
Blame-Correct Support for Receiver Properties in
Recursively-Structured Actor Contracts
BRAM VANDENBOGAERDE, Vrije Universiteit Brussel, Belgium
QUENTIN STIÉVENART, Université du Québec à Montréal, Canada

COEN DE ROOVER, Vrije Universiteit Brussel, Belgium

Actor languages model concurrency as processes that communicate through asynchronous message sends.

Unfortunately, as the complexity of these systems increases, it becomes more difficult to compose and integrate

their components. This is because of assumptions made by components about their communication partners

which may not be upheld when they remain implicit. In this paper, we bring design-by-contract programming

to actor programs through a contract system that enables expressing constraints on receiver-related properties.

Expressing properties about the expected receiver of a message, and about this receiver’s communication

behavior, requires two novel types of contracts. Through their recursive structure, these contracts can govern

entire communication chains. We implement the contract system for an actor extension of Scheme, describe it

formally, and show how to assign blame in case of a contract violation. Finally, we prove our contract system

and its blame assignment correct by formulating and proving a blame correctness theorem.

CCS Concepts: • Software and its engineering → Domain specific languages; Specification languages;
Constraints.

Additional Key Words and Phrases: design-by-contract, actors, distributed programming languages

ACM Reference Format:
Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover. 2024. Blame-Correct Support for Receiver

Properties in Recursively-Structured Actor Contracts. Proc. ACM Program. Lang. 8, ICFP, Article 254 (Au-

gust 2024), 29 pages. https://doi.org/10.1145/3674643

1 Introduction
The actor model [Agha 1986] is a model for concurrent computation where an actor is a memory-

isolated process and the only means of communication is through asynchronous message sending.

This model lends itself to distributed applications where processes assume the role of nodes and

asynchronous messages are sent over a network. Unfortunately, as systems increase in complexity,

composing multiple actors becomes more difficult [Leesatapornwongsa et al. 2016]. This is because

each actor has a set of implicit assumptions about the messages it receives. For instance, an actor

might expect messages to contain values satisfying particular constraints. When those constraints

are not met actors could start sending unexpected messages, or operations on unexpected values

start to fail, leading to unexpected errors in the distributed application.

Design-by-contract [Meyer 1998] is a programming methodology that aims to make assumptions

about software components and their interactions explicit. To this end, design-by-contract advocates

annotating the software components of a system (e.g., methods, classes, . . .) with contracts that
specify pre- and post-conditions on the state of the system before and after their usage respectively.

Design-by-contract has been studied extensively for sequential programming languages [Dimoulas

et al. 2016; Findler and Felleisen 2002; Strickland et al. 2012]. For distributed systems, a typing

discipline for the 𝜋−calculus [Milner 1999] called session types [Honda et al. 2008] has emerged.

Authors’ Contact Information: Bram Vandenbogaerde, Vrije Universiteit Brussel, Belgium; Quentin Stiévenart, Université

du Québec à Montréal, Canada; Coen De Roover, Vrije Universiteit Brussel, Belgium.

© 2024 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3674643.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

https://doi.org/10.1145/3674643
https://doi.org/10.1145/3674643

254:2 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

These type systems enable defining global types that represent the possible sessions each process in

the system can participate in. A global specification describes the sequence of message exchanges

that each process in the session is expected to follow. These global specifications are then projected

onto local specifications for each process and their associated channels. This enables typechecking

the process’ code to validate whether it adheres to the global specification. Session types have

since their inception enjoyed several extensions ranging from more expressive logics [Bocchi et al.

2010], over support for run-time adaptation [Harvey et al. 2021], to forms of run-time monitoring

to satisfy security requirements [Jia et al. 2016].

We argue that software systems can also benefit from specifications that start from a local view

rather than a global view. Large systems are built by composing components, which are often not

designed with specific compositions in mind. Local specifications may therefore be more suited to

express the constraints on and assumptions made by these components.

Most session typing systems are limited to decidable logics for the constraints on their messages.

Although more expressive logics have been proposed [Bocchi et al. 2010], these are still more

constrained and require properties such as well-assertness. Contract systems, in contrast, have the

benefit that they are verified during the execution of the system, allowing for more (undecidable)

properties to be checked during testing and production. This also facilitates verifying actors that

change message processing behavior at run time, and enables checking non-trivial properties such

as recursive properties that depend on user input.

Contract systems for distributed actor-based programs have been proposed before [Neykova

and Yoshida 2017; Scholliers et al. 2015; Waye et al. 2017]. However, they are mostly focussed on

specifying the possible messages actors in the system understand by specifying the interface of their

message handlers. For example, they include contracts that can state which messages are supported

and what payload to expect from each message. Unfortunately, they do not support specifying

constraints on the communication behavior of the actor while it is processing a message. This is

significant since actor systems do not rely on traditional call-return semantics but communicate

through independent messages, and actor systems could exhibit communication behavior that goes

beyond simple request-reply patterns. Furthermore, message recipients are often implicitly assumed

to be the actor that is protected by some contract (in the case of a request), or the sender of the

contracted message (in the case of a reply). This is limiting for actor systems that support sending

messages containing references to other actors in the system. The communication patterns enabled

by such systems can benefit from contracts about where messages are supposed to go and what the

content of those messages is supposed to be.

To address these problems, we propose a contract system that can be used to express constraints

on the set of message handlers as well as constraints on the communication behavior of a message

handler. In short we make the following contributions:

• Communication contracts: we propose a novel theory in the context of the classical actor

model for communication contracts. In contrast to existing work, these contracts can express

constraints on the communication behavior of a receiver’s message handler, without needing

to participate in a particular session. Our contracts are recursively structured so that they can

express complex message chains spanning multiple actors. Furthermore, the contract system

supports arbitrary predicates on actor references as constraints on the receiver of the message.

• Blame assignment: we develop a comprehensive blame semantics for our communication
contracts. The semantics is based on the indy semantics proposed by Dimoulas et al. [2011], which

we extend with novel blame assignment semantics for contracts on the communication effects of

a message handler.

• Blame correctness: To prove the correctness of the blame assignment semantics, we first formu-

late and then prove a blame correctness theorem inspired by the provenance-based correctness of

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:3

Dimoulas et al. [2011]. To the best of our knowledge, we are the first to formulate such a theorem

for contracts on the communication effects for actor systems. We also include an executable

semantics in plt-redex [Klein et al. 2012]

The remainder of this paper is structured as follows. In Section 2 we motivate the need for our

contract system using a simple actor-based program that implements the forward flow reactive

design pattern. We proceed in Section 3 by giving some background on higher-order contract

languages for sequential programs. Next, in Section 4 we introduce our contract system using a

set of examples. In Section 5 and Section 6 we give a formal description of our actor and contract

language respectively, which we use in Section 7 to prove blame correctness. We conclude with a

brief summary on the related work.

2 Motivating Example
Consider the actor-based program visualised in Figure 1. The program consists of three communi-

cating parties: the client, a router, and a multi-media service the client wants to interact with. To

interact with the multi-media service, the client must make contact through the router. This is so
the router can decide which instance of the service to forward the request to based on arbitrary

factors such as load. As the router is not capable of handling all the traffic coming from a number

of multi-media service instances, each instance of the service is expected to reply directly to the

client, instead of forwarding the response through the router again. This communication pattern is

often referred to as the “forward flow pattern” [Kuhn et al. 2017].

Client Router

Service

Service

Service

1
request

2

3

request

reply

Services

Fig. 1. The “forward flow” pattern. The service selected
for processing the request is highlighted with a thick
border.

The code listing below implements this pat-

tern. The actor language used is an implemen-

tation of the classic actor model embedded in

Racket (a variant of Scheme). First it defines the

three behaviors of the parties involved in the

actor system. The first behavior (line 1) defines

the client. When an actor is created based on

this behavior, it expects to get a reference to

the actor that implements the router service.

The client has two message handlers. The first

handler, called main, is used as the entry point

of our example. Its purpose is to send a request

to the router. Note that these requests are asyn-

chronous and the handler (line 3) completes

immediately after the message has been sent.

This handler is triggered by a message send

on line 16. The second handler (line 4), called

reply, is used to handle the response of the

multi-media service. Line 5 defines the behav-

ior of the router. When an actor is created using

this behavior, a list of multi-media services is expected to be passed as an argument. This list is

used by the router to decide which service the request will be forwarded to. Ideally, the router

selects a suitable service based on load using the pick-service function called on line 7.

Finally, a behavior for the service is created on line 8. It defines a single handler to handle

requests from clients (line 10) . The processing of the request is omitted from this example (line 12).

The responsible message handler simply sends an appropriate reply back to the original message

sender.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:4 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

1 (define client-behavior
2 (behavior (router)
3 (main () (send router request (self)))
4 (reply (answer) 'omitted)))
5 (define router-behavior
6 (behavior (services)
7 (request (sender) (send (pick-service services) request sender))))
8 (define service-behavior
9 (behavior ()
10 (request (sender)
11 'do-work
12 (send sender reply answer-value))))
13 (define service (spawn service-behavior))
14 (define router (spawn router-service (list service)))
15 (define client (spawn client-behavior router))
16 (send client main)

The final four lines create actors from these behaviors, and initiate the communication pattern by

sending the main message to the client behavior. The actors depicted above come with a number of

expectations, which can be grouped in three categories. We require the contract system to support

their specification and enforcement:

• Requirement 1: expectations about the interface of an actor: each actor makes assumptions

about the messages that are supported by each of the other actors. For example, the client expects

the router to understand the requestmessage, while the service expects the client to understand

the reply message. Furthermore, the content or payload of the message is expected to satisfy

some constraints. In this example, the constraint is that the first “argument” of the payload is

an actor reference that understands the reply message. Additionally, there is also an implicit

assumption about the type of value sent in the reply message.

• Requirement 2: expectations about the receiver of a message: The multi-media service is

expected to send the reply not to any arbitrary actor, but specifically to the client from which the

request originated.

• Requirement 3: expectations about the communication effects of a message handler: In

this example, the router is expected to forward the client’s request to the multi-media service

with the lowest load, while the multi-media service is expected to send back the reply directly to

the client.

Design-by-contract is a well understood programming methodology where developers annotate

program elements (such as functions, methods, ...) with contracts. These contracts specify the

obligations of the user of the program element (also called the client or negative party) and the

obligations of the provider of the program element (i.e., the server or positive party). The resulting

annotations evaluate to contract monitors during program execution, which perform run-time

checks to verify that all contracts are satisfied. Blame assignment is an important aspect of design-

by-contract. Whenever a contract violation occurs (i.e., one of the stated expectations is not met), a

party responsible for the violation must be identified. The responsible party is then assigned blame
for the contract violation. Blame assignment in the context of design-by-contract for actor systems

is non-trivial. Suppose that the router actor advertises itself to other parties using a contract that

outlines all expectations (cf. supra). The contract specifies that the router understands a message

request, and that it will forward such a message to some other (unspecified) actor, and furthermore

promises that the actor it forwards the message to will send the reply back directly to the client.

Now, imagine that the multi-media service does not send the reply back to the client but instead

sends it to some other arbitrary actor.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:5

1 def RouterProtocol() {
2 UsageProtocol: {
3 def start()
4 { (on: request) => forwarded() };
5 def forwarded()
6 { (on: anyMethod) => false };
7 }
8 }

12 def ServiceProtocol() {
13 UsageProtocol: {
14 def start()
15 { (on: reply) => replied() };
16 def replied()
17 { (on: anyMethod) => false };
18 }
19 }

9 def router := object: {
10 def request := provide: request withContract: any -ensures_c(RouterProtocol)->void;
11 } // similar for the service object

Listing 1. Workaround for requirement 3 in the system from Scholliers et al.. It defines two protocols, one for
each actor (router and service) in the system. Protocols are defined as state machines that start in the start
method and transition when certain messages are sent. Line 3 defines a transition for the request message
and transitions the state machine to its final forwarded state.

Thus, the contract is violated and blame needs to be assigned. It is unclear which party is to

blame. The client is certainly not to blame since it only interacted with the router service and

satisfied its contracts. The multi-media service would be the natural party to blame since it did

not send the reply back to the client. However, as mentioned before, the router advertises itself

with this contract, not the multi-media service. Hence, the router is to blame for forwarding the

message to an actor that does not process the message in the expected fashion. This brings us to

requirement 4, which says that blame assignment does not need to be aligned with the boundaries

set by actor message handlers.

