Property-based Testing within ML Projects: an
Empirical Study

Cindy Wauters
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
cindy.suzy.wauters @vub.be

Abstract—In property-based testing (PBT), developers specify
properties that they expect the system under test to hold. The
PBT tool generates random inputs for the system and tests
for each of these inputs whether the given property holds. An
advantage of this approach over testing a set of manually defined
example inputs is that it enables a higher code coverage.

Machine learning (ML) projects, however, often have to
process large amounts of diverse data, both for training a model
and afterwards, when the trained model is deployed. Generating
a sufficient amount of diverse data for the property-based tests
is therefore challenging.

In this paper, we present the results of a preliminary study
in which we examined a dataset of 58 open-source ML projects
that have dependencies on the popular PBT library Hypothesis, to
identify issues faced by developers writing property-based tests.

For a subset of 28 open-source ML projects, we study the
property-based tests in detail and report on the part of the
ML project that is being tested as well as on the adopted data
generation strategies. This way, we aim to identify issues in
porting current PBT techniques to ML projects so that they
can be addressed in the future.

Index Terms—Testing Machine Learning Projects, Automated
Testing, Property-based Testing

I. INTRODUCTION

Property-based testing (PBT) can be a powerful tool to
test software projects for unexpected behaviour. In contrast to
example-based testing, a developer writes down a property that
they expect to hold for the system under test. The PBT tool
then generates inputs at random and tests for each of these
inputs whether the given property is satisfied. For example,
imagine a function reverse, that reverses any given string.
A desired property of this function would be that calling
reverse twice (e.g. reverse (reverse (string))), re-
sults in the original string. The PBT tool will randomly
generate strings and test for each of these strings whether
this is indeed the case, rather than using a single developer-
provided example string.

In recent years, researchers have investigated how devel-
opers implement and use PBT in general-purpose software
projects [3], [5], [6]. However, when it comes to testing
machine learning (ML) projects, additional challenges can
arise. These projects often require a lot of diverse data,
rendering data generation more difficult or time-consuming,
which encumbers their testing [4]. This is especially true for

Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

ML projects that deal with image classification or voice recog-
nition. This was also discovered in studies by Sharma et al.
who propose a property-driven testing technique (MLCheck)
for ML classifiers [14] and ML models [15]. In an attempt to
compare MLCheck to Hypothesis [9], a popular PBT library in
Python, they found that after forty minutes of running the tests,
Hypothesis was not able to generate inputs for the test cases
due to the high number of features that were required to be
generated. Furthermore, in large-scale ML projects, software
developers and data scientists work alongside each other.
Oftentimes, these groups of people have different skill sets
and use different (testing) libraries and tools, thus complicating
development and debugging [10]. Finally, ML projects often
lack a clear test oracle. While the oracle problem [16] is a
known issue in software testing, it is complex in ML projects
due to, for example, a repetition of the training phase being
able to yield a different behaviour [13]. Metamorphic testing (a
subset of PBT) can address the problem. Here, metamorphic
relations are used as property. A classic example of such a
relation is the sine function, where it is difficult to know what
the output of sine (x) will be for any randomly generated
x, but testing whether the metamorphic relation sine (7-x)
= sine (x) indeed holds for each generated x is easier.

Existing research has investigated how to transpose PBT
and metamorphic testing to machine learning models and code
(e.g., [11], [12], [14], [18]). In this paper, we empirically
investigate how real-life, open-source projects are using PBT.
We specifically look at the popular PBT library for Python,
Hypothesis, which has over 7.4k stars on GitHub. It is also
used by several popular Python projects such as PyTorch! and
NumPy2. At the same time, a JetBrains survey from 2022,
surveying 23,000 Python developers found that only 5% of
developers use Hypothesis in their software [8]. This study
thus aims to discover how developers are using property-
based testing in open-source ML projects, how they handle
the data generation aspect of PBT, and what difficulties they
experience. By identifying these problems, they can become
the subject of future work, rendering PBT more accessible and
easier to use.

Uhttps://pytorch.org/
Zhttps://mumpy.org/

from hypothesis import given, strategies

@given (strategies.text ())
def test_encode_decode(s) :
assert decode(encode(s)) == s

Listing 1: An example of a property-based test. Example from
https://hypothesis.readthedocs.io/en/latest/quickstart.html

The remainder of this paper is structured as follows. First,
PBT is introduced in Section II. Section III defines the
research questions and describes data collection and analysis.
Section IV presents results, and Section V identifies potential
threats to the validity. Section VI discusses related work. Fi-
nally, conclusion and future work are discussed in Section VII.

