l‘)

Check for
updates

Threats to Instrument Validity Within “in
Silico” Research: Software Engineering
to the Rescue

Serge Demeyer! 2@, Coen De Roover®®, Mutlu Beyazit'®,
and Johannes Hartel*

1 Universiteit Antwerpen, Antwerp, Belgium
serge.demeyer@uantwerpen.be
2 Flanders Make vzw, Kortrijk, Belgium
3 Vrije Universiteit Brussel, Brussels, Belgium
4 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract. “In Silico” research drives the world around us, as illustrated
by the way our society handles climate change, controls the COVID-
19 pandemic and governs economic growth. Unfortunately, the code
embedded in the underlying data processing is mostly written by scien-
tists lacking formal training in software engineering. The resulting code
is vulnerable, suffering from what is known as threats to instrument
validity.

This position paper aims to understand and remedy threats to instru-
ment validity in current “in silico” research. To achieve this goal, we
specify a research agenda listing how recent software engineering achieve-
ments may improve “in silico” research (SE4Silico) and, conversely, how
software engineering may strengthen its applicability (Silico4SE).

Keywords: In Silico + Threats to Validity - Instrument Validity

1 Introduction

“In Silico” research has driven several debates and policymaking on climate
change [1], COVID-19 2], and economic forecasts [3]. It has become a stan-
dard tool for scientists, complementing the traditional “in vitro” and “in vivo”
research with carefully crafted simulation models for the phenomenon under
investigation. Nowadays, even the director of the Max Planck Institute for Evo-
lutionary Anthropology in Leipzig confesses the importance of code: “How you
fit the model is part of the model.” ([4], page 39). Code is the new critical piece
of research, and “/when| something goes wrong, every piece of the machine may
be suspect.”

There is an inherent threat to validity (named Instrument Validity) stating
that a data processing pipeline may not reliably produce what it is designed
to produce, hence the results may not be truthful. Indeed, subtle changes in

© The Author(s) 2025
T. Margaria and B. Steffen (Eds.): ISoLA 2024, LNCS 15222, pp. 82-96, 2025.
https://doi.org/10.1007,/978-3-031-75387-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75387-9_6&domain=pdf
http://orcid.org/0000-0002-4463-2945
http://orcid.org/0000-0002-1710-1268
http://orcid.org/0000-0003-2714-8155
http://orcid.org/0000-0002-7461-2320
https://doi.org/10.1007/978-3-031-75387-9_6

Threats to Instrument Validity Within “in Silico” Research 83

the underlying program code may affect the results in unpredictable ways, com-
pletely invalidating the conclusions. The behavioural, the natural, and the life
sciences have already experienced issues with code. We refer to three distinct
examples.

— In biology, a research team investigating molecular structures had to with-
draw five high-profile publications because of code accidentally flipping two
columns of the data [5].

— In economics, a paper reportedly suffered from accidental data loss in the code
examining the relation between a country’s growth and depth. The resulting
false conclusions have influenced the adoption of austerity politics in the
EU [6].

— In anthropology, code written to handle missing data had a highly controver-
sial influence on conclusions about moralising gods in cultures. A version of an
article was published in nature [7], criticised for wrong treatment of missing
data [8], subsequently withdrawn and later republished with updates [9].

As with any other threat to validity, threats to instrument validity need to be
understood, detected and (if possible) resolved.

= In this position paper, we aim to understand and remedy threats to
instrument validity in modern data processing pipelines. To achieve this
goal, we pick achievements from software engineering research and elab-
orate on how these may be applied in today’s data processing pipelines
(SE4Silico). As a complementary perspective, we deduce a research
agenda for the software engineering community, listing opportunities for
strengthening applicability (Silico4SE).

2 Instrument Validity Within “In Silico” Research

In this section, we elaborate on the nature of “in silico” research as an empirical
discipline. We argue the need for treating the code embedded in the underlying
data processing as a measurement device, similar to spectroscopes and oscillo-
scopes but also -as adopted in qualitative research- surveys and questionnaires.
Such measurement devices should be subjected to established quality procedures
to ensure they produce the intended results.

2.1 Defining “In Silico” Research

We refer to an overview paper from Life in Silico —a double peer-reviewed open
access journal concerning all aspects of in silico studies— for a concise definition.

