
Language-Agnostic Debugging for Microcontrollers
Carlos Rojas Castillo
Vrije Universiteit Brussel

Brussels, Belgium
carlos.javier.rojas.castillo@vub.be

Matteo Marra
Nokia Bell Labs

Antwerp, Belgium
matteo.marra@nokia-bell-labs.com

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Brussels, Belgium
egonzale@vub.be

Abstract
With the advent of WebAssembly (Wasm), programming microcon-
trollers (MCUs) has become possible by leveraging on a wide range
of languages (e.g., Rust, AssemblyScript, C, C#, Go, C++) that com-
pile toWasm. However, currentWebAssembly debugging support is
still in early development and is designed for applications running
on desktop machines, making it too resource-intensive for MCUs.
While DWARF and OpenOCD have facilitated language-agnsotic
debugging for languages like Rust, Go, and C, these solutions are
limited to languages that compile to native machine code and fail to
target IoT systems. Consequently, IoT systems often undergo only
partial debugging, increasing the likelihood of severe and frequent
concurrency and communication bugs.

In this position paper, we explore the challenges and issues asso-
ciated with language-agnostic debugging. We identify several key
requirements for effective language-agnostic debugging, such as
the need for over-the-air debugging and the ability to perform distri-
buted debugging operations. Additionally, we present an envisioned
language-agnostic debugging approach based on WebAssembly,
designed to support the debugging of large-scale distributed IoT
systems.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging; Virtual machines; • Computer systems organization →
Embedded software.

Keywords
MCU, IoT, Distributed, VM, WebAssembly, Embedded Devices
ACM Reference Format:
Carlos Rojas Castillo,MatteoMarra, and Elisa Gonzalez Boix. 2024. Language-
Agnostic Debugging for Microcontrollers. In Proceedings of the 2nd ACM
International Workshop on Future Debugging Techniques (DEBT ’24), Sep-
tember 19, 2024, Vienna, Austria. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3678720.3685317

1 Introduction
Microcontrollers (MCUs), such as the ESP32 [11], are hardware-
constrained computers used to build Internet of Things (IoT) systems
in domains such as smart cities, smart hospitals, and more. With the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBT ’24, September 19, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1110-7/24/09
https://doi.org/10.1145/3678720.3685317

advancements in MCU hardware capabilities, modern MCUs are no
longer limited to functioning solely as sensors. Instead, they have
now the ability to perform smart computation such as analytics
based on Machine Learning models [8].

While C and C++ have been the de facto standard for program-
ming MCUs, over the last years, managed programming languages
such as JavaScript [12, 28], Python [14], and Erlang [4], have grad-
ually targeted MCUs through the use of lightweight Virtual Ma-
chines (VMs), or compilers that generate native code that runs
on MCUs [32, 37]. As a result, modern IoT systems are complex
distributed systems composed of numerous MCUs interacting with
one another, through different communication channels [25] (e.g.,
Wi-Fi, Zigbee, LoRa) that perform smart computation.

As more and more programming languages (e.g., Rust, Go,
Python) target MCUs, the need for suitable testing and debugging
support for these languages becomes necessary. A large number
of existing debugging support, however, is only available for C
and C++ applications [7, 36, 40], whereas debugging support for
other languages is scarce, if not missing. Several VMs targeting
MCUs, such as Espruino [12] and WARDuino [17], offer debuggers
with classical debugging operations, such as step into and step over.
Numerous MCU VMs [4, 14, 28, 39], however, lack any debugging
support. And as existing desktop debuggers cannot be used to de-
bug MCUs due the hardware-constraints, debugging support has to
be implemented over and over again for each new VM or language
targeting MCUs.

To the best of our knowledge, OpenOCD [27] has emerged as the
only language-agnostic debugging solution for MCUs, supporting
several programming languages including Rust, Go, C, and C++.
However, OpenOCD is specifically designed to debug applications
that compile to native MCU machine code, making it unsuitable for
debugging applications that compile to bytecode run on a MCU run-
time [12, 14, 28, 39]. Additionally, OpenOCD was designed to target
single MCUs, making it unfit for language-agnostic debugging of an
entire IoT system. As a result, there is a lack of language-agnostic
debugging support that can target bytecode-compiled languages
and modern IoT systems.

In this paper, we explore the challenges of providing language-
agnostic debugging able to target both individual MCUs, similar
to OpenOCD, and modern IoT systems composed of numerous
MCUs running different programming languages. We envision a
solution that builds on top of WebAssembly (Wasm) [18], which
is a binary instruction format that serves as a compilation target
for numerous programming languages, including Go, C, C++, Rust,
and AssemblyScript. By enabling language-agnostic debugging
for WebAssembly, we believe that it is possible to target all the
languages that compile to WebAssembly.