Existing contract systems [Neykova and Yoshida 2017; Scholliers et al. 2015; Waye et al. 2017] fail

to satisfy all four requirements. Whip [Waye et al. 2017] only provides contracts on the interface of

an actor, therefore satisfying requirement 1 but not requirements 2 through 4. Thus, contracts in

Whip cannot express that the router must forward its request to a downstream service, neither how

that service should respond to the forwarded request. Scholliers et al. [2015] propose a computational
contract system which satisfies requirement 1 and to some extent requirement 3. Their system’s

support for requirement 3 is limited to one level of communication only. Expectations about the

communication effects generated in response to chains of messages cannot be expressed without

causing the contract system to violate requirement 4. A workaround for the lack of support for

message chains is shown in Listing 1. For this workaround, two separate contracts have been

defined that each monitor the router and the service actor in isolation. In case the service fails to

reply directly to the client, the ServiceProtocol contract would be violated. The resulting contract
system would blame the service actor instead of the router actor for the contract violation, therefore

violating requirement 4. Moreover, the contract system leaves receivers unspecified meaning that it

does not satisfy requirement 2 as it cannot express that the request message should be forwarded

to the service.

Multiparty session types [Honda et al. 2008] have been transposed into the contract setting too.

Neykova and Yoshida [2017] propose multiparty session actors which enable runtime verification of

their multiparty session types. Their system satisfies requirement 1 and requirement 3, and to a

limited extent requirement 2. Neykova and Yoshida do not address blame assignment and therefore

do not satisfy requirement 4. Session types express the intended receiver (req. 2) of a message

through roles. These roles, however, are defined when an actor establishes a session and cannot

change throughout the session’s lifetime. This poses two main challenges for expressing that the

router should forward the request to a service with the lowest load. First, the list of downstream

services can change during the lifetime of the router, which is difficult to capture in a multiparty

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:6 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

session contract. Second, the load of a downstream service is a dynamic property of the system

and cannot be determined using preassigned roles.

Instead, we propose transposing the design-by-contract methodology to the actor setting, and

design a Findler-style [Findler and Felleisen 2002] contract system that satisfies all four requirements

motivated above:

• Behavior contracts specify the expected interface of the actor. Actor languages are higher-order

as references to actors can be passed in message payloads to other actors. The contract system

itself should support these cases, meaning that behavior contracts should be able to contain other

behavior contracts too (Req. 1).
• Receiver contracts specify the expected receiver of a message and thus accompany the contracts

that constrain the tag and payload of a message. These are represented as arbitrary predicates on

actor references which enables more expressive dynamic constraints (Req. 2).
• Communication contracts capture which communication effects are expected to happen. For

instance, they can limit the messages an actor is allowed to send while processing a message.

Moreover, communication contracts are dependent on the message payload of earlier messages,

enabling expressing dynamic constraints on communication effects. By exploiting the inherent

recursive structure of our contract system, communication contracts can express communication
chains spanning multiple actors in the system (Req 3).

• We develop a blame assignment semantics on top of our contract system and prove it correct.

Inspired by Findler and Felleisen, our contract system features a standalone contract monitoring
construct which attaches monitors for checking whether contracts are satisfied to arbitrary

values. We propose a system that attaches blame labels to communication contract monitors and

sends them along the tag and payload of messages that propagate over the actor system. Thus,

our blame assignment semantics correctly blames the router actor of the motivating example by

propagating blame labels through message sends (Req 4).

In conclusion, we propose a contract system that satisfies all four requirements. Section 4.2

includes a contract in our system for the motivating example. Most contract systems support

contracts on the interface of the actor (Req 1). Some support contracts on the receiver (Req. 2) but
only to a limited extent, usually lacking support for expressing dynamic properties. Contracts on

communication effects (Req. 3) are supported by session types, but cannot be expressed in terms of

the payload of earlier messages. Thus, our main contributions are receiver and communication

contracts for which we also formulate a correct blame semantics (Req. 4). Section 8 features a more

detailed comparison to earlier contract and type systems.

3 Background: Sequential Contracts
Design-by-contract [Meyer 1998] is an approach to application design in which the application’s

components are annotated with contracts, making the expectations towards the client and the

supplier of each component explicit. For contracts in higher-order functional programming lan-

guages [Findler and Felleisen 2002] these components are functions, their caller being the client
and their callee being the supplier. The conditions that should be satisfied by the caller of the

function are called pre-conditions and are usually defined on the arguments of the function, while

the conditions that should be satisfied by the callee are called post-conditions and are usually defined
on the return value of the function.

We use function map-positive depicted in Listing 2 as a running example. The function is

defined together with its contract (depicted on lines 2 to 4). All arguments to the -> function except

the last, are contracts on the arguments (domain) of the function. The last argument is a contract on

the return value (range) of the function. The contract is a higher-order contract, since it contains a

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:7

1 (define/contract (map-positive f lst)
2 (-> (-> (>/c 0) (>/c 0))
3 (listof (>/c 0))
4 (listof (>/c 0)))
5 (if (null? lst)
6 '()
7 (cons (f (car lst)) (map-positive f (cdr lst)))))

Listing 2. An example of a function that, given a function that maps positive integers to positive integers (f)
and a list of positive integers (lst) promises to return a list of positive integers. The list is represented as a
linked list, with functions car and cdr taking its head and tail respectively.

contract on a function as one of its argument contracts. The >/c contract only matches values that

are strictly greater than its argument. Findler and Felleisen [2002] call contracts such as >/c flat.
Flat contracts map values to booleans, where true indicates that the contract is satisfied, and false
that it is violated. In this case the (>/c 0) contract maps values to true if they are strictly positive

integers, and to false otherwise.
A call to map-positive could look as follows: (map-positive (lambda (x) (+ x 1)) '(1 2 3)). For

a developer, it is trivial to see that both arguments given to this function satisfy the specified

contracts. The contract system too can easily check whether the given list satisfies the specified

contract by inspecting the contents of the list when the function is called. This is not the case for

the first argument. The reason for this is that the first argument to the map-positive function is a

function itself, and the contract system cannot predict whether the return value of the function

satisfies the specified contract without actually running it. Therefore, checking the contracts on the

function is usually delayed until the function is called. To this end, the function is wrapped together

with the contract so that the contract on the function can be checked when concrete argument

values are known, and when the return value can be computed.

Dependent contracts. Although flat contracts are quite powerful, properties that rely on the input

of the function cannot be expressed. For example, using the contracts above, we cannot specify

a contract on a function requiring that its output should always be at least twice its input. For

this type of contract, a dependent contract can be used. Instead of computing the domain and

range contracts directly, they are wrapped using a 𝜆-expression that has the arguments of the

function as its parameters. For example, to encode the aforementioned contract, one could write:

(->d (>/c 0) (lambda (v) (>/c (* 2 v))))

Blame assignment. Contracts are different from assertions in that they are able to properly

assign blame when a violation of one of the specified contracts occurs. For example, when call-

ing the function in Listing 2 as follows: (map-positive (lambda (x) (+ x 1)) '(-2 1 2)) the contract

(listof (>/c 0)) is violated because the list contains non-positive values.

Clearly, the caller is to blame for supplying the wrong value as an argument. However, when

supplying a wrong value for the first argument (e.g., (lambda (x) (- x 1))) the blame assignment

is less trivial. Whenever the function is called from the body of map-positive, map-positive is
to blame when it supplies a wrong argument to that function, while the caller of map-positive
is to blame when the f function returns the wrong value. Thus blame must be inverted. Finally,

a dependent contract might also be to blame when it uses one of the arguments incorrectly. To

illustrate, consider the following dependent contract that takes a function as its argument:

(->d (-> integer? integer?) (lambda (f) (>/c (f "wrong"))))

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:8 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

Here, the function f is incorrectly used by the dependent contract. In this case, neither the caller,

nor the callee are to blame for the contract violation. Instead, the contract itself is to blame for

the contract violation. Correct blame assignment [Dimoulas et al. 2011] therefore considers three

involved parties: the caller, the callee, and the contract itself. Correct blame assignment is about

assigning blame to the component of the application that controls the values that violate the

contract. For first-order values, such as strings and lists, blame is always on the caller of the

function when supplying wrong arguments, and on the callee when returning wrong values. For

higher-order functions, the caller controls a function passed as a value to the callee. In this case, the

caller does not control the arguments of the passed function (the callee does), but it does control its

return value. Therefore, the blame labels are swapped for higher-order functions.

4 Communication Contracts in Practice
We introduce our contract language using examples inspired by the reactive design patterns [Kuhn
et al. 2017]. For each reactive design pattern, we discuss its structure and rationale, and highlight

the important aspects that any actor implementing the pattern should satisfy. From this description,

we derive an implementation of a software contract in our contract language. Finally, we highlight

the novel features of the contract language that facilitate expressing the patterns as contracts. We

conclude this section with an overview of our contract language by presenting a summary of its

novel contract types.All examples are included in our replication package [Vandenbogaerde
et al. 2024] and are executable by our Racket implementation.

4.1 Request-Reply Pattern
The “request-reply” pattern is frequently used in a distributed system. It consists of two components:

a client and a server. The former sends a request to the latter, while the latter is expected to send

the reply. To determine where the reply must be sent to, the client sends a self-reference, called the

reply-to address as part of the request payload.
To express this pattern as a contract, we use a message contract. A message contract specifies

the expected tag, payload and receiver of a message. The message contract also includes a con-

tract on the receiver of the message (the receiver contract) and on its communication effects (the

communication contract) during message handling. In the code listing below we define a function

request-reply/c that returns a message contract. The message contract constrains the server to

understand a message with tag request-tag (line 2) and specifies that the server can expect to

receive a payload consisting of an actor reference and any other user-specified contracts (from

parameter request-contracts on line 1). The message contract also specifies the expected receiver

through a contract on the receiver (line 4), but decides to leave the receiver unconstrained through

an any-recipient contract.

1 (define (request-reply/c request-tag reply-tag request-contracts reply-contract)
2 (message/c request-tag ;; expected tag
3 (cons actor? request-contracts) ;; expected payload arguments
4 any-recipient ;; expected recipient
5 (lambda (payload) ;; expected communication behavior
6 (ensures/c (list ;; of the recipient
7 (message/c reply-tag
8 (list reply-contract)
9 (specific-recipient/c (first payload)) ;; expected receiver
10 unconstrained/c))))))

A communication contract (line 6) specifies what messages the server is supposed to send as

a result of receiving a message with tag request-tag. It specifies that the server must ensure
that a reply is sent with the expected tag and payload satisfying the expected reply-contract.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:9

Importantly, it specifies through a message contract specific-recipient (line 9) that the reply
must be sent to the actor that was passed as part of the payload of the original message. The

communication effects on the receiver of the reply (i.e., the client) are not constrained. This is

expressed as the unconstrained/c contract.

Receiver contracts. The recipient of a message forms an essential part of a distributed system.

For example, a reply should end up at the actor that that has sent the request. In contrast

to the state of the art, our contract language supports specifying such constraints through

receiver contracts, which determine contract satisfaction using boolean predicates. Using these

boolean predicates within receiver contracts facilitates further extensions without impacting

the blame correctness of the contract system. (Req. 2).

The request-reply/c message contract can be included in a behavior contract. A behavior

contract is a collection of message contracts that express the shape of messages an actor monitored

by the contract should understand
1
. The code listing below illustrates the usage of the previously-

defined request-reply/c in a behavior contract. The contract expresses that the actor being

monitored should understand the add message. It also states that the actor can assume that the

payload of the message consists of two numbers, in addition to the actor reference specified in the

request-reply/c function. Furthermore, the actor is expected to reply with a message result that
includes a number (i.e., the result of adding two numbers together) as its payload.

1 (behavior/c
2 (request-reply/c 'add 'result (list number? number?) number?))

Behavior contracts are a collection of message contracts and express the interface of an actor.

They enable expressing the set of supported messages, and support correct blame assignment

in case the message is not understood or a client sends a message that the actor does not

support. (Req. 1)

4.2 Forward Flow Pattern
In this section we discuss the contract for our motivating example. Message flow between client

and server is slowed down when introducing components between a client and a server (e.g., a

circuit breaker, rate limiter, load balancer, . . .). These intermediary components are used with a

particular purpose for messages flowing from the client to the server, but typically do not add any

other interesting behavior to messages flowing in the opposite direction. Therefore, to improve the

efficiency of the application, replies originating from the server should be sent back directly to the

client instead of flowing back through intermediary components.

In this context, the forward flow pattern [Kuhn et al. 2017] defines three components:

• A client that wants to interact with the server, but cannot do so directly because of some

intermediary component. It does not know the address of the server and only requests information

from the intermediary component.