In silico refers to tests or simulations carried out on a computer or by
43

theoretical analysis, as opposed to “in vivo” (in a real organism) or “in
vitro” (in a laboratory). [...] Many benefits of using in silico methods

84 S. Demeyer et al.

include the capacity to run tests more rapidly and at a lower cost, as well
as testing ideas that would be difficult or impossible to test in vivo or
in vitro. However, it should be noted that the outcomes of in silico trials
should be confirmed by experimental or observational investigations.

Mohd Yusuf, 2023 [10]

Note that “in silico” research is surprisingly similar yet quite different from
data science. We quote a blog posted in the Communications of the ACM on the
various favours of data science.

Data science also introduces a new scientific paradigm. [...] The third
scientific paradigm was introduced only several decades ago and is the
computational paradigm, in which scientists simulate complex phenomena
using algorithms and computers. The fourth scientific paradigm, according
to Gray, is data exploration, in which data is captured or simulated, and
then analyzed by scientists to infer new scientific knowledge. [...] Data
science is the current evolution of the fourth paradigm and described as
“the conduct of data analysis as an empirical science, learning directly from
data itself.”

Koby Mike and Orit Hazzan, 2023 [11]

Another area which also involves self-educated programmers is what is cur-
rently captured under “low-code” (or even “no-code”) development platforms,
enabling end-user development [12]. Spreadsheets are a notorious example of the
spectacular results which enthusiastic laymen lacking formal training can pro-
duce. Nevertheless, lots of anecdotes concerning spreadsheet bugs circulate on
the internet; quite recently the loss of 16 thousands COVID test results because
of an import limit [13]. There is previous research which calls for supporting
end-user programmers with solid software engineering principles such as code
inspections [14].

For the remainder of this position paper, we will focus on “in silico” research
as the third scientific paradigm. However, many of our conclusions would apply
equally to data science or end-user development.

2.2 Illustrative Examples of “In Silico” Research

The University of Antwerp has a long tradition of governing what is known as
“citizen science”, where citizens actively contribute to science either with their
intellectual effort or surrounding knowledge, or with their tools and resources.
For all practical purposes, many citizen science projects adopt an “in silico”
approach. Three noteworthy examples are as follows.

— AIRBEZEN measures air pollution by using strawberry plants deposited on
windowsills of citizens. After 2months, the strawberry-hosts cut off a few
leaves and bring them in to the distribution points. The researchers at the

Threats to Instrument Validity Within “in Silico” Research 85

University of Antwerp then measure the concentrations of particulate matter
on the leaves, thus revealing to what the plants were exposed.
https://www.uantwerpen.be/en/projects/airbezen/

— CURIEUZENEUZEN collects real-time data from 5,000 citizen scientists plac-
ing a measuring device in their gardens to assess the impact of heat and
drought. https://curieuzeneuzen.be/home-en/

— ISALA aims to better understand the female microbiome with state-of-the-art
DNA technology. The Isala' project found 6,000 women who volunteered to
take some simple ‘swabs’ in the privacy of their own bathroom.
https://isala.be/en/

Serge Demeyer (the first author of the position paper you are reading now) was
personally involved in two “in silico” projects measuring indoor air quality, first
in museums [15], and later in ships [16].

— AIRCHECK and ELGAS where we constructed special measurement devices
collecting heterogeneous data concerning air quality (particle matter, concen-
tration of pollutant gasses, light, temperature, etc.). Measurement campaigns
spanning several months allowed us to perform routine monitoring, identify-
ing periods where works of art (in case of museums) or human sailors (in case
of ships) were exposed to risk. We assessed the impact of certain mitigation
actions. https://www.belspo.be/belspo/brain-be/projects/ AIRCHECQ _en.pdf

What all of these projects have in common is that they collect lots of data
from various sources, often outside of explicit researcher control. As a conse-
quence, the data processing pipelines need special care during intake and data
cleansing. Once the data is deemed correct, researchers explore the data, cod-
ing various filters, correlations, manipulations, etc. to verify certain hypotheses.
The results are presented usually in tabular form but often complemented with
visualisations highlighting regions of interest. Flexibility is key, supporting the
iterative and incremental nature of this exploration.