Designing a (WebAssembly) language-agnostic debugger for
MCUs comes with several challenges:

https://orcid.org/0000-0002-2952-855X
https://orcid.org/0000-0002-8037-0567
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.1145/3678720.3685317
https://doi.org/10.1145/3678720.3685317
https://doi.org/10.1145/3678720.3685317

DEBT ’24, September 19, 2024, Vienna, Austria Carlos Rojas Castillo, Matteo Marra, and Elisa Gonzalez Boix

Hardware-Constraints Debuggers targeting programs run-
ning on MCUs need to account for the MCU hardware re-
strictions. These restrictions require software to be written
in a way that minimizes memory consumption, computa-
tion power, and energy consumption. According to a 2021
study [24], 63% out of 193 surveyed IoT developers find this
task very challenging.

Over-The-Air Debugging MCUs are not always physically
accessible as they can be deployed in remote locations. This
forces tooling support to be open for over-the-air debugging
via communication channels such as Wi-Fi, BLE, and Zigbee.
Additionally, debugging support should also be provided in
a way that minimizes over-the-air communication as this
tends to drain the battery life of MCUs [5].

Distributed and Scalable IoT systems are inherently distri-
buted and can scale to thousands of MCUs that (partially)
interact with each other to provide a service. Implementing
a debugger for such systems requires debuggers that can
deal with many MCUs and coordinate debugging operations
across groups or all of them. Additionally, large-scale de-
bugging operations must be carefully designed to minimise
network overhead and system interruptions.

MCUs Run Different Languages Modern IoT systems may
consist of MCUs running the same or different languages.
Consequently, debuggers must ensure that debug operations
remain applicable across variousMCUs, regardless of the pro-
gramming language used on each MCU. This is challenging
because debugging operations are often tied to a program-
ming language, and some operations are only relevant to
some programming languages.

In the remainder of this paper, we will first elaborate on Web-
Assembly (section 2) and the opportunities and challenges that
arise from using it as a language-agnostic foundation. Then we
will overview the problem statement (section 3) and our envisioned
objectives (section 4).

2 Debugging WebAssembly on MCUs
We discuss what makes WebAssembly interesting for targeting
MCUs, the current approaches for debugging WebAssembly, their
limitations, and the challenges linked to implementing debuggers
for WebAssembly.

2.1 WebAssembly for MCUs
WebAssembly presents several strengths that make it a suitable
candidate for language-agnostic debugging of MCUs.

First, numerous programming languages (e.g., Rust, C, C++, Go,
AssemblyScript, F#), already compile to WebAssembly while many
more are gradually targeting it [3]. The debugging support can
potentially target all of these languages that do compile to Web-
Assembly. Second, WebAssembly’s bytecode has been intention-
ally designed to be compact and small in size [18], making it suit-
able for hardware-restricted devices such as MCUs. Finally, Web-
Assembly is hardware-independent [18], meaning that as long as
a WebAssembly runtime is available for a target hardware. Web-
Assembly applications can, as far as we know, with little to no
compiler configuration, target the hardware via the runtime.

In the case of MCUs, several WebAssembly runtimes (e.g., WAR-
Duino [17], Wasm3 [39], WAMR [2]) can already target MCUs. This
enables many languages that compile toWasm to also run onMCUs.

2.2 WebAssembly Debugging Formats
To debug WebAssembly applications, compilers typically generate
debugging information according to two debugging formats:

Source Map Spec The Source Map Spec [33] was originally in-
troduced for debugging TypeScript applications transpiled to
JavaScript on theWeb.WebAssembly language implementers
have typically opted to generate this debugging information
when targeting the Web because it is natively supported by
all major browser vendors. WebAssembly-compatible lan-
guages that generate this format include AssemblyScript and
Rust, where Rust relies on an external tool to produce it [26].

DWARF DWARF [9] was originally introduced for debugging
ELF-binary files, a standard executable file format for the
UNIX OS, and has since been extended to other OSs. It is
typically the debugging format of choice when compiling
applications to run on desktop machines. Currently, several
debuggers rely on DWARF, such as GDB [15], LLDB [23],
and OpenOCD [27] for MCUs. WebAssembly-compatible
languages that generate this format include Rust, Go, and
Zig.

We have identified a number of limitations that arise when using
such formats for building debuggers.