• A router that serves as the intermediary component. On an abstract level, the router receives

requests from the client and forwards them to the server after processing them in some way. The

actual purpose of this component is irrelevant for this example.

• A server that accepts (potentially modified) requests from the router, processes them, and sends

a reply back directly to the client.

1
Note that these predicates on payload and receiver go beyond type-related predicates

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:10 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

To enforce the pattern we create a message contract, depicted below, on a message handler in

the router. The contract specifies that the router is expected to receive some message with tag

request-tag and whose payload satisfies the request-contracts (line 2). Similar to the “request-

reply” pattern, the client is supposed to add a reference to itself as part of the payload so that it

can be answered. The contract continues analogously to the “request-reply” pattern (lines 2-5),

however, a reference to the payload is kept in scope of the dependent communication contract

that monitors the server (lines 10-13). This reference is used to enforce that the reply of the server

is sent directly to the original reply-to reference (i.e., the client) instead of back to the router.

1 (define (forward-flow/c request-tag request-contracts reply-tag reply-contracts server)
2 (message/c request-tag
3 (cons actor? request-contracts)
4 any-recipient
5 (lambda (payload)
6 (ensures/c ;; router must forward request to server
7 (list (message/c request-tag
8 (cons actor? request-contracts)
9 (specific-recipient server)
10 (ensures/c ;; server must send reply to client
11 (message/c reply-tag reply-contracts
12 (specific-recipient (first payload))
13 unconstrained/c))))))))

Communication contract chaining. In a distributed system, interactions usually require

communication with more than one component. This communication is often sequential in
nature. One actor might send a message to another, which establishes communication with

one or more actors, and so on, before arriving at a final answer for the original request. The

nested nature of message contracts enables specifyingmessage chains that need to be followed
for the contract to be satisfied. (Req. 3)

4.3 Correlation Identifier Pattern
The “request-reply” pattern as explained above precludes a client from participating in other

simultaneous conversations. This is because the client might send out multiple requests before a

single reply arrives, and replies have to be correlated with their original request. This is usually

solved by attaching an identifier (commonly referred to as the correlation identifier) to the original

request which is expected to be included in the corresponding reply. A contract to enforce this

pattern at the server side can be constructed as a communication contract and is depicted below:

1 (define (correlation-request-reply/c request-tag reply-tag request-contracts reply-contract)
2 (message/c request-tag (append (list actor? any?) request-contracts)
3 any-recipient
4 (lambda (payload) ;, contract dependent on payload
5 (define reply-to (first payload))
6 (define correlation-id (second payload))
7 (ensures/c (list (message/c reply-tag
8 (list (same-as? correlation-id) reply-contract)
9 (specific-recipient reply-to)
10 unconstrained/c))))))

The contract starts out like the “request-reply” contract, but differs in its payload contracts. The

contracts on the payload (line 2) do not only expect an actor reference for the reply-to address, but

also expect a correlation identifier. As the client can choose this identifier, the contract any? is used
which is satisfied by any value. The communication contract is made dependent (starting on line

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:11

4) and uses the second value of the payload to specify that the payload of the reply must contain

the correlation identifier (same-as? on line 8) from the request and a reply value that satisfies the

user-specified contract reply-contract.

Dependent communication contracts. Contracts on the payload of a message often depend
on messages received earlier. Our message contracts specify communication contracts that

are dependent: they accept closures that return a communication contract when applied to

the payload of the message. This enables constructing communication contracts based on the

payload of any previous message. (Req 3).

4.4 Blame Assignment
We illustrate our blame assignment strategy (Req. 4) by introducing contract violations in an imple-

mentation of the request-reply pattern. We introduce the contract violations on two locations:

(1) the client sends a payload that does not satisfy the contract, and (2) the server does not send the

reply. We run the program twice: the first time we inject only contract violation (1), and the second

time we inject contract violation (2). The expected contract and fault-injected program is depicted

below:

1 (define double/c
2 (behavior/c '() (list (request-reply/c 'double 'answer (list number?) number?))))
3 ;; buggy server that does not satisfy the contract (2)
4 (define double (behavior () (double (reply-to n) (become double))))
5 ;; client that sends the wrong payload (1)
6 (define double-actor (spawn/c double/c double))
7 (send double-actor 'double (self) "wrong")

In the first scenario, the client is to blame for supplying the wrong message payload. The blame

error below also clearly shows which contracts were tried, but were ultimately not satisfied:

contract violation: no matching handler for message "double" found
the following contracts were tried, but did not match the received message:

error: for tag "double", value "wrong" violated contract #<procedure:number?> ; blaming (line 7, column 0)
blaming (line 7, column 0)

In the second scenario, the server is assigned blame since it did not send a reply back to the

client. More specifically, the server is assigned blame at the end of its message handler for double.

contract violation: handler did not send all messages, the following contracts are not satisfied:
error: message with tag "answer" was not sent ; blaming (line 6, column 21)

4.5 Overview of the Contract Language
We conclude this section with an overview of our contract language for constraining actors and

their interactions in a distributed system. We start from the sequential contract language proposed
by Findler and Felleisen, and add new contract types for expressing constraints in an actor system.

Sequential contract. Findler and Felleisen’s sequential contract language consists of two contract

types: flat contracts and dependent higher-order contracts. The former type is used for constraints

that can be expressed as simple boolean predicates on values. The latter type is used to constrain

the interactions between functions by attaching contracts to its domain and co-domain.

Behavior contracts. Contracts on actor references require new extensions to the contract system

of Findler and Felleisen. Behavior contracts extend the notion of higher-order contracts to actor
references. They express the expected message handlers using a set of message contracts.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:12 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

Value-based contracts. Behavior contracts and sequential contracts form a category of value-based
contracts, since they both govern interactions with particular values in the language (e.g., numbers,

functions or actor references).

Receiver contract. A receiver contract expresses constraints on the expected receiver of a message.

It is not a value-based contract since it only operates on message recipients, and is checked when

sending/receiving messages.

Message contracts. Message contracts express constraints on the form and shape of messages.

They consist of four parts: the expected tag of the message, a value-based contract on the payload

of the message, a receiver contract and a communication contract.

Communication contracts. Communication contracts constrain the communication effects of a

message handler. In this paper, we present two instantiations of such communication contracts:

ensures/c and only/c which respectively ensure that a particular set of messages is sent, and

restrict the set of allowed message sends. Communication contracts consist of a set of message

contracts, therefore forming a mutual recursive structure with message contracts. This enables

expressing communication chains spanning multiple actors in the system.

5 Actor Language
In this section we define an actor language called 𝜆𝛼 . This actor language forms the basis for

the discussion about the semantics of our contract language. Its semantics is split in two parts:

actor-local semantics and actor-global semantics. The former consists of rules that do not require

interaction with other actors in the actor system, while the latter does require interaction. Figure 2

depicts the syntax and actor-local semantics of 𝜆𝛼 .

Actor system and configurations. An actor system A is a set of configurations 𝐶 . A configuration

represents an active actor in the actor system. An active actor is represented as a tuple ⟨𝜋, 𝑒, 𝑡, 𝑀⟩
with 𝜋 being the identifier of the current actor, 𝑒 the current program of the actor, 𝑡 a message

trace and,𝑀 the actor mailbox. Message traces are needed for communication contract monitoring,

which we discuss in Section 6.4.2. The mailbox is either empty (denoted as ∅) or has at least one
message (denoted by ⟨𝜏, 𝑣⟩ ·𝑀). A message consists of a message tag 𝜏 and a payload 𝑣 .

Programs. An actor runs a program. Our semantics assumes that there is at least one actor in

the system that, as its program, defines and creates the other actors in the system. The syntax

of a program follows the standard 𝜆-calculus (denoted by terms 𝑒) extended with actor-specific

constructs (denoted by ¤𝑒): send, spawn, self, behavior, and become. The spawn construct takes

an expression that evaluates to a behavior and creates a new actor with that behavior. A behavior

consists of a set of message handlers each identifiable by a tag. The send constructor enables

sending messages between actors in the actor system. As its first argument, it needs an expression

that evaluates to an actor reference 𝜋 . This actor reference will be used as the receiver of a message.

The second argument is the message tag 𝜏 . For simplicity, message tags are not part of the set

of values 𝑣 in 𝜆𝛼 . The third and final argument is the message payload. A self expression can be

used by an actor to obtain a reference to itself. Finally, actors can change their behavior using the

become construct, after which the actor waits for the arrival of messages in its mailbox.

Program semantics. The 𝜆-calculus subset of our language follows the standard 𝜆-calculus se-

mantics. This semantics is represented as the transition relation → in Fig. 2. Evaluation contexts 𝐸

are also presented and capture left-to-right evaluation.

Actor-local semantics. Next, we define our actor stepping relation →𝛼 . Figure 2 depicts the actor-

local semantics. First, a congruence rule [Congr] is defined, which states that when an expression

𝑒 can be reduced to an expression 𝑒′, it can also be reduced in the context of a running actor and

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:13

A ≡ P(𝐶) 𝑀 ::= ⟨𝜏, 𝑣⟩ ·𝑀 | ∅
𝐶 ::= ⟨𝜋, 𝑒, 𝑡, 𝑀⟩ | ⟨𝑒⟩
𝑒 ::= 𝑣 | 𝑒 | ¤𝑒 𝑒 ::= 𝑒 (𝑒)
¤𝑒 ::= spawn 𝑒 | self | send 𝑒 𝜏 𝑒

| become 𝑒 | wait 𝑒
𝑣 ::= 𝜆𝑥 .𝑒 | behavior (𝜏 (𝑥) .𝑒 . . .) | 𝜋
𝑡 ∈ Trace 𝜋 ∈ ActorRef

𝐸 ::= 𝐸 (𝑒) | 𝑣 (𝐸) | spawn 𝐸 | send 𝐸 𝜏 𝑒

| send 𝑣 𝜏 𝐸 | become 𝐸 | wait 𝐸 | □
[App] (𝜆𝑥 .𝑒1)𝑣 → [𝑥 ↦→ 𝑣]𝑒1
[Congr] 𝑒 → 𝑒′ ⇒ ⟨𝜋, 𝐸 [𝑒], 𝑡, 𝑀⟩ →𝛼 ⟨𝜋, 𝐸 [𝑒′], 𝑡, 𝑀⟩
[Self-Send] ⟨𝜋, 𝐸 [send self 𝜏 𝑣], 𝑡, 𝑀⟩

→𝛼 ⟨𝜋, 𝐸 [nil], 𝑡, ⟨𝜏, 𝑣⟩ ·𝑀⟩
[Become] ⟨𝜋, become 𝑣, 𝑡, 𝑀⟩ →𝛼 ⟨𝜋,wait 𝑣, 𝑡, 𝑀⟩
[Receive] ⟨𝜋,wait (behavior (. . . 𝜏 (𝑥).𝑒 . . .), 𝑡, ⟨𝜏, 𝑣⟩ ·𝑀⟩

→𝛼 ⟨𝜋, [𝑥 ↦→ 𝑣]𝑒, 𝑡, 𝑀⟩

Fig. 2. Syntax and actor-local semantics of 𝜆𝛼 . Expressions included in the category 𝑒 denote 𝜆-terms while
expressions in ¤𝑒 denote the terms of the actor language.

in an arbitrary evaluation context 𝐸. Second is the [Self-Send] rule which adds a message to the

actor’s mailbox when the recipient of a message coincides with the sender. Third is the semantics

(rule [Become]) of the become construct, which is reduced to a wait expression. Finally, [Receive]
defines that messages are received when the current behavior matches the first message in the

mailbox.

Actor-global semantics. Reductions involving multiple actors are governed by the actor-global

semantics. It is defined by a reduction relation →A , depicted in Fig. 3, which ranges over actor

systems A instead of individual actor configurations 𝐶 . An actor system A is defined as a set

of actor configurations. Three additional rules are defined for this reduction relation. First, an

additional congruence rule [Congr’] is defined which non-deterministically selects an actor to

make a step using the →𝛼 relation. We use the infix operator ⊎ to denote a disjoint union. Second,

we define a rule [Send] which enables sending messages to other active actors in the system. To

send a message, the receiving actor is retrieved from the actor system and the message added to its

mailbox. Note that the receiving actor may be in any program state 𝑒 and is not required to listen

explicitly for new messages when the message is sent. Sending a message to a non-existent actor is

not defined. Finally, rule [Spawn] is defined which creates a new actor 𝜋 ′
with the behavior 𝑣 .