II. BACKGROUND

Property-based testing, first popularized by the
QuickCheck [2] tool for Haskell, is an automated testing
technique where the developer defines properties expected
to hold for the system under test (SUT). The SUT can
in this case be a single function (unit testing), multiple
functions (integration testing), or the whole system (system
testing). Alongside these properties, the developer specifies
the expected input type that needs to be randomized (e.g.,
random strings, integers, lists, etc.). When the test is run, the
PBT tool randomizes inputs based on the expected type, and
checks for each of these inputs whether the tested property
indeed holds. If for each of the generated inputs the property
holds, the test passes. Otherwise, the test fails.

A simple example of a PBT (making use of the Hypothesis
library) can be found in Listing 1, where an encode and
a decode function are tested. A desired property of these
two functions could be that the result of decoding an encoded
string is identical to the original string. On line 1, we import
given and strategies from the Hypothesis library. These
decorators are responsible for generating input data. Line 3
instructs the library to generate random text. Line 4 defines the
test itself, which expects an input s, which will be randomly
generated text as defined on line 3. Finally, line 5 asserts the
property that encoding and decoding a certain string results
in the original string. This property is checked repeatedly for
each of the generated inputs.

Hypothesis, like other PBT tools, supports fine-tuning of the
generated test cases. For example, a user can add edge cases
that need to be tested in each run alongside the randomly
generated inputs by making use of the @example decorator.
The @settings decorator can be used to configure the
number of examples to generate or to provide a time budget
for the tests. Additionally, a developer can write more complex
strategies by making use of decorators such as @composite
or @builds to create data generation strategies that are
specific to each project. This way, data structures such as
classes, dictionaries, etc. can be generated.

The Hypothesis library also provides a health check to
warn about mistakes in tests that may cause difficulties when

run. This can include warnings about slow data generation or
excessive filtering, so the developer is aware in advance.

III. METHODOLOGY

In this study, we investigate how practitioners employ
property-based testing in ML projects. To this end, we collect
a broad range of open-source ML projects, ranging from data
processing frameworks to deep learning or natural language
processing libraries. We take into consideration any project
that is related to ML: whether it is using a pre-trained ML
model, a pipeline for preparing training data, or a library for
training the model itself. The problem shared by these projects
is that they are difficult to test because they operate on large
amounts of data, and that their tests may suffer from the oracle
problem.

A. Research Questions

We explore the following research questions related to the
use of PBT in ML projects:

« RQ1: What is the sentiment of developers on PBT
in open-source ML projects? We manually investigate
commit messages and code comments to find the motiva-
tion of developers to adopt PBT, and the difficulties they
might have experienced in doing so.

« RQ2: Which data generation strategies are used in
the property-based tests? Because ML projects often
deal with difficult or large amounts of data, we investigate
how developers implement data generation strategies, and
whether they use external libraries to this end.

o RQ3: What part of the project is being tested using
PBT? We look at what parts of the ML project are being
tested by the PBTs. We consider as categories under test
either the ML (training) code, the trained ML model, or
the application logic around it.

B. Data Collection

To answer these research questions, we collect a dataset of
software systems that employ at least one ML component and
have at least one PBT (making use of the Hypothesis library).
While datasets of ML projects on GitHub exist [7], [17], our
study focuses on ML projects that use PBT. Therefore, we
compose a new dataset that takes this constraint into account.
We used the GitHub API to fetch the top-200 projects that have
a dependency on the Hypothesis library, sorted by number of
stars, to obtain popular GitHub projects that may use PBT.
To filter out projects not related to ML, we require each to
depend on PyTorch, on Scikit-learn?, or on Tensorflow*, which
is similar to the strategy followed by Widyasari et al. [17].
We find a total of 58 such projects. The resulting projects
may use or train an ML model, or contribute to the data
processing pipeline used to feed a deployed model or to train
a model under development. Unfortunately, using the GitHub
API can lead to false positives. As mentioned by Corgozinho
et al. [3], many projects specify a dependency on Hypothesis

3https://scikit-learn.org/stable/
“https://www.tensorflow.org/

in their GitHub dependencies, but do not use the library in any
meaningful manner. To mitigate this threat, we only consider
projects that have at least one test file with an import statement
from Hypothesis, which reduces the dataset to 32 projects.
For the ML aspect of the dataset, we manually inspected each
project to see if they indeed have something to do with ML as
described above, filtering out another four projects. This brings
the total number of projects investigated down to 28. Projects
range from having one testing file that uses Hypothesis, to
having over 150.

