manage the plugins’ dependencies on software
from other ecosystems. This is in part caused by the diversity of plugin
dependencies, as Ansible cannot make assumptions about how such depen-
dencies should be managed.9 However, although IaC can create reproducible

environments for deployed applications, without automatic management

of these plugin dependencies, IaC’s own deployment environment may

become unreproducible. Therefore, future work could investigate how An-
sible end users manage plugin dependencies, and devise new techniques to
perform automatic dependency management across different ecosystems.

9 https://github.com/ansible/ansible/issues/62733

https://github.com/ansible/ansible/issues/62733
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6.4.2 Implications for Ansible Plugin Maintainers

RQ1 showed that most plugins do not specify version constraints, and RQ2
showed that even when they do, they are rarely checked. Moreover, RQ2
showed that almost no plugins install their own dependencies. Combined
with a lack of dependency management tools, this substantially hinders the
reproducibility of IaC scripts. Therefore, we recommend Ansible plugin

maintainers to use structured, consistent, and machine-readable dependency

specifications, and to adopt dependency management patterns.

For IaC controllers, containerisation can be used to create reproducible envi-
ronments, such as Ansible’s execution environments10. However, for remote
hosts, other IaC dependency management solutions are required. Of the host
dependency types (cf. RQ1), Python packages are the most common. We
noticed that these are often implementation details, such as utility libraries
used to make HTTP requests or wrappers around a remote API. For such
dependencies, we argue that the IaC user should not need to be aware of the
dependency, and that the IaC framework should take care of its installation.
Conversely, the other dependency types are typically inherent to the plugin’s
functionality, e.g., a plugin that manages Docker containers requiring Docker
to be installed on the remote host. We believe that automated installation is
less pressing in such cases, as it would be nonsensical to use the plugin in case
the dependency is not already satisfied.

To automatically manage Python library dependencies, maintainers could
clone the dependency’s source code into the collection’s utilities, which get
automatically installed with the collection. This “clone-and-own” strategy
was adopted by the hetzner.hcloud collection11 after an incident involving
mismatched versions in its dependencies. This effectively prevents version
conflicts and reduces the complexity for users, who no longer need to install
the library themselves. However, it introduces additional complexity for
maintainers due to the problems caused by “clone-and-own” reuse, such as
bug and vulnerability propagation [58, 77, 118]. Additional support within
Ansible itself to specify and install dependencies may be required to alleviate
the complexity further. For instance, the Ansible runtime could install a
compatible version of a dependency before running the plugin, and optionally
remove this dependency after execution is finished.

In the absence of Ansible-provided support for specifying the dependencies,
the taxonomy constructed in RQ1 and dependency management patterns
identified in RQ2 may prove useful for maintainers as a reference on how to
implement dependency management in their plugins. Nonetheless, we note
that for several of the dependency types in our taxonomy, we could not find
any implementation patterns. For certain types, such as remote APIs, this is to
be expected, as every API and therefore every check will be different. However,
for other types, notably Python runtime versions, we find only few checks
and no patterns, although one may expect many of these checks to be similar.

10 https://docs.ansible.com/ansible/latest/getting_started_ee/index.html
11 https://github.com/ansible-collections/hetzner.hcloud/pull/244

https://docs.ansible.com/ansible/latest/getting_started_ee/index.html
https://github.com/ansible-collections/hetzner.hcloud/pull/244
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This suggests that certain types of dependencies may often be overlooked
by developers, which may cause version incompatibilities or unreproducible
deployments.

6.4.3 Applications of the Software Composition Analysis

The Software Composition Analysis created and evaluated in RQ3 could form
the basis for practical tooling for Ansible developers. For instance, the SCA
could be used to automatically report which dependencies are necessary
to run an Ansible script. For plugin developers, the technique could be
leveraged to identify undocumented dependencies or missing dependency
management patterns. Finally, the SCA may also be useful as part of a toolchain
to generate a Software Bill of Materials (SBOM) for cloud deployments. The
SBOM could list the software components used to deploy an application, such
as the Ansible collections, plugins, and their dependencies. Moreover, an
SBOM could be distributed alongside every Ansible collection to document its
components. This would enable practitioners to easily check the components
of their deployment pipeline, e.g., to uncover security vulnerabilities, outdated
dependencies, licence violations, etc.