[Congr’] 𝑐 ∈ A, 𝑐 →𝛼 𝑐′ ⇒ {𝑐} ⊎ A →A {𝑐′} ⊎ A
[Send] {⟨𝜋1, 𝐸 [send 𝜋2 𝜏 𝑣], 𝑡1, 𝑀1⟩, ⟨𝜋2, 𝑒, 𝑡2, 𝑀2⟩} ⊎ A

→A {⟨𝜋1, 𝐸 [𝑛𝑖𝑙], 𝑡1, 𝑀1⟩, ⟨𝜋2, 𝑒, 𝑡2, ⟨𝜏, 𝑣⟩ ·𝑀2⟩} ⊎ A
[Spawn] {⟨𝜋, 𝐸 [spawn 𝑣], 𝑡, 𝑀⟩} ⊎ A →A {𝜋, 𝐸 [𝑛𝑖𝑙], 𝑡, 𝑀⟩, ⟨𝜋 ′,wait 𝑣, ∅, ∅⟩} ⊎ A
where 𝜋 ′ ∈ ActorRef is fresh

Fig. 3. Actor-global semantics

6 Contract Language
This section introduces the formal syntax and semantics of our contract language. It is structured

as follows. First, we describe the syntax of our contract language. Next, we discuss the semantics

of our novel receiver contracts which express constraints on the receiver of the message. Finally, we

conclude with communication contract monitoring semantics.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:14 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

6.1 Syntax
The extensions to the syntax of 𝜆𝛼 are depicted in Fig. 4. In the remainder of this paper, we call

the resulting language 𝜆𝛼/𝑐 . First, we extend the expression syntax 𝑒 with a contract monitoring
construct mon𝑗,𝑘

𝑙
𝜅 𝑒 . This construct serves as a barrier between the party 𝑗 supplying expression 𝑒

to the client 𝑘 . Subscript 𝑙 denotes the party that supplies the contract to the monitoring expression.

This barrier ensures that any value flowing between party 𝑘 and 𝑗 is governed by contract 𝜅 . Next,

we define three additional values: 𝜅, 𝜅𝑟 and 𝜅𝑐 . These values represent the category of value-based

contracts, receiver contracts, and communication contracts respectively.

Value-based contracts. Contract types in the category of value-based contracts can be directly used
in the monitoring construct (cf. supra) to govern interactions with the entity given by expression 𝑒 .

For the sequential subset of the 𝜆𝛼 language, borrowing terminology from CPCF, we define contract

types for dependent higher-order function contracts (𝜅1 → 𝜆𝑥.𝑒) and flat contracts (flat(𝑒)) in
a similar way as CPCF [Findler and Felleisen 2002]. Flat contracts wrap regular functions that

are expected to behave as boolean predicates for the property that they want to check. Thus, the

boolean predicate 𝑒 is expected to return true in case the contract is satisfied and false otherwise.
Dependent higher-order contracts are used for monitoring interactions with a function by checking

the domain contract 𝜅1 on the argument of the function, and the range contract obtained from

applying function 𝜆𝑥.𝑒 using monitored argument on the return value of the function. Interactions

with actor references are governed by a behavior contract. These are denoted by behavior/c in our

syntax. The behavior contract expects a set of message contracts (similar to union contract [Freund
et al. 2021]) that specify which messages must be understood by the monitored actor reference.

Message contracts. Message contracts express constraints on the content of a message, as well

as the supposed receiver and the communication effects of that receiver. A message contract 𝜅𝑚

consists of four parts. First, it specifies the expected message tag 𝜏 , which should correspond exactly

to the message being sent/received. Second is a dependent contract that should reduce to a contract

on the receiver of the message when supplied with the payload of the message. The third argument

is the contract on the payload of the message, which should be a valued-based contract as denoted
by 𝜅 . Finally, the fourth argument is a dependent contract again, which should reduce to a contract

on the communication effects of the message’s receiver when supplied with the payload of the

message. Alternatively, message contracts can also be empty, denoted by ∅, which signifies that

there are no constraints on the message.

Receiver contracts. Receiver contracts express constraints on the receiver of a message. They

function similarly to flat contracts, but cannot be used in the position of a value-based contract. The

expression 𝑒 in receiver(𝑒) is supposed to return a boolean predicate, that returns true when the

given receiver is allowed to receive the message and false otherwise. We omit additional predicates

from the formal syntax of our language, such as actor-eq?, which checks whether two actor

references are the same. However, those predicates are needed in a practical implementation of

our contract system in order to, for instance, implement contracts that only allow a specific set of

receivers.

Communication contracts. Contracts on the communication effects of an actor are described

by the 𝜅𝑐 category. They consist of message contracts 𝜅𝑚, ensures contracts ensures/c and only
contracts. We describe their semantics extensively in the Section 6.3. Note that the category of

values 𝑣 also includes the contract monitoring construct. This enables contract monitors to be

passed as values, which is needed for passing monitored actor references. We explain this addition

in more detail in Section 6.3.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:15

𝑒 ::= . . . | mon𝑗,𝑘
𝑙

𝑒 𝑒 𝑣 ::= . . . | 𝜅 | 𝜅𝑟 | 𝜅𝑐 | mon𝑗,𝑘
𝑙

𝑣 𝑣

𝜅 ::= 𝜅 → 𝜆𝑥.𝑒 | flat(𝑒) | behavior/𝑐 (𝜅𝑚 ∨ . . . ∨ 𝜅𝑚)
𝜅𝑚 ::= message/𝑐 𝜏 (𝜆𝑥.𝑒) 𝜅 (𝜆𝑥 .𝑒) | ∅ 𝜅𝑟 ::= receiver (𝑒)
𝜅𝑐 ::= 𝜅𝑚 | only/c (𝜅𝑚, . . .) | ensures/c (𝜅𝑚, . . .) 𝑗, 𝑘, 𝑙 ∈ BlameLabel

Fig. 4. Syntax of 𝜆𝛼/𝑐 , extensions to syntactical categories of 𝜆𝛼are denoted by “. . .”

6.2 Semantics for Sequential Contracts
We first extend the evaluation contexts with contexts for our new monitoring construct (depicted

in Fig. 5). For the sequential subset of 𝜆𝛼/𝑐 , rules [MonFlat] and [MonFun] define the reduction

semantics for monitoring flat and higher-order dependent contracts. A monitor on a flat contract

is reduced to the check𝑗 expression by applying the boolean predicate 𝜆𝑥 .𝑒 on the value 𝑣2. The

check𝑗 expression takes a blame label 𝑗 , the boolean 𝑣1 resulting from the function application, and

the “original” value 𝑣2, and returns 𝑣2 if 𝑣1 is true. Blame labels keep track of the party that should

be blamed for a contract violation. Whenever 𝑣1 is false a blame error is generated, assigning blame

to party 𝑗 . A monitoring rule for higher-order contracts is depicted in rule [MonFun]. A monitor

on a higher-order contract is reduced to the following 𝜆−expression:

𝜆𝑥2.𝑚𝑜𝑛
𝑗,𝑘

𝑙
([𝑥1 ↦→ mon𝑘,𝑙

𝑙
𝜅1 𝑥2] 𝜅2) (𝑣 (mon𝑘,𝑗

𝑙
𝜅1 𝑥2))

This expression serves as a wrapper for the monitored function 𝑣 . Contract monitoring proceeds as

follows when the 𝜆−expression is applied with an argument for 𝑥2. First, the function argument is

replaced with a value monitored by contract 𝜅1. Then, the return value of the function is monitored

by the range contract 𝜅2. To obtain this range contract, the dependent contract 𝜆𝑥2.𝜅2 is applied

to the argument of the function. Importantly, the argument of the function (as captured by 𝑥2) is

monitored by the domain contract 𝜅1 before it is passed to the code that returns the range contract

𝜅2. The reason for this is that the range contract has to be able to assume that the domain contract

on the argument of the function holds.

𝑒 ::= . . . | check𝑗 𝑒 𝐸 ::= . . . | check𝑗 𝐸 | mon𝑗,𝑘

𝑙
𝐸 𝑒 | mon𝑗,𝑘

𝑙
𝑣 𝐸

[MonFlat] 𝐸 [mon𝑗,𝑘

𝑙
flat(𝜆𝑥.𝑒) 𝑣2] → 𝐸 [check𝑗 ([𝑥 ↦→ 𝑣2] 𝑒) 𝑣2]

[MonFun] 𝐸 [mon𝑗,𝑘

𝑙
(𝜅1 → 𝜆𝑥1.𝜅2) 𝑣] →

𝜆𝑥2.𝑚𝑜𝑛
𝑗,𝑘

𝑙
([𝑥1 ↦→ mon𝑘,𝑙

𝑙
𝜅1 𝑥2] 𝜅2) (𝑣 (mon𝑘,𝑗

𝑙
𝜅1 𝑥2))

Fig. 5. Contract monitoring semantics for the sequential subset of 𝜆𝛼/𝑐

Rules [MonFlat] and [MonFun] also include the formal semantics for blame assignment. It is

identical to the so-called indy semantics [Dimoulas et al. 2011, 2012]. The blame labels are swapped

when checking the domain contract against the argument of the function. This ensures that the

client is blamed when the domain contract is not satisfied. Moreover, it ensures correctness of

blame assignment for higher-order functions. The contract itself is also modeled as its own party,

called 𝑙 , so that when the code in the contract reduces to a contract violation, the contract itself is

blamed.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:16 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

6.3 Sender-side contract monitoring
6.3.1 Receiver contracts. Recall that message contracts include a contract on the receiver of a mes-

sage, restricting which actors can receive the messages specified by the message contract. Receiver

contracts can be seen as a variation on flat contracts: whenever the expected receiver is given it re-

turns a true value, otherwise false. Thus, both receiver and flat contracts are checked using the check
meta-function. Even though receiver contracts can be denoted by arbitrary expressions, we propose

two primitive contracts for the sake of discussion: any-recipient and specific-recipient, their
semantics are depicted in Fig. 6. Rule [AnyRecipient] defines the semantics for any-recipient.
Since any actor reference should satisfy this contract, actor reference 𝛼 is simply returned from

this contract check. Rules [SpecificRecipient1] and [SpecificRecipient2] specify the contract

checking rules for specific-recipient. The former rule returns the monitored actor reference 𝛼

whenever 𝛼1 = 𝛼 , while the latter results in a blame error if the actor reference does not correspond

to the expected actor reference.

[AnyRecipient] check𝑗 any-recipient 𝛼 → 𝛼

[SpecificRecipient1] check𝑗 (specific-recipient 𝛼1) 𝛼1 → 𝛼1

[SpecificRecipient2] check𝑗 (specific-recipient 𝛼1) 𝛼2 → blame𝑗

given that 𝛼1 ≠ 𝛼2

Fig. 6. Receiver contracts. The any-recipient contract allows any receiver, while specific-recipient only
matches a specific recipient.

6.3.2 Stacked contract monitors. Contract monitors on actor references can be arbitrarily stacked,

adding additional constraints to the actor reference. The code listing below depicts an actor system

comprising two actors 𝛼1 and 𝛼2, monitored by contracts 𝜅1 and 𝜅2 respectively. The contract 𝜅2
includes a message contract 𝜅𝑚 that is structured as follows. The contract expects 𝜏 as the tag of the

𝜅𝑚 = message/c 𝜏 _ 𝜅3 _ 𝜅2 = behavior/c (𝜅𝑚)
𝑥1 = mon𝑗,𝑘

𝑙
𝜅1 𝛼1 𝑥2 = mon𝑗 ′,𝑘 ′

𝑙 ′ 𝜅2 𝛼2
send 𝑥2 𝜏 𝑥1

message to match the send expression. For the payload the contract expects an actor reference that

satisfies a contract 𝜅3. The other parts of the message contract are unimportant for this discussion.

The message send at the end of the code listing causes 𝛼2 to receive a message with tag 𝜏 . As its

payload, the message will contain a monitored actor reference of 𝛼1. This is because it is monitored

by contract 𝜅1 but also by the contract on the payload specified in 𝜅𝑚 . More specifically, the contract

𝜅2 on actor 𝛼2 expects an actor reference that behaves according to contract 𝜅3, but the passed actor

reference is exposed under another contract 𝜅1 that must be satisfied too. Essentially, the resulting

monitored actor reference has a stack of contract monitors, which comes with a stack of blame
labels since contract monitors can originate from different parties in the source program.