C. Analyzing the Data

To answer RQ1, we manually analyze the metadata and
code of 58 GitHub projects. We first search through all the
files of the latest snapshot of each project to find comments
that mention PBT or Hypothesis. Afterwards, we also scan the
project’s main branch to identify any commits that are related
to property-based testing or Hypothesis using the GitHub
API. This investigation aims to discover positive and negative
opinions of developers towards PBT in ML projects. While not
all 58 projects are implementing PBT, all have a dependency
on Hypothesis. Therefore, they may have used Hypothesis in
the past and since abandoned it, making it worthwhile to
investigate. We also investigate whether certain Hypothesis
health checks (cf. Section II) have been suppressed, as this
can be indicative of developers being aware of issues such as
slow data generation.

For RQ2 and RQ3, we manually inspect each of the
Hypothesis tests we can identify in the test files and investigate
the strategies that they use. To this end, we first look for all
files that import Hypothesis, and then search for all decorators
indicative of PBTs within these files (such as @given). We
only consider the dataset of 28 ML projects that have at
least one property-based test in their code base. For RQ2, we
investigate which data generation strategies are employed in
the tests: simple strategies that generate a primitive type such
as an integer, or composite (making use of the @composite
decorator) and bespoke strategies of multiple lines of code, or
third-party strategies from external libraries for input genera-
tion.

RQ3 investigates which parts of the ML project, if any, are
tested. We define the following categories:

o 1: A trained ML model is tested. An ML model that was
either trained in the project itself, or a third-party pre-
trained model, is present in the tests.

o 2: Code related to training ML models is tested. Any
code related to the training of ML models, such as the
definition of a loss function.

e 3: Code that is unrelated to any ML model. The ML
projects in our dataset may also feature application logic
independent of an ML model.

We make this distinction as property-based tests for code in
category 1 and 2 may face ML-specific issues such as the
oracle problem and having to generate a large amount of
diverse data. Property-based tests for code in category 3 do
not face these issues.

To answer this research question, we manually inspect all
test files that contain a Hypothesis import to understand what
is being tested. In cases where PBTs are easily identifiable,
we examine the data generated by the strategies (e.g., whether
input data for an ML model is generated) and the functions
that are being tested. This entails opening each of the test files
that contain a Hypothesis import and inspecting each of the
PBTs to categorize the code being tested. Some understanding
of the code is required to get an idea of what is being tested.
For this preliminary study, we only take into consideration
PBTs that are identifiable and understandable.

IV. RESULTS

This section discusses the results of the three research
questions defined in Section III. The collected dataset is also
available.

A. RQI: Opinions on PBT in open-source ML projects

In order to uncover issues that may arise in PBT, we
investigated the commit messages and code comments of 58
ML projects. We also took into account the projects that have
a dependency on Hypothesis, but do not use it in their test
file, to investigate the reasons why developers may adopt or
abandon PBT in their ML projects. Unfortunately, only the
projects that still contain at least one import from Hypothesis
had notes related to it, leaving us with no insight in this regard.

We manually classify comments as negative, positive, or
neutral. Additionally, we also included the suppression of the
Hypothesis health check. These are classified as neutral in
sentiment, as they indicate that developers are aware of a
flagged problem but do not find it problematic. The results are
given in Table I. We report for each sentiment in how many
projects it is expressed in either the code base or a commit
message. Because some items are reported in both commits
and comments, we also provide a column “unique” with the
total number of projects that mention any sentiment regarding
PBT in either the code or the comments.

In total, 16 unique projects mention Hypothesis or PBT in
either their commit messages or source code. Of those 16,
14 had notes that can be categorized as negative, whereas six
also included positive comments or commits. One of the most
common notes, mentioned in eight unique projects, involves
having to adjust the time budget for these tests, or having
issues with the timeout (e.g., the data generation strategy
taking too long). Five projects also mention tests being slow.
This can also be seen in the source code itself: at least five of
the 28 projects that use Hypothesis suppress the health check
that checks for slowness of the data generation.

The random data generation can lead to flakiness (where
tests intermittently fail or pass), as mentioned in seven unique
projects. The issues related to CI are often also related to tests
being either slow or flaky. The Hypothesis health check itself
can also lead to flakiness, as reported on by some commit
messages.