The SCA could also be applied to study the evolution of Ansible collection
dependencies. We conducted a preliminary study suggesting that nearly 40%
of plugins and 86% of collections with dependency management patterns
have undergone changes to the patterns. However, we observed little to no
co-evolution with the documented requirements. A manual investigation
of a sample of these changes also revealed that changes to the patterns are
often refactorings, such as developers introducing a dependency management
pattern for a previously-unchecked dependency. This preliminary experiment
suggests that dependencies may evolve over time, which may bring about
challenges for end users, but that the documentation may also be outdated or
incorrect. Future work could study dependency changes in more depth.

6.4.4 Limitations of the Software Composition Analysis

In RQ3, we found that our extractor can identify Python library dependencies
accurately. However, it struggles to extract other dependency types and
unchecked dependencies.

For unchecked Python libraries, one strategy may be to consider all import
statements, including unguarded ones. However, this may extract many trivial
built-in packages provided either by Ansible or Python itself, causing high
false positive rates. Moreover, one would need to discern between imports of
first-party and third-party code.

For OS packages, the extractor identifies implementation patterns used to check
for the presence of a binary, causing it to miss unchecked OS dependencies
whose binaries are used directly. Therefore, it may be possible to identify
unchecked dependencies by also matching such direct usages.



6.4. Discussion 123

We found no implementation patterns for Python runtime versions (cf. RQ2)
and thus fail to identify many of those dependencies. Future work could
investigate whether other techniques could identify required Python versions,
e.g., inspecting syntax features or imported built-in packages [153].

Finally, the missing_required_lib function (cf. RQ2) may be useful to identify
dependencies that are managed through ad hoc implementations. However,
we note that it is used in less than half of the dependency management
implementations, and that its presence does not convey the dependency types.

6.4.5 Threats to Validity

We present our threats to validity according to the recommendations of Wohlin
et al. [140].

As a threat to internal validity, the manual investigation performed in RQ1
and RQ2 was performed by a single labeller, which may lead to subjective
bias. We mitigated this threat by limiting ourselves to purely objective
observations and consulting online documentation in case of ambiguity.
Moreover, we avoid subjectivity in RQ3 by providing a lower and upper bound
on precision and recall. Furthermore, the manually investigated sample
may not generalise to the entire studied dataset. We mitigate this threat by
applying established filtering criteria when constructing the dataset, choosing
a statistically significant sample size, and sampling from a deduplicated pool
to avoid studying duplicates.

A threat to construct validity stems from the reliance of the Software Com-
position Analysis on instances of dependency management implementation
patterns as a proxy for dependencies. The SCA and Joern, the framework
on which it is built, may suffer from technical bugs and limitations (cf. Sec-
tion 6.4.4) which may hamper the correct identification of dependencies. We
mitigated this threat by evaluating the SCA’s precision and recall in RQ3,
which showed it is accurate. Moreover, we omitted the ansible.builtin collection
to avoid studying Ansible’s own dependencies.

As a threat to external validity, our study focuses only on Ansible. Nonetheless,
we expect that similar observations can be made in other IaC tools. For
instance, Chef and Puppet, which are configuration management languages
similar to Ansible, may exhibit similar properties in the dependency networks
of their plugins. PL-IaC frameworks such as Pulumi provide APIs to be
used in general-purpose programming languages and may therefore reuse
the language’s existing dependency ecosystem. Moreover, because Pulumi
focuses on provisioning of cloud infrastructures from pre-built templates, it
is heavily dependent on their remote APIs, but may be less dependent on
OS packages. Containerisation tools such as Docker have naturally extensive
supply chains, comprising many OS packages and development libraries [148],
and other Docker images through inheritance [88]. Orchestration frameworks
like Kubernetes depend on those Docker images, and tools to manage Ku-
bernetes manifests, like Helm, may depend on other content in their own
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ecosystem [152]. A major difference is that OS packages and development
libraries in Docker images are primarily run-time dependencies [148], whereas
for Ansible plugins, the dependencies are required at deployment time.