To support these stacks of contract monitors, we introduce three meta-functions into our seman-

tics: stack𝑝 , stack𝑟 and stack𝑐 , which generate stacked versions of value-based contracts on the

payload, receiver contracts and communication contracts respectively. As stacked contracts can

only monitor actor references (all other contract monitors reduce immediately), we define these

meta-functions to take contract monitors on actor references. Their definition is depicted in Fig. 7.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:17

Value-based contracts on the payload

stack𝑝 (mon𝑗,𝑘

𝑙
𝜅1 𝑣1) 𝑣2 = (stack𝑝 𝑣1 (mon𝑘,𝑗

𝑙
𝜅𝑝 𝑣2))

where 𝜅1 = behavior/c 𝜅𝑚1 ∨ . . . ∨ 𝜅𝑚𝑛 message/c 𝜏 _ 𝜅𝑝 _ ∈ {𝜅𝑚1, . . . , 𝜅𝑚𝑛}
stack𝑝 𝜋 𝑣2 = 𝑣2

Receiver contracts

stack′𝑟 (mon𝑗,𝑘

𝑙
𝜅1 𝑣1) 𝑐 = stack′𝑟 𝑣1 (𝜆𝑥.𝜆𝑦.(check𝑘 (𝜅𝑟 𝑦) (𝑐 𝑥 𝑦)))

stack′𝑟 𝜋 𝑐 = 𝑐 𝜋

where 𝜅1 = behavior/c 𝜅𝑚1 ∨ . . . ∨ 𝜅𝑚𝑛 message/c 𝜏 𝜅𝑟 _ _ ∈ {𝜅𝑚1, . . . , 𝜅𝑚𝑛}
stack𝑟 𝑣 = stack′𝑟 𝑣 (𝜆𝑥 .𝑥)

Communication contracts

stack𝑐 (mon𝑗,𝑘

𝑙
𝜅1 𝑣1) = (𝜆𝑥.monc𝑗 𝜅𝑐 𝑗 𝑥) ◦ stack𝑐 𝑣1

where 𝜅1 = behavior/c 𝜅𝑚1 ∨ . . . ∨ 𝜅𝑚𝑛 message/c 𝜏 _ _ 𝜅𝑐 ∈ {𝜅𝑚1, . . . , 𝜅𝑚𝑛}
stack𝑐 𝜋 = ∅

Fig. 7. Rules for unstacking contract monitors on actor references and extracting their payload, communica-
tion, and receiver contracts.

stack𝑝 is defined by two rules. The first rule extracts the contract monitor from 𝜅2 on 𝑣1 and

looks for a matching message contract. If a matching message contract is found, the contract on

the payload 𝜅2 is checked against the value 𝑣2. The resulting monitored value is passed to the other

contracts that might be in value 𝑣1, in order to attach their contracts to the monitored payload

value. The second rule returns the payload value if the actor reference is not monitored by any

contract. This terminates the recursive process.

Note that the blame labels are swapped while checking 𝜅2 on 𝑣2, meaning that the negative party

(i.e., the client) is to blame for the contract violation. This is consistent with indy semantics.

To stack receiver contracts, we proceed in a similar fashion as the contracts on the payload

except that the semantics is expressed in a continuation-passing style. This is because the actual
actor reference to check the contracts against is only known after the bottom of the stack has been

reached. From there, the receiver contracts must be added in reverse order to the actor reference

by using check expressions. Note that the negative party is assigned blame. Indeed, the client is

responsible for selecting the message receiver and is thus to blame for an unsatisfied contract.

Finally, stacking communication contracts proceeds in the manner described in the beginning of

this section. However, instead of stacking check𝑗 expressions, we stack communication contract

monitors which take the form of a 𝜆-expression containing a monc expression. We discuss the

reduction of these expressions in Section 6.4.1.

6.3.3 Enhanced sends. To complete the semantics for contract monitoring at the send site of

messages, an intermediary message sending syntax that adds a communication contract in addition

to the receiver, tag and payload is required. The inclusion of the communication contract in the

message send expression is necessary to send the contract alongside the tag and payload to the

receiver so that the receiver can check whether its handler adheres to the communication contract.

We call these new expressions enhanced message sends and use send 𝑒𝜅 𝑒 𝜏 𝑒 for their notation.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:18 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

We replace the message sending rules of the actor system introduced in Section 5 with a new rule

that reduces a message send expression to an enhanced message send expression. The appropriate

contracts are extracted from the contract monitors around the receiver of the message 𝑣1 using

meta-functions stack𝑐 , stack𝑟 and stack𝑝 (cf. supra). The altered semantics is depicted in Fig. 8.

𝑒 ::= . . . | send 𝜅𝑚 𝑒 𝜏 𝑒 | monitored 𝑒 𝑀 ::= . . . | ⟨𝜏, 𝜅𝑚, 𝑣⟩ ·𝑀

𝐸 ::= . . . | send 𝜅𝑚 𝐸 𝜏 𝑒 | send 𝜅𝑚 𝑣 𝜏 𝐸

[Send] send 𝑣1 𝜏 𝑣2 → send (stack𝑐 𝑣1) (stack𝑟 𝑣1) 𝜏 (stack𝑝 𝑣1 𝑣2)

[E-Send] {⟨𝜋1, 𝐸 [send 𝑣𝜅 𝜋2 𝜏 𝑣], 𝑡1, 𝑀1⟩, ⟨𝜋2, 𝑒2, 𝑡2, 𝑀2⟩} ⊎ A
→A {⟨𝜋1, 𝐸 [𝑛𝑖𝑙], 𝑡1, 𝑀1⟩, ⟨𝜋2, 𝑒2, 𝑡2, (𝜏, 𝑣𝜅 , 𝑣) ·𝑀2⟩} ⊎ A

[E-SendSelf] ⟨𝜋1, 𝐸 [send 𝑣𝜅 𝜋2 𝜏 𝑣], 𝑡1, 𝑀1⟩ →𝛼 ⟨𝜋1, 𝐸 [𝑛𝑖𝑙], 𝑡1, (𝜏, 𝑣𝜅 , 𝑣) ·𝑀1⟩

Fig. 8. Send-site contract monitoring rules.

As depicted by rule [E-Send], information from an enhanced message send is propagated to

the receiving actor by putting an enhanced message in its mailbox. This enhanced message is

represented by a three tuple (𝑣𝜅 , 𝜏, 𝑣) which includes the communication contract 𝑣𝜅 alongside

the tag 𝜏 and payload 𝑣 . Rule [E-SendSelf] is similar, but puts the message in the mailbox of the

sending actor. Enhanced messages are handled differently from regular messages. This is because

the contract system has to ensure that the communication effects of the receiving actor satisfy the

communication contracts. We introduce their semantics in the next section.

6.4 Receive-side contracts
6.4.1 Communication contract monitors. For monitoring a communication contract, we introduce

a communication contract monitoring expression monc. The purpose of this expression is to check

whether outgoing messages satisfy the communication contract 𝜅𝑐 . A message consists of the four

values: a communication contract, the receiver of the message, its tag and its payload. These values

are captured in a four-tuple (𝜆𝑥 .mon𝑐 𝜅𝑐′ 𝑥, 𝛼, 𝜏, 𝑣), such that the monitor expression becomes

mon𝑐 𝜅𝑐 (𝜆𝑥.mon𝑐 𝜅𝑐 𝑥, 𝛼, 𝜏, 𝑣). The second communication contract originates from the contract

monitor in a send expression, and has to be combined with the communication contract of monc.
monc expressions are created by the stack𝑐 meta-function which introduces them as a 𝜆-expression

𝜆𝑥.monc 𝜅𝑐 𝑥 , where 𝑥 is expected to be the aforementioned four-tuple.

Figure 9 depicts the monitoring semantics for checking communication contracts on messages.

The result of checking a communication contract on a message represented by a four-tuple, is a

monitored four-tuple where the appropriate contract is checked on each of its constituents. The first

three rules depicted represent contract checking for message/c, only/c and ensures/c respectively.
Note that a new communication contract that governs the communication effects of the receiver of

the message can originate from both a monitored actor reference and from the monitored context

of the sender of the message. We represent this combination as a function composition 𝑒𝜅 ◦ 𝑒′𝜅 .
This is possible since a communication contract monitor is always expected to be wrapped into a

𝜆-expression. This composition is defined as a normal function composition.

The first rule depicts monitoring rules for message/c contracts. To check this contract, the

message tag should match the message tag in the message contract, the receiver should match the

receiver contract 𝜆𝑥1 .𝑒1, and the payload should match the contract on the payload 𝜅. A message

contract also contains a communication contract 𝜆𝑥2.𝑒2 which governs the communication effects

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:19

Message contract

mon𝑐 𝑗 (message/c 𝜏 (𝜆𝑥1.𝑒1) 𝜅 (𝜆𝑥2.𝑒2)) 𝑗 (𝑒′𝜅 , 𝑣1, 𝜏, 𝑣2)
= (𝑒𝜅 ◦ 𝑒′𝜅 , ((check𝑗 ([𝑥1 ↦→ 𝑣2] 𝑒1) 𝑣1), 𝜏,mon𝑗, 𝑗

𝑗
𝜅 𝑣2)

where 𝑒𝜅 = 𝜆𝑥 .mon𝑐 𝑗 ([𝑥2 ↦→ 𝑣2]𝑒2) 𝑥
mon𝑐 𝑗 (message/c 𝜏 _ _ _) _ = blame𝑗

Only contract

mon𝑐 𝑗 (only/c (. . . , message/c 𝜏 (𝜆𝑥1.𝑒1) 𝜅 (𝜆𝑥2.𝑒2), . . .) (𝜅𝑐, 𝑣1, 𝜏, 𝑣2)
= mon𝑐 𝑗 (message/c 𝜏 (𝜆𝑥1.𝑒1) 𝜅 (𝜆𝑥2 .𝑒2)) (𝜅𝑐, 𝑣1, 𝜏, 𝑣2)

mon𝑐 𝑗 only/c (_) _ = blame𝑗

Ensures contract

mon𝑐 𝑗 (ensures/c (. . . , message/c 𝜏 (𝜆𝑥1.𝑒1) 𝜅 (𝜆𝑥2.𝑒2), . . .) 𝑗 (𝜅𝑐, 𝑣1, 𝜏, 𝑣2)
= mon𝑐 𝑗 (message/c 𝜏 (𝜆𝑥1.𝑒1) 𝜅 (𝜆𝑥2 .𝑒2)) 𝑗 (𝜅𝑐, 𝑣1, 𝜏, 𝑣2)

mon𝑐 𝑗 (ensures/c (_) (send 𝜅𝑐 𝑣1 𝜏 𝑣2) 𝑗 = (∅, 𝑣1, 𝜏, 𝑣2)

Fig. 9. Monitoring semantics for communication contracts on messages.

of the receiver of the message. Whenever one of the aforementioned conditions is not satisfied, the

contract is violated and a blame error on party 𝑗 is generated.

Next, we define the semantics of the only/c and ensures/c contract. Their semantics is mostly

identical, except for how they handle missing message contracts. For both contracts, whenever

a message contract is found that matches the message, that contract is selected and checked

recursively. However, in case a message contract matching the message’s tag is not found, an

ensures/c contract simply leaves the message untouched and returns it as is. The only/c contract
considers this case to be a contract violation instead and reduces to a blame error. This is because

an only/c contract specifies what messages are allowed to be sent. Therefore, a missing match for

the message means that it was not allowed to be sent.

6.4.2 Trace checking. At the end of an actor’s turn, the contract system checks whether all the

messages specified in the communication contract have been sent. To this end, we overload the

monc notation to include monitoring rules over messages traces. In this case monc expects three
arguments: the communication contract itself, a message trace, and a value. Whenever the message

trace satisfies the contract, the value is returned unmodified. Otherwise, a blame error is returned.

For this we consider two cases: the ensures/c contract, and composed communication contracts

of the form 𝜅𝑐1 ◦ 𝜅𝑐2. The cases for only/c and message/c are straightforward as they do not put

any constraints on the message traces. Figure 10 depicts the cases mentioned above.

The contract system verifies that all message contracts in an ensures/c contract have a corre-
sponding message in the trace. This is covered by the first case. If the contract is satisfied, the new

behavior 𝑣 is returned from the meta-function. Otherwise, the contract system returns a blame error.