Shttps://doi.org/10.5281/zenodo.13341915

in code in commits unique Number of projects

deadline or timeouts 2 6 8 o Only simple strategies 5
2| slowness 5 3 5 selt-written One or more complex strategies 20
‘§D memory consumption 1 0 1 Pandera 1
2| flaky tests 3 5 7 Caffez ' 1

issues related to CI 2 5 6 Hypothesis-bio 1
= | health check: too slow 5 2 5 o EOlaifh thesi }
S| health check: data too large 2 2 3 uses libraries ho rg thezpz eei iz andas 1
2 | health check: filter too much 3 3 3 yP wS-ex ‘P

- hypothesis.extra.numpy 9

usefulness data generation 2 3 5 !
< I d simol 1 0 1 hypothesis.extra.tzst 1
£ | Intwitive and simple hypothesis.extra.redis 1
% | test case reduction 1 0 1
=| broader test coverage 3 1 3 TABLE I

TABLE I
WAYS IN WHICH PBT IS MENTIONED BY GITHUB ML PROJECTS.

Six projects have positive notes related to PBT or Hy-
pothesis. Two projects include a file that expresses a positive
sentiment on data generation, and three other projects mention
it in commit messages, making for a total of five unique
projects. Three projects also mention the benefits of a broader
test coverage specifically. Additionally, one project also men-
tions PBT being intuitive and simple, and provides a basic
tutorial on how to write PBTs for contributors. The developers
especially like the test case reduction that Hypothesis provides.

RQ1 In total, we identified negative sentiments related
to PBT in 14 projects, whereas six projects feature a
positive sentiment. The most common positive senti-
ment on PBT in ML projects is random data generation
for test cases being useful. A recurring negative senti-
ment is data generation being too slow and it resulting
in flaky tests, especially in CI.

B. RQ2: Data generation strategies

In RQ2, we study the data generation strategies employed
by developers in ML projects. For projects where developers
(partially) implement their own data generation strategies, we
classify these as either using simple or complex strategies.
We do so by looking at all the strategies within a project.
If all strategies are simple, we classify the project as using
simple strategies. If at least one complex strategy is present, we
classify the project as such. Additionally, we also investigate
which libraries are used for data generation, if any.

We categorize strategies as being simple if they consist of
less than ten lines of code and only generate primitive types,
such as integers or booleans. We categorize strategies as com-
plex if they are tailored to one project or test case. Complex
strategies can make use of decorators such as @composite
or @builds to create complex data structures. We also
categorize strategies that use only the @given decorator
but generate data for more than ten different parameters as
complex. Complex strategies may also be used by multiple
tests across the same projects by defining it as a function.

The results of our investigation are shown in Table II.
Only five projects used simple generation strategies. These five
projects were also projects that had, on average, fewer PBTs in

HOW PROJECTS IMPLEMENT STRATEGIES AND USED LIBRARIES.

comparison to projects that implemented more complex data
generation strategies. Most projects employ complex data gen-
eration strategies, with 20 projects using decorators to make
composite strategies, having test cases that generate multiple
parameters simultaneously, etc. In comparison, Corgozinho et
al. [3] found that 65% of PBTs used Hypothesis’ strategies.
However, the study investigated individual PBTs in a broad
range of projects, whereas we investigated all PBTs within
ML projects. The remaining 3 projects of the 28 studied for
this research question only used external libraries.

We also look into the use of external libraries and Hypoth-
esis’ first-party extension. 13 different projects either use at
least one external library or the Hypothesis extension. In rare
cases, developers used uncommon libraries to aid with the
generation of complex, domain-specific data structures. For
instance, to generate biological data formats such as protein
structures or to generate PyTorch-related structures.

Hypothesis also provides some first-party extensions, pre-
fixed in Table II with hypothesis.extra, to simplify data
generation for certain libraries. The most commonly used is
NumPy, used by nine out of 28 projects. NumPy itself is also
a popular library among ML projects.

RQ2 20 out of 28 projects use at least one self-
written, complex data generation strategy. This may
be attributed to the fact that ML projects must often
process large amounts of data, and that it is difficult
to specify how this data should be automatically gen-
erated. Hypothesis’ first-party extensions are also used
by multiple projects, with the NumPy extension used
in 9 out of the 28 ML projects. External libraries can
fill a gap in defining strategies that generate domain-
specific data structures.