2.3 Threats to Instrument Validity

“In Silico” research is a special kind of empirical research, thus making observa-
tions about the phenomenon under investigation. These observations are enabled
via special purpose measurement devices, such as oscilloscopes, microscopes and
rRNA sequencers. The term “measurement device” should be interpreted in the
broadest possible sense; in qualitative research, questionnaires and surveys are
considered measurement devices as well.

As with all empirical research, there is an inherent risk that the observations
made via such measurement devices are invalid. Such risks are typically covered

! The similarity between the name of this project (isala) and the name of the confer-
ence (isola) is pure coincidence. The project was named after the first female doctor
in Belgium, Isala Van Diest (1842 — 1916). She had to study in Switzerland because
women were not allowed to attend Belgian universities at that time.

https://www.uantwerpen.be/en/projects/airbezen/
https://curieuzeneuzen.be/home-en/
https://isala.be/en/
https://www.belspo.be/belspo/brain-be/projects/AIRCHECQ_en.pdf

86 S. Demeyer et al.

in a section of the research protocol called “Threats to Validity” [17]. The one
threat to validity we are concerned about here is “reliability”: to what extent are
the data and the analysis dependent on the specific researchers conducting the
research? One of the sub-characteristics concerns the instruments used to collect
measurements, and it is captured under “instrument validity”: to what extent
does the instrument measure what it is designed to measure? Typical mitigation
actions there are properly calibrating the device, doing sufficient maintenance,
providing training to the researchers, etc. But, here as well, mitigation actions
should be interpreted in the broadest possible sense: a recommended practice for
surveys is to conduct a pilot study to mitigate the risk that survey participants
misunderstand the question.

= We argue that “instrument validity” also applies to a data process-
ing pipeline in the sense that it may not produce what it is designed to
produce, hence the results may not be truthful. Indeed, subtle changes
in the underlying program code may affect the results in unpredictable
ways, completely invalidating the conclusion. Therefore, data-processing
pipelines should be subjected to a series of quality checks to ensure that
they produce the intended results.

3 Software Engineering Within “In Silico” Research

We first explore which software engineering tools and best practices are adopted
in data processing pipelines and, if possible, the motivations for doing so. Next,
we dive deeper into opportunities that scientists lacking formal training in soft-
ware engineering are likely to miss and how this may affect the data processing
pipelines they produce.

3.1 Software Engineering Best Practices

We had a series of conversations with the scientists involved in the aforemen-
tioned projects. These informal conversations were never recorded nor tran-
scribed, so cannot be reproduced. The recurring theme is that all the data
processing pipelines involved were created by a team of enthusiastic researchers
without formal training in software engineering. We list the relevant observations
regarding software engineering best practices which are (unconsciously) adopted.

R, python, Jupyter notebooks and MatLab/Simulink were the platforms of choice.
There is seldom a deliberate decision on why a given platform is adopted; it is
mainly based on previous experience, reputation and hearsay. Despite the claim
that Jupyter notebooks are a de facto standard in the behavioural, the natural,
and the life sciences (cfr. a publication in Nature [18]), R and python are most
common in our limited sample.

Threats to Instrument Validity Within “in Silico” Research 87

Flexibility. The primary adoption criterion is the availability of libraries and
packages that perform basic tasks and can be glued together easily. All these
platforms embrace the flexibility needed for scientific exploration with a (some-
times implicit) “pipes and filters” architecture [19].

Literate Programming. Literate programming is an important coding guideline
behind data science code that makes research transparent and understand-
able [20]. Here as well, glueing together a variety of libraries and packages
makes the programs driving the data-processing pipeline self-documenting. In
that sense, the code looks more like a domain-specific programming language.

Community. The community supporting the platform is certainly a contributing
factor, both within the team and equally outside the confines of the lab. Q&A
sites are consulted heavily, and code snippets found there get merged into the
code base frequently. Only rudimentary quality checks on the imported code are
performed.

Small, Interdisciplinary Teams. The teams involved are rather small (3 to 5
individuals), where a few take on the role of creating and maintaining the data-
processing code. These scientists had minimal training in programming as part
of their education and then improved their skills “on the job”.

