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Abstract—The digital infrastructures supporting modern soft-
ware have grown too complex to manage by hand. Therefore, In-
frastructure as Code (IaC) has become a widely adopted practice
to programmatically automate deploying such infrastructures.
As infrastructure code may rely on third-party libraries and
packages, understanding the software supply chains generated
by these deployment dependencies is crucial to ensure repro-
ducibility and security of software deployments. Nonetheless,
deployment software supply chains remain an understudied topic.
This paper aims to bridge this gap by first investigating which
types of third-party software IaC may depend upon, then
building an automated mechanism to identify such dependencies
from infrastructure implementations. We focus our investigation
on Ansible, one of the most popular IaC tools, and its plugins,
which implement the interactions with the deployment platforms
under configuration. From a manual analysis of 266 documented
third-party requirements of Ansible plugins, we construct a
taxonomy of 7 types of third-party software dependencies and
their properties. We also found that a plugin’s dependencies are
typically only described informally in the plugin’s documentation,
which may be unstructured, incorrect, or incomplete, which
encumbers the automatic generation of Software Bills of Ma-
terials (SBOMs) for deployment code. Therefore, we design an
automated Software Composition Analysis (SCA) that extracts
these dependencies from an Ansible plugin’s implementation,
leveraging 5 dependency implementation patterns identified in
our manual analysis. This approach achieves a recall of 61%–
77% and a precision of 74%–95%. Finally, we apply the SCA
in a large-scale quantitative experiment on 11,241 plugins, and
find that 38% have third-party dependencies. The taxonomy
presented in this paper can serve as a reference to design
deployment SBOMs for these plugins, whereas our SCA forms
a first step towards automatically generating such SBOMs.

Index Terms—software supply chain, infrastructure as code,
deployment automation, third-party dependencies, software com-
position analysis

I. INTRODUCTION

Automating software deployments to increase their relia-
bility and reproducibility is a key activity in the DevOps
approach. To this end, Infrastructure as Code (IaC) [1] has
become an established practice [2], enabling developers to
specify infrastructure automation as executable source code.
Consequently, tools that enable IaC form important parts
of software supply chains, i.e., the components, tools, and
processes used to build a software product. Analysing software
supply chains is vital, especially from a security perspective,
as attacks on software supply chains have become increasingly
common [3]. Their alarmingly high risk has led to new

government legislations in the US [4] and the EU [5] aimed
at strengthening them by, among others, adopting Software
Bills of Materials (SBOMs)—structured, machine-readable
specifications of the composition of software products that aid
in identifying vulnerable or outdated dependencies [6].

Aside from constituting parts of software supply chains,
infrastructure automation code also has its own software
supply chain, which we coin the deployment software supply
chain. These may comprise IaC artefacts from within the
IaC tool’s own ecosystem, but also software from several
general-purpose software ecosystems. For instance, to provi-
sion a cloud machine, the infrastructure code may depend
on OS packages (e.g., to create cryptographic keys), the
remote API of the cloud service (e.g., Amazon’s AWS APIs),
and development libraries (e.g., a language-specific wrapper
around the remote API). Similar to traditional software supply
chains, the identification of vulnerable dependencies, licence
violations, etc. requires analysing these deployment software
supply chains and generating SBOMs for IaC. However, to the
best of our knowledge, an automated analysis of deployment
software supply chains does not yet exist.

We aim to bridge this gap by designing and empirically
evaluating such an automated analysis for Ansible, one of the
most popular IaC tools today [7]. Specifically, we investigate
two fundamental parts that are necessary for an automated
analysis. First, we aim to identify the information that needs
to be contained in a deployment SBOM for Ansible. Second,
we investigate how the dependencies of Ansible infrastructure
code can be extracted automatically, forming a stepping stone
to automated generation of deployment SBOMs for Ansible.

We focus our investigation on Ansible plugins, which im-
plement the interactions with the configured systems, rather
than the Ansible infrastructure specifications themselves.
While both may have third-party dependencies, the latter are
managed through well-defined machine-readable requirements
files [8], which lend themselves well to automated analysis.
Contrarily, plugin dependencies, which are the focus of this
work, are neither well-defined nor well-structured, being speci-
fied only in informal documentation1, which may be incorrect
or incomplete. This encumbers automated analysis, as it is
unknown what types of dependencies are to be considered, or
how they can be extracted.

1https://github.com/ansible/ansible/issues/62733
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Therefore, in this paper, we first conduct a qualitative em-
pirical analysis of documented plugin dependencies to identify
the types of third-party libraries and packages depended upon
by plugins. This provides insights into the information that
needs to be contained within a deployment SBOM for Ansible.
Afterwards, we qualitatively study plugin implementations to
identify third-party dependency management patterns, which
we use to design an automated Software Composition Analysis
(SCA) that extracts the dependencies from Ansible plugin
implementations. This SCA can be built upon to automatically
generate deployment SBOMs for Ansible infrastructure code.
Finally, we show how this SCA enables analysing Ansible
deployment software supply chains at scale by conducting
a large-scale quantitative experiment into the prevalence of
plugin dependencies.

In summary, this paper presents the following contributions:
• We conduct the first empirical study on deployment depen-

dencies in Ansible Infrastructure as Code applications.
• A taxonomy of 7 types of Ansible plugin dependencies and

their properties, providing insights into the information that
should be contained within deployment SBOMs for Ansible.

• A catalogue of 5 dependency management practices imple-
mented in Ansible plugins, which can serve as a reference
to plugin maintainers to manage their dependencies.

• An automated Software Composition Analysis for Ansible
that can be built upon to generate SBOMs for plugins.

• A large-scale quantitative analysis of Ansible dependencies
that shows how the SCA enables automated analysis of
deployment software supply chains at scale.
A replication package containing our dataset, analysis

scripts, and a prototypical implementation of the SCA is
available at https://doi.org/10.6084/m9.figshare.27195810.