6.5 Related Work

In this section, we briefly introduce previous work related to our empirical
study. First, we focus on prior studies on software dependencies, both for
run-time and development dependencies (Section 6.5.1) and deployment
dependencies (Section 6.5.2). Afterwards, we review existing approaches to
identify dependencies from source code (Section 6.5.3).

6.5.1 Run-time and Development Dependencies

Many studies have investigated dependencies that are necessary at run time or
during development. These studies typically focus on the ecosystems formed
around dependency management tools. For instance, the NPM ecosystem for
JavaScript has been widely studied, often in a security context [2, 20, 29, 72,
114, 139, 146]. Other work has focused on ecosystems like Java’s Maven [48, 53,
99], Python’s PyPI [42, 137, 144], C/C++ [142], OS packages [6], or comparing
common properties across multiple ecosystems [1, 28, 63, 149].

Other researchers have instead studied dependencies in specific software
domains. Huang et al. [52] study dependency-related bugs in Deep Learning
stacks, whose software and hardware dependencies are diverse. Fang et al.
[37] identify dependency antipatterns in distributed microservice architectures
from dependency information originating from different sources, employing
build dependencies extracted from dependency manifests and run-time depen-
dencies from dynamic call traces. Our work differs from these existing studies
as we investigate deployment dependencies in IaC, for which no structured
manifests exist.

6.5.2 Deployment Dependencies

In contrast to the work on run-time and development dependencies outlined
above, recent work has investigated deployment dependencies, which typically
manifest themselves in Infrastructure-as-Code specifications.

For instance, the ecosystem of Docker images has been the subject of several em-
pirical studies. Zhao et al. [155] investigate Docker Hub’s image characteristics,
such as layer sizes. Zerouali et al. investigate the use of run-time dependencies
from ecosystems like NPM, PyPI, and Debian packages in Docker images [147,
148, 150, 151], focusing on security vulnerabilities and outdatedness. Lin et al.
[70] study the evolution of Docker files and their corresponding images on
Docker Hub. Ibrahim et al. [56] compare characteristics such as image size
between official and community images on Docker Hub. We have previously
investigated deployment dependencies in Docker images that result from
inheritance between images [88]. Finally, Zerouali et al. [152] investigate the
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ecosystem forming around Kubernetes manifests, specifically Helm charts on
Artifact Hub, focusing on outdatedness and security vulnerabilities, and find
that they often depend on multiple Docker images.

6.5.3 Dependency Identification

Many of the aforementioned studies rely on dependency manager manifest
files to identify third-party software dependencies. However, some languages,
notably C/C++, have no widely-used dependency management tools, posing a
challenge to identify dependencies. Moreover, dependency manifests may not
be available for software distributed in binary formats, e.g., mobile applications.
Therefore, several earlier studies have investigated how dependencies can be
identified for systems written in such languages.

Many of these prior approaches rely on code clone detection, either in source
code [59, 73, 141, 143] or in compiled binaries [33, 124, 133, 145]. Tang
et al. [134] combine such code clone detection techniques with information
extracted from numerous package managers and build systems for C and C++.
Our Software Composition Analysis differs from these existing dependency
identification approaches as we do not rely on code clone detection and instead
match dependency management patterns in the source code.

6.6 Conclusion

Understanding the software supply chains that support deployment code is
vital to secure digital infrastructures. However, such deployment software
supply chains have not been studied before. Therefore, in this chapter, we have
presented a qualitative and quantitative empirical study into the dependencies
of Ansible plugins.