Modest Input Data Size. The sizes of the data sets pushed into the pipeline
are surprisingly small. They usually fit on the local hard disk and are shared
locally within the team. Data processing is done on local PCs and, sometimes,
on a dedicated server. Speed of processing was seldom an issue: researchers just
waited until the results were available.

Clone-and-Own. FExperienced teams typically adopt a “clone-and-own” app-
roach, i.e., making a full copy of the codebase of one project and adapting it
to the needs of the new one [21]. Within software engineering circles, “clone-
and-own” is a poor men’s approach towards product-line engineering [22]. Nev-
ertheless, it is quite appropriate for the projects creating and maintaining the
code.

3.2 Software Engineering Missed Opportunities

Since the data-processing pipelines are created and maintained by scientists lack-
ing formal training in software engineering, it is logical that they suffer from cer-
tain quality issues affecting the instrument validity. Below, we list observations
from the aforementioned interviews, confirmed (if possible) by remarks made in
the literature.

88 S. Demeyer et al.

Lack of Reproducibility. Jupyter notebooks, as many other forms of data science
code, suffer from quality issues, with lack of reproducibility being the most strik-
ing one [23]. Pimental et al. observed “We were able to successfully run 24.11%
of the unambiguous execution order Python notebooks. [...| However, the rate
is way smaller (4.03%) when we count only notebooks that produce the same
results.” [24]. A follow-up paper made similar observations: “We were able to
successfully run between 22.57% and 26.09% of the note-books that we attempted
to run.” [25].

But reproducibility rates are alarming in other languages as well. Trisovic
et al. found that 74% of the R code that accompanies academic papers crashed
upon execution [26]. Boll et al. reported that from 65 recent papers employ-
ing MATLAB/Simulink models “only 31% of the tools and 22% of the models
used as experimental subjects are accessible. [...] We found none of the exper-
imental results presented in these papers to be fully replicable, and 6% partially
replicable.” [27].

Coding Driven by Copy-and-Paste (a.k.a. Clones). Programming practice
appears to be driven by copying code from other sources (such as tutorials,
Q&A websites and other projects). Mindlessly copying code from Q&A websites
obviously induces risks. There is the infamous example of the most copied code
on Stack Overflow (over 6,000 copies on GitHub alone) which happens to be
buggy [28].

In software engineering, copy-and-paste programming is a well-studied phe-
nomenon captured under the umbrella term of clones. Clones are considered
a sign of technical debt and hence ought to be removed via refactoring [29].
However, it is recognized that there are several good reasons to copy-and-paste
code (cfr. the award-winning paper “‘Cloning Considered Harmful’ Considered
Harmful” [30].)

Several researchers examined clones within data-processing pipelines. Tang
et al. analyzed 26 projects, consisting of 4.2 MLOC, along with 327 manually
examined code patches. They found that code duplication is a major cross-
cutting theme that particularly involves machine learning configuration and
model code [31]. Koenzen et al. examined clones with Jupyter Notebook cells
within a random sample of 1,000 GitHub repositories containing approximately
6,000 notebooks. Snippets of code that get duplicated the most within Jupyter
notebooks are the ones whose main activity concerns visualization (21.35%), fol-
lowed by machine learning (15.45%), definition of functions (12.85%) and data
science (9.03%) [32]. According to Kéllén et al., more than 70% of code snippets
sampled from GitHub notebooks are exact copies of other snippets [33]. Around
50% of the notebooks do not have any unique piece of code.

Lack of Tests. During our interviews, researchers confirmed that there is rarely
an explicit verification step on the outcome of the pipeline. The individual
researchers conduct a cursory visual inspection of the resulting tables and visual-
isations, and, when the results make sense, they are deemed correct. This comes
close to what is known as a smoke test, although the exploratory nature implies

Threats to Instrument Validity Within “in Silico” Research 89

that there is no objective oracle to verify the outcome. Regression tests to detect
whether or not changes introduced unintended side effects are never used.

