
A Formal specification For Half a Century of Actor Systems

JOERI DE KOSTER, Vrije Universiteit Brussel, Belgium

WOLFGANG DE MEUTER, Vrije Universiteit Brussel, Belgium

The Actor Model is a message passing concurrency model that was originally proposed by Hewitt et al. in 1973. Half a century

later a plethora of variations on this model have been explored for various programming languages and systems. So much so

that precise definition of actor-based programming languages is lost and that the term actor has become highly conflated.

The goal of this paper is to disambiguate different actor models by classifying them into four families, namely: Classic Actors,

Active Objects, Processes and Communicating Event Loops. This paper identifies and defines the isolated turn principle as the key

and unifying principle among all actor models. This paper provides a formal definition of the core subset of all four families

of actor models by means of an operational semantics and proves that the isolated turn principle holds for all of them.

ACM Reference Format:

Joeri De Koster and Wolfgang De Meuter. 2023. A Formal specification For Half a Century of Actor Systems. 1, 1 (August 2023),

31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The Actor model of computation is a model for concurrent computation that treats actors as the universal

primitives of concurrent computation. Actors are objects that encapsulate both state and behavior, and can

communicate with each other asynchronously by sending and receiving messages. The Actor model was first

proposed by Carl Hewitt in 1973 [18] as a way to understand and reason about the behavior of large, concurrent

systems.

The invention of the Actor Model is rooted in the research on object-oriented programming languages.

Motivated to discover novel modularisation techniques to develop complex systems, the early sixties was a

hotbed for formative ideas around object-oriented programming. The first widely recognised object-oriented

programming language was specified in that same era (Simula, in 1965). Only a few years later, the Planner

language was developed as part of Carl Hewitt’s doctoral research at MIT’s Artificial Intelligence Lab [17].

Planner introduced the notion of procedural embedding of knowledge. Influenced by ideas from object-

oriented programming and his work on Planner, Hewitt and his graduate students invented the actor model of

computation in 1973 [18].

One of the key features of the Actor model is that each Actor is completely self-contained and has its own

private state. This means that an Actor’s internal state cannot be directly accessed or modified by other Actors,

Authors’ addresses: Joeri De Koster, Joeri.De.Koster@vub.be, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium; Wolfgang De
Meuter, wdemeuter@vub.ac.be, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Joeri De Koster and Wolfgang De Meuter

only messages can be sent to it. This makes it easy to reason about the behavior of an Actor, as its behavior is

determined solely by the messages that it receives and the internal state that it maintains.

Another important aspect of the Actor model is that all communication between Actors is asynchronous.

This means that when an Actor sends a message to another Actor, it does not wait for a response, but instead

continues to process other messages. This allows for high parallelism and scalability, and reduces the likelihood

of contention and deadlock, as Actors can continue to process messages even if other Actors are blocked or slow.

Because of the isolation of state and the asynchronicity of its communication mechanism, the Actor Model is

guaranteed to be free of low-level data races and deadlocks. This is a key property that unifies all actor model

implementations.

However, there are also some challenges in using the Actor model in practice. One is that it can be difficult to

reason about the global behavior of a system, since it is often difficult to see the interactions between different

actors. Another is that it can be difficult to debug and test systems built using the Actor model since it can be

hard to reproduce the same sequence of messages and interactions that led to a particular error or bug.

Despite these challenges, the Actor model has proven to be a powerful and versatile tool for building

concurrent and distributed systems. Over the past 50 years, a plethora of programming languages that

implement their own variation on the actor model have been developed. Each of these variations on the actor

model comes with their own terminology, programming language concepts and run-time semantics. So much

so, that the term actor has become so conflated that some researchers refrain from using it in their papers [10].

There are many properties and features along which different actor programming languages can be classified.

In this paper we focus solely on those that impact their programming model. This paper disambiguates different

actor models by classifying them into four families, each with their own programming model, namely: Classic

Actors, Active Objects, Processes and Communicating Event Loops. Section 2 provides a brief overview of the early

history of the actor model. From Section 3 to Section 6, we highlight the key differences between each of the

four families and give a formal definition for each by means of an operational semantics. An executable version

of each of these semantics in PLT Redex is also available1. We define the isolated turn principle as the key

principle for actors and we prove that it holds for each of the four families of actor models.

2 EARLY HISTORY OF THE ACTOR MODEL

The actor model was first introduced in a 1973 paper authored by Carl Hewitt and two of his graduate students:

Peter Bishop and Richard Steiger [18]. The original goal was to have a programming model for safely exploiting

concurrency in distributed workstations. The problem domain was modelling parallel communication based

problem solvers. The first implementation of the actor model was in a Planner-like programming language that

was modeled on actors [15], originally called Planner-73, but later renamed to PLASMA.

In PLASMA, actors communicate with each other via message passing which consists of sending a request

from one actor (called the messenger) to another actor (called the target). The request and a reference to the

messenger are packaged as an envelope and put into the inbox of the target actor (request: message; reply-to:

messenger). Given that envelope, the behaviour of the target actor then specifies how the computation continues

with respect to the request. The messenger is typically used as the reply address to which a reply to the request

should be sent. The simplest control structure that uses this request-reply pattern in most programming

1https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex

Manuscript submitted to ACM

https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex


A Formal specification For Half a Century of Actor Systems 3

languages is the procedure call and return. A recursive implementation of factorial written in PLASMA is given

in Listing 1.

(factorial ≡

(≡> [=n]

(rules n

(≡> 1

1)

(≡> (> 1)

(n * (factorial <= (n - 1)))))))

Listing 1. Factorial function written in PLASMA.

In this example factorial is defined to be an actor of which the behaviour matches the requests of incoming

envelopes with one element which will be called n. The rules for n are, if it is 1, then we send back 1 to the

messenger of the envelope. Note that this is done implicitly. If it is greater than 1, we send a message to the

factorial actor to recursively compute the factorial of (n - 1).

In December 1975, in an attempt to understand the Actor Model described by Hewitt, Sussman and Steele [32]

wrote a continuation-based interpreter for a Lisp-like language called Scheme. They came to the conclusion

that Hewitt’s “actors” were very similar to scheme lambda expressions and had their roots in the lambda

calculus [12]. In effect, sending a message to an actor that is in an idle state is very similar to invoking a

continuation.

Throughout the history of the actor model, a plethora of different variations of the actor model have been

designed. This paper taxonomises these variations of the actor model into four families, namely: Classic Actors,

Active Objects, Processes and Communicating Event Loops. The following four sections give an overview of

the history for each of these four families and provides an operational semantics for the core set of language

features of each variation.

3 THE CLASSIC ACTOR MODEL

The Actor Model only became more widely regarded as a general-purpose concurrency model in 1986, when

it was recast in terms of three simple primitives by one of Carl Hewitt’s former PhD students, namely Gul

Agha [1, 2]. Agha redefined the Actor Model in terms of three basic actor primitives: create, send and become.

His vision of the Actor Model laid the foundations for a host of different other actor systems and these three

primitives can still be found in various modern actor languages and libraries today.

The main focus of his work was to produce a platform for distributed problem solving in networked

workstations. In his model concurrent objects, i. e. actors, are self-contained, independent components that

interact with each other by asynchronous message passing. In his work he presents three basic actor primitives:

● create: Creates an actor from a behaviour description. Returns the address of the newly created actor.

● send: Asynchronously sends a message from one actor to another by using the address of the receiver.

Immediately returns and returns nothing.

● become: Replaces the behaviour of an actor. The next message that will be received by that actor is

processed by the new behaviour.
Manuscript submitted to ACM



4 Joeri De Koster and Wolfgang De Meuter

(define Cell

(mutable [content]

[put [newcontent]

(become Cell newcontent)]

[get

(return 'got-content content)]))

(define my-cell (create Cell 0))

(get my-cell)

Listing 2. An actor in Rosette.

Definition: Classic Actor Model

The Classic Actor Model formalises the Actor Model in terms of three primitives: create, send and become.
The sequential subset of actor systems that implement this model is typically functional. Changes to the

either or both the state and interface of an actor are aggregated in a single become statement.

The example in Listing 2 is written in the Rosette actor language [33] which was based on this model.

The mutable form is used to create an actor generator that is bound to Cell. That generator can be used with

the create form to create an instance of that actor. Each actor instance has its own mailbox and behaviour.

Following the keyword mutable is a sequence of identifiers that specify the mutable fields of that actor. In our

example, any Cell actor will have one mutable field, namely the content of that cell. After that is a specification

of all the messages that are understood by the actor. A message is specified by a message name followed by a

table of arguments. In this case the put message expects a value for the new content. Afterwards follows the

body that specifies how each message should be processed. If one wishes to modify the state of a mutable field

one can use the become form to replace the behaviour of an actor using the actor generator. The return form is

used to implicitly send back the result of a computation to the sender of the original message.

These three primitives are the basic building blocks for many actor systems today and have been very

influential in the development of any actor language that follows this work. A modern implementation of

the Actor Model based on Agha’s work[2] is the Akka [4] actor library for Scala. However, there are many

other library implementations of this model for different languages such as Smalltalk (Actalk [8]) and C++

(ACT++ [21], Broadway [31] and Thal [23]).

The sequential subset of an actor model is the subset of expressions out of which a behaviour can be

composed. In the case of the Classic Actor Model this sequential subset is mostly functional. Any state changes

are specified by replacing the behaviour of an actor. This has an important advantage over conventional

assignment statements as this severely coarsens the granularity of side-effecting operations that need to be

considered when analysing a system. On the one hand, an actor can only change its own behaviour, meaning

that the state of each actor is fully isolated. On the other hand, changing the behaviour of an actor only comes

into effect when processing the next message. This means that the processing of a single message can be

regarded as a single isolated operation. Throughout the rest of this paper we refer to this principle as the

Isolated Turn Principle. This mechanism allows state updates to be aggregated into a single become statement

and significantly reduces the amount of control flow dependencies between statements.
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 5

3.1 The Isolated Turn Principle

The semantics of the Classic Actor Model enables a macro-step semantics [3]. With the macro-step semantics, the

Actor Model provides an important property for formal reasoning about program semantics, which also provides

additional guarantees to facilitate application development. The macro-step semantics says that in an Actor

Model, the granularity of reasoning is at the level of a turn, i. e., an actor processing a single message from its

mailbox. A turn starts when the actor retrieves the message from its mailbox and ends when that message is

fully processed. A single turn can be regarded as being processed in a single isolated step. The Isolated Turn

Principle leads to a convenient reduction of the overall state-space that has to be considered in the process of

formal reasoning. Furthermore, this principle is directly beneficial to application programmers, because the

amount of processing done within a single turn can be made as large or as small as necessary, which reduces

the potential for problematic interactions. In other words, this principle guarantees that, during a single turn,

an actor has a consistent view about its state and its environment.

To satisfy this principle, an actor system must satisfy both safety and liveness properties:

Safety. To satisfy safety the state of an actor must be fully isolated. This property is mainly guaranteed by

adopting a no-shared-state policy between actors. Any composite value that is transmitted across actor

boundaries is either copied, proxied or immutable. This property ensures that the processing of a single

message in the Actor Model is free of low-level data races. In addition, the processing of a message cannot

be interleaved with the processing of other messages of the same actor unless the execution of those

different messages is also fully isolated. For example, an actor for which the behaviour was modified can

already act on other incoming messages before fully processing the current message. Or implementations

of the actor model can enable parallel execution of read only messages [28] without impacting safety

guarantees.

Liveness. To guarantee liveness, the processing of a message cannot contain any blocking operations.

Any message is always entirely processed from start to finish. Because of this property, processing a single

message is free of deadlocks.

From the two properties above follows that if an Actor Model satisfies the Isolated Turn Principle, it is

free of low-level data races and deadlocks. However, this only applies for the processing of a single message,

considering the processing of several messages, these properties no longer hold. On the one hand, as the

actor model only guarantees isolation within a single turn, high-level race conditions can still occur with bad

interleaving of different messages. The general consensus when programming in an actor system is that when

an operation spans several messages the programmer must provide a custom synchronisation mechanism to

prevent potential bad interleavings and ensure correct execution. On the other hand, high-level deadlocks can

still occur when actors are waiting on each other to send a message before progress can be made.