We manually studied a statistically significant sample of 266 documented
requirements and their implementations in Ansible plugins. We constructed a
taxonomy of 7 types of third-party software that Ansible plugins may depend
upon, finding that Python libraries and OS packages are the most common
Ansible plugin dependencies. Moreover, we found that most studied plugins
check that their dependencies are satisfied, and we have identified 5 common
dependency management patterns in their implementation. Nonetheless,
plugins shift the responsibility of installing these dependencies to the end
users of the plugins.

Based on the dependency management patterns, we designed and imple-
mented a Software Composition Analysis that extracts dependencies from
Ansible plugin implementations. We show that our approach is accurate,
achieving 61%–77% recall and 74%–95% precision on a ground truth of 221
plugin dependencies. By applying our extractor in a large-scale quantitative
experiment involving 187 Ansible collections, we found that 51% of collections
and 38% of plugins have dependencies. Most Ansible plugins depend only on
a single type of dependency, yet end users of Ansible collections may need to
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manage extensive and complex deployment software supply chains to ensure
reproducibility of their deployment code. These supply chains may commonly
consist of Ansible artefacts, Python packages, and OS libraries.

Our results suggest the need for improved dependency management practices
for Ansible. Otherwise, deployment automation that creates reproducible
environments may itself not be reproducible.
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Chapter 7

Conclusion

Infrastructure as Code (IaC) enables practitioners to automate their software
deployments through executable code. Although IaC can increase reliability
and decrease human error, IaC artefacts are not safe from coding errors and
security flaws. This thesis envisioned sophisticated code quality assurance

approaches for Ansible, one of the most popular and versatile IaC tools, to
aid practitioners in identifying and rectifying such issues, akin to those for
application code.

We first reviewed the academic literature on quality assurance approaches
for IaC. We identified three quality aspects and six analysis techniques that
existing work has considered. From this review, we identified two knowledge
gaps. The first is a lack of infrastructure code scanning approaches that utilise
data-flow analyses, a lightweight yet accurate form of static analysis. The
second revolves around software supply chains of deployment code, which,
although vital to understand, have not been studied before.

To address the first knowledge gap, we proposed two new static code rep-

resentations for Ansible. The first is a syntactic representation of Ansible

YAML code which we called the structural model. It improves upon existing
syntactic representations by integrating domain-specific knowledge into the
parsing of YAML files, enabling it to better represent Ansible concepts. The
second representation is the Program Dependence Graph (PDG) for An-

sible. Its nodes represent program elements, such as actions, expressions,
and data values, while its edges connect the elements through control-flow
and data-flow relationships. The PDG constructor derives this information
through a data-flow analysis, and thereby enables sophisticated Ansible

quality assurance approaches that employ data-flow information.

We presented a first application of the PDG representation in the form of
a code smell detector that identifies error-prone coding patterns related

to Ansible variables and expressions. We introduced a catalogue of six
such smells, inspired by real-world problems and intricate Ansible semantics.
Our approach detects these smells by traversing the PDGs in search of these
coding patterns. Using a prototypical implementation, we manually reviewed
a random sample of 120 smells and showed that our approach is accurate,
achieving a precision of 92%. We further used the prototype in a large-scale
empirical study involving over 20 000 Ansible projects. This showed that the
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smells are pervasive throughout the entire lifetime of projects. Moreover, we
found that the smells may be indicative of defects, yet take a long time to be
fixed.

As a second application of the PDGs, we proposed a security smell detector for

Ansible that improves upon state-of-the-art detectors by integrating control-

flow and data-flow information. The detector uses Cypher graph queries to
identify 7 types of security flaws in the PDGs. Through an evaluation on a
manually-constructed oracle of 243 real-world security flaws, we showed that
our approach achieves high precision and recall and outperforms state-of-the-
art detectors. We applied the detector in another large-scale empirical study, in
which we found nearly 8 000 security smells across nearly 500 Ansible projects.
Our findings showed that more than half of the smells need control-flow
and data-flow information to be detected accurately. This further motivates
the need to integrate control-flow and data-flow information into quality
assurance tooling for IaC.