II. BACKGROUND

Ansible is a popular automation tool that can be used
to apply Infrastructure as Code. Ansible projects consist of
an application layer, in which practitioners use the Ansible
domain-specific language to specify the desired state of in-
frastructure machines, and a runtime layer that interprets these
specifications and configures the targeted systems [9].

In the application layer, practitioners write playbooks, spec-
ifying the tasks required to provision and configure an infras-
tructure of machines. A playbook executes on the controller, a
machine controlling the configuration process, which executes
each task on the host machines to be configured. Figure 1
depicts an example that configures a list of servers (line 1) by
deploying a Docker container (lines 3–9).

In the runtime layer, a plugin system allows extending
Ansible’s functionality. For instance, filter plugins and test
plugins extend Ansible’s embedded Jinja2 expression language
with new operations to transform data and test predicates
respectively. Inventory plugins construct an inventory, a list of
hosts to be configured. Modules are special types of plugins
that implement the logic behind the steps executed by a
task, e.g., community.docker.docker_container in
Figure 1. Modules differ from other plugins as they are

- hosts: servers 1

tasks: 2

- name: Deploy Docker container 3

community.docker.docker_container: 4

name: "nginx-server" 5

image: "nginx" 6

state: "started" 7

ports: 8

- "8080:80" 9

Fig. 1: Example of an Ansible playbook.

Fig. 2: Excerpt of the docker_container documentation.

executed in a separate process on each host, rather than on
the controller itself. Plugins have to be implemented in Python,
while modules can be implemented in any language.

Earlier versions of Ansible curated plugins in a centralised
mono-repository. As the number of plugins grew, Ansible
introduced collections of plugins and migrated the majority
of plugins to dedicated collection repositories. Collections
can also be maintained by third parties, and are indexed by
Galaxy2, Ansible’s content registry. A collection can be iden-
tified uniquely by the combination of its namespace (author)
and name, usually separated by a period. For instance, the
community.docker collection comprises plugins for working
with Docker, such as the docker_container module in
Figure 1, and the amazon.aws collection comprises plugins
that interact with Amazon’s AWS cloud.

A collection may depend on other collections, which can
be specified in the collection’s metadata manifest. A collec-
tion’s plugins may also depend on other types of software,
such as Python libraries or OS packages. For instance, the
docker_container module in Figure 1 depends on the
Docker API and several Python packages, as depicted in
Figure 2. Consequently, the deployment software supply chain
of Ansible playbooks comprises various types of third-party
software from diverse sources. However, these dependencies
can only be specified informally in the plugin’s documenta-
tion3, which may be highly unstructured, as exemplified in
Figure 2. Moreover, as module plugins execute on remote
hosts, these dependencies are to be installed on that remote
host, rather than with the collection on the controller. Not

2https://galaxy.ansible.com/
3Although some collections provide a Python requirements.txt file,

a preliminary analysis uncovered that these are too coarse-grained to identify
plugin dependencies, as not every plugin in a collection uses every depen-
dency.

2

https://doi.org/10.6084/m9.figshare.27195810
https://galaxy.ansible.com/


installing these dependencies will cause the execution of the
Ansible playbook using the plugins to fail partway, leaving
the remote hosts in a partially configured state.

III. EMPIRICAL STUDY DESIGN

In this section, we describe the design of our empirical
study. We investigate the following research questions:
• RQ1: Which types of third-party software do Ansible plugins

depend on? We first perform a manual qualitative analysis of
the types and characteristics of third-party software depen-
dencies of Ansible plugins, to gain a better understanding
of what needs to be represented in deployment SBOMs for
Ansible.

• RQ2: Do plugin implementations exhibit patterns that in-
dicate dependencies? The unstructured and informal nature
of the plugin documentation encumbers automatically ex-
tracting third-party dependencies. However, Ansible recom-
mends plugin maintainers to manually check whether depen-
dencies are satisfied before using them [10]. We therefore
qualitatively investigate the plugin implementations to distil
implementation patterns that can identify dependencies.

• RQ3: To what extent can Ansible plugin dependencies be
identified automatically? We develop a Software Composi-
tion Analysis (SCA) based on the dependency management
patterns from RQ2, and evaluate whether it can accurately
identify the plugin’s dependencies.

• RQ4: How prevalent are Ansible plugin dependencies in
the wild? Using the SCA resulting from RQ3, we conduct
a large-scale quantitative study of Ansible plugin dependen-
cies, from which we aim to gain a better understanding of
the extent of deployment software supply chains.

A. Data collection

To collect a representative dataset of Ansible plugin collec-
tions, we scrape the Ansible Galaxy registry (cf. Section II).
For each collection, we use the registry’s API to gather
information such as its GitHub repository, its releases, and
the number of times it has been downloaded from the registry.
Then, we augment this data with information from the collec-
tion’s GitHub repository (if specified), including the number of
commits, issue count, star count, etc. We collected the data on
2024–01–26, discovering 2817 collections and 1867 GitHub
repositories. We could not collect the information of 175 of
these GitHub repositories, e.g., because the repository was
removed or set to private.

As our goal is to study unique, open-source Ansible collec-
tions, we exclude 1125 of the 2817 collections because they
do not have a public GitHub repository. Furthermore, to avoid
considering duplicates, when two collections specify the same
GitHub repository, we only retain the one with the highest
download count. This eliminates another 242 collections.

Second, we apply filtering to ensure that our dataset contains
only mature and actively-maintained collections. We exclude 8
collections that are marked as deprecated on Ansible Galaxy.
We further exclude another 584 whose repository has not been
committed to in the year leading up to the data collection date,

TABLE I: Dataset statistics, excl. ansible.builtin.

Property Minimum Median Mean Maximum

# downloads 15.7K 136.3K 2.11M 62.5M
# commits 10 269 767 33.7K
Last activity 0 days 18 days 53 days 362 days
Active time 233 days 1370 days 1355 days 3984 days

and are thus no longer actively maintained. To retain only
those that are mature, we exclude 122 collections with fewer
than 10 commits. Similarly, we exclude another 165 that have
been active for less than half a year, measured as the time
between the date of the first and last commit to the repository.