3.2 Operational Semantics of the Classic Actor Model

In this section we present a minimal operational semantics for the Classic Actor Model. An executable implemen-

tation in PLT Redex of this operational semantics can be found online2. The goal of this operational semantics

and the operational semantics presented in subsequent sections is to provide a precise formal definition for

each of the different actor families and to highlight their key differences. We borrow some terminology of

2https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex

Manuscript submitted to ACM

https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex


6 Joeri De Koster and Wolfgang De Meuter

object-oriented programming to remain consistent with our usage of terminology throughout this paper. More

concretely, we use objects to represent the behaviour of an actor. An actor’s behaviour is composed of its

interface (i. e. the set of messages it understands) and its state. Both of these can be represented by an object,

the interface of an actor’s behaviour is represented by the class of the corresponding object and the state by that

object’s values for its fields.

3.2.1 Semantic Entities.

𝑘 ∈ Configuration ∶∶= 𝐴

𝑎 ∈ 𝐴 ⊆ Actor ∶∶= 𝒜∐︀𝜄𝑎, 𝜇, 𝑒, 𝑜̃︀

𝜇 ∈ Mailbox ∶∶= 𝑚

𝑚 ∈ Message ∶∶= ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀

𝑜 ∈ Object ∶∶= 𝒪∐︀𝑐𝑙𝑠, 𝑣̃︀

𝑣 ∈ Value ∶∶= 𝑟 ⋃︀ null
𝑟 ∈ Reference ∶∶= 𝜄𝑎

𝜄𝑎 ∈ ActorId

Fig. 1. Semantic entities of the Classic Actor Model

Figure 1 lists the semantic entities for the Classic Actor Model. Caligraphic letters like 𝒜 andℳ are used as

constructors to distinguish the different semantic entities syntactically instead of using bare cartesian products.

In the Classic Actor Model a Configuration, 𝐾 , consists of a set of running actors, 𝐴. A configuration

represents the whole state of a program in a single step. Each Actor, 𝑎, is represented by an identifier, 𝜄𝑎,

a mailbox, 𝜇, the expression it is currently evaluating, 𝑒, and an object that represents its behaviour, 𝑜. The

object that represents an actor’s behaviour represents both that actor’s interface as well as its state. Classic

Actors can change their behaviour using a become statement that replaces this object, thereby changing either

their interface, their state, or both. A Mailbox, 𝜇, is an ordered list of pending messages. A Message,𝑚, has a

message name,𝑚𝑠𝑔, that acts as a selector to invoke the correct method of the behaviour of the receiving actor

and an ordered list of values, 𝑣 that represent the arguments to the message. An Object, 𝑜, has a classname 𝑐𝑙𝑠

that defines the actor’s interface and a set of fields, 𝑣 that represent the actor’s state. For simplicity, we have

restricted the set of possible values to either be a reference to an actor, 𝑟 , or the null value, null. A Reference is

always represented by an Actor’s Id, 𝜄𝑎 .

3.2.2 Syntax.

Figure 2 lists the syntax, evaluation contexts and initial configuration for Classic Actor programs.

Syntax. A Classic Actor Program, 𝑝, is a set of class definitions, 𝐶, of which one class is the 𝑀𝑎𝑖𝑛 class that

has to implement the 𝑟𝑢𝑛 method. A Class has a classname, 𝑐𝑙𝑠, a list of attribute variables, 𝑥 𝑓 and a set of

methods, 𝑀. Each Method has a methodname, 𝑚𝑠𝑔, and an associated lambda, 𝜆𝑥𝑚 .𝑒, for which the body

consists of a single expression, 𝑒. The expressions of the Classic Actor Model features a minimal set of syntactical

elements. Local variables can be introduced using a 𝑙𝑒𝑡 expression. The pseudovariable 𝑠𝑒𝑙 𝑓 always refers to

the enclosing actor. Expression sequences, 𝑒 ; 𝑒 are only introduced for convenience and are syntactic sugar for
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 7

nested 𝑙𝑒𝑡 expressions. Finally, it has syntax for the three main primitives of the Classic Actor model, namely:

spawn, send, and become. spawn creates a new actor from the behaviour defined by the class with classname

𝑐𝑙𝑠 and initialises it’s attributes, send is used to send a message to an actor, and become is used to replace the

behaviour of an actor (i. e. its interface can be replaced with a different class and its state can be replaced with

different values).

Syntax
𝑝 ∈ Program ::= 𝐶

𝐶 ⊆ Class ::= class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀}
𝑀 ⊆ Method ::= 𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒

𝑒 ∈ Expression ::= self ⋃︀ 𝑥 ⋃︀ null ⋃︀ 𝑒 ; 𝑒 ⋃︀ let 𝑥 = 𝑒 in 𝑒 ⋃︀
spawn(𝑐𝑙𝑠, 𝑒) ⋃︀ send(𝑒,𝑚𝑠𝑔, 𝑒) ⋃︀ become(𝑐𝑙𝑠, 𝑒)

𝑥 ∈ VarName, 𝑐𝑙𝑠 ∈ ClassName,𝑚𝑠𝑔 ∈MessageName

Runtime Syntax
𝑒 ::= . . . ⋃︀ 𝑟

Evaluation Contexts
ℰ ::= ◻ ⋃︀ let 𝑥 = ℰ in 𝑒 ⋃︀ spawn(𝑐𝑙𝑠, 𝑣,ℰ, 𝑒) ⋃︀ send(ℰ,𝑚𝑠𝑔, 𝑒) ⋃︀

send(𝑣,𝑚𝑠𝑔, 𝑣,ℰ, 𝑒) ⋃︀ become(𝑐𝑙𝑠, 𝑣,ℰ, 𝑒)

Syntactic Sugar

𝑒 ; 𝑒′ def
= let 𝑥 = 𝑒 in 𝑒′ 𝑥 ∉ FV(𝑒′)

Initial Configuration
𝐾𝑖𝑛𝑖𝑡 = {𝒜∐︀𝜄𝑎,∅, send(𝜄𝑎, 𝑟𝑢𝑛,∅),𝒪∐︀𝑀𝑎𝑖𝑛,∅̃︀̃︀}

Fig. 2. Syntax of the Classic Actor Model

Runtime Syntax. Our reduction rules operate on so-called run-time expressions; these are a superset of

source-syntax phrases. The additional form represents references, 𝑟 , that can be used as return values for the

aforementioned primitives.

Evaluation Contexts. We use evaluation contexts [14] to indicate what subexpressions of an expression

should be fully reduced before the compound expression itself can be further reduced. ℰ denotes an expression

with a “hole”. Each appearance of ℰ indicates a subexpression with a possible hole. The intent is for the hole to

identify the next subexpression to reduce in a compound expression.

Initial Configuration. For any program, 𝑝, the set of class definitions, 𝐶 is constant. We therefore do not

include it as part of the run-time configuration. The initial configuration is always a singleton set with the single

main actor. The main actor is initialised with an empty mailbox, a single send expression to self-send the 𝑟𝑢𝑛

method, and an object that is an instance of the 𝑀𝑎𝑖𝑛 class. That object represents the main actor’s interface.

3.2.3 Reduction Rules.

Manuscript submitted to ACM



8 Joeri De Koster and Wolfgang De Meuter

Notation. A configuration, 𝐴, is a set of actors. To lookup and extract values from a set we use the notation

𝐴 = 𝐴
′
⊍ {𝑎}. This splits the set 𝐴 into a singleton set containing the desired actor 𝑎 and the disjoint set

𝐴
′
= 𝐴∖{𝑎}. The notation 𝜇 = 𝜇′ ⋅m deconstructs a sequence 𝜇 into a subsequence 𝜇′ and the last element m. We

denote both the empty set and the empty sequence using ∅. The notation ℰ(︀𝑒⌋︀ indicates that the expression 𝑒 is

part of a compound expression ℰ , and should be reduced first before the compound expression can be reduced

further. We use the notation (︀𝑣⇑𝑥⌋︀𝑒 to denote a variable substitution where all occurrences of 𝑥 in 𝑒 are replaced

by 𝑣 .

The reduction rules are split into two layers. The actor-local reduction rules (Ð→𝑎) in Figure 3 define the

rules that reduce an actor’s expression an that do not involve any additional actors (i. e. the expression can

be reduced in isolation). The actor-global reduction rules (Ð→𝑘) in Figure 4 define rules that involve multiple

actors.

(LET)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀let 𝑥 = 𝑣 in 𝑒⌋︀, 𝑜̃︀
Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝑣⇑𝑥⌋︀𝑒⌋︀, 𝑜̃︀

(BECOME)
𝑜
′
= 𝒪∐︀𝑐𝑙𝑠, 𝑣̃︀

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀become(𝑐𝑙𝑠, 𝑣)⌋︀, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀null⌋︀, 𝑜
′
̃︀

(SELF-SEND)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎,𝑚𝑠𝑔, 𝑣)⌋︀, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇 ⋅ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀,ℰ(︀null⌋︀, 𝑜̃︀

(RECEIVE)
𝑜 = 𝒪∐︀𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶

𝑒, 𝜇
′
= match(𝑀, 𝜇)

𝒜∐︀𝜄𝑎, 𝜇, 𝑣, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇
′
, (︀𝜄𝑎⇑self⌋︀(︀𝑣 𝑓 ⇑𝑥 𝑓 ⌋︀𝑒, 𝑜̃︀

Fig. 3. Local Reduction Rules for Classic Actor Model

Actor-local reductions. Actors operate by perpetually taking the first message that matches their inter-

face from their mailbox and then evaluating (reducing) the associated expression to a value. Messages are

matched from right to left. Classic Actors have out of order message processing, if a message does not currently

match the actor’s interface, it is simply skipped and remains in the actor’s mailbox. Classic Actors also have

a flexible interface (that can be changed using a become expression), this facilitates what is known as “condi-

tional synchronisation” [9] (e.g. implementing a blocking bounded buffer, or other more complex forms of

synchronisation).

If no reduction rule is applicable to further reduce a reducible expression, i. e., when the reduction is stuck,

this signifies an error in the program. The only valid state in which an actor cannot be further reduced is

when its current expression is fully reduced to a value and no messages in its mailbox matches with its current

interface. A value cannot be further reduced and the actor sits idle until it receives a new message that does

match its interface.

We now explain the actor-local reduction rules (Ð→𝑎) found in Figure 3:

● LET: Reducing a “let”-expression simply substitutes the value of 𝑥 for 𝑣 in 𝑒.

● BECOME: This rule describes how actors can change their behaviour using the become primitive. A new

object is created and entirely replaces the original behaviour of that actor. The become expression itself

reduces to null.
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 9

● SELF-SEND: An asynchronous message sent to the same actor simply appends a new message to the end of

that actor’s own mailbox. The message send itself immediately reduces to null.

● RECEIVE: This rule describes the processing of messages in the mailbox of an actor. A new message can be

processed only if two conditions are satisfied: Firstly, one of the messages in the mailbox of the actor

matches its interface, and secondly, the current expression of the actor cannot be reduced any further

(the expression is a value, 𝑣). To match a message from the actor’s mailbox, 𝜇, with that actor’s interface,

𝑀, the auxiliary function match is used. This function returns the body expression. 𝑒, of the matched

method and an updated mailbox, 𝜇, where the matched message was removed.

(SEND)
𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎′ ,𝑚𝑠𝑔, 𝑣)⌋︀, 𝑜̃︀} ⊍ {𝒜∐︀𝜄𝑎′ , 𝜇

′
, 𝑒
′
, 𝑜
′
̃︀}

Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀null⌋︀, 𝑜̃︀} ∪ {𝒜∐︀𝜄𝑎′ , 𝜇
′
⋅ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀, 𝑒

′
, 𝑜
′
̃︀}

(SPAWN)
𝜄𝑎′ fresh 𝑜

′
= 𝒪∐︀𝑐𝑙𝑠, 𝑣̃︀

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀spawn(𝑐𝑙𝑠, 𝑣)⌋︀, 𝑜̃︀}

Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎′⌋︀, 𝑜̃︀} ∪ {𝒜∐︀𝜄𝑎′ ,∅, null, 𝑜
′
̃︀}

(CONGRUENCE)
𝑎 Ð→𝑎 𝑎

′

𝐴 ⊍ {𝑎} Ð→𝑘 𝐴 ∪ {𝑎
′
}

Fig. 4. Global Reduction Rules for Classic Actor Model

Actor-global reductions. We now explain the actor-global reduction rules (Ð→𝑘) found in Figure 4:

● SEND: An asynchronous message sent to a different actor appends that message to the front of the mailbox

of the recipient actor (the actor with identifier 𝜄𝑎′). The send expression itself reduces to null.

● SPAWN: Reducing a spawn expression adds a new actor to the set of actors of the configuration. The newly

created actor is initialised with an empty mailbox, null as its expression (the actor will be in an idle

state), and a newly created object as its behaviour. The spawn expression itself reduces to a reference to

that newly created actor, 𝜄𝑎′ .