Source Map Spec Lacks Debugging Information. The Source Map
Spec does not provide sufficient debugging information for source-
level debugging. In particular, it cannot map WebAssembly byte-
code level state to source-level state. Consequently, Source Map
Spec debuggers, such as those in browsers, are forced to provide
debugging support at the level of the WebAssembly bytecode. For
instance, if the application developer pauses the debugger at a
specific source-location, the debugger cannot show the content of
variables in-scope (e.g., object fields, string). Instead, it only shows
bytecode-level content (e.g., linear memory, stack). To view source-
level variables, tool users must mentally reconstruct their state
from the bytecode-level content.

DWARF Requires Machine to Source-Level Adaptors. Unlike the
Source Map Spec, DWARF provides debugging information that
enables source-level debugging. Debuggers that rely on DWARF
(e.g., OpenOCD, GDB, LLDB), however, have been primarily de-
signed for applications that compile to native machine code. Using
these debuggers for bytecode applications, such as WebAssembly,
requires the runtime implementers to create mappers that trans-
late machine-level operations to source-level debug operations. For
instance, a step into operation, which advances computation to the
next source-location, requires among others runtime implementers
to ensure that the PC pointing to the machine code of the runtime
stops when the instruction PC (i.e., the PC used internally by the
runtime to point to a bytecode instruction) reaches the instruction
corresponding to the next source-location. Two mappings are re-
quired: one from machine code to bytecode-level and one from
bytecode-level to source-code level. This effort must be repeated

Language-Agnostic Debugging for Microcontrollers DEBT ’24, September 19, 2024, Vienna, Austria

for each debug operation and WebAssembly runtime that wishes
to integrate a DWARF-based debugger.

Debugging Formats Are Resource-Intensive. Regardless of the gen-
erated debugging format, the obtained debugging information is
too large for storing on MCUs. To showcase this issue, consider
the small Blink Led example written in Rust depicted in Figure 1.
The application repetitively turns a led on and off after a constant
period of time. When compiling the example to WebAssembly with
the debugging flags enabled1, the Rust compiler generates a Wasm
module (i.e., the WebAssembly bytecode that can be given to a
WebAssembly runtime) extended with DWARF-based debugging
information. The obtained module totals a size of 4.5 KB where
approximately 84% of the size is due to the debugging information.
As is, this module cannot be deployed on a MCU due to its lim-
ited storage capabilities (e.g., the M5StickC [34] has 4MB of Flash
Memory and 520 KB of SRAM). Additionally, the need to deploy
along the module extra software, such as theWebAssembly runtime
and OS, further reduces the available storage space. Similarly, the
Source Map Spec debugging format is also heavily weighted.

While tools are available to trim the debugging information
from the Wasm module [1], the large size of the debugging infor-
mation has implications for the design of MCU debugging support.
Since MCUs cannot store debugging information, WebAssembly
debuggers must (1) operate from an external machine where the de-
bugging information is held and (2) map debugging operations from
source-level to bytecode-level, as MCUWebAssembly runtimes lack
direct access to source-level debugging information.

2.3 Challenges for Debugging WebAssembly
With the aforementioned limitations, we can observe several chal-
lenges.

Variability in Debugging Information. Overall, the number of debug-
ging formats, the differences in debugging information provided
by the formats, as-well-as the potential inconsistencies within a
debugging format (e.g., DWARF content may vary depending on the
compiler [9, 22]) pose significant challenges for the implementation
of language-agnostic debuggers for WebAssembly. On one hand,
debuggers must account for different debugging formats to ensure
compatibility with any language. On the other hand, debuggers
need to offer consistent debugging support despite the different
depths and inconsistencies of the debugging information provided
by a debugging format.

Map Source-Level to Bytecode-Level Operations. The large size of
the debugging information forces WebAssembly debuggers to be
implemented as components that primarily drive the debugging be-
haviour externally from theMCU. This new design poses challenges
for the implementation of debuggers. In particular, the implementa-
tion of some debug operations (e.g., break on line 18, step into call)
will have to primarily occur on an external machine. Where the
external machine will have to find a way how to map source-level
operations to bytecode-level operations. This is not trivial as sev-
eral debug operations are language-dependent and the connection

1rustc -C link-self-contained=no -C link-args=–no-entry -C link-args=-zstack-
size=32768 --target wasm32-unknown-unknown -g blink.rs