Finally, we addressed the second knowledge gap by conducting a qualita-

tive empirical study of the deployment software supply chain of Ansible

collections. By studying 266 requirements, we constructed a taxonomy of 7
types of software upon which plugins may depend, such as Python packages
and operating system libraries. We then proposed a Software Composition

Analysis that extracts an Ansible plugin’s dependencies by matching de-
pendency management patterns in the plugin’s implementation. We showed
that this approach is accurate using an oracle of 221 dependencies. Through a
large-scale quantitative experiment, we observed that half of the collections
and 38% of the plugins depend on other software. This indicated that the de-
ployment software supply chain of Ansible automation code, which typically
uses numerous collections and plugins, may be extensive.

7.1 Contributions, Revisited

This dissertation has made the following main contributions:

Program Dependence Graph for Ansible In Section 3.3, we proposed the
Program Dependence Graph (PDG) representation for Ansible. The
PDG is a novel static representation for Infrastructure as Code which
succinctly models Ansible code’s control-flow and data-flow information.
Its nodes represent code elements such as Ansible actions, expressions,
and values. They are interconnected through control-flow order and
data-flow definition and use edges. We also described a static data-
flow analysis to construct this PDG representation, highlighting some
of Ansible’s semantic peculiarities and how the data-flow analysis
accounts for them. This representation forms the basis for sophisticated
development tooling for Ansible.

Sophisticated smell detection approaches for Ansible We proposed, imple-
mented, and evaluated two smell detection approaches based on this
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PDG representation. First, in Sections 4.2 and 4.3 we described a cata-
logue of 6 variable-related code smells that are indicative of potential
defects in Ansible infrastructure code, and a detector that traverses the
PDG representation in search of these bad practices. Our evaluation
on 120 randomly-sampled reports showed that this detector achieves
high precision. Second, in Section 5.3, we described a smell detector for
7 security smells that are indicative of possible security weaknesses in
Ansible code. This approach outperforms two state-of-the-art detectors
in an evaluation on an oracle of 243 manually-reviewed weaknesses
because of its use of data-flow information and its ability to represent
jumps in control flow.

Combined, these smell detection approaches contribute to bridging the
first knowledge gap we identified, namely the lack of lightweight yet
accurate code scanning approaches for Infrastructure as Code. They may
aid Ansible practitioners to enhance the security of the infrastructure
scripts, or to identify potential defects early. Moreover, they show the
importance of including semantic information in code scanning, and
indicate that such inclusion is feasible in practical tooling.

Uncovering software supply chains of Ansible deployments We manually
reviewed the dependencies of Ansible plugins to gain a better under-
standing of deployment software supply chains, a previously-unstudied
topic (Section 6.2). From this, we have derived a taxonomy of the types
of software that can occur in Ansible Infrastructure-as-Code deployment
software supply chains. We found that these mainly consist of Python
packages and OS binaries, yet may also include various other types of
software. We also described a catalogue of 5 dependency management
practices implemented by Ansible plugins. This taxonomy and catalogue
may be useful to practitioners to implement dependency management
in their own projects, for which Ansible does not provide utilities. More-
over, the study sheds light on an increasingly critical yet understudied
topic in software security.

Software Composition Analysis for Ansible In Section 6.3, we proposed, im-
plemented, and evaluated a Software Composition Analysis for Ansible
that identifies the dependency management practices described in the
previous contribution, through which it automatically extracts the de-
pendencies of a plugin. We evaluated it on an oracle of 221 dependencies,
achieving 61%–77% recall and 74%–95% precision. This analysis forms
an important first step towards the automated generation of Software
Bills of Materials for Ansible Infrastructure as Code. The automated
extraction of dependencies could also be used in other contexts, such as
the validation of documented requirements, or automated installation
of dependencies in client projects.