● CONGRUENCE: this rule connects the actor-local reduction rules to the global configuration reduction

rules.

match(𝑀,ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀ ⋅ 𝜇)
𝑑𝑒𝑓
= (︀𝑣⇑𝑥𝑚⌋︀𝑒, 𝜇 if𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

match(𝑀,𝑚 ⋅ 𝜇)
𝑑𝑒𝑓
= 𝑒,𝑚 ⋅ 𝜇

′ if 𝑒, 𝜇′ = match(𝑀, 𝜇)

Fig. 5. Auxiliary Functions

Auxiliary functions. The auxiliary function match finds the first message (going from left to right) in the

mailbox, 𝜇, that matches the selector𝑚𝑠𝑔. To find a match, the mailbox cannot be empty (𝜇 ≠ ∅). It has two

return values: the body expression of the associated lambda where all parameters, 𝑥𝑚 have been substituted by

the arguments of the message, 𝑣 , and and updated mailbox where the selected message has been removed.
Manuscript submitted to ACM



10 Joeri De Koster and Wolfgang De Meuter

3.3 Proof that the Isolated Turn Principle holds for the Classic Actor Model

In this section we provide a formal proof that the Isolated Turn principle holds for the Classic Actor Model.

For this property to hold, an actor system must satisfy both safety and liveness for the execution of a turn. For

each actor, a new turn starts when a message is retrieved from its mailbox and ends when that message is

fully processed (See Section 3.1). In addition to this informal definition, we start by formally defining what

constitues a turn here.

Definition 3.1 (Turn). Let a turn,
𝜄𝑎
Ð→
∗

𝑘 , be any sequence of reduction rules such that 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒, 𝑜̃︀}
𝜄𝑎
Ð→
∗

𝑘

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇
′
, 𝑣, 𝑜

′
̃︀} and the (RECEIVE) reduction rule for the actor with id, 𝜄𝑎 , ∉

𝜄𝑎
Ð→
∗

𝑘 .

More informally, for any actor, a turn is defined as any sequence of reduction rules that are applied between

two applications of the (RECEIVE) reduction rule for that actor. During that turn, reduction rules involving other

actors can be applied (i. e. 𝐴 and 𝐴′ can differ in the above definition).

THEOREM 3.2 (THEOREM OF SAFETY). If 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒, 𝑜̃︀}
𝜄𝑎
Ð→
∗

𝑘 𝐴
′
⊍ {𝒜∐︀𝜄𝑎, 𝜇

′
, 𝑣, 𝑜

′
̃︀} then all possible values

for 𝑣 are 𝛼-equivalent.

PROOF OF SAFETY. The evaluation contexts defined in Figure 2 determine a strict total order in which

compound expressions can be reduced. Therefore, This proof follows by induction over the the reduction of

expressions. Cases (BECOME), (SELF-SEND) and (SEND) are trivial as they all reduce to null. Case (SPAWN)

reduces to a fresh 𝛼-equivalent identifier 𝜄𝑎′ . Case (LET) follows by induction, if all possible 𝑣 are 𝛼-equivalent

then the substitution (︀𝑣⇑𝑥⌋︀𝑒 will also be 𝛼-equivalent. Case (CONGRUENCE) follows by induction over the

actor-local reduction rules. Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→
∗

𝑘 using definition 3.1. □

Definition 3.3 (Error). If no reduction rule is applicable to further reduce a reducible expression, i. e., when

the reduction is stuck, this signifies an error in the program. The only valid state in which an actor cannot

be further reduced is when its current expression is fully reduced to a value and no messages in its mailbox

matches with its current interface.

THEOREM 3.4 (THEOREM OF LIVENESS). ∀𝐾 = 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒, 𝑜̃︀}, 𝑒 ∉ Value, ∃𝐾 ′ ∶ 𝐾
𝜄𝑎
Ð→𝑘 𝐾

′

PROOF OF LIVENESS. This proof follows by induction over the reduction of expressions. Cases (LET), (BECOME),

(SELF-SEND), (SEND) and (SPAWN) all operate on reducible expressions and can be applied in any error-free

program following definition 3.3. Case (CONGRUENCE) follows by induction over the actor-local reduction rules.

Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→𝑘 using definition 3.1. □

In theorem 3.2 and theorem 3.4 we have shown that classic actors satisfy both safety and liveness for the

execution of a single turn and therefore the Isolated Turn Principle holds.

4 THE ACTIVE OBJECT MODEL

Around the same time that Agha reformulated Hewitt’s actors in terms of OOP, another PhD student of Carl

Hewitt, Yonezawa, worked on a object-oriented concurrent programming language called ABCL/1 [38]. In this

language, each object has its own thread of control and may have its own local mutable memory. In this model

state changes are not specified in terms of behaviour updates (become) but rather by traditional assignment

statements. To maintain actor isolation, the mutable state of each active object is only accessible and mutable
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 11

by the object’s own thread of control. This means that state updates are also isolated and because messages are

processed entirely sequentially the Isolated Turn Principle also holds for active objects.

[object Cell

(state [contents := nil])

(script

(=> [:put newContent]

contents := newContent)

(=> [:get] @ From

From <= contents))]

Cell <= [:get]

Listing 3. An active object in ABCL/1.

While this paper considers ABCL/1 to be the first active objects programming language, the term active object

was only coined much later. Independently from Yonezawa’s work, in the early 2000s a number of other actor

programming languages within the family of active object languages have been proposed [6], namely ASP [11],

Rebeca [29], ABS [20] and Encore [7]. The distinguishing feature of these programming languages is that they

implement a double-layered programming model where actors are composed out of active and passive objects

and all passive objects are owned by exactly one actor. Each actor has a single root object called the active object.

Every other object that is encapsulated by that actor is called a passive object. Different actor do not share

memory, the active objects’ whole object graph is deep-copied into the actor. When actors send a message to

another actor, any passive object that is transmitted (and the transitive closure of all objects referenced by that

passive object) is also copied, thus maintaining a no-shared-state policy and therefore guaranteeing the Isolated

Turn Principle. Other examples of actor languages based on the Active Object Model include SALSA [37] and

Orleans [26].

4.1 Operational Semantics

In this section we provide a minimal operational semantics for the Active Object Model. An executable

implementation in PLT Redex of this operational semantics can be found online3. Because the operational

semantics for the Active Object Model shares some similarities with the one for the Classic Actor Model we will

only highlight (in red) the differences between both formalisms.

Figure 6 lists the semantic entities for the Active Object Model. In the Active Object Model, each Actor, 𝑎,

is represented by an identifier, 𝜄𝑎, a mailbox, 𝜇, the expression it is currently evaluating, 𝑒, a heap of passive

3https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex

Definition: Active Object

Every active object has a single entry point that defines a fixed interface of messages that are understood.
The sequential subset of actor systems that implement this model is typically imperative. Changes to the

state of an actor can be done imperatively and isolation is guaranteed by sending composite values
(passive objects) between active objects by copy.

Manuscript submitted to ACM

https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex


12 Joeri De Koster and Wolfgang De Meuter

𝑘 ∈ Configuration ∶∶= 𝐴

𝑎 ∈ 𝐴 ⊆ Actor ∶∶= 𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂,𝑜̃︀

𝜇 ∈ Mailbox ∶∶= 𝑚

𝑚 ∈ Message ∶∶= ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀

𝑜 ∈ 𝑂 ⊆ Object ∶∶= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣̃︀

𝑣 ∈ Value ∶∶= 𝑟 ⋃︀ null
𝑟 ∈ Reference ∶∶= 𝜄𝑎 ⋃︀ 𝜄𝑜

𝜄𝑎 ∈ ActorId, 𝜄𝑜 ∈ ObjectId

Fig. 6. Semantic entities of the Classic Actor Model

objects, 𝑂, and an active object that represents its interface, 𝑜. Contrary to the Classic Actor Model, in this model

there is no become primitive to change the behaviour of an actor. The Active Object Model is a double-layered

actor model where the interface of an actor is defined by its active object (i. e. facade of the actor), 𝑜, and its

state by a heap of passive objects, 𝑂. The interface of an active object does not change throughout the lifetime

of the actor (i. e. the interface is fixed). However, because passive objects are mutable, an actor can change its

own state and can therefore change how it reacts to certain messages depending on that state. Any Object, 𝑜, in

this model also has an identifier, 𝜄𝑜 , that uniquely identifies that object. Because objects are now also first-class

entities, we extend References to also include object identifiers, 𝜄𝑜 .

4.1.1 Syntax.

Figure 7 lists the syntax, evaluation contexts and initial configuration for Active Object programs.

Syntax. A Program, 𝑝, is a set of class definitions, 𝐶, of which one class is the 𝑀𝑎𝑖𝑛 class that has to

implement the 𝑟𝑢𝑛 method. The definition of Classes and Methods are identical to the ones for the Classic

Actor Model. The expressions of the Active Object Model have been extended with new syntax to create and

modify passive objects and the become primitive has been removed. The new primitive creates a new instance of

a class with classname, 𝑐𝑙𝑠, and initialises its field with the values for expressions, 𝑒. Referencing and modifying

a field in an object is done through the 𝑒.𝑥 and 𝑒.𝑥 = 𝑒 syntax respectively. The dot notation is also used for

invoking a method on an object, 𝑒.𝑚𝑠𝑔(𝑒).

Evaluation Contexts. Evaluation contexts for the new syntax have been added to ensure the newly added

compound expressions are also reduced from left to right.

Initial Configuration. The initial configuration is changed such that the single 𝑀𝑎𝑖𝑛 actor is now initialised

with an empty heap of passive objects and a single active object with a unique identifier, 𝜄𝑜 .

The reduction rules are split into two layers. The actor-local reduction rules (Ð→𝑎) in Figure 8 define the

rules that reduce an actor’s expression an that do not involve any additional actors (i. e. the expression can

be reduced in isolation). The actor-global reduction rules (Ð→𝑘) in Figure 9 define rules that involve multiple

actors.

Actor-local reductions. Actors operate by perpetually taking the first message from their mailbox and

processing it. If the message matches the actor’s interface, the associated expression is evaluated (reduced)

to a value. When the expression is fully reduced, the next message is processed. Contrary to the Classic Actor
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 13

Syntax
𝑝 ∈ Program ::= 𝐶

𝐶 ⊆ Class ::= class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀}
𝑀 ⊆ Method ::= 𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒

𝑒 ∈ Expression ::= self ⋃︀ 𝑥 ⋃︀ null ⋃︀ 𝑒 ; 𝑒 ⋃︀ let 𝑥 = 𝑒 in 𝑒 ⋃︀ spawn(𝑐𝑙𝑠, 𝑒) ⋃︀ send(𝑒,𝑚𝑠𝑔, 𝑒) ⋃︀
new(𝑐𝑙𝑠, 𝑒) ⋃︀ 𝑒.𝑥 ⋃︀ 𝑒.𝑥 = 𝑒 ⋃︀ 𝑒.𝑚𝑠𝑔(𝑒)

𝑥 ∈ VarName, 𝑐𝑙𝑠 ∈ ClassName,𝑚𝑠𝑔 ∈MessageName

Runtime Syntax
𝑒 ::= . . . ⋃︀ 𝑟

Evaluation Contexts
ℰ ::= ◻ ⋃︀ let 𝑥 = ℰ in 𝑒 ⋃︀ spawn(𝑐𝑙𝑠, 𝑣,ℰ, 𝑒) ⋃︀ send(ℰ,𝑚𝑠𝑔, 𝑒) ⋃︀ send(𝑣,𝑚𝑠𝑔, 𝑣,ℰ, 𝑒) ⋃︀

new(𝑐𝑙𝑠, 𝑣,ℰ, 𝑒) ⋃︀ ℰ .𝑥 ⋃︀ ℰ .𝑥 = 𝑒 ⋃︀ 𝑣 .𝑥 = ℰ ⋃︀ ℰ .𝑚𝑠𝑔(𝑒) ⋃︀ 𝑣 .𝑚𝑠𝑔(𝑣,ℰ, 𝑒)

Syntactic Sugar

𝑒 ; 𝑒′ def
= let 𝑥 = 𝑒 in 𝑒′ 𝑥 ∉ FV(𝑒′)

Initial Configuration
𝐾𝑖𝑛𝑖𝑡 = {𝒜∐︀𝜄𝑎,∅, send(𝜄𝑎, 𝑟𝑢𝑛,∅),∅,𝒪∐︀𝜄𝑜 ,𝑀𝑎𝑖𝑛,∅̃︀̃︀}

Fig. 7. Syntax of the Classic Actor Model

Model, messages are always processed in FIFO order. If the first message in the mailbox of an actor does not

match the interface of the active object, and if no actor-local reduction rule is applicable to further reduce an

expression, i. e., when the reduction is stuck, this signifies an error in the program. The only valid state in which

an actor cannot be further reduced is when its current expression is fully reduced to a value and and its mailbox

is empty. A value cannot be further reduced and the actor sits idle until it receives a new message.