1 / / . . .
2
3 pub fn de l ay (ms : u32) {
4 unsafe {
5 / / e x t e r n env f u n c t i o n
6 ch i p _d e l a y (ms) ;
7 }
8 }
9
10 # [no_mangle]
11 pub fn main () {
12 const LED : u32 = 1 0 ;
13 const SLEEP : u32 = 1 0 0 0 ;
14 const OUTPUT : u8 = 2 ;
15 const ON: u8 = 1 ;
16 const OFF : u8 = 0 ;
17
18 pin_mode (LED , OUTPUT) ;
19
20 loop {
21 d i g i t a l _ w r i t e (LED , ON) ;
22 de l ay (SLEEP) ;
23 d i g i t a l _ w r i t e (LED , OFF) ;
24 de l ay (SLEEP) ;
25 }
26 }

Figure 1: Rust Blink Led Example that at each iteration turns
ON andOFF a LED after SLEEP ms. The functions called in the
main are implemented in terms of function calls imported
from the WARDuino [17] runtime.

between the bytecode and language syntax or semantics is not
necessarily clear.

High Debugging Runtime Overhead. The large size of the debugging
formats has also implications on the runtime performance of the
debugging support. In particular, as each debug operation applied
on the runtime happens at the bytecode-level, source-level debug-
ging can become highly inefficient. For instance, a source-level step
operation that leads to the next line of source code may require 10
consecutive step operations at the level of WebAssembly. This can
result in drastic overhead, particularly, when implementing more
advanced debug operations and debugging over-the-air.

3 Problem Statement
In what follows, we identify several problems that hinder the de-
bugging of a single MCU or an entire IoT system.

Redundant Modus Operandi for Debugger Implementation. Existing
desktop debugging tools are not tailored to the unique character-
istics of MCUs or IoT systems, particularly, the limited hardware
capabilities of MCUs [24]. As a result, application developers can-
not rely on desktop debuggers to target MCUs. Instead, tool imple-
menters have to continuously invest effort in implementing new
debuggers that target MCUs. With the rise in lightweight VMs
for MCUs [4, 12, 14, 28, 39], this effort must be repeated over and
over again for each new programming language that targets MCUs.
While implementing a new debugger per language can result in a
debugger fully tailored to that target language, particularly when

DEBT ’24, September 19, 2024, Vienna, Austria Carlos Rojas Castillo, Matteo Marra, and Elisa Gonzalez Boix

the tool implementers control the VM implementation. This ap-
proach, however, does not scale to IoT systems running different
languages, as it would require the language-dependent debugger
to accommodate all possible MCU VMs and languages.

Unexisting Debugging Support Leaves Systems Partially Untested.
Modern IoT systems can consist of MCUs running different lan-
guages. When debugging such systems, application developers are
potentially forced to alternate between the available debuggers to
target their desired languages.

However, debugging support is not always available for every
language [4, 14, 28, 39], which forces application developers to
rely on log-based debugging [24], or on tools that are not tailored
for source-level debugging of MCU bytecode applications such as
OpenOCD [27]. Therefore, as long as debugging support is nonex-
istent for some languages, it is very hard for application developers
to debug all parts of an IoT system.

(Advanced) Debug Operations Are Language-Dependent. Debugging
support for MCUs has already been in place for a couple of years [12,
20, 27, 31, 40]. However, not every debugger provides the same level
of debug operations. Although many do provide debuggers with
classical debug operations such as step into, step over, and more,
only a few [20, 40] provide advanced debugging operations highly
beneficial for MCUs. A 2012 study by Britton et al. [6] has shown
that having access to advanced debug tool operations, such as back-
in-time debugging, is crucial to significantly reduce debugging time
and development costs. In the literature, we can find some examples:
Clairvoyant [40] provides the ability to trigger interrupt handlers
on demand which is highly beneficial as MCUs applications are
interrupt-driven. Moreover, recent work [20, 31] has made it possible
to reduce debugging overhead on MCUs and enabled step-back
debugging on MCUs.

However, by design, these (advanced) debug operations are only
available to the languages for which the debugger was designed.
Other languages cannot benefit from them. Instead, now application
developers are potentially forced to decide on the programming
language based on the available debugging support.

Incompatible Bytecode-Level Debugging Support. Currently, most
of the available debugging support has been designed to target
applications that compile to MCU machine code. For instance,
openOCD [27], which is the dominant approach for debugging
MCUs, allows us to debug applications written in languages such as
C, C++, Go [37], and Rust [32] since compilers exist that generate
native machine code for MCUs such as the ESP32 [10].

However, debugging bytecode applications run on top of a VM is
not possible at the source-level. With OpenOCD application devel-
opers will only be able to debug the VM and not their application.
More specifically, any debug operation applied will be applied to
the VM’s execution and not at the source-level of the bytecode.
As a result, tool users need to manually perform mental adaptions
between machine-level to source-level code when using OpenOCD.