C. RQ3: Parts of the ML project being tested

In RQ3, we investigate which parts of the ML project are
tested. As mentioned in Section III-C, we inspect the PBTs
in each of the 28 ML projects and assess whether they test
a (pre-)trained ML model, test ML-related code, or test code
that is unrelated to ML. The results of this research question
are shown in Table III. For some tests, the purpose of the test
was not immediately clear to an outside observer (marked as

Tests ... trained model ML training code unrelated code

Yes 3 13 20

No 20 14 6

Ambiguous 5 1 2
TABLE III

HOW OFTEN DIFFERENT PARTS OF THE ML PROJECT ARE TESTED.

ambiguous in the table). Some projects had, for example, clear
PBTs related to testing ML code, but in terms of testing trained
models it was more ambiguous. Therefore, some projects can
be ambiguous in one category but not in another.

Few projects use (pre-)trained models in their property-
based tests, with only three projects we could identify. For
five projects, it is ambiguous. 13 projects test code related to
training ML models. It is important to note, however, that some
ML projects in our dataset do not necessarily have code that is
related to training an ML model. As mentioned in Section III,
we consider all projects that are related to ML. Some of the
projects, for example, are data processing frameworks that can
be used together with other ML libraries, but do not train ML
models themselves. MLOps tools are another example of this.
In total, at least seven of the 28 projects in the dataset do not
train an ML model itself, with another four being undecided.
Projects that do not train an ML model will therefore also
not be able to test ML training code using PBT. 20 of the
28 projects also test code unrelated to the ML model, with
two projects where it remains ambiguous. Developers hence
not only use PBT to test their ML code, but also conventional
application logic.

RQ3 Only three projects use PBT together with a pre-
trained model. Using PBT for testing ML training code
is more common. Using PBT for conventional code is
the most common. This code is also less likely to deal
with some of the issues related to testing ML, such as
the oracle problem. We discuss other possible reasons
for this in Section VII.

V. THREATS TO VALIDITY

For this work, we created a dataset of 58 projects. Of these,
only 28 were usable for RQ2 and RQ3. As we selected projects
based on stars, only popular projects were included, which
might not be representative of all ML projects. This work also
only considers Python projects that use the Hypothesis library.
However, Python is one of the most common languages in ML
projects, and Hypothesis is the most popular PBT framework
for Python. Additionally, the manual labelling in this work
was performed by one author, which can lead to errors or bias
in the classification.

VI. RELATED WORK

There have been studies that explore porting PBT to ML
projects (e.g. [11], [12], [14], [18]). These studies either
describe how developers can use PBT within ML projects (by,
for example, providing a set of possible properties), or explore
novel ways of performing property-based testing within ML

projects. However, in our study, we look at how developers
are performing PBT in ML projects. To our knowledge there
are no other studies exploring this.

Previous work by Corgozinho et al. [3] looked into 86
property-based tests written in Hypothesis, across 30 popular
GitHub repositories. It examined how developers implement
these tests, and what features or decorators of Hypothesis
are most used. The study divides PBTs into 10 categories
based on the structure of the test itself. Our study differs by
targetting ML projects in particular and by investigating the
difficulties developers experience when implementing these
tests. Furthermore, our study goes beyond the structure of
these tests by looking into the data generation strategies that
are employed and into which parts of the project are tested.

A preliminary qualitative study by Goldstein et al. [6], and
followed by [5], looked into how property-based testing is used
in an industrial (non-ML) setting by interviewing developers
of one company that makes use of property-based testing.
Similarly, Arts et al. [1] performed a case study on using PBT
in early development in an industrial setting. Our empirical
study considers a larger variety of open-source projects. It also
focused on ML projects in particular, to identify issues faced
by developers that use PBT in ML projects.

VII. CONCLUSION AND FUTURE WORK

In this preliminary study, we investigated the use of PBT
in 58 open-source ML projects, as PBT of ML projects faces
some unique challenges. Examples include the oracle problem
(ML lacking a clear test oracle and a repetition of the training
phase being able to lead to a different behaviour [13]) and
having to deal with a larger quantity of data. We find that
issues commonly reported by developers of these projects
include slow data generation, having to change time budgets
for running the tests, and test flakiness. At the same time,
some projects mention the usefulness of data generation. This
automated data generation allows for broader test coverage.