We now explain the actor-local reduction rules (Ð→𝑎) found in Figure 8:

● LET: Reducing a “let”-expression simply substitutes the value of 𝑥 for 𝑣 in 𝑒.

● NEW: Newly created passive objects are always owned by the actor that creates them, i. e. the newly

created object is added to the heap of the actor for which the new expression was reduced. A new object

is created with a fresh identifier, 𝜄𝑜 , its classname, 𝑐𝑙𝑠, and, the initial values for its field, 𝑣. That new

object is added to the heap of the actor and the expression reduces to a reference to that object.

● INVOKE: Actors can only synchronously invoke methods on their own local passive objects, i. e. the object

has to be part of the heap of that actor. The class of the object and the corresponding method are looked

up in 𝐶 and 𝑀 respectively. Invoking a method reduces to the body expression of the corresponding

method. In this expression, the method parameters, 𝑥𝑚 are substituted with their respective message

arguments, 𝑣. The field variables, 𝑥 𝑓 are substituted with the respective field values, 𝑣 𝑓 of the passive

object, and the pseudovariable self is substituted with the reference to the actor, 𝜄𝑎 .

● FIELD-ACCESS: For accessing a field of a passive object that object has to be part of the actor’s heap. The

auxiliary function lookup is used to retrieve the value of the corresponding field and the expression

reduces to that value.
Manuscript submitted to ACM



14 Joeri De Koster and Wolfgang De Meuter

(LET)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀let 𝑥 = 𝑣 in 𝑒⌋︀,𝑂, 𝑜̃︀
Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝑣⇑𝑥⌋︀𝑒⌋︀,𝑂, 𝑜̃︀

(NEW)
𝜄𝑜 fresh 𝑜

′
= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣̃︀

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀new(𝑐𝑙𝑠, 𝑣)⌋︀,𝑂, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑜⌋︀,𝑂 ∪ 𝑜
′
, 𝑜̃︀

(INVOKE)
𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ ∈ 𝑂

class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶 𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑜 .𝑚𝑠𝑔(𝑣)⌋︀,𝑂, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝜄𝑎⇑self⌋︀(︀𝑣 𝑓 ⇑𝑥 𝑓 ⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒⌋︀,𝑂, 𝑜̃︀

(FIELD-ACCESS)
𝑜
′
= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ 𝑜

′
∈ 𝑂

𝑣 = lookup(𝑜′, 𝑥 𝑓 )

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑜 .𝑥 𝑓 ⌋︀,𝑂, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝑣⌋︀,𝑂, 𝑜̃︀

(FIELD-UPDATE)
𝑜
′
= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀

𝑜
′′
= update-field(𝑜′, 𝑥 𝑓 , 𝑣)

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑜 .𝑥 𝑓 = 𝑣⌋︀,𝑂 ⊍ 𝑜
′
, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝑣⌋︀,𝑂 ∪ 𝑜
′′
, 𝑜̃︀

(SELF-SEND)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎,𝑚𝑠𝑔, 𝑣)⌋︀,𝑂, 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇 ⋅ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀,ℰ(︀null⌋︀,𝑂, 𝑜̃︀

(RECEIVE)
𝑜 = 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀

class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶
𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

𝒜∐︀𝜄𝑎,ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀ ⋅ 𝜇, 𝑣,𝑂,𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇, (︀𝜄𝑎⇑self⌋︀(︀𝑣 𝑓 ⇑𝑥 𝑓 ⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒,𝑂,𝑜̃︀

Fig. 8. Local Reduction Rules for the Active Object Model

● FIELD-UPDATE: For updating a field we first extract the corresponding passive object from the heap using

𝑂 ⊍ 𝑜
′ and then use the auxiliary function update-field to change the value of the corresponding field in

the object. The modified object is added again to the heap of the actor using 𝑂 ∪ 𝑜′′ and the expression

reduces to the value that was assigned to the field, 𝑣 .

● SELF-SEND: An asynchronous message sent to the same actor simply appends a new message to the end of

that actor’s own mailbox. The message send itself immediately reduces to null.

● RECEIVE: For Active Object actors, a new message can only be processed only if the current expression of

the actor cannot be reduced any further (the expression is a value 𝑣). Unlike the Classic Actor Model,

messages are always processed from left to right because the interface of an active object is fixed. The

first message is extracted from the mailbox of the actor usingℳ∐︀𝑚𝑠𝑔, 𝑣̃︀ ⋅ 𝜇. The corresponding method is

looked up in the interface of the active object, 𝑜. If there is no match, the evaluation is stuck and this

signifies an error in the program. Finally, the current expression of the actor is replaced with the body

expression of the corresponding method.

Actor-global reductions. We now explain the actor-global reduction rules (Ð→𝑘) found in Figure 9:

● SPAWN: Reducing a spawn expression adds a new actor to the set of actors of the configuration. The

newly created actor is initialised with an empty mailbox, null as its expression (i. e. the actor will be

in an idle state), an empty heap of passive objects, and a newly created object as its active object. The

spawn expression itself reduces to a reference to that newly created actor 𝜄𝑎′ .
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 15

(SPAWN)
𝜄𝑎′ , 𝜄𝑜 fresh 𝑜

′
= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣̃︀

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀spawn(𝑐𝑙𝑠, 𝑣)⌋︀,𝑂, 𝑜̃︀}

Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎′⌋︀,𝑂, 𝑜̃︀} ∪ {𝒜∐︀𝜄𝑎′ ,∅, null,∅, 𝑜
′
̃︀}

(SEND)
𝑣 ′,𝑂

′
= pass(𝑣,𝑂)

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎′ ,𝑚𝑠𝑔, 𝑣)⌋︀,𝑂, 𝑜̃︀} ⊍ {𝒜∐︀𝜄𝑎′ , 𝜇
′
, 𝑒
′
,𝑂
′′
, 𝑜
′
̃︀}

Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀null⌋︀,𝑂, 𝑜̃︀} ∪ {𝒜∐︀𝜄𝑎′ , 𝜇
′
⋅ℳ∐︀𝑚𝑠𝑔, 𝑣 ′̃︀, 𝑒

′
,𝑂
′′
∪𝑂
′
, 𝑜
′
̃︀}

(CONGRUENCE)
𝑎 Ð→𝑎 𝑎

′

𝐴 ⊍ {𝑎} Ð→𝑘 𝐴 ∪ {𝑎
′
}

Fig. 9. Global Reduction Rules for the Active Object Model

● SEND: An asynchronous message sent to a different actor appends that message to the front of the mailbox

of the recipient actor (the actor with identifier 𝜄𝑎′). To preserve actor isolation, active objects adopt a

strict no-shared-state policy. As such, any passive object that is referenced by an argument argument of a

message must be deep copied. The auxiliary function pass is used to create a set of passive objects, 𝑂′,

that contains copies for all the objects that are in the transitive closure of the objects referenced by the

message arguments, 𝑣. It also returns a list, 𝑣 ′, with all the fresh references to the copied objects in 𝑣.

The set of copied objects is added to the heap of the recipient actor using 𝑂′′ ∪𝑂′. The copied objects

are added to the receiving actor before the message is processed. Because all references in 𝑣 ′ are fresh

and references cannot be forged, these objects will only be accessible once the message is taken from the

actor’s mailbox and processed. The send expression itself reduces to null.

● CONGRUENCE: this rule connects the actor-local reduction rules to the global configuration reduction

rules.

Auxiliary functions. The auxiliary functions lookup and update-field simply lookup a field or modify a

field of a given passive object respectively.

The auxiliary function reach constructs a set of objects that is the transitive closure of all objects referenced

by 𝑣. Matching objects are removed from the original heap one by one using 𝑂 ⊍ 𝑜. Every time this is done,

all references to passive objects by the fields of removed object, 𝑣 𝑓 , are added to the list of reachable object

references. If a reference is no longer part of the set of passive objects because it was previously removed (e. g.

because of a circular reference), the reference is simply ignored and removed from the list.

The auxiliary function pass constructs a new set of copied objects that is the transitive closure of all objects

referenced by 𝑣. It uses the auxiliary function reach to first construct the set of all reachable objects, 𝑂′, and

then constructs a new set, 𝑂′′, by replacing each object in 𝑂′ with a copy for which its identifier and fields are

replaced by fresh object identifiers given by 𝜎. 𝜎 is a function that maps object identifiers, 𝜄𝑜 , in the original

heap to fresh object identifiers, 𝜄𝑜′ . All other values (i. e. actor identifier, 𝜄𝑎) are left unchanged.

4.2 Proving the Isolated Turn Principle for the Active Object Model

In this section we provide a formal proof that the Isolated Turn principle holds for the Active Object Model.

Definition 4.1 (Turn). Let a turn,
𝜄𝑎
Ð→
∗

𝑘 , be any sequence of reduction rules such that 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂,𝑜̃︀}
𝜄𝑎
Ð→
∗

𝑘

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇
′
, 𝑣,𝑂

′
, 𝑜
′
̃︀} and the (RECEIVE) reduction rule for the actor with id, 𝜄𝑎 , ∉

𝜄𝑎
Ð→
∗

𝑘 .
Manuscript submitted to ACM



16 Joeri De Koster and Wolfgang De Meuter

lookup(𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀, 𝑥 𝑓 )
𝑑𝑒𝑓
= lookup(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 ) if class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶

lookup(𝑥 𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 )
𝑑𝑒𝑓
= 𝑣

lookup(𝑥 ′𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 )
𝑑𝑒𝑓
= lookup(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 )

update-field(𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀, 𝑥 𝑓 , 𝑣)
𝑑𝑒𝑓
= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠,update-field(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)̃︀ if class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶

update-field(𝑥 𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)
𝑑𝑒𝑓
= 𝑣 ⋅ 𝑣 𝑓

update-field(𝑥 ′𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)
𝑑𝑒𝑓
= 𝑣 𝑓 ⋅ update-field(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)

reach(∅, 𝑣)
𝑑𝑒𝑓
= ∅

reach(𝑂,∅)
𝑑𝑒𝑓
= ∅

reach(𝑂 ⊍ 𝑜, 𝑣 ⋅ 𝜄𝑜)
𝑑𝑒𝑓
= 𝑜 ∪ reach(𝑂, 𝑣 ⋅ 𝑣 𝑓 ) if 𝑜 = 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀

reach(𝑂, 𝑣 ⋅ 𝑣)
𝑑𝑒𝑓
= reach(𝑂, 𝑣) otherwise

pass(𝑣,𝑂)
𝑑𝑒𝑓
= 𝜎(𝑣),𝑂

′′

𝜎(𝑣){
𝜎
′
(𝑣) if 𝑣 = 𝜄𝑜

𝑣 otherwisewhere𝑂′ = 𝑟𝑒𝑎𝑐ℎ(𝑂, 𝑣)
𝑂
′′
= {𝒪∐︀𝜎(𝜄𝑜), 𝑐𝑙𝑠, 𝜎(𝑣 𝑓 )̃︀ ⋃︀ 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ ∈ 𝑂

′
} 𝜎

′
= {𝜄𝑜 ↦ 𝜄

′

𝑜 ⋃︀ 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ ∈ 𝑂
′
, 𝜄
′

𝑜 fresh }

Fig. 10. Auxiliary Functions

THEOREM 4.2 (THEOREM OF SAFETY). If 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂,𝑜̃︀}
𝜄𝑎
Ð→
∗

𝑘 𝐴
′
⊍ {𝒜∐︀𝜄𝑎, 𝜇

′
, 𝑣,𝑂

′
, 𝑜
′
̃︀} then all possible

values for 𝑣 are 𝛼-equivalent.

PROOF OF SAFETY. The evaluation contexts defined in Figure 7 determine a strict total order in which

compound expressions can be reduced. Therefore, This proof follows by induction over the the reduction of

expressions. Cases (SELF-SEND) and (SEND) are trivial as they both reduce to null. Case (NEW) reduces to a

𝛼-equivalent object reference. An 𝛼-equivalent object 𝑜′ is also added to the heap of the actor. Cases (INVOKE),

(FIELD-ACCESS), and (FIELD-UPDATE) follow by induction. If 𝜄𝑜 is 𝛼-equivalent and the referenced object in the

heap is also 𝛼-equivalent, then resulting expressions will also be 𝛼-equivalent. Case (LET) follows by induction,

if all possible 𝑣 are 𝛼-equivalent then the substitution (︀𝑣⇑𝑥⌋︀𝑒 will also be 𝛼-equivalent. Case (SPAWN) reduces to

a fresh 𝛼-equivalent identifier 𝜄𝑎′ . Case (CONGRUENCE) follows by induction over the actor-local reduction rules.

Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→
∗

𝑘 using definition 4.1. □

Definition 4.3 (Error). If no reduction rule is applicable to further reduce a reducible expression, i. e., when

the reduction is stuck, this signifies an error in the program. The only valid state in which an actor cannot be

further reduced is when its current expression is fully reduced to a value and its mailbox is empty.

THEOREM 4.4 (THEOREM OF LIVENESS). ∀𝐾 = 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂,𝑜̃︀}, 𝑒 ∉ Value, ∃𝐾 ′ ∶ 𝐾
𝜄𝑎
Ð→𝑘 𝐾

′

PROOF OF LIVENESS. This proof follows by induction over the reduction of expressions. Cases (LET), (NEW),

(INVOKE), (FIELD-ACCESS), (FIELD-UPDATE), (SELF-SEND), (SEND) and (SPAWN) all operate on reducible ex-

pressions and can be applied in any error-free program following definition 4.3. Case (CONGRUENCE) follows
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 17

by induction over the actor-local reduction rules. Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→𝑘 using

definition 4.1. □

In theorem 4.2 and theorem 4.4 we have shown that active objects satisfy both safety and liveness for the

execution of a single turn and therefore the Isolated Turn Principle holds.

5 PROCESSES

Independently from Gul Agha and Akinori Yonezawa, T. Hoare, was also inspired by Carl Hewitt’s Actor Model

of computation. This inspiration lead him, in 1978, to introduce the formal language communicating sequential

processes [19] to study the interactions between concurrent processes. Almost a decade later, in 1986, Joe

Armstrong developed the first version of the Erlang programming language [5] while working for Ericsson

and Ellemtel Computer Science Laboratories. The sequential parts of Erlang are heavily inspired by Prolog.

Erlang draws a lot of inspiration from CSP for its concurrency model. Although none of the early papers about

Erlang directly reference the Actor Model, its influence on the concurrency model of Erlang is undeniable. We

therefore consider Erlang to be the first industry-strength language to adopt the actor model as its model of

concurrency. It was developed as a declarative language for programming large industrial telecommunications

switching systems.

While the communication mechanism of Erlang’s processes is very close to that of the Classic Actor Model,

different mechanics are used to achieve similar effects. Most notably, an actor is not modelled as a named

behaviour. Rather actors are modelled as processes that run from start till completion. Erlang actors can use the

primitive receive to specify what messages the executing actor can receive when the execution of a process

reaches that expression. When evaluating a receive expression the actor pauses until a message is received.

If a message is received, the matching code is evaluated and execution continues until a new receive block

is evaluated. One can use recursion to ensure that an actor continuously processes incoming messages. What

types of messages an actor understands throughout its lifetime is determined by the dynamic extent of the

expression it is reducing.

loop(Contents) ->

receive

{put, NewContent} ->

loop(NewContent);

{get, From} ->

From ! Contents,

loop(Contents)

end.

MyCell = spawn(loop, [nil]).

MyCell ! {get, self()}.

Listing 4. An Erlang process.

This is illustrated by Listing 4. The spawn primitive creates a new Erlang process. This will call the provided

function, loop, in a new process and returns that process’ id. The cell uses the primitive receive to match

incoming get- and put-messages. Once the message body is processed the loop function calls itself recursively to

process the next message, passing along the updated state.
Manuscript submitted to ACM



18 Joeri De Koster and Wolfgang De Meuter

Definition: Processes

Every process runs from start till completion. The sequential subset of actor systems that implement this
model is typically functional. Changes to the state of an actor are aggregated in a single receive statement.

The scope of this receive statement then defines the current state of that actor. Processes have a single
entry point that defines a flexible interface that can change by evaluating different receive expressions over

time.

The Scala Actor Library [16] is another well-known implementation of the Process model. Other examples

include Kilim [30] and SALSA [36].

5.1 Operational Semantics

In this section we provide a minimal operational semantics for the Process Model. An executable implementation

in PLT Redex of this operational semantics can be found online4. In red, we highlight the differences between

this formal specification and the one for the Classic Actor Model.

Figure 11 lists the semantic entities for the Process Model. In the Process Model, each Actor, 𝑎, is represented

by an identifier, 𝜄𝑎, a mailbox, 𝜇, and the expression it is currently evaluating, 𝑒. Contrary to the Classic Actor

Model, the behaviour (i. e. interface and state) is defined by the expression the actor is currently reducing. An

actor can change its interface by using the primitive receive to specify what types of messages it understands.

The state of an actor is modeled by the expression itself. the Process Model is not a double-layered actor model,

so we do not model objects in this formalism.

𝑘 ∈ Configuration ∶∶= 𝐴

𝑎 ∈ 𝐴 ⊆ Actor ∶∶= 𝒜∐︀𝜄𝑎, 𝜇, 𝑒̃︀

𝜇 ∈ Mailbox ∶∶= 𝑚

𝑚 ∈ Message ∶∶= ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀

𝑣 ∈ Value ∶∶= 𝑟 ⋃︀ null
𝑟 ∈ Reference ∶∶= 𝜄𝑎

𝜄𝑎 ∈ ActorId

Fig. 11. Semantic entities of the Process Model

5.1.1 Syntax.

Figure 12 lists the syntax, evaluation contexts and initial configuration for the Process Model.

Syntax. Contrary to the Classic Actor Model and the Active Object Model, a Process Program, 𝑝, is a set

of functions, 𝑀 (named Methods here, for consistency with the other formalisms). This set remains constant

throughout the lifetime of the program execution and must contain a single method named 𝑟𝑢𝑛. The syntax

for expressions is extended with function application,𝑚𝑠𝑔(𝑒) and a new receive primitive. A new actor is no

longer spawned (i. e. initialised) from a class name, but rather from a method name. Spawning a new actor

simply executes the corresponding method using the provided arguments in a new process.

4https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex

Manuscript submitted to ACM

https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex


A Formal specification For Half a Century of Actor Systems 19

Syntax
𝑝 ∈ Program ::= 𝑀

𝑀 ⊆ Method ::= 𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒

𝑒 ∈ Expression ::= self ⋃︀ 𝑥 ⋃︀ null ⋃︀ 𝑒 ; 𝑒 ⋃︀𝑚𝑠𝑔(𝑒) ⋃︀ let 𝑥 = 𝑒 in 𝑒 ⋃︀
spawn(𝑚𝑠𝑔, 𝑒) ⋃︀ send(𝑒,𝑚𝑠𝑔, 𝑒) ⋃︀ receive(𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒)

𝑥 ∈ VarName,𝑚𝑠𝑔 ∈MessageName

Runtime Syntax
𝑒 ::= . . . ⋃︀ 𝑟

Evaluation Contexts
ℰ ::= ◻ ⋃︀𝑚𝑠𝑔(𝑣,ℰ, 𝑒) ⋃︀ let 𝑥 = ℰ in 𝑒 ⋃︀ spawn(𝑚𝑠𝑔, 𝑣,ℰ, 𝑒) ⋃︀ send(ℰ,𝑚𝑠𝑔, 𝑒) ⋃︀ send(𝑣,𝑚𝑠𝑔, 𝑣,ℰ, 𝑒)

Syntactic Sugar

𝑒 ; 𝑒′ def
= let 𝑥 = 𝑒 in 𝑒′ 𝑥 ∉ FV(𝑒′)

Initial Configuration
𝐾𝑖𝑛𝑖𝑡 = {𝒜∐︀𝜄𝑎,∅, 𝑟𝑢𝑛()̃︀}

Fig. 12. Syntax of the Process Model

Evaluation Contexts. Evaluation contexts for function application have been added to ensure arguments are

also deterministically reduced from left to right.

Initial Configuration. The initial configuration is changed such that the single main actor is now initialised

with a single expression that simply calls the main 𝑟𝑢𝑛 method.

The reduction rules are again split into two layers (i. e. actor-local reduction rules, Ð→𝑎, and actor-global

reduction rules, Ð→𝑘 .

Actor-local reductions. Actors in this model are processes that run from start till completion. With respect to

the operational semantics, this means that an actor will keep reducing its expression until it is fully reduced to

a value. For simplicity, we do not model the removal of such actors from the configuration. Rather, when that

happens, the actor sits idle and will no longer be able to process any incoming messages. If no reduction rule is

applicable to further reduce a reducible expression, i. e., when the reduction is stuck, this signifies an error in

the program. The only valid state in which an actor cannot be further reduced is when its current expression is

fully reduced to a value or when the current evaluation context contains a receive expression and none of the

messages in its mailbox match with the interface of that expression. When that happens, the actor sits idle until

it receives a new message that does match its interface.

We now explain the actor-local reduction rules (Ð→𝑎) found in Figure 13:

● LET: Reducing a “let”-expression simply substitutes the value of 𝑥 for 𝑣 in 𝑒.

● RECEIVE: This rule describes the processing of messages in the mailbox of an actor. A new message

can be processed only if two conditions are satisfied: the current evaluation context contains a receive

expression and one of the messages in the mailbox of the actor matches that receive expression’s

interface. To match a message from the actor’s mailbox the auxiliary function match is used. This function
Manuscript submitted to ACM



20 Joeri De Koster and Wolfgang De Meuter

(LET)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀let 𝑥 = 𝑣 in 𝑒⌋︀̃︀
Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝑣⇑𝑥⌋︀𝑒⌋︀̃︀

(RECEIVE)
𝑒, 𝜇
′
= match(𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒, 𝜇)

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀receive(𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒)⌋︀̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇
′
,ℰ(︀𝑒⌋︀̃︀

(CALL)
𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝑚𝑠𝑔(𝑣)⌋︀̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝜄𝑎⇑self⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒⌋︀̃︀

(SELF-SEND)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎,𝑚𝑠𝑔, 𝑣)⌋︀̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇 ⋅ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀,ℰ(︀null⌋︀̃︀

Fig. 13. Local Reduction Rules for Process Model

returns the body expression. 𝑒, of the matched method and an updated mailbox, 𝜇 where the matched

message was removed. The receive expression reduces to the body expression of the associated method

and the actor’s mailbox is updated.

● CALL: When an actor calls a function, that function is looked up in the constant set of functions, 𝑀. The

call expression reduces to the body expression of the corresponding method where the parameters, 𝑥𝑚 are

substituted with the arguments to the call, 𝑣 and the pseudovariable, self is substituted with a reference

to the current actor, 𝜄𝑎 .

● SELF-SEND: An asynchronous message sent to the same actor simply appends a new message to the end of

that actor’s own mailbox. The message send itself immediately reduces to null.

(SPAWN)
𝜄𝑎′ fresh 𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀spawn(𝑚𝑠𝑔, 𝑣)⌋︀̃︀}
Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎′⌋︀̃︀} ∪ {𝒜∐︀𝜄𝑎′ ,∅, (︀𝜄𝑎′⇑self⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒̃︀}

(SEND)
𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎′ ,𝑚𝑠𝑔, 𝑣)⌋︀̃︀} ⊍ {𝒜∐︀𝜄𝑎′ , 𝜇

′
, 𝑒
′
̃︀}

Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀null⌋︀̃︀} ∪ {𝒜∐︀𝜄𝑎′ , 𝜇
′
⋅ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀, 𝑒

′
̃︀}

(CONGRUENCE)
𝑎 Ð→𝑎 𝑎

′

𝐴 ⊍ {𝑎} Ð→𝑘 𝐴 ∪ {𝑎
′
}

Fig. 14. Global Reduction Rules for Process Model

Actor-global reductions. We now explain the actor-global reduction rules (Ð→𝑘) found in Figure 14:

● SPAWN: Reducing a spawn expression adds a new actor to the set of actors of the configuration. The newly

created actor is initialised with a fresh identifier, 𝜄𝑎′ , and an empty mailbox. The method named,𝑚𝑠𝑔 is

looked up in the constant set of methods, 𝑀. The spawn expression reduces to the body expression of

the corresponding method where the parameters, 𝑥𝑚 are substituted with the arguments to the spawn

expression, 𝑣 and the pseudovariable, self is substituted with a reference to the newly created actor, 𝜄𝑎′ .

The spawn expression itself reduces to the same reference to the newly created actor, 𝜄𝑎′ .