Lack of Distributed and Scalable Debugging Support. Many of the
debuggers that target IoT systems such as Sympathy [30], Mon-
tiThings [19], and IoTReplay [13], are designed for Wireless Sensor
Networks (WSN) [35] where MCUs are sensors that periodically
send telemetry data to central servers. Troubleshooting WSNs is

primarily achieved by (passively or actively) observing network
activity. However, modern IoT systems are composed of MCUs
that perform smart computation and may require complex interac-
tions to enable a distributed service. Thus introducing the need for
debuggers able to debug individual MCUs or subsets of a System.

To the best of our knowledge, Clairvoyant [40] is one of the
few debuggers capable of targeting individual MCUs or subsets
of a system as it provides debug operations that apply to both
individual MCUs (e.g., break, step) or the whole system (e.g., global
break, global continue). However, the system-wide debug operation
of Clairvoyant are 5 operations that apply to all MCUs of a system.
There is no support for distributed debug operations that can for
instance be applied to a selection of MCUs (e.g., break MCU x and
y on message received from MCU z). These kinds of distributed
debug operations are crucial to help detect concurrency bugs which
according to several studies [21, 24, 38] are considered to be frequent
and severe in IoT systems.

Debugging Formats Require Additional Hardware and Adaptors. De-
bugging formats, such as DWARF [9] and the Source Map Spec [33],
are memory-intensive and therefore cannot be stored on MCUs. As
a result, MCU debuggers using such debugging formats are forced
to operate from an external machine. For instance, in the case of
OpenOCD, the debugging software is deployed on a separate ma-
chine and it connects physically to a MCU to enable debugging via
the JTAG [16] interface usually physically present on a MCU.

However, this setup becomes rapidly costly and unpractical when
transitioning to over-the-air debugging. This is because these de-
buggers need to maintain a physical connection to the MCU for
debugging. For instance, in the case of OpenOCD, when transition-
ing to over-the-air debugging, the physical connection to the MCU
needs to be maintained between OpenOCD and the MCU. This im-
plies for instance that for a desktop machine to be able to debug a
MCU over Wi-Fi, additional hardware (e.g., Raspberry Pi [29]) with
Wi-Fi capabilities needs to be deployed per MCU. The hardware has
then the responsibility to accept client-side desktop connections
and run the OpenOCD software that applies debug operations to
the MCU.

Additionally, as discussed in section 2, the use of DWARF re-
quires the implementation of adaptors that translate between ma-
chine-level debug operations to source-level operations to make
existing debugging support target bytecode applications.

4 Envisioned Language-Agnostic Debugging
Based on the aforementioned problems (section 3) andWebAssembly
debugging challenges (section 2), we formulate requirements that a
debugger should exhibit to enable WebAssembly language-agnostic
debugging tailored to MCUs and IoT systems:

Truly Language-Agnostic Debugger. A truly language-agnostic de-
bugger is a debugger that can target any language that compiles to
WebAssembly. To achieve this objective, the envisioned techniques
should not make any assumption on the generated debugging for-
mat as this can vary per language and compiler.

Additionally, a truly language-agnostic debugger ensures that
debug operations (e.g., step into, step over) are applicable across all
languages that compile toWebAssembly. The operations should not

Language-Agnostic Debugging for Microcontrollers DEBT ’24, September 19, 2024, Vienna, Austria

be lost when targeting a different language. However, some debug
operations are language-dependent and only applicable to specific
sets of languages. For instance, a debug operation that breaks on
instance creation, is only applicable to object-oriented languages.
Therefore, the debugger should provide a way to (1) distinguish
between language dependent and independent debug operations,
(2) apply language-dependent operations in a language-agnostic
manner, and (3) implement a mechanism to selectively enable or
disable debug operations based on the target language.

Portability of Debugging Support Across WebAssembly Runtimes.
The investigated language-agnostic debugging techniques should
be portable to other MCU WebAssembly runtimes. This is partic-
ularly important as it eases the integration process of debugging
support into a WebAssembly runtime, thus reducing the need for
runtime implementers to reimplement existing debugging support
over and over again.

Over-the-air Debugging. The debugger should be designed in a way
to enable over-the-air debugging. However, this capability intro-
duces additional latency, which must be carefully accounted for,
especially when debugging IoT systems. For instance, reducing the
need for communication with the WebAssembly runtime can help
minimise the debugging latency.