Bug Taxonomies. The example from the introduction referring to code acci-
dentally flipping two columns of the data [5] is an example of the subtle
bugs that may completely invalidate “in silico” results. Software engineering
researchers investigated the kinds of mistakes that are often made in data-
processing pipelines. De Santana et al. created a bug taxonomy for Jupyter
Notebooks based on a mining study of 14,740 commits from 105 GitHub open-
source projects and 30,416 Stack Overflow posts [34]. “/...] the most frequent
bugs in the Jupyter notebook are related to Environments and Settings, consisting
of 43.2% of analyzed posts from StackOverflow and 35.5% of the issues analyzed
in GitHub. [...] Incorrect algorithm implementations cause many bugs (44.2%
of GitHub issues and 22% of StackOverflow posts). Most of them are related to
coding and logical errors resulting in ‘Incorrect Functionality’.” Noteworthy is
that De Santana et al. also investigated the impact of bugs and found that “The
most frequent impacts from bugs in Jupyter notebooks are: Run Time Errors
(Stack- Overflow - 57.5% | GitHub - 31.2%), [...]”. This partially explains the
alarming lack of reproducibility mentioned earlier.

Islam et al. performed a complementary study on the bugs made while using
deep learning libraries [35]. They expanded upon an existing bug taxonomy and
added a few categories quite specific for data-processing pipelines. Two categories
are especially relevant from the perspective of Instrument validity: (i) Data Bug
and (ii) API Change. “2.4.3. Data Bug. This bug may arise if an input to the
deep learning software is not properly formatted or cleaned well before processing
in any deep learning model.” “2.5.8 API Change. The reason for these bugs is
the release of the new version of a deep learning library. In other words, the bug
happens when the new API version is not backward compatible with its previous
version.”

Divergent Opinions on Correctness. A central difficulty of data processing pipe-
lines is that it is often unclear whether something is a mistake or a deliberate
action. Take the example on moralizing gods from the introduction, where miss-
ing data was replaced with zeros, drastically altering the conclusions but not
necessarily a mistake [9]. There exist various guidelines on how to treat data
to avoid deriving incorrect conclusions; however, it is up to the researcher to
consciously decide whether to follow the guideline. Take the example of data
leakage, stating that training and testing data should not accidentally depend
on one another. However, such dependency may also be employed for implicit
control as, for instance, advocated in multilevel models [36].

This is particularly relevant for the research on bias and fairness in Al rec-
ommender systems, in which decisions are expected to be non-discriminatory
with respect to an individual’s protected traits such as gender, ethnicity, or
religion [37]. Researchers tackle fairness through mathematical formalisms. How-
ever, such mathematical methods can only make guarantees about fairness based

90 S. Demeyer et al.

on strong assumptions (reliable estimates of the ground truth, access to sensi-
tive data and a lossy aggregation of discrimination effects) that are unrealistic
in practice. Researchers therefore have to make task-specific assumptions when
processing the data with the inherent risk of biased results.

= While computer science in general (and software engineering in par-
ticular) is still a relatively young discipline, the accessibility of the field
has given rise to the adoption of many good practices, even for scientists
without formal training in software engineering.

State-of-the-art tools and languages are adopted, and the communities
and supporting libraries in the corresponding eco-systems result in “in
silico” being a very productive and effective research paradigm. However,
the corresponding data-processing pipelines suffer from quality issues,
lack of reproducibility being the most alarming one. Nevertheless, the
risk of mistakes (accidental or not) within the data-processing pipelines

has drastic repurcussions on the validity of the instrument.

4 Remediation of Threats to Validity in “In Silico”
Research

In the previous section, we listed best practices which are (unconsciously)
adopted “in silico” research. But we also illustrated that there are several missed
opportunities which lead to data-processing pipelines producing irreproducible
—sometimes even erroneous— results. To reduce the risk on instrument validity,
we specify a research agenda listing how research in software engineering may
improve “in silico” research (SE4Silico) and, complementarily, how the software
engineering community may benefit from “in silico” research (Silico4SE).

4.1 Smoke Tests and Regression Tests

The International Software Testing Qualification Board (ISTQB) provides a glos-
sary with terminology adopted within the software testing community [https://
glossary.istqb.org/]. Two best practices are particularly relevant for “in silico”
research.

— smoke test (synonyms: sanity test, intake test, confidence test)
A test suite that covers the main functionality of a component or a system
to determine whether it works properly before planned testing begins.