● SEND: An asynchronous message sent to a different actor appends that message to the front of the mailbox

of the recipient actor (the actor with identifier 𝜄𝑎). The send expression itself reduces to null.
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 21

● CONGRUENCE: this rule connects the actor-local reduction rules to the global configuration reduction

rules.

match(𝑀,ℳ∐︀𝑚𝑠𝑔, 𝑣̃︀ ⋅ 𝜇)
𝑑𝑒𝑓
= (︀𝑣⇑𝑥𝑚⌋︀𝑒, 𝜇 if𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

match(𝑀,𝑚 ⋅ 𝜇)
𝑑𝑒𝑓
= 𝑒,𝑚 ⋅ 𝜇

′ if 𝑒, 𝜇′ = match(𝑀, 𝜇)

Fig. 15. Auxiliary Functions

Auxiliary functions. The auxiliary function match is identical to the one for the Classic Actor Model. It finds

the first message (going from left to right) in the mailbox, 𝜇, that matches the selector𝑚𝑠𝑔. It has two return

values: the body expression of the associated lambda where all parameters, 𝑥𝑚 have been substituted by the

arguments of the message, 𝑣 , and and updated mailbox where the selected message has been removed.

5.2 Proving the Isolated Turn Principle for the Process Model

In this section we provide a formal proof that the Isolated Turn principle holds for the Process Model.

Definition 5.1 (Turn). Let a turn,
𝜄𝑎
Ð→
∗

𝑘 , be any sequence of reduction rules such that 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒̃︀}
𝜄𝑎
Ð→
∗

𝑘

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇
′
, 𝑣̃︀} and the (RECEIVE) reduction rule for the actor with id, 𝜄𝑎 , ∉

𝜄𝑎
Ð→
∗

𝑘 .

THEOREM 5.2 (THEOREM OF SAFETY). If 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒̃︀}
𝜄𝑎
Ð→
∗

𝑘 𝐴
′
⊍ {𝒜∐︀𝜄𝑎, 𝜇

′
, 𝑣̃︀} then all possible values for 𝑣

are 𝛼-equivalent.

PROOF OF SAFETY. The evaluation contexts defined in Figure 12 determine a strict total order in which

compound expressions can be reduced. Therefore, This proof follows by induction over the the reduction

of expressions. Cases (SELF-SEND) and (SEND) are trivial as they both reduce to null. Case (CALL) follows

by induction. If 𝑚𝑠𝑔(𝑣) is an 𝛼-equivalent expression, then selected method will be identical because 𝑀 is

constant and therefore the substitution (︀𝜄𝑎⇑self⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒 is also 𝛼-equivalent. Similarly, case (SPAWN) follows

by induction. If spawn(𝑚𝑠𝑔, 𝑣) is an 𝛼-equivalent expression, then the substitution (︀𝜄𝑎′⇑self⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒 is also

𝛼-equivalent because 𝜄𝑎′ is fresh and 𝑒 is selected from a constant set of methods, 𝑀. Case (LET) follows by

induction, if all possible 𝑣 are 𝛼-equivalent then the substitution (︀𝑣⇑𝑥⌋︀𝑒 will also be 𝛼-equivalent. Case (SPAWN)

reduces to a fresh 𝛼-equivalent identifier 𝜄𝑎′ . Case (CONGRUENCE) follows by induction over the actor-local

reduction rules. Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→
∗

𝑘 using definition 5.1. □

Definition 5.3 (Error). If no reduction rule is applicable to further reduce a reducible expression, i. e., when

the reduction is stuck, this signifies an error in the program. The only valid state in which an actor cannot be

further reduced is when its current expression is fully reduced to a value or when the current evaluation context

contains a receive expression and no messages in its mailbox matches with that receive’s interface.

THEOREM 5.4 (THEOREM OF LIVENESS). ∀𝐾 = 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒̃︀}, 𝑒 ∉ Value, ∃𝐾 ′ ∶ 𝐾
𝜄𝑎
Ð→𝑘 𝐾

′

PROOF OF LIVENESS. This proof follows by induction over the reduction of expressions. Cases (LET), (CALL),

(SELF-SEND), (SEND) and (SPAWN) all operate on reducible expressions and can be applied in any error-free

program following definition 5.3. Case (CONGRUENCE) follows by induction over the actor-local reduction rules.

Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→𝑘 using definition 5.1. □

Manuscript submitted to ACM



22 Joeri De Koster and Wolfgang De Meuter

In theorem 5.2 and theorem 5.4 we have shown that the Process Model satisfies both safety and liveness for

the execution of a single turn and therefore the Isolated Turn Principle holds.

6 COMMUNICATING EVENT LOOPS

Vulcan [22] is a concurrent object-oriented logic programming language that was also inspired by Hewitt’s

actor model of computation. It was developed in 1986 as a preprocessor for Concurrent Prolog by Kahn et al. at

Xerox PARC. Dean Tribble, an intern at Xerox PARC during the eighties, developed the distributed programming

language Joule in 1994. Joule can be seen as the most direct and important ancestor of the E programming

language [25] developed by Mark Miller. E was the first language to introduce the Communicating Event-loop

Actor Model. Similar to the Active Object Model, the Communicating Event-loop Actor Model is a double-layered

model where actors (called vats in E) and objects co-exist. However, it has an important difference when

compared to the Active Object Model in that it does not make a distinction between passive and active objects.

In this model, actors do not have a single active object that serves as the entry point to that actor. Actors are not

even first-class entities in this model. Rather, actors can obtain direct references to objects in the heap of another

actor. Within an actor, references to objects owned by that same actor are called near references. References to

objects owned by other actors are called far references. The type of reference determines the access capabilities

of that actor’s thread of execution on the referenced object. While actors can obtain direct references to objects

owned by a different actor (far reference), they are not allowed to make immediate calls on those references.

Generally, actors are introduced to one another by exchanging addresses. In the Communicating Event Loop

model such an address is always in the form of an far reference to a specific object. The referenced object then

defines how another actor can interface with that actor. The main difference between Communicating Event

Loops (CEL) and other actor models seen so far was that other actor models usually only provide a single entry

point or address to an actor (in other words, at any point in time, an actor can have only 1 interface). A CEL

actor can define multiple objects that all share the same mailbox and thread of control and hand out different

references to those objects, thus essentially allowing one to model an actor that has multiple interfaces at the

same time. This helps support a PoLP (principle of least privilige) style of programming [27], by facilitating the

creation of many small, object-level interfaces, rather than a single large actor-level interface. The example in

Listing 5 illustrates how to create an object in E and send it an eventual message get.

When an object in one actor sends an eventual message to an object in another actor the message is enqueued

in the mailbox of the owner of the receiver object and immediately returns a promise. That promise will be

resolved with the return value of the message once that message is processed. It is not allowed for an actor to

use a promise as a near reference. If an actor wants to make an immediate call on the value represented by a

promise, like printing it on the screen, that actor must set up an action to occur when the promise resolves. This

is done by using the when primitive. Promises in E are based on Argus’s promises [24]. With the main difference

being that accessing a promise in Argus is a blocking operation while E adopts a purely asynchronous model

(i. e. executing the when primitive is also an asynchronous operation). When the promise for the value of the

get message becomes resolved, the body of the when primitive is executed. During that execution the promise is

resolved and can be used as a local object.

The Communicating Event Loop model was later adopted by AmbientTalk [35], a distributed object-oriented

programming language that was designed for developing applications on mobile ad hoc networks. AmbientTalk

was designed as an ambient-oriented programming (AmOP) language [13]. It adds to the Actor Model a number
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 23

def cell {

var contents := null

to put(newContents) {

contents := newContents

}

to get() {

return contents

}

}

var promise := cell<-get()

when (promise) -> {

println(promise)

}

Listing 5. An actor in E.

Definition: Communicating Event Loops

An actor is a combination of an object heap, a mailbox and a thread of control. Every reference that is
passed between different actors is exported as a far reference with a fixed interface and can serve as an
entry point for that actor. The sequential subset of actor systems that implement this model is typically
imperative. Changes to the state of an actor can be done imperatively and isolation is guaranteed by

sending composite values between actors by far reference.

of new primitives to handle disconnecting and reconnecting nodes in a network where connections are volatile.

The core concurrency model however remains faithful to the original Communicating Event Loops of E.

6.1 Operational Semantics

In this section we provide a minimal operational semantics for Communicating Event Loops. An executable

implementation in PLT Redex of this operational semantics can be found online5. Because the operational

semantics for Communicating Event Loops shares a lot of similarities with the one for the Active Object Model

we will only highlight (in red) the differences between both formalisms.

𝑘 ∈ Configuration ∶∶= 𝐴

𝑎 ∈ 𝐴 ⊆ Actor ∶∶= 𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂̃︀

𝜇 ∈ Mailbox ∶∶= 𝑚

𝑚 ∈ Message ∶∶= ℳ∐︀𝜄𝑜 ,𝑚𝑠𝑔, 𝑣̃︀

𝑜 ∈ 𝑂 ⊆ Object ∶∶= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣̃︀

𝑣 ∈ Value ∶∶= 𝑟 ⋃︀ null
𝑟 ∈ Reference ∶∶= 𝜄𝑎 .𝜄𝑜

𝜄𝑎 ∈ ActorId, 𝜄𝑜 ∈ ObjectId

Fig. 16. Semantic entities of the Communicating Event Loops Model

5https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex

Manuscript submitted to ACM

https://gitlab.soft.vub.ac.be/jdekoste/actormodelhistorypltredex


24 Joeri De Koster and Wolfgang De Meuter

Figure 16 lists the semantic entities for Communicating Event Loops. In Communicating Event Loops, each

Actor, 𝑎, is represented by an identifier, 𝜄𝑎 , a mailbox, 𝜇, the expression it is currently evaluating, 𝑒, and a heap

of objects, 𝑂. Contrary to the Active Object Model, there is no single active object that serves as the entry point

to an actor. Rather, actors can share far references to objects in their own heap with other actors. Each of these

far references can be used by other actors to send asynchronous messages. Therefore, any such far reference can

serve as an entry point to an actor. However, the interface of the referenced objects cannot change throughout

the lifetime of the actor. That means, while a Communicating Event-loop actor can have many interfaces, they

remain fixed. Because messages are sent to an object within the heap of an actor, a Message has an additional

identifier, 𝜄𝑜 , that identifies the target object of the message that was received. Far references are modeled as a

double identifier, 𝜄𝑎 .𝜄𝑜 , that identifies the referenced object and the actor that owns that object.

6.1.1 Syntax.

Figure 17 lists the syntax, evaluation contexts and initial configuration for Communicating Event-loop Actor

programs.

Syntax. Identical to the Classic Actor Model and the Active Object Model, a Program, 𝑝, is a set of class

definitions, 𝐶, of which one class is the 𝑀𝑎𝑖𝑛 class that has to implement the 𝑟𝑢𝑛 method. The definition of

Classes and Methods has been left unchanged. With respect to the Active Object Model, the set of expressions

that are part of the syntax also remains identical.

Syntax
𝑝 ∈ Program ::= 𝐶

𝐶 ⊆ Class ::= class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀}
𝑀 ⊆ Method ::= 𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒

𝑒 ∈ Expression ::= self ⋃︀ 𝑥 ⋃︀ null ⋃︀ 𝑒 ; 𝑒 ⋃︀ let 𝑥 = 𝑒 in 𝑒 ⋃︀ spawn(𝑐𝑙𝑠, 𝑒) ⋃︀ send(𝑒,𝑚𝑠𝑔, 𝑒) ⋃︀
new(𝑐𝑙𝑠, 𝑒) ⋃︀ 𝑒.𝑥 ⋃︀ 𝑒.𝑥 = 𝑒 ⋃︀ 𝑒.𝑚𝑠𝑔(𝑒)

𝑥 ∈ VarName, 𝑐𝑙𝑠 ∈ ClassName,𝑚𝑠𝑔 ∈MessageName

Runtime Syntax
𝑒 ::= . . . ⋃︀ 𝑟

Evaluation Contexts
ℰ ::= ◻ ⋃︀ let 𝑥 = ℰ in 𝑒 ⋃︀ spawn(𝑐𝑙𝑠, 𝑣, ℰ, 𝑒) ⋃︀ send(ℰ,𝑚𝑠𝑔, 𝑒) ⋃︀ send(𝑣,𝑚𝑠𝑔, 𝑣,ℰ, 𝑒) ⋃︀

new(𝑐𝑙𝑠, 𝑣,ℰ, 𝑒) ⋃︀ ℰ .𝑥 ⋃︀ ℰ .𝑥 = 𝑒 ⋃︀ 𝑣 .𝑥 = ℰ ⋃︀ ℰ .𝑚𝑠𝑔(𝑒) ⋃︀ 𝑣 .𝑚𝑠𝑔(𝑣,ℰ, 𝑒)

Syntactic Sugar

𝑒 ; 𝑒′ def
= let 𝑥 = 𝑒 in 𝑒′ 𝑥 ∉ FV(𝑒′)

Initial Configuration
𝐾𝑖𝑛𝑖𝑡 = {𝒜∐︀𝜄𝑎,∅, 𝜄𝑎 .𝜄𝑜 .𝑟𝑢𝑛(), {𝒪∐︀𝜄𝑜 ,𝑀𝑎𝑖𝑛,∅̃︀}̃︀}

Fig. 17. Syntax of the Communicating Event Loops Model

Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 25

Initial Configuration. The initial configuration is changed such that the single 𝑀𝑎𝑖𝑛 actor is now initialised

with a singleton set containing an object that is an instance of the 𝑀𝑎𝑖𝑛 class. The actor’s expression is initialised

with 𝜄𝑎 .𝜄𝑜 .𝑟𝑢𝑛(), which will synchronously invoke the 𝑟𝑢𝑛 method on that object.