Source-Level to Bytecode-Level Mappings. As the debugging formats
are too memory-intensive to store on MCUs. The implemented
debugger should therefore primarily run on a desktop machine and
function under the assumption that MCU WebAssembly runtimes
only operate at the bytecode-level, not at the source-level. As a
consequence, when performing debug operations, the debugger
will have to compute the behaviour of most of the debug operations
on the desktop machine and apply them on the MCU runtime when
needed. Part of this calculation involves mapping debug operations
between source-level code to the WebAssembly bytecode-level.

Distributed and Scalable Debug Operations. Due to the scalability
and distribution nature of IoT systems, debug operations should
easily target all or some MCUs part of a system. The debug op-
erations should also account for the possibility that they may be
applied jointly upon several MCUs. For this, we anticipate the need
for coordination mechanisms between those MCUs. In doing this,
we will be able to introduce distributed debug operations that can
help with the debugging of concurrency bugs that are omnipresent
in modern IoT systems.

System-wide Language-Agnostic Debugging. The debugger should
be able to dynamically target different programming languages
and smoothly transition between them. This is because when de-
bugging an IoT system where MCUs may run different languages,
debug operations need to remain language-agnostic. In particular,
we anticipate two kinds of debug operations for which language-
independence needs to be preserved: (1) debug operations that
target individual MCUs part of a system, and (2) distributed debug
operations that involve several MCUs part of a system.

5 Conclusion
In this paper, we have highlighted several challenges and problems
that complicate the implementation of language-agnostic debug-
gers for modern IoT systems. One major challenge is the need for
over-the-air debugging, which, combined with the hardware con-
straints of MCUs, poses significant challenges for tooling support.
Moreover, the need for additional hardware and adaptors has raised
more problems that complicate the implementation of scalable
over-the-air debugging support for large IoT systems. We have also
outlined key requirements for any language-agnostic debugging so-
lution. Specifically, the ability to identify both language-dependent
and independent debugging operations is crucial for ensuring that
debugging operations are portable across applications written in
different languages. Lastly, we have discussed and motivated an
envisioned solution for language-agnostic debugging based onWeb-
Assembly.

By building on previous work [20, 31], we are taking steps
towards implementing our envisioned WebAssembly language-
agnostic debugger. These early efforts made debugging over-the-air
possible but are only applicable to applications written in Textual
WebAssembly (i.e., a human-readable, bytecode-level programming
language syntactically close to WebAssembly). More recently, we
have extended these debuggers to support the debugging of Rust
and AssemblyScript applications.We are also exploring an approach
that could generalise the debugger to any language that compiles
to WebAssembly, though we currently lack sufficient evaluation to
confirm this claim. Additionally, we are designing a debugging API
that aims to enable distributed debugging operations, crucial for
modern IoT systems.

Acknowledgments
We are very grateful for the financial support provided by the Fonds
Wetenschappelijk Onderzoek - Vlaanderen - that helped finance
PhD-SB fellow Carlos Rojas Castillo Project number: 1SHEU24N.

References
[1] Bytecode Alliance. 2024. CLI and Rust libraries for low-level manipulation ofWeb-

Assembly modules. https://github.com/bytecodealliance/wasm-tools. Accessed:
June 04, 2024.

[2] Bytecode Alliance. 2024. WebAssembly Micro Runtime (WAMR). https://github.
com/bytecodealliance/wasm-micro-runtime. Accessed: June 04, 2024.

[3] appcypher. 2024. Awesome WebAssembly Languages. https://github.com/
appcypher/awesome-wasm-langs. Accessed: June 04, 2024.

[4] AtomVM. 2024. AtomVM. https://www.atomvm.net/. Accessed: June 04, 2024.
[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things:

A survey. Computer Networks 54, 15 (2010), 2787–2805. https://doi.org/10.1016/j.
comnet.2010.05.010

[6] Tom Britton, Lisa Jeng, Graham Carver, and Paul Cheak. 2012. Quantify the time
and cost saved using reversible debuggers. Cambridge Judge Business School,
Tech. Rep (2012).

[7] Qing Cao, Tarek Abdelzaher, John Stankovic, Kamin Whitehouse, and Liqian
Luo. 2008. Declarative tracepoints: a programmable and application independent
debugging system for wireless sensor networks. In Proceedings of the 6th ACM
Conference on Embedded Network Sensor Systems (Raleigh, NC, USA) (SenSys
’08). Association for Computing Machinery, New York, NY, USA, 85–98. https:
//doi.org/10.1145/1460412.1460422

[8] Sauptik Dhar, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh Kurup,
andMohak Shah. 2021. A Survey of On-Device Machine Learning: An Algorithms
and Learning Theory Perspective. ACM Trans. Internet Things 2, 3, Article 15 (jul
2021), 49 pages. https://doi.org/10.1145/3450494

[9] DWARF. 2024. DWARF Debugging Format. https://dwarfstd.org/. Accessed:
June 04, 2024.