Contract composition proceeds as follows: the contract 𝜅𝑐1 is checked first against the message

trace, followed by the checking of contract 𝜅𝑐2. A final case expresses recursive blame propagation.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:20 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

Ensure contract

monc𝑗 (ensures/c (𝜅𝑚1, . . . , 𝜅𝑚2)) 𝑗 𝑡 𝑣 ={
𝑣 if ∀ (message/c 𝜏 _ _ _) ∈ {𝜅𝑚1, . . . 𝜅𝑚2} : (𝜏, _) ∈ 𝑡

blame𝑗 otherwise

Contract composition monc𝑗 (𝜅𝑐1 ◦ 𝜅𝑐2) 𝑡 𝑣 = monc 𝜅𝑐2 (monc 𝜅𝑐1 𝑡 𝑣) 𝑣

Blame propagation monc𝑗 _ blame𝑗 _ = blame𝑗 Other cases monc _ _ 𝑣 = 𝑣

Fig. 10. Definition of the checktrace function. It takes three arguments: the communication contract, the
message trace, and the new behavior of the actor. If the contract is satisfied, the behavior is returned.
Otherwise, a blame error is generated.

6.4.3 Monitored contexts. Our actor system uses enhanced messages to denote messages that have

to be processed in accordance with a communication contract. Such messages are formally denoted

by a triple (𝜏, 𝜅𝑐, 𝑣), where 𝜏 and 𝑣 fulfil their usual roles, and 𝑣𝜅 is used as the communication

contract monitor that will govern all the communication while processing the message.

For monitoring the communication effects of the actor system, we introduce the concept of

monitored context. The context consists of a contract monitor that governs the communication

effects, and an expressionwhich contains the program that is beingmonitored for its communication

effects. Thus we writemonitored 𝑣𝜅 𝑒 to denote that program 𝑒 is monitored by the communication

contract monitor 𝑣𝜅 . Existing message handlers become monitored when receiving an enhanced

message from another actor. The communication contract monitor is then extracted from the

enhanced message, and used as the communication contract monitor in the monitored expression.

The semantics of programs in monitored contexts remains largely the same for most types of

expressions in our language. The reduction rules for monitored contexts are given in Fig. 11.

[E-Receive] ⟨𝜋,wait (behavior (. . . (𝜏 (𝑥) 𝑒) . . .)), 𝑡, (𝜏, 𝑒𝜅 , 𝑣) ·𝑀⟩
→𝛼 ⟨𝜋,monitored 𝑒𝜅 ([𝑥 ↦→ 𝑣] 𝑒), 𝑡, 𝑀⟩

[M-Congruence] 𝑒 → 𝑒′ ⇒ ⟨𝜋,monitored 𝑒𝜅 𝐸 [𝑒], 𝑡, 𝑀⟩ →𝛼 ⟨𝜋,monitored 𝑒𝜅 𝐸 [𝑒′], 𝑡, 𝑀⟩
[M-Spawn] {⟨𝜋,monitored 𝑒𝜅 𝐸 [spawn 𝑣], 𝑡, 𝑀⟩}

→A {⟨𝜋,monitored 𝑒𝜅 𝐸 [𝜋 ′], 𝑡, 𝑀⟩, ⟨𝜋 ′,wait 𝑣, ∅, ∅⟩}

[M-Send] send 𝑣1 𝜏 𝑣2 → send 𝑒′𝜅 𝑣3 𝜏 𝑣4 ⇒ ⟨𝜋,monitored 𝑒𝜅 𝐸 [send 𝑣1 𝜏 𝑣2], 𝑡, 𝑀⟩
→𝛼 ⟨𝜋,monitored 𝑒𝜅 𝐸 [dosend (𝑒𝜅 (𝑒′𝜅 , 𝑣3, 𝜏, 𝑣4))], 𝑡, 𝑀⟩

[M-ESend] {⟨𝜋,monitored 𝑒𝜅 𝐸 [send 𝜅𝑐′ 𝜋 ′ 𝜏 𝑣2], 𝑡1, 𝑀1⟩, ⟨𝜋 ′, 𝑒, 𝑡2, 𝑀2⟩} ⊎ A
→A { ⟨𝜋,monitored 𝑒𝜅 𝐸 [𝑛𝑖𝑙], (𝜏, 𝑣2) · 𝑡1, 𝑀1⟩, ⟨𝜋 ′, 𝑒2, 𝑡2, (𝜏, 𝜅𝑐′, 𝑣) ·𝑀⟩} ⊎ A

[M-ESendSelf] ⟨𝜋,monitored 𝑒𝜅 𝐸 [send 𝜅𝑐′ 𝜋 𝜏 𝑣2], 𝑡, 𝑀⟩
→𝛼 ⟨𝜋,monitored 𝑒𝜅 𝐸 [nil], (𝜏, 𝑣2) · 𝑡, (𝜏, 𝜅𝑐′, 𝑣2) ·𝑀⟩

[M-Become] ⟨𝜋,monitored 𝑒𝜅 𝐸 [become 𝑣] , 𝑡, 𝑀⟩ →𝛼 ⟨𝜋, 𝑒𝜅 𝑡 𝑣, ∅, 𝑀⟩

Fig. 11. Adapted rules for monitored contexts. Most expression types behave in the same way, except for
send and become which are intercepted and checked against the communication contract.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:21

The only expressions affected by monitored contexts are the send expressions and the become
expressions. Message sends are intercepted in the [M-Send] rule. Assuming that a reduction exists

in the base semantics that reduces a message send to an enhanced message send, we intercept

that message send and apply the communication contract to it. As the communication contract

monitor returns a four-tuple when the contract is satisfied, meta-function dosend transforms this

tuple into an enhanced message send. We also adapt rules semruleESend and [ESend-Self] into

the monitored context as [M-ESend] and [M-ESendSelf]. For these rules, no contract monitoring

is applied but the message trace 𝑡 is updated to include the tag and payload of the send message.

This trace is used in rule [M-Become] to check that all messages specified in the contract have

been sent during the turn of the actor.

7 Theoretical properties
Blame assignment is an important component of a contract system. It assigns blame to the respon-

sible party when a contract is violated. However, as blame labels propagate through the program in

contract monitors, showing that this blame assignment is correct is not self-evident. We use the

theoretical results from Dimoulas et al. [2011] as the foundation for our blame correctness proof.

Dimoulas et al. track ownership throughout the execution of the program. Informally, their blame

correctness theorem states that blame labels should align with ownership which means that party

is only blamed if the value violating the contract originated from that party.

The system tracks ownership as values are passed from one component of the application to

another. For example, passing an argument to a function owned by another party, causes the

ownership of that argument to transfer to the function. The key insight is that we can track these

ownership changes independently from contract checking and blame assignment, and prove that

the alignment of these two systems entails blame correctness.

7.1 Ownership annotations
Similar to Dimoulas et al. we introduce an ownership annotation ⟦𝑒⟧𝑗

meaning that expression 𝑒

is owned by (or originates from) party 𝑗 . Source programs may include these annotations as long

as the resulting program satisfies the well-formedness condition. This well-formedness condition

can be derived syntactically from the program’s source code. We formalize the well-formedness

condition using a judgment ⊢. We write 𝑗 ⊢ 𝑒 to mean that program 𝑒 is well-formed under owner 𝑗 .

Definition 7.1. A program 𝑒 is well-formed under owner 𝑗 iff 𝑗 ⊢ 𝑒 holds.

We proceed by defining this judgment for the sequential and actor subset of our language. The

judgment for the sequential subset of our language is identical to the judgment from Dimoulas

et al., and is depicted in Fig. 12. The judgment is mostly structural as most expressions cannot

contain ownership annotations at the source level. Ownership annotations can only be introduced

at contract monitors (i.e., using mon expressions). This is because a contract monitor introduces an

ownership boundary between a client 𝑗 and the server 𝑘 ; any value at the server-side is owned by

the server and vice versa. The last rule in Fig. 12 defines this property.

Definition 7.2. An actor configuration ⟨𝜋, 𝑒, 𝑡, 𝑀⟩ is well-formed for an owner 𝑗 iff 𝑗 ⊢ 𝑒 holds.

Similarly, we can define well-formedness for the entire actor system A. We say that A is well-

formed if all the actor configurations in A are well-formed. We write this property as 𝑗 ⊢A A
Thus ownership is a local property of the actor. However, ownership can be transferred between

parties using function application and message sends, which we discuss in the section that follows.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:22 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

𝑗 ⊢ 𝑒1 𝑗 ⊢ 𝑒2
𝑗 ⊢ 𝑒1 𝑒2

𝑗 ⊢ 𝑒
𝑗 ⊢ spawn 𝑒

𝑗 ⊢ 𝑒1 𝑗 ⊢ 𝑒2 𝑗 ⊢ 𝑒3
𝑗 ⊢ send 𝑒1 𝑒2 𝑒3

𝑗 ⊢ 𝑒
𝑗 ⊢ wait 𝑒

𝑗 ⊢ 𝑒
𝑗 ⊢ (𝜆𝑥 .𝑒)

𝑗 ⊢ 𝑒1 . . . 𝑗 ⊢ 𝑒𝑛
𝑗 ⊢ behavior(𝜏1 𝑥1 .𝑒1, . . . , 𝜏𝑛 𝑥𝑛 .𝑒𝑛)

𝑗 ⊢ done 𝑗 ⊢ 𝜋 𝑗 ⊢ 𝑥

𝑗 ⊢ 𝑒
𝑗 ⊢ flat(𝑒)

𝑗 ⊢ behavior/c (𝜅𝑚 ∨ . . . ∨ 𝜅𝑚)

𝑗 ⊢ 𝑒
𝑗 ⊢ become 𝑒

𝑗 ⊢ 𝑒
𝑘 ⊢ check𝑗 𝑣 ⟦𝑒⟧𝑗

𝑗 ⊢ 𝑒
𝑘 ⊢ mon𝑗,𝑘

𝑙
𝜅 ⟦𝑒⟧𝑗

Fig. 12. Well-formedness judgment

7.2 Ownership propagation
Ownership information is propagated automatically during the execution of the program. We

augment our semantics to keep track of this ownership information, which is done solely for the

purpose of this proof. To this end, a similar approach as Dimoulas et al. is taken.

Only two expressions change the ownership of a value: function applications and send expres-

sions. During a function application, an argument is passed from the party applying the function

to the party that owns the function itself. After the argument has been passed, the owner of the

function declares itself the owner of the argument and execution proceeds as usual. This semantics

is depicted in the rule below. We highlight changes to our semantics in 𝑔𝑟𝑎𝑦 .

[App] 𝐸 [⟦ 𝜆𝑥.𝑒 ⟧𝑙 ′ 𝑣] → 𝐸 [⟦ [𝑥 ↦→ ⟦𝑣⟧𝑙 ′]𝑒 ⟧𝑙 ′]

A send expression causes a similar change in ownership. Whenever a value is sent as part of the

payload of a message, its ownership is transferred from the sender of the message, to the owner of

the actor reference. It is important to note that a potential receiver contract and contract on the

payload have already been checked. Therefore, ownership only moves whenever a fully checked

message is being delivered. The updated rules for enhanced message sends are depicted below:

[E-Send] {⟨𝜋1, 𝐸 [send 𝜅𝑐 ⟦𝜋2⟧𝑙
′
𝜏 𝑣], 𝑡1, 𝑀1⟩, ⟨𝜋2, 𝑒, 𝑡2, 𝑀2⟩} ⊎ A

→A {⟨𝜋1, 𝐸 [nil], 𝑡, 𝑀⟩, ⟨𝜋2, 𝑒, 𝑡, (𝜏, 𝜅𝑐, ⟦𝑣⟧𝑙
′) ·𝑀⟩

[E-SendSelf] ⟨𝜋, 𝐸𝑙 [send 𝜅𝑐 ⟦𝜋⟧𝑙 ′] , 𝑡, 𝑀⟩ →𝛼 ⟨𝜋, 𝐸𝑙 [nil], 𝑡, (𝜏, 𝜅𝑐, ⟦𝑣⟧𝑙 ′) ·𝑀⟩
Having defined how ownership propagates when a message is sent, we discuss how contract

monitors on the receiver of the send expression propagate ownership labels. This contract monitor-

ing is defined by the stacking rules, which we adapt accordingly.