Actor-local reductions. Actors operate by perpetually taking the first message from their mailbox and

processing it. Any received message is simply forwarded to the recipient object by synchronously invoking the

corresponding method on that object. When the invocation expression is fully reduced to a value, the next

message can be processed. Contrary to the Classic Actor Model and the Process Model, messages are always

processed in order. If the first message in the mailbox of an actor does not match the interface of the recipient

object, or if no actor-local reduction rule is applicable to further reduce a reducible expression, i. e., when the

reduction is stuck, this signifies an error in the program. The only valid state in which an actor cannot be further

reduced is when its current expression is fully reduced to a value and and its mailbox is empty. A value cannot

be further reduced and the actor sits idle until it receives a new message.

(LET)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀let 𝑥 = 𝑣 in 𝑒⌋︀,𝑂̃︀
Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝑣⇑𝑥⌋︀𝑒⌋︀,𝑂̃︀

(NEW)
𝜄𝑜 fresh 𝑜 = 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣̃︀

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀new(𝑐𝑙𝑠, 𝑣)⌋︀,𝑂̃︀
Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎 .𝜄𝑜⌋︀,𝑂 ∪ 𝑜̃︀

(INVOKE)
𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ ∈ 𝑂

class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶
𝑚𝑠𝑔 → 𝜆𝑥𝑚 .𝑒 ∈ 𝑀

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎 .𝜄𝑜 .𝑚𝑠𝑔(𝑣)⌋︀,𝑂̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀(︀𝜄𝑎 .𝜄𝑜⇑self⌋︀(︀𝑣 𝑓 ⇑𝑥 𝑓 ⌋︀(︀𝑣⇑𝑥𝑚⌋︀𝑒⌋︀,𝑂̃︀

(FIELD-ACCESS)
𝑜 = 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀ 𝑜 ∈ 𝑂

𝑣 = lookup(𝑜, 𝑥 𝑓 )

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎 .𝜄𝑜 .𝑥 𝑓 ⌋︀,𝑂̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝑣⌋︀,𝑂̃︀

(FIELD-UPDATE)
𝑜 = 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀

𝑜
′
= update-field(𝑜, 𝑥 𝑓 , 𝑣)

𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎 .𝜄𝑜 .𝑥 𝑓 = 𝑣⌋︀,𝑂 ⊍ 𝑜̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝑣⌋︀,𝑂 ∪ 𝑜
′
̃︀

(SELF-SEND)
𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎 .𝜄𝑜 ,𝑚𝑠𝑔, 𝑣)⌋︀,𝑂̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇 ⋅ℳ∐︀𝜄𝑜 ,𝑚𝑠𝑔, 𝑣̃︀,ℰ(︀null⌋︀,𝑂̃︀

(RECEIVE)
𝒜∐︀𝜄𝑎,ℳ∐︀𝜄𝑜 ,𝑚𝑠𝑔, 𝑣̃︀ ⋅ 𝜇, 𝑣,𝑂̃︀

Ð→𝑎 𝒜∐︀𝜄𝑎, 𝜇, 𝜄𝑎 .𝜄𝑜 .𝑚𝑠𝑔(𝑣),𝑂̃︀

Fig. 18. Local Reduction Rules for Communicating Event Loops

We now explain the actor-local reduction rules (Ð→𝑎) found in Figure 18:

● LET: Reducing a “let”-expression simply substitutes the value of 𝑥 for 𝑣 in 𝑒.

● NEW: Newly created objects are always owned by the actor that creates them, i. e. the newly created

object is added to the heap of the actor for which the new expression was reduced. The new expression

reduces to a reference to the newly created object. That reference is a double identifier that references

the object, 𝜄𝑜 , and the actor that created (or owns) the object, 𝜄𝑎 .

● INVOKE: Actors can only synchronously invoke methods on their own objects, i. e. the object has to be

part of the heap of that actor and the actor part of the reference, 𝜄𝑎, needs to be the same as the actor
Manuscript submitted to ACM



26 Joeri De Koster and Wolfgang De Meuter

identifier. In the result expression, the pseudovariable self is substituted with the reference to the object

on which the method was invoked, 𝜄𝑎 .𝜄𝑜 .

● FIELD-ACCESS: Field access works identical to the Active Object Model, except that field access only

works on references to objects that are owned by the actor dereferencing them (i. e. the actor part of the

reference, 𝜄𝑎 , needs to be the same as the actor identifier).

● FIELD-UPDATE: Similar to field access.

● SELF-SEND: An asynchronous message sent to the same actor simply appends a new message to the end of

that actor’s own mailbox. The object part of the reference, 𝜄𝑜 , is copied into the message to later identify

the recipient object. The message send itself immediately reduces to null.

● RECEIVE: A message can only be processed if the current expression of the actor cannot be reduced any

further (the expression is a value 𝑣). Processing a message simply forwards that message to the recipient

object. This is achieved by replacing the value with a synchronous invocation expression that invokes the

corresponding method on the object that was the target of the message.

(SPAWN)
𝜄𝑎′ , 𝜄𝑜 fresh

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀spawn(𝑐𝑙𝑠, 𝑣)⌋︀,𝑂̃︀}
Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀𝜄𝑎′ .𝜄𝑜⌋︀,𝑂̃︀} ∪ {𝒜∐︀𝜄𝑎′ ,∅, null, {𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣̃︀}̃︀}

(SEND)
𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀send(𝜄𝑎′ .𝜄𝑜 ,𝑚𝑠𝑔, 𝑣)⌋︀,𝑂̃︀} ⊍ {𝒜∐︀𝜄𝑎′ , 𝜇

′
, 𝑒
′
,𝑂
′
̃︀}

Ð→𝑘 𝐴 ∪ {𝒜∐︀𝜄𝑎, 𝜇,ℰ(︀null⌋︀,𝑂̃︀} ∪ {𝒜∐︀𝜄𝑎′ , 𝜇
′
⋅ℳ∐︀𝜄𝑜 ,𝑚𝑠𝑔, 𝑣̃︀, 𝑒

′
,𝑂
′
̃︀}

(CONGRUENCE)
𝑎 Ð→𝑎 𝑎

′

𝐴 ⊍ {𝑎} Ð→𝑘 𝐴 ∪ {𝑎
′
}

Fig. 19. Global Reduction Rules for Communicating Event Loops

Actor-global reductions. We now explain the actor-global reduction rules (Ð→𝑘) found in Figure 19:

● SPAWN: Reducing a spawn expression adds a new actor to the set of actors of the configuration. The

newly created actor is initialised with an empty mailbox, null as its expression (the actor will be in an

idle state), and an object heap with a single object. The spawn expression itself reduces to a reference to

that object 𝜄𝑎′ .𝜄𝑜 .

● SEND: An asynchronous message sent to a different actor appends that message to the front of the mailbox

of the recipient actor (the actor with identifier 𝜄𝑎′). To preserve actor isolation, event-loop actors adopt a

strict no-shared-state policy. Contrary to the Active Object Model, where passive objects are shared by

copy, references to objects in an event-loop actor can be freely shared between actors because they are

always tagged with a reference to the actor that owns the object. Only the actor that owns an object is

allowed to synchronously reference, mutate, or invoke methods on that object.

● CONGRUENCE: this rule connects the actor-local reduction rules to the global configuration reduction

rules.

Auxiliary functions. The auxiliary functions lookup and update-field are identical to the ones for the Active

Object Model. They simply lookup a field or modify a field of a given passive object respectively.
Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 27

lookup(𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀, 𝑥 𝑓 )
𝑑𝑒𝑓
= lookup(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 ) if class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶

lookup(𝑥 𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 )
𝑑𝑒𝑓
= 𝑣

lookup(𝑥 ′𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 )
𝑑𝑒𝑓
= lookup(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 )

update-field(𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠, 𝑣 𝑓 ̃︀, 𝑥 𝑓 , 𝑣)
𝑑𝑒𝑓
= 𝒪∐︀𝜄𝑜 , 𝑐𝑙𝑠,update-field(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)̃︀ if class 𝑐𝑙𝑠 {𝑥 𝑓 ;𝑀} ∈ 𝐶

update-field(𝑥 𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)
𝑑𝑒𝑓
= 𝑣 ⋅ 𝑣 𝑓

update-field(𝑥 ′𝑓 ⋅ 𝑥 𝑓 , 𝑣 𝑓 ⋅ 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)
𝑑𝑒𝑓
= 𝑣 𝑓 ⋅ update-field(𝑥 𝑓 , 𝑣 𝑓 , 𝑥 𝑓 , 𝑣)

Fig. 20. Auxiliary Functions

6.2 Proving the Isolated Turn Principle for the Communicating Event Loop Model

In this section we provide a formal proof that the Isolated Turn principle holds for Communicating Event Loop

Actors.

Definition 6.1 (Turn). Let a turn,
𝜄𝑎
Ð→
∗

𝑘 , be any sequence of reduction rules such that 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂̃︀}
𝜄𝑎
Ð→
∗

𝑘

𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇
′
, 𝑣,𝑂

′
̃︀} and the (RECEIVE) reduction rule for the actor with id, 𝜄𝑎 , ∉

𝜄𝑎
Ð→
∗

𝑘 .

THEOREM 6.2 (THEOREM OF SAFETY). If 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂̃︀}
𝜄𝑎
Ð→
∗

𝑘 𝐴
′
⊍ {𝒜∐︀𝜄𝑎, 𝜇

′
, 𝑣,𝑂

′
̃︀} then all possible values

for 𝑣 and 𝑂′ are 𝛼-equivalent.

PROOF OF SAFETY. The evaluation contexts defined in Figure 17 determine a strict total order in which

compound expressions can be reduced. Therefore, This proof follows by induction over the the reduction of

expressions. Cases (SELF-SEND) and (SEND) are trivial as they both reduce to null and do not modify the

actor’s heap, 𝑂. Case (NEW) reduces to a fresh 𝛼-equivalent reference. An 𝛼-equivalent object 𝑜′ is also added

to the heap of the actor. Cases (INVOKE), (FIELD-ACCESS), and (FIELD-UPDATE) follow by induction. If 𝜄𝑎 .𝜄𝑜 is

𝛼-equivalent and the referenced object in the heap is also 𝛼-equivalent, then resulting expressions and updated

heaps will also be 𝛼-equivalent. Case (LET) follows by induction, if all possible 𝑣 are 𝛼-equivalent then the

substitution (︀𝑣⇑𝑥⌋︀𝑒 will also be 𝛼-equivalent. Case (SPAWN) reduces to a fresh 𝛼-equivalent identifier 𝜄𝑎′ .𝜄𝑜 . Case

(CONGRUENCE) follows by induction over the actor-local reduction rules. Case (RECEIVE) does not apply as

(RECEIVE) ∉
𝜄𝑎
Ð→
∗

𝑘 using definition 6.1. □

Definition 6.3 (Error). If no reduction rule is applicable to further reduce a reducible expression, i. e., when

the reduction is stuck, this signifies an error in the program. The only valid state in which an actor cannot be

further reduced is when its current expression is fully reduced to a value and its mailbox is empty.

THEOREM 6.4 (THEOREM OF LIVENESS). ∀𝐾 = 𝐴 ⊍ {𝒜∐︀𝜄𝑎, 𝜇, 𝑒,𝑂̃︀}, 𝑒 ∉ Value, ∃𝐾 ′ ∶ 𝐾
𝜄𝑎
Ð→𝑘 𝐾

′

PROOF OF LIVENESS. This proof follows by induction over the reduction of expressions. Cases (LET), (NEW),

(INVOKE), (FIELD-ACCESS), (FIELD-UPDATE), (SELF-SEND), (SEND) and (SPAWN) all operate on reducible ex-

pressions and can be applied in any error-free program following definition 6.3. Case (CONGRUENCE) follows

by induction over the actor-local reduction rules. Case (RECEIVE) does not apply as (RECEIVE) ∉
𝜄𝑎
Ð→𝑘 using

definition 6.1. □

Manuscript submitted to ACM



28 Joeri De Koster and Wolfgang De Meuter

In theorem 6.2 and theorem 6.4 we have shown that the Communicating Event Loop Model satisfies both

safety and liveness for the execution of a single turn and therefore the Isolated Turn Principle holds.