[10] Espessif. 2024. Tips and Quirks. https://docs.espressif.com/projects/esp-idf/en/
stable/esp32/api-guides/jtag-debugging/tips-and-quirks.html. Accessed: June

https://github.com/bytecodealliance/wasm-tools
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/appcypher/awesome-wasm-langs
https://github.com/appcypher/awesome-wasm-langs
https://www.atomvm.net/
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1145/1460412.1460422
https://doi.org/10.1145/1460412.1460422
https://doi.org/10.1145/3450494
https://dwarfstd.org/
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/jtag-debugging/tips-and-quirks.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-guides/jtag-debugging/tips-and-quirks.html

DEBT ’24, September 19, 2024, Vienna, Austria Carlos Rojas Castillo, Matteo Marra, and Elisa Gonzalez Boix

04, 2024.
[11] ESPRESSIF. 2024. ESPRESSIF. https://www.espressif.com/. Accessed: June 04,

2024.
[12] Espruino. 2024. Espruino. https://www.espruino.com/. Accessed: June 04, 2024.
[13] Kaiming Fang and Guanhua Yan. 2020. IoTReplay: Troubleshooting COTS IoT De-

vices with Record and Replay. In 2020 IEEE/ACM Symposium on Edge Computing
(SEC). 193–205. https://doi.org/10.1109/SEC50012.2020.00033

[14] Damien George. 2024. MicroPython. https://micropython.org/. Accessed: June
04, 2024.

[15] GNU. 2024. The GNU Project Debugger. https://www.gnu.org/software/gdb/.
Accessed: June 04, 2024.

[16] IEEE 1149.1 Working Group. 2024. Official IEEE Std. 1149.1 Standard Working
Group. https://grouper.ieee.org/groups/1149/1/. Accessed: June 04, 2024.

[17] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino: a dynamic
WebAssembly virtual machine for programming microcontrollers. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes - MPLR 2019. ACM Press, 27–36. https://doi.org/10.
1145/3357390.3361029

[18] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
Web up to Speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
185–200. https://doi.org/10.1145/3062341.3062363

[19] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. 2021. Under-
standing and improving model-driven IoT systems through accompanying digital
twins. In Proceedings of the 20th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (Chicago, IL, USA) (GPCE
2021). Association for Computing Machinery, New York, NY, USA, 197–209.
https://doi.org/10.1145/3486609.3487210

[20] Tom Lauwaerts, Carlos Rojas Castillo, Robbert Gurdeep Singh, Matteo Marra,
Christophe Scholliers, and Elisa Gonzalez Boix. 2022. Event-Based Out-of-
Place Debugging. In Proceedings of the 19th International Conference on Man-
aged Programming Languages and Runtimes (Brussels, Belgium) (MPLR ’22).
Association for Computing Machinery, New York, NY, USA, 85–97. https:
//doi.org/10.1145/3546918.3546920

[21] Chao Li, Rui Chen, Boxiang Wang, Zhixuan Wang, Tingting Yu, Yunsong Jiang,
Bin Gu, and Mengfei Yang. 2023. An Empirical Study on Concurrency Bugs
in Interrupt-Driven Embedded Software. In Proceedings of the 32nd ACM SIG-
SOFT International Symposium on Software Testing and Analysis (<conf-loc>,
<city>Seattle</city>, <state>WA</state>, <country>USA</country>, </conf-
loc>) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
1345–1356. https://doi.org/10.1145/3597926.3598140

[22] LKML. 2024. Linux Kernel Mailing List Archive. https://lkml.org/lkml/2012/2/10/
356. Accessed: June 04, 2024.

[23] LLDB. 2024. The LLDB Debugger. https://lldb.llvm.org/. Accessed: June 04, 2024.
[24] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges.

In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
460–472. https://doi.org/10.1109/ICSE43902.2021.00051

[25] Kais Mekki, Eddy Bajic, Frederic Chaxel, and FernandMeyer. 2019. A comparative
study of LPWAN technologies for large-scale IoT deployment. ICT Express 5, 1

(2019), 1–7. https://doi.org/10.1016/j.icte.2017.12.005
[26] mtolmacs. 2024. Cargo WASM Sourcemap Utility. https://github.com/mtolmacs/

wasm2map. Accessed: June 04, 2024.
[27] OpenOCD. 2024. Open On-Chip Debugger. https://openocd.org/. Accessed: June

04, 2024.
[28] Duktape organization. 2024. Duktape. https://duktape.org/. Accessed: June 04,

2024.
[29] Raspberry Pi. 2024. Raspberry Pi Foundation. https://www.raspberrypi.org/.