Value-based contracts on the payload

stack𝑝 ⟦ (mon𝑗,𝑘
𝑙

𝜅1 𝑣1) ⟧𝑘 𝑣2 = (stack𝑝 𝑣1 (mon𝑘,𝑗
𝑙

𝜅𝑝 ⟦ 𝑣2 ⟧
𝑘
))

where 𝜅1 = behavior/c 𝜅𝑚1 ∨ . . . ∨ 𝜅𝑚𝑛 message/c 𝜏 _ 𝜅𝑝 _ ∈ {𝜅𝑚1, . . . , 𝜅𝑚𝑛}

Receiver contracts

stack′𝑟 ⟦ (mon𝑗,𝑘
𝑙

𝜅1 𝑣1) ⟧𝑘 𝑐 = stack′𝑟 𝑣1 (𝜆𝑥 .𝜆𝑦. ⟦ (𝑐ℎ𝑒𝑐𝑘𝑘 (𝜅𝑟 𝑦) (𝑐 ⟦ 𝑥 ⟧
𝑘
𝑦))) ⟧𝑘

where 𝜅1 = behavior/c 𝜅𝑚1 ∨ . . . ∨ 𝜅𝑚𝑛 message/c 𝜏 𝜅𝑟 _ _ ∈ {𝜅𝑚1, . . . , 𝜅𝑚𝑛}

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:23

For contracts on the payload the change is straightforward. Monitoring the payload value with

a valued-based contract causes the value to move under the ownership of the monitored actor

reference. The transformation is similar for receiver contracts. It is important to note that we chose

the client party 𝑘 as the ownership annotation for the stacking rules. This is not a coincidence,

since the negative party of the contract monitor must align with ownership label. In Section 7.3 we

show that only this combination is possible. All other rules, except for enhanced receives, do not

cause any changes in ownership, and simply propagate the labels as is.

The last part of the contract language we need to discuss are the communication contracts,

which are monitored by monc expressions. Similar to the well-formedness statements about the

mon expression, we formulate a well-formedness statement for the monc expression. To this end,

we extend our judgment ⊢ with an additional rule: 𝑘 ⊢ 𝑒 ⇒ 𝑗 ⊢ mon𝑐𝑘𝑣𝜅 ⟦𝑒⟧𝑘
Recall that the mon𝑐 expression lacks any client or contract label. The reason is that the com-

munication contract always monitors the communication effects of the server party (or any of its

transitive communication effects). This yields an interesting well-formedness judgment where only

the inner expression in the contract monitor has an ownership annotation, and is related to the label

on the contract monitor. In terms of propagation, we adapt the stacking rules for communication

contracts to propagate the ownership of the owner of the monitored actor reference (depicted

below). The ownership of the resulting contract monitor does not change during the execution of

the program. This point is pivotal for our correctness proof since the well-formedness judgment

needs to hold whenever a contract monitor expression is reduced.

stack𝑐 (mon𝑗,𝑘

𝑙
𝜅1 ⟦ 𝑣1 ⟧𝑗) = ⟦ 𝜆𝑥.mon𝑐 𝑗 𝜅𝑐 𝑥 ⟧𝑗 ◦ stack𝑐

Note that, again, the stacking rules assume that the ownership label 𝑗 of the monitored entity

corresponds to the server label 𝑗 of the contract monitor.We show in Section 7.3 that this assumption

always holds when the program semantics reaches the reduction of the stacking rules.

We introduced four-tuples to represent the messages that are intercepted by the communication

contract monitor. These four-tuples can also be annotated with ownership annotations. We argue

that if a message is annotated with a certain ownership label 𝑙 , its constituents are also owned by

that same party. Therefore we define ⟦(𝑒𝜅 , 𝑣1, 𝜏, 𝑣2)⟧𝑙 to mean (⟦𝑒𝜅⟧𝑙 , ⟦𝑣1⟧𝑙 , 𝜏, ⟦𝑣2⟧𝑙).

7.3 Blame Correctness Theorem
Our blame correctness theorem is split into two cases. The first case deals with the sequential

subset of the language and with contracts on the interface of the actor. The second case deals with

communication contracts.

Definition 7.3. Given an expression 𝑒 , an actor systemA, and an owner 𝑗0 for which the judgment

𝑗0 ⊢ 𝑒 holds, the contract system →𝜅 is blame correct iff for any reduction from A that leads to a

contract check A →∗
𝜅 {⟨𝜋, 𝐸 [check𝑗 𝜅 𝑒], 𝑡, 𝑀⟩} ⊎ A′

the following holds: 𝑒 = ⟦𝑣⟧𝑗
.

Put differently, an actor system is blame correct if and only if for any reduction leading to a

contract check, the blame label aligns with the ownership of the value being checked. We now

present our main theoretical result: blame correctness for the contract system.

Theorem 7.4. →A is blame correct.

Proof. The key insight is that the mon state described in Definition 7.3 is a well-formed actor

system. The idea of the proof is to show that any state of the actor system will eventually resolve

to a well-formed actor system before reducing to a check expression. First, realize that a check
expression, according to our semantics, can only originate from mon expressions of the form

mon𝑗,𝑘

𝑙
𝜅 𝑒 . Therefore, we have to show that for any initial program and intermediate state, every

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:24 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

contract monitor is either well-formed, or always reduces to one that is well-formed. We do so

by case analysis on the reduction rules. Essentially, the case analysis comes down to four rules

[MonFun] and [E-Send], [E-SendSelf] and [M-Send].

• [MonFun] reduces a higher order contract monitor to a function that includes the necessary

monitoring code. Thus, this new function contains monitor expressions that do not satisfy the

well-formedness condition. From the definition of our semantics we have:

mon𝑗,𝑘

𝑙
(𝜅1 → 𝜅2) ⟦𝑣⟧𝑗 → ⟦𝜆𝑥.mon𝑗,𝑘

𝑙
𝜅2 (⟦𝑣⟧𝑗 mon𝑘,𝑗

𝑙
𝜅1 𝑥)⟧𝑘

Neither the monitor for 𝜅2, nor for 𝜅1, are well-formed as they both lack ownership labels.

However, for these monitors to be reduced the 𝜆-expression has to be applied. This application

causes variable 𝑥 to be substituted for a value owned by 𝑘 , rendering the monitoring expression

for 𝜅1 well-formed. The contract monitor for 𝜅1 then reduces to a value, or a blame error. In the

case of a value, the value is passed to the function 𝑣 , which is owned by 𝑗 , which causes the value

to be owned by 𝑗 as well. The second monitor is now well-formed, which concludes the proof.

• [E-Send], [E-SendSelf] the sending rules reduce an enhanced send expression to nil and cause

the message to be added alongside its contract to the receiving actor’s mailbox. If a message is

sent to a monitored actor reference, the stacking rules (cf. Fig. 7) generate contract monitors

for its payload, receiver, and communication contracts. Assuming that the contract monitor is

owned by the client label of the monitor (which we show in Lemma 7.5), the generated contract

monitors on the payload and receiver are well-formed by definition and do not require any

further analysis.

• Rule [M-Send] introduces a mon expression through its return value and the dosend meta-

function. We must show that its argument 𝑣2 can only be owned by 𝑗 . The value 𝑣2 originates

from the argument of the mon𝑐 expression which is a representation of the monitored message

as a tuple. Recall that we defined earlier that the ownership of the tuple is recursively propagated

to the ownership of its constituents. Therefore, to show that our blame correctness theorem holds

for [M-Send] rules we have to show that the tuple (𝑒𝜅 , 𝑣1, 𝜏, 𝑣2) is owned by party 𝑗 (proved in

Theorem 7.6) □

Lemma 7.5. ⟦𝑚𝑜𝑛
𝑗,𝑘

𝑙
𝜅 𝑣1⟧𝑘 always holds when reduction reaches a stackp rule.

Proof. The proof for [MonFun] and [M-Send] are similar to our previous theorem. We prove

the case for [E-Send] and [E-SendSelf] by induction on program reduction steps.

• Base case. Contract monitors in stack𝑝 are monitored actor references. This can only occur in

the beginning of a program if the source code contains such a contract monitor. By pre-condition

of our previous theorem, this monitor is well-formed.

• Induction case. Assuming that the lemma holds for all previous steps of the reduction, we show

that it holds for the next reduction of [E-Send] and [E-SendSelf]. Indeed, we can show that

[MonFun] and [M-Send] produce well-formed contract monitors, and that the base case of [E-

Send] and [E-SendSelf] also produces valid contract monitors. Then, by definition, [E-Send] and

[E-SendSelf] produce well-formed contracts (by similar argument as in the previous theorem)

and therefore any value flowing into the first argument of stack𝑝 must also be well-formed. □

We proceed with the second part of our theorem. To show the blame correctness of communica-

tion contracts, we have to show that a party is only blamed when the message is owned by that

party.

Theorem 7.6. Our communication contracts are blame correct. Given a program 𝑒0 and owner 𝑙0
and a reduction {⟨𝜋, 𝑒0, ∅, ∅⟩} →A {⟨𝜋, 𝐸 [mon𝑐 𝑗 𝜅𝑐 𝑣], 𝑡, 𝑀⟩} ⊎ A′ then 𝑣 = ⟦𝑣0⟧𝑗

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:25

Proof. mon𝑐 expressions are only introduced in stack𝑐 rules and during the reduction of the

mon𝑐 expression itself. We consider both cases separately.

• stack𝑐 : When introduced in the stacking rule, a 𝜆-expression of the form ⟦𝜆𝑥 .monc𝑗 𝜅𝑐 𝑥⟧𝑗
is

produced. Here, the ownership propagation rules for function applications apply, moving the

ownership of the argument to the owner of the function. This means that the monitored message

or trace (which are treated as values) will always be owned by 𝑗 , thereby satisfying the theorem.

• mon𝑐: Since mon𝑐 expressions can only be introduced in stack𝑐 expressions, any 𝜆-expression

originating from the reduction rules for mon𝑐 will be owned by the owner of the 𝜆-expression

in the stack𝑐 rule. The lambda originating from the monc rule will hence also be owned by 𝑗 ,

thereby satisfying our theorem. □

8 Related Work
Actors and processes. Whereas our work targets the actor model, much of the related work centers

around the 𝜋-calculus, where processes are anonymous and communication is achieved through

bi-directional message channels. Even though both models have their own distinct features, there

is a correspondence between them. Fowler et al. [2017] discuss this correspondence and uncover

an isomorphism between the two models. Their isomorphism is achieved through a translation

between the two calculi. They find that the actor model is straightforward to simulate in the

𝜋−calculus, whereas the translation from the 𝜋−calculus to the actor model is more involved.

Nonetheless, this shows that both models are equivalent and can be used to simulate the other.

Therefore, our contract system can also be applied to the 𝜋-calculus but would have to be adapted

to take the bi-directionality of its channels into account. We opted to use the actor model as a basis

since it requires less infrastructure as it models communication using messages to actor references,

rather than establishing bi-directional channels.

Type systems. (Multi-)party session types [Honda et al. 2016] are closely related to our commu-

nication contracts. However, they differ in a few ways. First, traditional session types are limited

to predicates that can be decided statically. Second, session types describe sessions between two

or more parties (cf. multiparty session types). In each of these sessions, participants have a fixed

role and therefore also a fixed type. The process that is participating in the session cannot handle

other sessions simultaneously. Actors, in contrast, do not belong to any particular session, and

messages from different sessions might be interleaved. This enables developers to define complex

architectures that include load balancers, circuit breakers, . . . These components do not belong to a

particular session and would break if this were attempted.

Another difference is that session types are usually formulated in the context of the process

calculus. In this calculus, processes establish explicit bi-directional channels that are used for com-

municating between process. A process may have multiple channels in scope simultaneously.

This difference is not substantial since one communication model can easily be translated to

the other [Fowler et al. 2017]. Even more so, session types have also been applied to actor sys-

tems [Neykova and Yoshida 2017]. However, in this setting, actors are still assigned a role which

is used to initiate and maintain communication throughout a session. In our actor and contract

system, actors do not necessarily need to keep the same role throughout their lifetime and can

assume different roles simultaneously.

Contract Systems. Harnie et al. [2010]; Scholliers et al. [2015] propose a contract system for

AmbientTalk [Cutsem et al. 2014] called computational contracts. AmbientTalk is a programming

language that is based on the principle of communicating event loops. In this model, actors consist of

multiple objects that can be individually addressed from other actors through far references. Thus,

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:26 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

a message does not only contain the intended actor, but also the intended object. Scholliers et al.

propose a contract system on top of this model. Their contract system expresses constraints over

objects and over the computational behavior of their methods. Therefore, their contract language is

similar to ours in the sense that we also express constraints over the actors in the system and their

message handlers. However, the contract language of Scholliers et al. lacks a way to express the

intended receiver of a message (which we address through receiver contracts) and has no concept

of contract chaining, thus making it more difficult to express contracts over communication chains

that span multiple actors.