7 ACTOR MODEL PROPERTIES

Each of the four families discussed gives some indication of the properties of the actor system. However, these

properties still remain largely dependent on the specific implementation of the actor system. In this section we

give a complete overview. There are four main classes of features and properties. First we look at how each

system processes individual messages. Secondly, we look at how messages are received by the actor. Thirdly,

we look at what mutable state is available in the actor system and how the actor system handles state changes.

Lastly, we classify the different actor systems according to the granularity in which actors are meant to be

used within a single execution environment.

7.1 Message Reception

Incoming messages are always stored in the inbox of an actor. How those messages are taken out of that inbox

can differ between the different actor systems.

Interface. At any given point during the execution of a program, the interface of an actor is the set of messages

that actor understands. This interface can either be flexible or fixed throughout the lifetime of that actor. An

actor can have a single entry point or, in the case of the Communicating Event Loop Model, have multiple

entry points, each with their own subset of the actor’s interface. This helps support a POLA (principle of least

authority) style of programming, by facilitating the creation of many small, object-level interfaces, rather than a

single large actor-level interface.

Order. In the case of a fixed interface, it makes sense to process messages in the same order they arrived in

the inbox of the actor. However, when the interface is flexible it can be opportune to process messages out of

order (similar to Out of Order Execution, OoOE) depending on what messages are supported by the behaviour

that is in place at the start of each turn. Support for flexible interfaces and out of order message processing

and thus facilitate what is known as “conditional synchronisation” [9] (e.g. implementing a blocking bounded

buffer, or other more complex forms of synchronisation). The downside of a flexible interface is that it can lead

to communication deadlocks [34] where an actor is waiting indefinitely without processing any other messages

in its inbox.

State. The state of an actor may consist of multiple individually addressable variables, each holding simple

atomic values (e.g. numbers), composite values (e.g. a list of numbers) or references to other actors. State

changes can be aggregated or on an individual, i. e. per variable, basis. If the sequential subset of the actor

system is functional then state changes are typically aggregated by replacing an actor’s behaviour, any composite

value is also immutable and can be transmitted between actors by reference. If the sequential subset of the

actor system is imperative then state changes can be made on an individual basis. Any composite value needs to

be copied or proxied before being transmitted over actor boundaries.

A summary of the different actor models discussed in this paper and their properties can be found in Table 1.

Manuscript submitted to ACM



A Formal specification For Half a Century of Actor Systems 29

Interface Entry Point Order State Changes Message Passing
Classic Actor Model Flexible Single OoOE Aggregated By Reference
Processes Flexible Single OoOE Aggregated By Reference
Active Objects Fixed Single FIFO Individual Copied
Communicating Event Loops Fixed Multiple FIFO Individual Proxied

Table 1. Message Reception Properties

8 CONCLUSION

At its core, the actor model of computation is a very simple programming model with one central concept: the

actor. Actors are simply isolated processes that communicate asynchronously via message passing. The main

benefit of this strict isolation and asynchronous communication is that the actor model is free of low-level data

races and deadlocks. In this paper we define this as a key unifying principle among all actor systems and name

it the isolated turn principle. However, when looking at the broader picture, half a century of research has lead

to a plethora of different variations on the actor model, each with their own widely different properties.

This paper focusses primarily on the overlying programming model and identifies and defines four broad

families along which any actor system can be categorised. Namely: Classic Actors, Active Objects, Processes and

Communicating Event Loops. This paper provides a brief history of some of the key programming languages and

libraries that implement each of these four broad families of actor models. These programming languages and

libraries have influenced and will continue to influence the design and rationale of other actor systems today.

This paper provides a precise formal definition for a core subset of the four families of actor models through

an operational semantics. An executable version of these operational semantics implemented in PLT Redex is

available. This paper proves that the isolated turn principle holds for each of these four variations. The Isolated

Turn Principle is a core principle that unifies all actor systems. However, there are many other properties

along which an actor system can be classified. While those properties remain largely dependent on the specific

implementation of an actor system, there are still some general conclusions to be drawn.

● The sequential subset of Classic Actors and Processes is typically functional, while the Active Object

Model and Communicating Event Loops are typically imperative. However, as long as the Isolated Turn

principle is upheld, the choice does not really impact the concurrency properties of that system.

● Classic Actors and Processes have a flexible interface which facilitates conditional synchronisation, while

the Active Object Model and Communicating Event Loops have a fixed interface. Communicating Event

Loops is the only actor model where actors can create many small interfaces which supports a PoLP

(principle of least privilige) style of programming.

● Actor models where actors have a flexible interface typically have support out-of-order execution of

messages while actor models where actors have a fixed interface typically process messages in FIFO order.

● The paradigm of the sequential subset directly determines whether state changes at the level of an actor

are aggregated (for functional languages) or on a per-variable basis (for imperative languages).

REFERENCES
[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge, MA, USA, 1986.
[2] G. Agha. Concurrent object-oriented programming. Commun. ACM, 33(9):125–141, Sept. 1990.
[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation. J. Funct. Program., 7(1):1–72, Jan. 1997.

Manuscript submitted to ACM



30 Joeri De Koster and Wolfgang De Meuter

[4] J. Allen. Effective Akka: Patterns and Best Practices. " O’Reilly Media, Inc.", 2013.
[5] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Programming in ERLANG (2nd Ed.). Prentice Hall International (UK)

Ltd., Hertfordshire, UK, UK, 1996.
[6] F. D. Boer, V. Serbanescu, R. Hähnle, L. Henrio, J. Rochas, C. C. Din, E. B. Johnsen, M. Sirjani, E. Khamespanah, K. Fernandez-Reyes, and

A. M. Yang. A survey of active object languages. ACM Comput. Surv., 50(5), oct 2017.
[7] S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes, E. B. Johnsen, K. I. Pun, S. L. Tapia Tarifa, T. Wrigstad, and A. M. Yang. Parallel

objects for multicores: A glimpse at the parallel language Encore. In M. Bernardo and E. B. Johnsen, editors, Formal Methods for Multicore
Programming (SFM 2015), volume 9104 of Lecture Notes in Computer Science, pages 1–56. Springer, 2015.

[8] J.-P. Briot. Actalk: a testbed for classifying and designing actor languages in the smalltalk-80 environment. pages 109–129. University
Press, 1989.

[9] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution in object-oriented programming. ACM Comput. Surv., 30(3):291–329,
Sept. 1998.

[10] S. Bykov. The curse of the a-word. https://temporal.io/blog/sergey-the-curse-of-the-a-word, 2021. Accessed: 2023-01-01.
[11] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic objects. SIGPLAN Not., 39(1):123–134, jan 2004.
[12] A. Church. An unsolvable problem of elementary number theory. American journal of mathematics, 58(2):345–363, 1936.
[13] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D&#39;Hondt, and W. De Meuter. Ambient-oriented programming in ambienttalk. In

Proceedings of the 20th European Conference on Object-Oriented Programming, ECOOP’06, pages 230–254, Berlin, Heidelberg, 2006.
Springer-Verlag.

[14] M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential control and state. Theor. Comput. Sci., 103(2):235–271,
Sept. 1992.

[15] I. Greif and C. Hewitt. Actor semantics of planner-73. In Proceedings of the 2nd ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’75, page 67–77, New York, NY, USA, 1975. Association for Computing Machinery.

[16] P. Haller and M. Odersky. Actors that unify threads and events. In Proceedings of the 9th International Conference on Coordination Models
and Languages, COORDINATION’07, pages 171–190, Berlin, Heidelberg, 2007. Springer-Verlag.

[17] C. Hewitt. Planner: A language for manipulating models and proving theorems in a robot. 1970.
[18] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial intelligence. In Proceedings of the 3rd International

Joint Conference on Artificial Intelligence, IJCAI’73, page 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.
[19] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, Aug. 1978.
[20] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. Abs: A core language for abstract behavioral specification. In Formal

Methods for Components and Objects: 9th International Symposium, FMCO 2010, Graz, Austria, November 29-December 1, 2010. Revised
Papers 9, pages 142–164. Springer, 2012.

[21] D. Kafura. Act++: Building a concurrent C++ with actors. J. Object Oriented Program., 3(1):25–37, Apr. 1990.
[22] K. Kahn, E. D. Tribble, M. Miller, and D. G. Bobrow. Vulcan: Logical Concurrent Objects, page 75–112. MIT Press, Cambridge, MA, USA,

1987.
[23] W. Kim. Thal: An actor system for efficient and scalable concurrent computing, 1997.
[24] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure calls in distributed systems. In Proceedings of

the ACM SIGPLAN 1988 Conference on Programming Language Design and Implementation, PLDI ’88, pages 260–267, New York, NY, USA,
1988. ACM.

[25] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency among strangers: Programming in E as plan coordination. In Proceedings of the 1st
International Conference on Trustworthy Global Computing, TGC’05, pages 195–229, Berlin, Heidelberg, 2005. Springer-Verlag.

[26] M. Research. Orleans, 2015-16.
[27] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.
[28] C. Scholliers, E. Tanter, and W. De Meuter. Parallel actor monitors: Disentangling task-level parallelism from data partitioning in the actor

model. Sci. Comput. Program., 80:52–64, Feb. 2014.
[29] M. Sirjani, A. Movaghar, A. Shali, and F. S. De Boer. Modeling and verification of reactive systems using rebeca. Fundamenta Informaticae,

63(4):385–410, 2004.
[30] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. In Proceedings of the 22nd European Conference on Object-Oriented

Programming, ECOOP ’08, pages 104–128, Berlin, Heidelberg, 2008. Springer-Verlag.
[31] D. Sturman and G. Agha. A protocol description language for customizing failure semantics. In Reliable Distributed Systems, 1994.

Proceedings., 13th Symposium on, pages 148–157, Oct 1994.
[32] G. J. Sussman and G. L. Steele Jr. Scheme: A interpreter for extended lambda calculus. Higher-Order and Symbolic Computation,

11(4):405–439, 1998.
[33] C. Tomlinson, W. Kim, M. Scheevel, V. Singh, B. Will, and G. Agha. Rosette: An object-oriented concurrent systems architecture. In

Proceedings of the 1988 ACM SIGPLAN Workshop on Object-based Concurrent Programming, OOPSLA/ECOOP ’88, pages 91–93, New York,
NY, USA, 1988. ACM.

Manuscript submitted to ACM

https://temporal.io/blog/sergey-the-curse-of-the-a-word


A Formal specification For Half a Century of Actor Systems 31

[34] C. Torres Lopez, S. Marr, E. Gonzalez Boix, and H. Mössenböck. A Study of Concurrency Bugs and Advanced Development Support for
Actor-based Programs, pages 155–185. Springer International Publishing, Cham, 2018.

[35] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and W. De Meuter. Ambienttalk: Object-oriented event-driven programming in
mobile ad hoc networks. In Proceedings of the XXVI International Conference of the Chilean Society of Computer Science, SCCC ’07, pages
3–12, Washington, DC, USA, 2007. IEEE Computer Society.

[36] C. Varela and G. Agha. Programming dynamically reconfigurable open systems with SALSA. SIGPLAN Not., 36(12):20–34, Dec. 2001.
[37] C. A. Varela. Programming Distributed Computing Systems: A Foundational Approach. The MIT Press, 2013.
[38] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent programming ABCL/1. In Conference Proceedings on Object-oriented

Programming Systems, Languages and Applications, OOPLSA ’86, pages 258–268, New York, NY, USA, 1986. ACM.

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Early History of the Actor Model
	3 The Classic Actor Model
	3.1 The Isolated Turn Principle
	3.2 Operational Semantics of the Classic Actor Model
	3.3 Proof that the Isolated Turn Principle holds for the Classic Actor Model

	4 The Active Object Model
	4.1 Operational Semantics
	4.2 Proving the Isolated Turn Principle for the Active Object Model

	5 Processes
	5.1 Operational Semantics
	5.2 Proving the Isolated Turn Principle for the Process Model

	6 Communicating Event Loops
	6.1 Operational Semantics
	6.2 Proving the Isolated Turn Principle for the Communicating Event Loop Model

	7 Actor Model Properties
	7.1 Message Reception

	8 Conclusion
	References