In terms of the implemented data generation strategies,
20 out of 28 projects define at least one or more complex
strategies. This can point to the fact that it is indeed more
difficult to specify how automated data generation should be
performed for testing ML projects.

Few of the studied projects use PBT to test a (pre-)trained
ML model. However, testing code related to ML training is
more common. Tests for conventional code were the most
common across the studied projects. We hypothesize that rea-
sons for this discrepancy may include the test oracle problem
and the fact that ML code is often written by data scientists,
whereas the rest of the software might be written by software
engineers who have a different skillset and knowledge of
different frameworks. In future research, we intend to verify
this hypothesis in a larger study that takes into consideration
the different types of ML projects.

VIII. ACKNOWLEDGEMENT

This work was supported by Research Foundation — Flan-
ders (FWO) (grant number 1SHFI24N).

[1

—

[2

—

[3

[t

[4

=

[6]

[7

[8

[t}

[9

—

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
telecoms software with quviq quickcheck. In Proceedings of the 2006
ACM SIGPLAN Workshop on Erlang, pages 2—10, 2006.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming, pages
268-279, 2000.

Arthur Lisboa Corgozinho, Marco Tulio Valente, and Henrique Rocha.
How developers implement property-based tests. In 2023 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pages 380-384. IEEE, 2023.

Michael Felderer, Barbara Russo, and Florian Auer. On testing data-
intensive software systems. Security and Quality in Cyber-Physical
Systems Engineering: With Forewords by Robert M. Lee and Tom Gilb,
pages 129-148, 2019.

Harrison Goldstein, Joseph W Cutler, Daniel Dickstein, Benjamin C
Pierce, and Andrew Head. Property-based testing in practice. In Pro-
ceedings of the IEEE/ACM 46th International Conference on Software
Engineering, pages 1-13, 2024.

Harrison Goldstein, Joseph W Cutler, Adam Stein, Benjamin C Pierce,
and Andrew Head. Some problems with properties. In Proc. Workshop
on the Human Aspects of Types and Reasoning Assistants (HATRA),
2022.

Danielle Gonzalez, Thomas Zimmermann, and Nachiappan Nagappan.
The state of the ml-universe: 10 years of artificial intelligence & machine
learning software development on github. In Proceedings of the 17th
International conference on mining software repositories, pages 431—
442, 2020.

JetBrains. Python developers survey 2022 results. https://Ip.jetbrains.
com/python-developers-survey-2022/.

David R Maclver, Zac Hatfield-Dodds, et al. Hypothesis: A new
approach to property-based testing. Journal of Open Source Software,
4(43):1891, 2019.

Alina Mailach and Norbert Siegmund. Socio-technical anti-patterns in
building ml-enabled software: insights from leaders on the forefront. In
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE), pages 690-702. IEEE, 2023.

Christian Murphy, Gail E Kaiser, and Lifeng Hu. Properties of machine
learning applications for use in metamorphic testing. 2008.
Mohammad Rezaalipour and Carlo A Furia. An annotation-based
approach for finding bugs in neural network programs. Journal of
Systems and Software, 201:111669, 2023.

Vincenzo Riccio, Gunel Jahangirova, Andrea Stocco, Nargiz Humbat-
ova, Michael Weiss, and Paolo Tonella. Testing machine learning
based systems: a systematic mapping. Empirical Software Engineering,
25:5193-5254, 2020.

Arnab Sharma, Caglar Demir, Axel-Cyrille Ngonga Ngomo, and Heike
Wehrheim. Mlcheck—property-driven testing of machine learning classi-
fiers. In 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 738-745. 1EEE, 2021.

Arnab Sharma, Caglar Demir, Axel-Cyrille Ngonga Ngomo, and Heike
Wehrheim. Mlcheck-property-driven testing of machine learning models.
arXiv preprint arXiv:2105.00741, 2021.

Elaine J Weyuker. On testing non-testable programs. The Computer
Journal, 25(4):465-470, 1982.

Ratnadira Widyasari, Zhou Yang, Ferdian Thung, Sheng Qin Sim, Fiona
Wee, Camellia Lok, Jack Phan, Haodi Qi, Constance Tan, Qijin Tay,
et al. Niche: A curated dataset of engineered machine learning projects
in python. In 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR), pages 62—66. IEEE, 2023.

Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen
Xu, and Tsong Yueh Chen. Testing and validating machine learning
classifiers by metamorphic testing. Journal of Systems and Software,
84(4):544-558, 2011.