Large-scale empirical studies into Ansible code quality Finally, we carried
out three empirical studies in which we apply our approaches on a large
scale to quantitatively investigate Ansible code quality in practice. In the
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first (cf. Section 4.4), we studied the prevalence and lifetime of variable-
related code smells in 21 931 open-source Ansible roles (Section 4.4).
We found that these smells are increasingly pervasive and may remain
in codebases for a long time, even though they may be indicative of
defects. In the second empirical study (cf. Section 5.4), we investigated
the prevalence of data-flow and control-flow indirections in security
smells found across 15 000 Ansible scripts. We found that half of all
detected smells involve some form of data flow, while a third involves
control-flow jumps. In the final study (cf. Section 6.3), we automatically
extracted the dependencies of 187 Ansible collections and their plugins to
study deployment software supply chains in practice. We observed that
substantial proportions of collections and plugins require other types of
software, leading to extensive deployment supply chains. Combined,
the results of these empirical studies provide empirically-substantiated
motivations for future work to build upon. Moreover, the datasets
curated in these empirical studies have been made available in their
respective replication packages, enabling future researchers to reuse
them.

7.2 Limitations of the Approaches

In this section, we summarise the main limitations exhibited by our approaches.

Technical Limitations Our prototypical implementations may suffer from
technical limitations. For instance, the Program Dependence Graph builder
cannot reliably handle dynamic inclusions of files whose name is specified as
an expression, and instead ignores such file inclusions. Moreover, it disregards
conditional variable definitions, which may lead to incorrect approximations
in certain cases. Such limitations also impact the smell detection approaches
that build upon the PDGs. Nonetheless, we did not observe a substantial
negative impact of these limitations in our evaluations. However, for practical
implementations, these limitations could be fixed by using a more advanced
data-flow analysis.

Similarly, the smell detection approaches may suffer from their own technical
limitations. Our evaluation showed that the security smell detector achieves
relatively low precision and recall for certain types of security smells due to
flaws in its string patterns. In particular, the string patterns used to identify
secrets, such as passwords, are ineffective and often produced false positives.
Future work could therefore investigate means through which these false
positives can be eliminated.

Finally, the Software Composition Analysis relies on implementation patterns
to identify dependencies. However, such patterns are not always present,
causing the SCA to miss certain dependencies. Moreover, several dependency
types are checked ad hoc, or not checked at all, which also cannot be found by
the SCA. Therefore, future work should investigate whether such dependencies
can be identified through other mechanisms.
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Lack of Practitioner Feedback We did not consult with Ansible practitioners
when designing and implementing the approaches presented in this disser-
tation. Nonetheless, throughout our empirical studies, we found anecdotal
evidence in the form of bug-fixing commits that indicate that our smell cata-
logues and detection approaches may be useful for practitioners. However,
existing work has shown that practitioner feedback can prove vital in improv-
ing smell detection approaches [113]. Therefore, future work should consult
with practitioners to integrate their feedback into practical tooling based on
our approaches. Moreover, practitioners’ feedback may provide inspiration to
extend our smell catalogues, which are not exhaustive.

Generalisability to Other IaC Languages Our approaches have been in-
stantiated for Ansible alone, and we did not investigate whether they can
be applied in other IaC languages. We discuss the generalisability of our
approaches in more detail in the next section. However, Ansible is one of
the most widely-used IaC languages [40, 130]. Our approaches may form the
basis for practical tooling for its practitioners, and our findings could guide
improvements to the Ansible language.

7.3 Generalisability of the Approaches

The approaches presented in this dissertation are designed and implemented
for Ansible. As such, although our approaches are tailored specifically to
Ansible, certain parts may generalise to the wider Infrastructure-as-Code
domain. In this section, we discuss the generalisability of our work from three
perspectives, namely the concepts and ideas presented in this dissertation, the
approaches and algorithms, and the concrete empirical study results.