Disney et al. [2011] propose a contract system which they call temporal contracts. Their contract
system expresses constraints on the temporal behavior of functions in a sequential programming

language. This temporal behavior includes function calls and returns. Their system is higher-order
in the sense that temporal contracts can be attached to arguments of functions or return values. Our

contract system is higher-order in the same sense, message contracts can introduce communication

contracts on actor references that were not monitored before. However, in contrast to the work by

Disney et al., our contract system supports concurrent processes and can also put communication

contracts on the receiver of a message, which is equivalent to putting a contract on the callee.

Waye et al. [2017] propose a contract system for modern web services called Whip. The pro-

posed contract system is similar to our contracts on the interface of an actor, but does not offer

communication contracts nor contracts on the receiver. The system is also higher-order in the

sense that services can take and return references to other services which can also be monitored by

contracts. Their focus is primarily on the practical applicability of such a system. In contrast to our

contract system, theirs treats services as black boxes, enabling different programming languages

to be used for their implementation. To this end, they introduce the concept of a service adaptor
that functions as a contract monitor independent from the monitored services, such that they are

unaware of contract monitoring. We do not aim for such transparency in this paper. Nonetheless,

our communication contracts are only interested in the communication effects of the message

handler they are monitoring. Therefore, the contract monitor is not concerned with the internal

state of the actor and could be implemented as a separate entity.

Gommerstadt et al. [2022] propose session-typed concurrent contracts. Their contracts are con-
structed as partial identity processes. Meaning that their contracts either allow the message to be

passed through as is, or block the message entirely. This is problematic in a higher-order setting,

where actor references can be sent as part of message payloads. In such settings, the values in the

payload of the outgoing message can be changed to include contract monitors, therefore violating

the partial identity property. Thus in order for their system to support higher-order languages, their

monitors have to be applied manually. Another interesting aspect of their approach is that their

contracts are represented as processes. This allows their contracts to be stateful since each process

in the system can have an internal (private) state. Our system does not support stateful contracts,

and stays closer to the traditional treatment of contracts, but could be extended to support them

without violating our blame correctness property. Finally, the contract system by Gommerstadt

et al. limits its contracts to a single channel, and piggybacks on the session-types for expressing

constraints on communication that spans multiple actors. We argue that this makes our contract

system more powerful, since it allows for expressing much more dynamic contracts. For example,

our contracts can change the expected communication behavior across a communication chain

based on the contents of the payload, or based on previous communication behavior.

Contracts have also been used to define higher-order sessions. Melgratti and Padovani [2017]

propose a contract system that follows the shape of processes in the process calculus. Their contracts

are also dependent and can express properties in terms of earlier messages. Since channels in the

process calculus are bi-directional, their contracts express constraints on both the values received

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:27

and sent by the receiving process. Their contracts are therefore a subset of our contracts where the

receiver of each message is predetermined by the direction of the channel. Our contract system in

contrast, allows for arbitrary receivers that are specified using receiver contracts.

In summary, current contract languages for distributed systems are primarily focussed on the

interface of the actor and only allow expressing properties about the tag and payload the message.

Those that support behavioral contracts do so on a single actor, while our contracts, due to their

recursive structure, allow expressing behavioral properties about the receiver of messages in the

entire communication chain.

9 Limitations & Future Work
Blame Propagation and Recovery. In concrete implementations, blame labels usually correspond

to modules in the source application. Therefore, parties correspond to regions in the code that

are to blame for the contract violation. However, the blame error might be produced in different

part of the application that does not correspond to any region indicated by the blame label. This is

not only true for our contract system but also for any higher-order contract system. Higher-order

functions become wrapped with contract monitors which can be passed to unmonitored parts of

the code. Whenever these higher-order contract monitors are applied, a blame error occurs in a

part of the application that is not covered by the blame label. The impact of this problem is minimal

for sequential languages since one failure causes the entire application to halt. In a concurrent or

distributed setting however, processed or actors execute independently from each-other and are

preferably kept online. In this paper, we focussed on the design and formalisation of a contract

language to support encoding communication patterns within an actor system. We consider blame
propagation and recovery as an orthogonal problem that can be answered in future work.

Types of communication contracts. In this paper, we presented two types of communication

contracts: ensures and only contracts. We realize that the design space for these communication

contracts is considerably larger than the two variants we presented here. However, we argue

that our blame assignment semantics would remain identical and equally valid for the remaining

variants in this design space.

10 Conclusion
In this paper, we introduced a novel contract system to express constraints on the communication

effects of actors in an actor system. This contract system includes a rich support for defining

the interface of an actor in the system as a set of message contracts. Next to contracts about the

message tag and its payload, our contract system also supports expressing properties about the

recipients of messages and contracts on their communication effects. We introduced two types

of communication contract. The first type ensures that all messages from a set of messages are

sent during an actor’s turn. The second type limits the messages that can be sent to those that are

specified in the communication contract. A defining feature of our message contracts is that they

are recursively structured. Indeed, a message contract contains a communication contract which

can again include a message contract. This recursive structure enables specifying communication
chains spanning many different actors in the actor system. It puts blame at the component at the

start of this chain essentially saying that the start of the chain is at fault for initiating a faulty

chain of messages. This gives the programmer more freedom compared to traditional contract and

session types systems which typically let blame boundaries align with actor boundaries.

We formalized this contract system on top of the classic actor model. Using this formalisation we

have proven that our blame assignment is correct with respect to ownership. Essentially, the proof

shows that a party is only to blame whenever the value or message causing the contract violation

actually originated from that party.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

254:28 Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover

References
Gul Agha. 1986. Actors: a model of concurrent computation in distributed systems. MIT press.

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of Design-by-Contract for Distributed

Multiparty Interactions. In CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, August
31-September 3, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6269), Paul Gastin and François Laroussinie

(Eds.). Springer, 162–176. https://doi.org/10.1007/978-3-642-15375-4_12

Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton, Dries Harnie, Kevin Pinte, and

Wolfgang De Meuter. 2014. AmbientTalk: programming responsive mobile peer-to-peer applications with actors. Comput.
Lang. Syst. Struct. 40, 3-4 (2014), 112–136. https://doi.org/10.1016/J.CL.2014.05.002

Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, andMatthias Felleisen. 2011. Correct blame for contracts: nomore

scapegoating. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 215–226. https://doi.org/10.1145/1926385.1926410

Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. 2016. Oh Lord, please don’t let contracts

be misunderstood (functional pearl). In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming (ICFP ‘16), Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 117–131. https://doi.org/10.

1145/2951913.2951930

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts. In

Programming Languages and Systems - 21st European Symposium on Programming, ESOP 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, March 24 - April 1, 2012. Proceedings (Lecture Notes in
Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 214–233. https://doi.org/10.1007/978-3-642-28869-2_11

Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. Temporal higher-order contracts. In Proceeding of the 16th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2011, September 19-21, 2011, Manuel M. T. Chakravarty,

Zhenjiang Hu, and Olivier Danvy (Eds.). ACM, 176–188. https://doi.org/10.1145/2034773.2034800

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for higher-order functions. In Proceedings of the Seventh ACM
SIGPLAN International Conference on Functional Programming (ICFP ’02), 2002, Mitchell Wand and Simon L. Peyton Jones

(Eds.). ACM, 48–59. https://doi.org/10.1145/581478.581484

Simon Fowler, Sam Lindley, and Philip Wadler. 2017. Mixing Metaphors: Actors as Channels and Channels as Actors. In 31st
European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017 (LIPIcs, Vol. 74), Peter Müller (Ed.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:28. https://doi.org/10.4230/LIPICS.ECOOP.2017.11

Teodoro Freund, Yann Hamdaoui, and Arnaud Spiwack. 2021. Union and intersection contracts are hard, actually. In DLS
2021: Proceedings of the 17th ACM SIGPLAN International Symposium on Dynamic Languages, October 19, 2021, Arjun
Guha (Ed.). ACM, 1–11. https://doi.org/10.1145/3486602.3486767

Hannah Gommerstadt, Limin Jia, and Frank Pfenning. 2022. Session-typed concurrent contracts. J. Log. Algebraic Methods
Program. 124 (2022), 100731. https://doi.org/10.1016/J.JLAMP.2021.100731

Dries Harnie, Christophe Scholliers, and Wolfgang De Meuter. 2010. Ambient Contracts. Electron. Commun. Eur. Assoc.
Softw. Sci. Technol. 28 (2010). https://doi.org/10.14279/TUJ.ECEASST.28.397

Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. 2021. Multiparty Session Types for Safe Runtime Adaptation

in an Actor Language. In 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021)
(LIPIcs, Vol. 194), Anders Møller and Manu Sridharan (Eds.). 10:1–10:30. https://doi.org/10.4230/LIPICS.ECOOP.2021.10

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 273–284. https://doi.org/10.1145/

1328438.1328472

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM 63, 1 (2016),

9:1–9:67. https://doi.org/10.1145/1328438.1328472

Limin Jia, Hannah Gommerstadt, and Frank Pfenning. 2016. Monitors and blame assignment for higher-order session types.

In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
January 20 - 22, 2016, Rastislav Bodík and RupakMajumdar (Eds.). ACM, 582–594. https://doi.org/10.1145/2837614.2837662

Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew Flatt, Jay A. McCarthy, Jon

Rafkind, Sam Tobin-Hochstadt, and Robert Bruce Findler. 2012. Run your research: on the effectiveness of lightweight

mechanization. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 285–296. https://doi.org/10.1145/2103656.

2103691

Roland Kuhn, Brian Hanafee, and Jamie Allen. 2017. Reactive Design Patterns (1st ed.). Manning Publications Co., USA.

Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-

Deterministic Concurrency Bugs in Datacenter Distributed Systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2016, April 2-6, 2016,
Tom Conte and Yuanyuan Zhou (Eds.). ACM, 517–530. https://doi.org/10.1145/2872362.2872374

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1016/J.CL.2014.05.002
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/2034773.2034800
https://doi.org/10.1145/581478.581484
https://doi.org/10.4230/LIPICS.ECOOP.2017.11
https://doi.org/10.1145/3486602.3486767
https://doi.org/10.1016/J.JLAMP.2021.100731
https://doi.org/10.14279/TUJ.ECEASST.28.397
https://doi.org/10.4230/LIPICS.ECOOP.2021.10
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1145/2872362.2872374

Blame-Correct Support for Receiver Properties in Recursively-Structured Actor Contracts 254:29

Hernán C. Melgratti and Luca Padovani. 2017. Chaperone contracts for higher-order sessions. Proc. ACM Program. Lang. 1,
ICFP (2017), 35:1–35:29. https://doi.org/10.1145/2384616.2384685

Bertrand Meyer. 1998. Design by Contract: The Eiffel Method. In TOOLS 1998: 26th International Conference on Technology
of Object-Oriented Languages and Systems. IEEE Computer Society, 446. https://doi.org/10.1109/TOOLS.1998.711043

Robin Milner. 1999. Communicating and mobile systems - the Pi-calculus. Cambridge university press.

Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session Actors. Log. Methods Comput. Sci. 13, 1 (2017). https:

//doi.org/10.23638/LMCS-13(1:17)2017

Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. 2015. Computational contracts. Sci. Comput. Program. 98
(2015), 360–375. https://doi.org/10.1016/J.SCICO.2013.09.005

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and impersonators:

run-time support for reasonable interposition. In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, October 21-25, 2012,
Gary T. Leavens and Matthew B. Dwyer (Eds.). ACM, 943–962. https://doi.org/10.1145/2384616.2384685

Bram Vandenbogaerde, Quentin Stiévenart, and Coen De Roover. 2024. Blame-Correct Support for Receiver Properties in
Recursively-Structured Actor Contracts (Artifact). https://doi.org/10.5281/zenodo.11486427

Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. Whip: higher-order contracts for modern services. Proc. ACM
Program. Lang. 1, ICFP (2017), 36:1–36:28. https://doi.org/10.1145/3110280

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 254. Publication date: August 2024.

https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1109/TOOLS.1998.711043
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1016/J.SCICO.2013.09.005
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.5281/zenodo.11486427
https://doi.org/10.1145/3110280

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background: Sequential Contracts
	4 Communication Contracts in Practice
	4.1 Request-Reply Pattern
	4.2 Forward Flow Pattern
	4.3 Correlation Identifier Pattern
	4.4 Blame Assignment
	4.5 Overview of the Contract Language

	5 Actor Language
	6 Contract Language
	6.1 Syntax
	6.2 Semantics for Sequential Contracts
	6.3 Sender-side contract monitoring
	6.4 Receive-side contracts

	7 Theoretical properties
	7.1 Ownership annotations
	7.2 Ownership propagation
	7.3 Blame Correctness Theorem

	8 Related Work
	9 Limitations & Future Work
	10 Conclusion
	References