Finally, we want to focus on collections that are widely
used in practice. Therefore, we retain only the top 10%
most downloaded collections according to Ansible Galaxy
statistics. This excludes another 384 collections that have been
downloaded less than 15,700 times.

After filtering, the resulting dataset counts 187 widely-used,
mature, open-source Ansible collections, representing 92.3%
of all downloads in the Ansible Galaxy ecosystem. Table I
depicts their summary statistics. For the empirical analysis, we
download the latest version of each collection. We also add
the ansible.builtin collection to the dataset. It is shipped with
Ansible and therefore should be included, but is missed by
our data collection strategy since it is not distributed through
Ansible Galaxy. Our final dataset contains 188 collections.

B. Parse collection documentation

We proceed to extract the requirements specified in the
embedded documentation of Ansible collection plugins. The
documentation for a plugin is embedded into its Python
implementation as a YAML document. We create a script that,
given a collection, first enumerates the collection’s plugins,
then extracts documented requirement lists for each plugin
individually. For instance, for the plugin whose documentation
is depicted in Figure 2, the script would produce a list of 6
items, each containing the text for one bullet of the highlighted
requirements list. For both steps, the script leverages Ansible’s
ansible-doc command, which processes the embedded
documentation. We run the script on the latest version of the
188 collections in the dataset. We enumerate 13,721 plugins
and successfully parse the documentation of 13,164 plugins.
In total, we identify 10,960 requirements belonging to 5537
plugins, forming the population for our study.

C. Open coding of collection dependencies

We manually investigate a statistically significant sample of
collection requirements to identify the types of third-party soft-
ware on which plugins depend (RQ1), as well as dependency
management patterns in the plugin implementations (RQ2).
For the latter, we intend to focus on how plugins check whether
dependencies are satisfied, and on what steps plugins take if
a dependency is not satisfied.

We first deduplicate documented requirements across dif-
ferent plugins in the same collection, because these plugins
may use common implementations, which would introduce
bias in our results. This results in 866 unique combinations of
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a collection and an individual documented plugin requirement.
We then take a random sample of this deduplicated population,
using a sample size obtained using Cochran’s formula for
categorical data, adjusted for small population sizes [11]
with 95% confidence, 5% margin of error, and an estimated
population proportion of 50% to maximise the sample size.
This results in a sample of 266 requirements spanning 51
collections. Then, the first author applies open coding to
qualitatively answer RQ1 and RQ2. To avoid subjective bias
which could be caused by the use of a single labeller, we only
label purely objective properties for which any ambiguity can
be resolved by consulting the online documentation.

For RQ1, the labeller determines whether the documented
requirement represents a valid software dependency (e.g.,
“This plugin requires the “requests” Python package”), as
opposed to requirements that do not contribute to the deploy-
ment software supply chain and are thus outside the scope
of this study (e.g., “This plugin requires root privileges”).
Valid requirements state the type of dependency, such as the
source ecosystem, and related properties, such as whether the
dependency has a version constraint. When the dependency
type is unclear, the labeller refers to online documentation
for the specified dependency. In subsequent iterations, they
generalise the labels to create categories of dependencies,
and derive the general properties exhibited by dependency-
specifying documented requirements.

For RQ2, for each dependency, we randomly select one
plugin whose requirement list contains the dependency. The
labeller then inspects the entirety of this plugin’s implementa-
tion for dependency management concerns. They summarise
the means through which the plugin checks whether the
dependency is satisfied, and the behaviour the plugin exhibits
in case the dependency is not satisfied. Both summaries are
assigned as distinct codes for the dependency. After coding
each dependency, the labeller generalises the codes to a
set of high-level properties that characterise the dependency
management, and iteratively refines the properties to capture
variations in similar codes. The result of this process is a set of
commonly-occurring implementation patterns related to plugin
dependency management.

D. Automated Software Composition Analysis

After the qualitative analysis in RQ2, we will have identified
code patterns whose presence in a plugin’s implementation are
indicative of its management of a dependency. As unstructured
dependency-specifying requirements cannot be used to reliably
extract deployment supply chains, we now use these patterns
to design a Software Composition Analysis that automatically
extracts managed dependencies from plugin implementations.

To find pattern instances in a plugin implementation, we will
use Joern [12], a multi-language static analysis framework.
Joern represents projects as code property graphs (CPGs), the
nodes of which represent program elements such as statements
and expressions. The edges capture properties of and rela-
tionships between these elements, including abstract syntax
tree containment, calls between functions, control flow, data

flow, and type information. Our approach will build a CPG for
all plugins in an Ansible collection, and will evaluate Joern
queries against the CPG that find instances of dependency
management patterns and thereby identify dependencies.

To answer RQ3, we will measure the precision and recall
of our Software Composition Analysis. The ground truth
comprises the manually-validated dependency-specifying doc-
umented requirements from RQ1. We run the SCA on the
implementation of the plugins from the ground truth, and
manually compare its output to the ground truth to identify true
positives. When the SCA reports multiple results that belong
to the same dependency (e.g., individual binaries from one OS
package), we manually merge the reports into one, consulting
online documentation where necessary. We do not distinguish
between optional and mandatory dependencies, and do not
consider version constraints, as we only need to determine
whether and which third-party software plugins rely on.

To compute recall, we mark those entries from the ground
truth that are missing from the SCA output as false negatives.
Note that when a plugin implementation does not check
for the presence of its dependencies, the SCA will fail to
identify them. Therefore, we calculate an upper and lower
bound on recall. The upper bound is defined as the ratio
of identified dependencies over the number of dependencies
in the ground truth for which the plugin checks whether
the dependency is satisfied. The lower bound is the ratio of
identified dependencies over the entire size of the ground truth,
including unchecked dependencies.

To calculate precision, when an entry in the SCA output
is not in the ground truth, we further inspect the plugin
documentation and implementation to determine whether it
is a true or false positive. This is necessary because some
plugin dependencies may not have been documented, and are
therefore missing from the ground truth which is constructed
from the plugin documentation. Moreover, some dependencies
may be on built-ins, such as built-in Python libraries or OS
packages. Although such built-in dependencies are likely to be
considered as false positives by plugin users and maintainers,
they are depended upon by the plugin. Moreover, dependencies
that are typically considered built-in may turn out to be
unavailable after all, e.g., the Python ssl library may be
missing if Python is compiled without SSL support.