Concepts and Ideas We argue that the majority of the concepts and ideas
presented in this dissertation can be applied in the broader IaC domain.
Static data-flow analysis, as described in Chapter 3, could be applied to
other configuration management IaC languages, such as Puppet and Chef, to
obtain similar approaches to those presented in this dissertation. Moreover,
it could be applied to provisioning IaC languages, e.g., Terraform, to collect
information on how data is defined and used in provisioning specifications.
Such information could later be used to check whether cloud resources are
configured with defect-prone or insecure values. Similarly, representations
akin to our Program Dependence Graphs could be generated for other IaC
languages to enable more sophisticated software quality assurance approaches.

Furthermore, behavioural code smell detection, described in Chapter 4, and
behavioural security smell detection, described in Chapter 5, could also be
applied to other IaC languages. Prior work has already shown the feasibility of
detecting code smells [117, 120] and security smells [106, 108, 109] in other IaC
languages. Moreover, smells can be detected in a polyglot setting, in which a
single detector can scan IaC specifications written in different languages [115,
116]. This provides confidence that integrating behavioural information into
code smell and security smell detection is feasible for the broader IaC domain.
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Finally, while our study of deployment software supply chains focused solely
on Ansible (cf. Chapter 6), this study could be replicated to other IaC languages
to understand how their artefacts use third-party software. We believe similar
taxonomies of dependencies could be derived, and that using implementation
patterns to uncover these dependencies could serve as a viable approach
to study software supply chains for other IaC languages. Furthermore, the
idea of matching implementation patterns to identify dependencies may be
applicable outside the IaC domain as well, in cases where structured manifests
are not available.

Approaches and Algorithms While the approaches and algorithms de-
scribed in this dissertation are tailored to Ansible, we believe that several
could be generalised to other IaC languages with minor adjustments.

The structure of the PDG representation may require minor changes to support
other configuration management languages. Notably, to represent Puppet
code, which uses a non-deterministic execution order, the control-flow order
edges represented in the PDG would have to be adapted to form a partial
order. Nonetheless, we believe the overall structure of the PDGs would lend
themselves well to represent other IaC languages. Naturally, the procedure
to build such PDGs would need to be adjusted to support a new language,
which may also require accounting for the language’s semantics.

Once the PDGs are obtained, our smell detection approaches could readily be
applied, yet minor changes may be necessary (e.g., to incorporate language-
specific information in the string patterns used by the security smell queries).
Note, however, that the variable-related code smells, which are inspired
specifically by Ansible’s semantics, may not be applicable to all IaC languages.

Empirical Study Results As our empirical studies considered only Ansible
code, we cannot claim that they generalise to the entire IaC domain. Nonethe-
less, if one implements the necessary changes to the approaches as described
above, our studies could be replicated to other IaC languages and their results
could be compared. Prior work has already compared the prevalence of
security smells between different configuration management languages using
syntactic analyses [108, 115], yet as we showed in Section 5.4, we observe
differences in the prevalences when applying data-flow analysis, motivating
further comparative studies.

Finally, we hypothesise that the taxonomy of dependencies on third-party
software presented in Section 6.2 may largely generalise to the broader IaC
domain. Specifically, we believe that similar dependencies may be found
in other configuration management IaC tools, such as Chef and Puppet.
Moreover, provisioning tools (e.g., Terraform, Pulumi) likely make extensive
use of remote APIs offered by cloud providers and programming libraries
that offer wrappers around those APIs, both of which are types of software
contained in our taxonomy.



7.4. Future Work 133

7.4 Future Work

We discuss some potential avenues of future work.

Deployment Software Supply Chains The work presented in Chapter 6
provides numerous opportunities for future work. One direction would be to
use the Software Composition Analysis to generate a Software Bill of Materials
(SBOM) for the infrastructure code. This could then be used to further secure
the deployed application by augmenting its own SBOM. Another direction
would be to use our empirical findings to guide improvements to dependency
management practices in IaC. For instance, we envision novel dependency
management tools that are tailored to the unique properties exhibited by
IaC dependencies, or improved language integration. Finally, our work only
considered a single aspect of deployment software supply chains, namely the
dependencies of Ansible plugins. However, the deployment software supply
chain extends far beyond those, e.g., the transitive dependencies of those
covered in Chapter 6, dependencies on Ansible roles [94], etc. Therefore, an
avenue of future work could be to extend our empirical investigation to gain a
more holistic understanding of deployment software supply chains.