Accessed: June 04, 2024.
[30] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler, and

Deborah Estrin. 2005. Sympathy for the sensor network debugger. In Proceedings
of the 3rd International Conference on Embedded Networked Sensor Systems (San
Diego, California, USA) (SenSys ’05). Association for Computing Machinery, New
York, NY, USA, 255–267. https://doi.org/10.1145/1098918.1098946

[31] Carlos Rojas Castillo, Matteo Marra, Jim Bauwens, and Elisa Gonzalez Boix. 2023.
Out-of-things debugging: A live debugging approach for Internet of Things. The
Art, Science, and Engineering of Programming 7, 2, Article 5 (oct 2023), 33 pages.
https://doi.org/10.22152/programming-journal.org/2023/7/5

[32] Rust. 2024. The Rust on ESP Book. https://docs.esp-rs.org/book/. Accessed: June
04, 2024.

[33] SourceMap. 2024. SourceMap. https://tc39.es/source-map/. Accessed: June 04,
2024.

[34] M5 Stack. 2024. M5 Stack. https://m5stack.com/. Accessed: June 04, 2024.
[35] Ryo Sugihara and Rajesh K. Gupta. 2008. Programming models for sensor net-

works: A survey. ACM Trans. Sen. Netw. 4, 2, Article 8 (apr 2008), 29 pages.
https://doi.org/10.1145/1340771.1340774

[36] Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh Bagchi, and Patrick Eu-
gster. 2015. TARDIS: software-only system-level record and replay in wire-
less sensor networks. In Proceedings of the 14th International Conference on In-
formation Processing in Sensor Networks (Seattle, Washington) (IPSN ’15). As-
sociation for Computing Machinery, New York, NY, USA, 286–297. https:
//doi.org/10.1145/2737095.2737096

[37] TinyGo. 2024. A Go Compiler For Small Places. https://tinygo.org/. Accessed:
June 04, 2024.

[38] Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei,
and Tao Huang. 2022. Understanding device integration bugs in smart home
system. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022). Association for
Computing Machinery, New York, NY, USA, 429–441. https://doi.org/10.1145/
3533767.3534365

[39] wasm3. 2024. wasm3. https://github.com/wasm3/wasm3. Accessed: June 04,
2024.

[40] Jing Yang, Mary Lou Soffa, Leo Selavo, and Kamin Whitehouse. 2007. Clairvoy-
ant: a comprehensive source-level debugger for wireless sensor networks. In
Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems (Sydney, Australia) (SenSys ’07). Association for Computing Machinery,
New York, NY, USA, 189–203. https://doi.org/10.1145/1322263.1322282

Received 2024-06-21; accepted 2024-07-22

https://www.espressif.com/
https://www.espruino.com/
https://doi.org/10.1109/SEC50012.2020.00033
https://micropython.org/
https://www.gnu.org/software/gdb/
https://grouper.ieee.org/groups/1149/1/
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3486609.3487210
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1145/3546918.3546920
https://doi.org/10.1145/3597926.3598140
https://lkml.org/lkml/2012/2/10/356
https://lkml.org/lkml/2012/2/10/356
https://lldb.llvm.org/
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1016/j.icte.2017.12.005
https://github.com/mtolmacs/wasm2map
https://github.com/mtolmacs/wasm2map
https://openocd.org/
https://duktape.org/
https://www.raspberrypi.org/
https://doi.org/10.1145/1098918.1098946
https://doi.org/10.22152/programming-journal.org/2023/7/5
https://docs.esp-rs.org/book/
https://tc39.es/source-map/
https://m5stack.com/
https://doi.org/10.1145/1340771.1340774
https://doi.org/10.1145/2737095.2737096
https://doi.org/10.1145/2737095.2737096
https://tinygo.org/
https://doi.org/10.1145/3533767.3534365
https://doi.org/10.1145/3533767.3534365
https://github.com/wasm3/wasm3
https://doi.org/10.1145/1322263.1322282

	Abstract
	1 Introduction
	2 Debugging WebAssembly on MCUs
	2.1 WebAssembly for MCUs
	2.2 WebAssembly Debugging Formats
	2.3 Challenges for Debugging WebAssembly

	3 Problem Statement
	4 Envisioned Language-Agnostic Debugging
	5 Conclusion
	Acknowledgments
	References