Therefore, whether built-in dependencies should be consid-
ered true positives depends on context. To avoid subjectivity,
we again calculate an upper and lower bound on precision.
For the lower bound, we assume that all built-in dependencies
are false positives, which would be appropriate for developer-
oriented tooling. For the upper bound, we do not distinguish
between built-in and other dependencies, which would be
appropriate to extract the entire deployment software supply
chain.

E. Quantitative analysis of plugin dependencies

To answer RQ4, we apply the SCA resulting from RQ3 to
all 188 collections in the dataset, obtaining lists of dependen-
cies for each plugin. We map each code pattern identified in

4



Package

H: 159 C: 25

>: 50 ?: 18

Platform
H: 20 C: 0

>: 14 ?: 0

Runtime
H: 14 C: 3

>: 17 ?: 0

Python

H: 117 C: 23

>: 40 ?: 16

OS
H: 40 C: 2

>: 8 ?: 2

Misc
H: 2 C: 0

>: 2 ?: 0

OS
H: 13 C: 0

>: 7 ?: 0

API
H: 7 C: 0

>: 7 ?: 0

Python

H: 14 C: 2

>: 16 ?: 0

Ansible
H: 0 C: 1

>: 1 ?: 0

H: Host C: Controller >: Version constraints ?: Conditional

Fig. 3: Taxonomy of dependencies in Ansible collections. Host
and controller counts are mutually exclusive.

RQ2 to the most common dependency type the pattern is used
for. We use the mappings to automatically identify the types
of third-party software in the SCA results. Using the results,
we investigate and compare how many plugins depend on the
types of third-party software identified in RQ1.

IV. QUALITATIVE ANALYSIS

In this section, we present the results of our manual qual-
itative study into the dependencies of and the dependency
management implemented by Ansible plugins.

A. RQ1: Which types of third-party software do Ansible
plugins depend on?

Among the sample of 266 requirements from the em-
bedded plugin documentation, we manually identify 221
valid dependency-specifying ones. The other 45 requirements
specify generic preconditions, such as user permissions or
conditions on the Ansible configuration. We note that the
dependency specifications in the plugin documentation are
highly unstructured, ranging from merely the dependency
name (e.g., “requests”) to full sentences (e.g., “Requires lzma
(standard library of Python 3) or backports.lzma (Python
2) if using xz format”).

In the valid dependencies, we discern 7 distinct types,
grouped into 3 categories. The resulting taxonomy is depicted
in Figure 3. The most common category is Package, com-
prising third-party software that is typically installed through
managers. Python libraries form the majority of this category,
followed by operating system packages for package managers
like dpkg (Debian, Ubuntu, . . . ) or rpm (CentOS, Fedora,
. . . ). The Misc subcategory encompasses other package depen-
dencies that are less common, such as Terraform packages.
The second category is Platform, consisting of operating
systems (e.g., macOS) and APIs. The latter refers to inter-
faces the plugins communicate with, either locally (e.g., the
Docker API) or remotely (e.g., remote management systems).
The final category consists of runtime version dependencies,
encompassing minimum versions of Ansible and Python.

We identify 3 orthogonal properties of the 7 categories of
collection dependencies. First, we can classify dependencies
according to whether they should be installed on the host that
is being configured or on the Ansible controller (cf. Section II),
which depends on the type of plugin. 86% (190) of the studied
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Fig. 4: Frequency of dependency management patterns.

dependencies must be satisfied on the remote host machines.
We note that host dependencies are more diverse than con-
troller dependencies. Indeed, most controller dependencies are
Python packages, while certain types of dependencies, such
as those in the Platform category, are only needed on the
remote host. Second, only 37% of dependency specifications
(81) include some form of version constraint, with API and
runtime dependencies always specifying a version constraint.
These are denoted by > in the taxonomy. Finally, while the
majority of dependencies are mandatory, we find 18 (8%) that
are either optional or only need to be installed depending on
certain conditions, e.g., depending on the arguments given to
the plugin. These are denoted by ? in the taxonomy.
Summary: Plugin documentation does not always spec-
ify dependencies, nor in a structured manner. Deployment
SBOMs need to discern 7 types of dependencies in 3
categories. Python and OS packages are the most prevalent.

B. RQ2: Do plugin implementations exhibit patterns that
indicate dependencies?

We find that for the majority of dependencies (174 of
221), the plugins check whether the dependency is satisfied.
The majority of these checks (67%) happen inside the plugin
file itself, while the remaining 33% occur in shared utility files
that can be used by multiple plugins which may have different
dependency or version requirements.

However, for 47 dependencies (21%), the plugin does not
check that it is satisfied, and only 36% of specified version
constraints are verified by the plugins. In the Runtime
category, only 2 Python version requirements are validated by
plugins, with the remaining 14 Python versions and 1 Ansible
version remaining unchecked. Omitting these checks may lead
to run-time crashes with confusing error messages.

1) Dependency management patterns: We identify 5 com-
mon implementation patterns for checking whether dependen-
cies are satisfied. Table II summarises them with an example,
whereas Figure 4 depicts their frequency per dependency type.

The most common pattern is the guarded import, in which
developers wrap an import of a Python package in a try-
except block. They then assign a variable to indicate whether
the import was successful, and check this variable to abort
with an error message. Its frequent usage for Python packages
is not surprising, as it is recommended in the Ansible docu-
mentation [10]. Dynamic import is a closely-related but less
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TABLE II: Catalogue of dependency management implementation patterns.