Integration With Data-Driven Approaches We envision two opportunities
to integrate data-driven approaches (e.g., machine learning) into our work.
First, one could integrate data-driven approaches into our smell detectors.
For instance, a machine learning model could be used to predict when an
Ansible action argument is security-sensitive to improve the performance of
the hardcoded secret smells detection in Section 5.3. Second, our PDG represen-
tation could be integrated into data-driven defect prediction approaches (cf.
Section 2.3.2). We posit that using the PDGs and the semantic information they
contain may improve the performance of the predictive models. Alternatively,
the PDGs could be mined using graph pattern mining algorithms. The ob-
tained patterns could be used to generate examples, identify possible defects
through anomaly detection [3], or for program comprehension purposes [87].

Cross-layer Analysis Infrastructure-as-Code programs can be divided into
an application layer and a runtime layer, the former containing the infras-
tructure specifications and the latter implementing the interactions with the
targeted platforms [32]. Our approaches target both layers individually, with
the PDG representation (Chapter 3) and smell detectors (Chapters 4 and 5)
targeting the application layer, and the SCA (Chapter 6) targeting the runtime
layer. Future work could investigate cross-layer analyses that consider the
interactions between the application-layer specifications and the runtime-layer
implementations. For instance, our security smell detection approach could
be extended to analyse Python plugin implementations to identify security-
sensitive parameters, which it can then use to improve the search for hardcoded
secrets. Moreover, one could extend our Software Composition Analysis to
also consider application-layer dependencies (e.g., on Ansible roles) to obtain
a holistic overview of an Ansible project’s deployment software supply chain.
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Refactoring and Repair In Section 4.4, we found that code smells are
introduced more frequently than they are fixed. This calls for automated
means to repair and remediate these smells. We believe our representations
could be used to this end. For instance, the structural model could be used to
specify and execute code transformations and rewrite the original source code,
while the PDG representation could be used to guide the search process for
automated repairs. Moreover, we envision automated refactoring tools using
the PDG representation to verify that a transformation is behaviour-preserving
by comparing PDGs.

Other IaC Languages The approaches presented in this dissertation have
all been instantiated for Ansible. We believe their core concepts could be
replicated to other IaC languages (cf. Section 7.3). For instance, Chef, Puppet,
and Salt, all configuration management languages closely related to Ansible,
can likely benefit from similar approaches. Future work could extend our
work to polyglot tooling, e.g., by adapting the PDG representation to suit
other languages [115]. Several concepts are likely also applicable to other IaC
languages, such as provisioning tools (e.g., Terraform), orchestrators (e.g.,
Kubernetes), and server templating tools (e.g., Packer). Future work may
investigate the extent to which our approaches can be applied in other types
of IaC.

7.5 Closing Remarks

We commenced this dissertation by positing that although Infrastructure as
Code offers numerous benefits, the code implementing the automation can be
plagued by defects and security weaknesses. We stated that there is a need
for sophisticated tooling to aid practitioners in performing quality assurance
of their infrastructure code. This dissertation has presented multiple novel
approaches to fulfil that need for Ansible, one of the most popular and versatile
IaC tools. The Program Dependence Graph representation for Ansible bridges
the gap between lightweight yet inaccurate syntactic approaches and expensive
and impractical formal verification by providing a lightweight representation
that encodes an Ansible script’s behaviour. Two smell detectors employing
this representation, one for code smells indicating defects and one for security
smells indicating weaknesses, enable sophisticated code scanners for Ansible.
A Software Composition Analysis enables automated extraction and inspection
of Ansible code’s dependencies, shedding light on an underexplored concept:
deployment software supply chains. Finally, numerous large-scale empirical
studies conducted with prototypical implementations of these approaches
not only showed their practical applicability, but also motivate widespread
practical adoption of quality assurance tooling.
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