Pattern Use cases Example Detection pseudo-query

Guarded import Python packages,
Python version

HAS_LIB = True
try:
import lib

except ImportError:
HAS_LIB = False

if not HAS_LIB:
<error>

tryStatement
.where(_.exceptBlock.contains(_.isAssignment))
.tryBlock.children.filter(_.isImport)
.map(_.importedName)

Dynamic import Python packages try:
importlib.import_module("lib")

except ModuleNotFoundError:
<error>

callTo("import_module")
.arguments(0)
.resolveString()

community.general
deps

Python packages with deps.declare("lib"):
import lib

deps.validate(module)

withStatement
.where(_.expression.isCallTo("deps.declare"))
.body.filter(_.isImport)
.map(_.importedName)

get_bin_path OS packages, OS,
Python packages

bin = module.get_bin_path(
"binary_name")

callTo("get_bin_path")
.arguments(0).resolveString()

community.general
CmdRunner

OS packages runner = CmdRunner(
module, "binary_name")

callTo("CmdRunner")
.arguments(1).resolveString()

common pattern in which developers import a Python package
dynamically using the built-in importlib library.

A common pattern for OS packages is to use the Ansible-
provided get_bin_path function, which takes the name of
a binary and resolves it to an absolute path. If the binary
cannot be found, it either returns an empty value or raises an
exception, depending on its arguments. These results can be
inspected to check whether a binary exists on the system, and
is thus often used to check for OS packages and platforms.

Finally, we find two patterns specific to the community.
general collection, a prominent collection in our dataset.
This collection offers two utilities to interact with dependen-
cies. The deps utility offers an abstraction on top of the
guarded import pattern using a context manager, whereas the
CmdRunner class is an abstraction to interact with system
binaries which internally calls get_bin_path. Since their
usage may be widespread across the community.general col-
lection, we include them in the catalogue.

We do not find any implementation patterns for runtime
versions, API platforms, or miscellaneous packages as these
are either not checked, or rely on ad hoc implementations.
We also note that in rare cases, a plugin may use multiple
mechanisms to check the same dependency.

2) Failure patterns: Of the 174 plugin dependencies that
are checked, in 166 cases (95%) the plugin simply fails if the
dependency is not satisfied. We only found 5 cases in which
the plugin automatically installs the dependency, and 3 cases
in which the plugin proceeds with degraded functionality.

We recognise 3 patterns in the failure behaviour of plugins.
For 105 dependencies, the plugin aborts through Ansible’s
fail_json function, which fails the module’s execution
and returns structured output describing the failure reason.
In another 26 dependencies, the plugin raises its own excep-
tion, whereas in the last 35 cases, the plugin propagates an
exception from one of the implementation patterns (e.g., an
exception raised by a get_bin_path call).

Orthogonally, to create an error message, the plugin can
use Ansible’s missing_required_lib function, which

takes the name of a dependency and constructs an error
message explaining the missing dependency and how it can
be installed. However, we found it is used in only a third of
all failure behaviours. Specifically, we observe such a call with
54 instances of the fail_json pattern, and with 3 instances
of the exception raising pattern.

Summary: Most (79%) plugins check that their dependen-
cies are satisfied. We discern 5 implementation patterns that
are indicative of dependencies on Python or OS packages.

V. AUTOMATED SOFTWARE COMPOSITION ANALYSIS

RQ1 showed that dependency types are diverse and that
the documentation that specifies dependencies is informal and
unstructured, hindering the ability to automatically extract de-
pendencies from documented requirements. Having identified
5 dependency management patterns in RQ2, we investigate
whether the dependencies of a plugin can be extracted auto-
matically from its implementation instead (RQ3). To this end,
we create a Software Composition Analysis (SCA) based on
the Joern framework [12]. The analysis operates in two phases.
First, it matches the patterns against individual functions in a
collection’s source code. However, these patterns may occur in
common utility functions instead of the plugin implementation
itself (cf. RQ2). Therefore, in the second phase, the SCA prop-
agates the identified dependencies to each function’s transitive
callers, thereby propagating the dependencies from common
implementations to each plugin that uses them.

A. Semantic matching of dependency management patterns

We implement CPG queries for each of the 5 patterns,
which the last column of Table II summarises as Scala-like
pseudocode. As the concrete implementation of a pattern can
vary in source code, the queries rely on semantic information
such as data-flow information to overcome the limitations of
purely syntactic pattern matching.

The query for guarded imports finds try-except blocks that
contain an import, and extracts the variables assigned in the
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block. It then uses data-flow information to find usages of
those variables inside of conditions (e.g., in an if-statement),
indicating conditional execution based on the result of the
import. Finally, it marks the function containing the condition
with the dependency names extracted from the import.

The query for the community.general deps pattern identi-
fies with statements using the deps.declare function. It
marks the functions containing a call to deps.validate
with the dependency names extracted from the import state-
ments in the with-block.

The queries for the dynamic import, get_bin_path, and
community.general CmdRunner patterns all search for calls
to the respective function. Functions containing such calls are
marked with the dependency name obtained from the call’s
arguments. When the argument is a string literal, the name
can be extracted straightforwardly. However, the argument can
also be a variable reference, in which case the query attempts
to resolve this reference to a single constant definition of a
string literal. In case the reference cannot be resolved, resolves
to multiple possible definitions, or is not a string literal, we
cannot confidently extract the dependency name and therefore
under-approximate by omitting the call.

B. Match propagation

Because multiple plugins may use the same utility functions
(cf. RQ2), dependencies in such functions need to be propa-
gated to the plugins that use them. Therefore, we transitively
propagate the dependencies backwards along the call graph
to the function’s callers. Due to Python being dynamically
typed, the call graph constructed by Joern is an approximation.
Specifically, if Joern cannot infer type information for the
receiver of a method call, it resolves calls by name. This
can lead to a vast over-approximation for generic method
names like “run”, which risks generating many false positives.
Therefore, our propagation mechanism is conservative, and
only propagates dependencies if the callee’s receiver type is
known, or if the function name is unique in the project.

We also noticed several shortcomings in Joern’s call graph
construction for object-oriented Python, such as missing call
graph edges for super calls and self calls. As these limitations
hamper our dependency propagation, we implement additional
post-processing passes on the CPG to add the missing edges.

C. RQ3: To what extent can Ansible plugin dependencies be
identified automatically?

The ground truth, constructed from the manually-
investigated sample of valid dependency-specifying docu-
mented requirements of RQ2, comprises 221 dependencies
spread across 166 plugins. Running the Software Composition
Analysis for these plugins results in 300 dependencies for 127
plugins. 57 of the results reported by the SCA are individual
parts of the same dependency, e.g., individual Python packages
such as win32pipe and win32event, both belonging to
the pywin32 Python dependency. We aggregate these 57
results into 17 groups, as described in Section III-D, leading
to 260 unique extracted dependencies.

TABLE III: Recall per dependency type

Dependency type Lower bound Upper bound

Package: Python 79.3% 111/140 87.4% 111/127
Package: OS 45.2% 19/42 57.6% 19/33
Package: Misc 0.00% 0/2 0.00% 0/2
Platform: OS 30.8% 4/13 57.1% 4/7
Platform: API 0.00% 0/7 0.00% 0/5
Runtime: Python 6.25% 1/12 50.0% 1/2
Runtime: Ansible 0.00% 0/1 n/a 0/0

IPTABLES = {'ipv4': 'iptables', 'ipv6': 'ip6tables'} 1

module.get_bin_path(IPTABLES[ip_version], True) 2

Fig. 5: A missed dependency due to complex data flow.

1) Recall: The SCA correctly identified 135 dependencies
out of the 221 unique dependencies in the entire ground truth,
leading to a lower bound on recall of 61.09%. However,
considering only those dependencies for which a check is
implemented, the ground truth size decreases to 176, leading
to an upper bound on recall of 76.7%. Table III depicts
lower and upper bounds for individual dependency types.
Python packages, the most common dependency type, can
be identified with high recall, while around half of the OS
packages can be identified. Other dependency types are often
managed ad hoc and thus cannot be detected with high recall.

We investigated the root causes of false negatives in more
detail. 13 false negatives were caused by the SCA failing
to match a dependency pattern because the dependency was
checked with an ad hoc implementation. For another 8 false
negatives, the SCA failed to match their code against a pattern
because the data flow was too complex. Figure 5 provides an
example of an implementation that was not matched because
the argument to get_bin_path could not be resolved to a
single literal definition. In another 12 cases, the SCA matched
the implementation with a pattern but failed to propagate the
dependency through the call graph due to a lack of type
information on the receiver objects of method calls. Further
improvements to Joern’s type inference could likely alleviate
this issue without requiring changes to our approach.

2) Precision: Across the 260 grouped results, we find 193
non-built-in true positives, and 27 built-in true positives. This
corresponds to a precision between 74.2% and 84.6%. We also
find 30 dependencies (13.7%) that are managed by the plugin
but not mentioned in the documentation.

We again identify root causes for false positives. The most
common root cause (23 false positives) occurs only in the
ansible.builtin collection. As its implementation is part of
Ansible itself, the SCA inspects the entire Ansible implemen-
tation. This caused it to extract Ansible’s own dependencies,
which it then erroneously propagated to the built-in plugins,
although they are not dependencies of the plugins themselves.
In practical applications, omitting ansible.builtin would raise
precision to between 89.5% and 95.0%.

Summary: Dependency management patterns can be used
to automatically extract plugin dependencies, with recall
between 61% and 77%, and precision between 74% and
95%. The dependency SCA complements the plugin doc-
umentation by identifying 30 undocumented dependencies.
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Fig. 6: Distributions of the number of unique extracted
dependencies for plugins and collections with at least one
dependency pattern for a given type. An extreme outlier caused
by the community.general collection has been omitted.

D. RQ4: How prevalent are Ansible plugin dependencies in
the wild?

To investigate the dependencies of Ansible plugins at scale,
we applied the Software Composition Analysis on all 11,241
plugins from 187 of the 188 collections in the dataset. We
exclude plugins from ansible.builtin as they caused too many
false positives in RQ3 due to the SCA reporting Ansible’s
own dependencies. To map dependency management patterns
to dependency types, we consider usages of guarded imports,
dynamic imports, and community.general deps to signify
Python packages, whereas get_bin_path and community.
general CmdRunner signify OS packages.

Across the 11,241 plugins, we identify dependencies in
38% of plugins, meaning many plugins depend on other
software. Specifically, 35.9% depend on Python libraries,
1.8% depend on OS packages, and 0.2% (30 plugins) depend
on both. When aggregating all plugins in a collection, we find
that 51% of the collections have at least one dependency.
40.6% of the collections depend on Python libraries, 6 col-
lections (3.2%) depend on OS packages, and 14 collections
(7.5%) depend on both. The large difference in the number
of identified Python library and OS package dependencies is
consistent with our qualitative findings in RQ1, especially
considering that many OS packages are either not checked,
or checked ad hoc.

Figure 6 depicts the distribution of the number of unique
Python library and OS package dependencies for plugins and
collections. Each plot considers only plugins or collections
with at least one dependency of the given type. We observe
that the majority of plugins and collections depend on mul-
tiple Python libraries, sometimes as many as 10 individual
libraries in a single plugin. Plugins generally depend on fewer
OS packages, yet of the 20 collections that depend on OS
packages, 19 depend on multiple. However, the SCA may
report multiple binaries of the same OS package separately (cf.
RQ3) which we cannot group automatically, so the number of
OS packages required may be lower in practice. Finally, the
community.general collection forms an extreme outlier (hidden

in Figure 6), as it depends on 126 Python packages and 205
OS binaries. It was created to house many unrelated plugins
that were migrated out of Ansible’s core codebase, of which
many have their own unique dependencies.

These results show that dependencies originating from other
ecosystems are common among plugins and collections. This
establishes extensive deployment software supply chains for
Ansible code that relies on such plugins and collections.

Summary: 38% of plugins and 51% of collections have de-
pendencies. Plugins often depend on several Python libraries,
yet rarely on multiple OS packages. The SCA enables large-
scale analysis of deployment software supply chains.

VI. DISCUSSION

In this section, we discuss the implications of our findings.

A. Towards automated deployment SBOM generation

Generating SBOMs for deployment code could aid prac-
titioners in managing their dependencies and those of the
IaC plugins they use, for instance to patch security vulner-
abilities, update outdated dependencies, and verify licence
compliance [6]. Such SBOMs could be distributed alongside
every Ansible collection to document its components. Simi-
larly, Ansible practitioners could leverage deployment SBOMs
to gain a better understanding of their deployment software
supply chains. The taxonomy from RQ1 serves as a foundation
to decide on the types and properties of software dependencies
represented in deployment SBOMs. It shows that they need
to support various types of third-party dependencies,
including traditional dependencies (e.g., Python packages), but
also OS platforms and remote APIs. Moreover, deployment
SBOMs would need to distinguish between the machines on
which the components are installed, such as IaC controllers
or configured hosts.

The SCA presented in Section V serves as a stepping stone
towards automated generation of such deployment SBOMs.
The results of RQ3 show that it can achieve high recall
for the most common dependency types, and that it can
identify undocumented dependencies. However, note that the
SCA cannot directly generate SBOMs, as SBOMs document
what is installed, whereas the SCA instead reports what
is required. Nonetheless, it could be applied to generate
preliminary deployment SBOMs to be augmented manually
by practitioners. Moreover, it could be used to enrich existing
SBOMs, for instance, by tagging components that are installed
for the deployment code. Such information could be used to
verify whether deployment dependencies are satisfied, or to
debloat unused dependencies [13].

Finally, our taxonomy and SCA only consider dependencies
in Ansible’s runtime layer. To target complete deployment
SBOMs, they could be extended with application-layer depen-
dencies, such as Ansible roles [14] and the plugins themselves.
As these dependencies are specified in well-defined, machine-
readable requirements files [8], such extensions could be made
straightforwardly.
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B. Implications for Ansible practitioners

The results of RQ1 show that documented dependencies
are informal and unstructured, whereas in RQ2, we found
that plugins rarely automatically install dependencies or check
their versions. This may hamper the reliability and repro-
ducibility of Ansible projects. For instance, recent work iden-
tified missing dependencies as the main cause of crashes in
automatically-generated Ansible code [15]. Moreover, changes
to plugin dependencies have already caused real-world incom-
patibilities in Ansible code that uses the plugins [16], [17].

Therefore, we recommend practitioners to adopt depen-
dency management patterns such as those presented in RQ2

and to thoroughly check the versions of the installed depen-
dencies. Moreover, we recommend the community to adopt
automated dependency management to avoid dependency-
related issues. For instance, Ansible provides execution envi-
ronments [18] that use containerisation to create reproducible
environments for IaC controllers. However, for remote hosts,
other IaC dependency management solutions are required. For
instance, future work could investigate adding support within
Ansible to specify dependencies and install them automati-
cally. Finally, we urge Ansible plugin maintainers to adopt
structured, consistent, and machine-readable dependency
specifications that lend themselves well to automated analysis.
To this end, our taxonomy may aid in designing such specifi-
cations, whereas our SCA may be used to semi-automatically
generate them from the plugins’ implementations.

C. Other applications of the Software Composition Analysis

Aside from generating deployment SBOMs, the SCA cre-
ated and evaluated in RQ3 could form the basis for practical
tooling for Ansible developers. For instance, it could be used
to automatically report which dependencies are necessary to
run an Ansible script. For plugin developers, the technique
could be leveraged to identify undocumented dependencies or
missing dependency management patterns.

The SCA could also be applied to study the evolution
of Ansible collection dependencies. We conducted a prelimi-
nary study suggesting that nearly 40% of plugins and 86%
of collections with dependency management patterns have
undergone changes to the patterns. However, we observed
little to no co-evolution with the documented requirements.
A manual investigation of a sample of these changes also
revealed that changes to the patterns are often refactorings,
such as developers introducing a dependency management pat-
tern for a previously-unchecked dependency. This preliminary
experiment suggests that dependencies may evolve over time,
which may bring about challenges for end users, but that the
documentation may also be outdated or incorrect. Future work
could study dependency changes in more depth.

D. Limitations of the Software Composition Analysis

In RQ3, we found that our extractor can identify Python li-
brary dependencies accurately. However, it struggles to extract
other dependency types and unchecked dependencies.

For unchecked Python libraries, one strategy may be to
consider all import statements, including unguarded ones.
However, this may extract many trivial built-in packages
provided either by Ansible or Python itself, causing high false
positive rates. Moreover, one would need to discern between
imports of first-party and third-party code.

For OS packages, the extractor identifies implementation
patterns used to check for the presence of a binary, causing it
to miss unchecked OS dependencies whose binaries are used
directly. Therefore, it may be possible to identify unchecked
dependencies by also matching such direct usages.

We found no implementation patterns for Python runtime
versions (cf. RQ2) and thus fail to identify many of those
dependencies. Future work could investigate whether other
techniques could identify required Python versions, e.g., in-
specting syntax features or imported built-in packages [19].

The missing_required_lib function (cf. RQ2) may
be useful to identify dependencies that are managed through
ad hoc implementations. However, we note that it is used in
only a third of the dependency management implementations,
and that its presence does not convey the dependency types.

Finally, our SCA cannot identify version constraints from
the plugin implementations. Future work could consider in-
specting the usages of identified Python packages to identify
compatible version ranges [20].

VII. THREATS TO VALIDITY

As a threat to internal validity, the manual investigation
performed in RQ1 and RQ2 was performed by a single
labeller, which may lead to subjective bias. We mitigated this
threat by limiting ourselves to purely objective observations
and consulting online documentation in case of ambiguity.
Moreover, we avoid subjectivity in RQ3 by providing a lower
and upper bound on precision and recall. Furthermore, the
manually investigated sample may not generalise to the entire
studied dataset. We mitigate this threat by applying established
filtering criteria when constructing the dataset, choosing a
statistically significant sample size, and sampling from a
deduplicated pool to avoid studying duplicates.

A threat to construct validity stems from the reliance of
the Software Composition Analysis on instances of depen-
dency management implementation patterns as a proxy for
dependencies. The SCA and Joern, the framework on which
it is built, may suffer from technical bugs and limitations (cf.
Section VI-D) which may hamper the correct identification of
dependencies. We mitigated this threat by evaluating the SCA’s
precision and recall in RQ3, which showed it is accurate.
Moreover, we omitted the ansible.builtin collection to avoid
studying Ansible’s own dependencies.

As a threat to external validity, our study focuses only on
Ansible. Nonetheless, we believe that our taxonomy may apply
to other configuration management IaC tools, such as Chef
and Puppet. Future work could replicate our study to identify
the types and properties of their plugins’ dependencies. More-
over, both Puppet and Chef offer fine-grained specifications
of plugin dependencies, which we believe would facilitate
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automated analysis of their dependency networks. Future work
could also replicate our study to other types of IaC tools, such
as provisioning tools (e.g., Terraform, Pulumi), which likely
make intense use of remote APIs.

VIII. RELATED WORK

1) Run-time and development dependencies: Many studies
have investigated dependencies that are necessary at run time
or during development. These studies typically focus on the
ecosystems formed around dependency management tools. For
instance, the NPM ecosystem for JavaScript has been widely
studied, often in a security context [21]–[27]. Other work has
focused on ecosystems like Java’s Maven [28]–[30], Python’s
PyPI [31]–[33], C/C++ [34], OS packages [35], or compar-
ing common properties across multiple ecosystems [36]–[39].
Other researchers have instead studied dependencies in specific
software domains. Huang et al. [40] study dependency-related
bugs in Deep Learning stacks, whereas Fang et al. [41]
identify dependency antipatterns in distributed microservice
architectures. Our work differs from these existing studies as
we investigate deployment dependencies in Ansible plugins,
for which no structured manifests exist.

2) Deployment dependencies: In contrast to the work on
run-time and development dependencies outlined above, re-
cent work has investigated deployment dependencies, which
typically manifest themselves in IaC specifications.

For instance, the ecosystem of Docker images has been the
subject of several empirical studies. Zhao et al. [42] investi-
gate Docker Hub’s image characteristics, such as layer sizes.
Zerouali et al. investigate the use of run-time dependencies
from ecosystems like NPM, PyPI, and Debian packages in
Docker images [43]–[46], focusing on security vulnerabilities
and outdatedness. Lin et al. [47] study the evolution of Docker
files and their corresponding images on Docker Hub. Ibrahim
et al. [48] compare characteristics such as image size between
official and community images on Docker Hub. Opdebeeck
et al. [49] investigate deployment dependencies in Docker
images that result from inheritance between images. Zerouali
et al. [50] investigate the ecosystem forming around Helm
charts for Kubernetes, focusing on outdatedness and security
vulnerabilities in the Docker images they deploy.

Most closely related to our study is the one of Opdebeeck
et al. [14], who study one part of deployment dependencies
in the Ansible ecosystem, namely open-source “roles”, which
form reusable blueprints of infrastructure code. However, their
study focuses on how these Ansible roles are versioned and
evolve over time, rather than their dependencies. Moreover,
they only consider application-layer dependencies, whereas
our study investigates dependencies in Ansible’s runtime layer.

3) Dependency identification: Many of the aforementioned
studies rely on dependency manager manifest files to identify
third-party software dependencies. However, some languages,
notably C/C++, have no widely-used dependency management
tools, posing a challenge to identify dependencies. Moreover,
dependency manifests may not be available for software dis-
tributed in binary formats, e.g., mobile applications. Therefore,

several earlier studies have investigated how dependencies can
be identified for systems written in such languages.

Many of these prior approaches rely on code clone de-
tection, either in source code [51]–[54] or in compiled bi-
naries [55]–[58]. Tang et al. [59] combine such code clone
detection techniques with information extracted from numer-
ous package managers and build systems for C and C++. Our
SCA differs from these existing approaches as we do not
rely on code clone detection and instead match dependency
management patterns in the source code.

4) SBOMs and Software Supply Chains: SBOMs can be
created in various formats, of which SPDX [60] and Cy-
cloneDX [61] are the most commonly adopted [62]. They can
be generated by numerous practical tools, such as Syft [63],
Trivy [64], and Snyk [65]. Our work is complementary to
these existing formats and approaches, as our taxonomy can
guide extensions to SBOM formats, and our SCA enables
augmentation of SBOMs generated by existing tools.

Recent work has investigated practical challenges related
to SBOM adoption, both through developer surveys [62], [66]
and discussions on development platforms [67]. Moreover, No-
cera et al. [68] found that SBOM adoption in GitHub projects
is low but increasing. Finally, prior work has compared and
evaluated different SBOM generators, finding that they may
produce inconsistent results [69], [70]. Our work differs as we
study the elements needed to create SBOMs for Infrastructure
as Code, and how this information can be extracted.

IX. CONCLUSION

Infrastructure as Code tools form integral parts of modern
software supply chains. IaC projects may themselves be sup-
ported by deployment software supply chains, but these cannot
yet be analysed automatically. Therefore, we performed a qual-
itative study into how an automated analysis could be designed
for Ansible IaC plugins. Based on a manual analysis of 266
documented plugin requirements, we constructed a taxonomy
of 7 dependency types that deployment SBOMs would need
to support, including development libraries and OS packages,
yet also remote APIs and platforms. Moreover, we identified
that deployment SBOMs would need to distinguish between
the machines on which these dependencies are installed. As
Ansible plugin requirements are specified informally and with-
out structure, we designed a Software Composition Analysis
based on 5 manually-identified dependency implementation
patterns. Our SCA can identify the most common dependency
types from plugin implementations, achieving 61%–77% recall
and 74%–95% precision. Applying our SCA at scale, we
found that 38% of plugins and 51% of plugin collections
have dependencies. Our taxonomy can guide the design of
deployment SBOMs, whereas the SCA can be used to augment
existing SBOMs with deployment-related information.
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