— regression testing
A type of change-related testing to detect whether defects have been intro-
duced or uncovered in unchanged areas of the software.

https://glossary.istqb.org/
https://glossary.istqb.org/

Threats to Instrument Validity Within “in Silico” Research 91

SE/Silico. As software engineers, we need to educate the “in silico” research
community about lessons learned with respect to the reliability of software. The
bare minimum would be that every reproduction package comes with one smoke
test and a series of (preferably automatic) regression tests. The smoke test should
explicitly document one valid suite of input files and the corresponding results
irrespective of the tabular or visual output format. Once the smoke test confirms
the minimum functionality is in place, the regression tests execute the basic
scenarios to verify whether the results are equivalent.

Silico4SE. To accomplish (semi-automatic) smoke tests and (automatic) regres-
sion tests for “in silico” research, more work is needed to verify whether two
subsequent results are to be considered equivalent. It is impossible to have full
control over neither where the data processing is executed (certainly not when
replication is a requirement) nor when it is executed (certainly not when the
results are time-dependent). Therefore, deciding whether a test passes or fails is
not a simple check for equality anymore; the verdict should have ways to allow for
small but tolerated deviations. There exists decades worth of literature on ways
to analyze time-series data (cfr. Kalman Filter, Autoregressive Integrated Mov-
ing Average, Dynamic Time Warping). Complementarily, there is lots of work
that measures differences between manipulations on data streams (cfr. Mean
Absolute Percentage Error, Weighted Average Percentage Error, Weighted Mean
Absolute Percentage Error). Leveraging this research should allow the software
engineering community to derive the appropriate verdicts. An interesting avenue
for further research would be to mix these with the formulas for calculating the
flakiness of a test suite [38].

Regression tests, on the other hand, will need more work on data-driven test
cases, as it is the data which drives the pipeline, not the control flow. In a similar
vein, the typical ways to measure the strength of a test suite (statement cover-
age, branch coverage, MC/DC coverage, etc.) must be expanded to incorporate
boundary values within the data sets.

4.2 Clone Genealogies

Clones have a negative connotation in software engineering, but we must assume
that, in data science code, clones are not always harmful [30]. Tang et al. found
that copy-and-paste is often present in model construction, model training, and
data preprocessing [31]. This assures understanding of such relevant steps; hence,
code idioms are better kept explicit to facilitate a literate programming style.
However, particular copies may include poor coding practices. And such prob-
lematic code constructs will also spread across tutorial sites, blog posts and Q& A
sites.

Silico4SE. Software engineers study the families of clones by constructing so-
called clone genealogies, tracing clones up to their origin in the version history.
The idea of studying clone evolution originated in 2005, when Kim et al. coined
the term “Code Clone Genealogies" for describing how a family of clones evolves

92 S. Demeyer et al.

over time [39]. For example, they illustrated that clones are either short-lived
and disappear due to natural code evolution or long-lived and get changed con-
sistently over time since there is no proper way to refactor them into a single
abstraction [39]. Other research also showed cloned code is generally more stable
than non-cloned code [40], yet changes to clones are not always consistent [41].
We ourselves studied clone genealogies within test code and concluded that test
code clones inherently differ from production clones, not only at their instantia-
tion but also at every point of their evolution [42]. For the software engineering
community, it would be interesting to study “in silico” code through the lens
of clone genealogies. Given that copy-paste code is such a widespread practice,
such an investigation could reveal interesting phenomena within the correspond-
ing eco-systems.

SESilico. The automated tracing of the origin of copied code may help to
understand, detect, and resolve threats to instrument validity. Koenzen et al.
state that code is typically duplicated from tutorial sites (in 35% of the cases),
API documentation (32%) and Stack Overflow (14%) [32]. Based on the fre-
quency of cloned code snippets and whether they have changed inconsistently,
we can identify “high-risk” code snippets. By repairing the corresponding code
and rerunning the data pipeline, we can assess the impact on the actual results.
Via such anecdotal evidence, we can demonstrate the necessity of good software
engineering practices within “in silico” research.

4.3 Static and Dynamic Code Analysis

Software engineers have a long history of producing tools that flag potential
programming errors, bugs, stylistic errors and suspicious constructs [43]. With
the rising popularity of “in silico” research, it shouldn’t come as a surprise that
such attempts are made for data-processing pipelines as well.

SE/Silico. Urban and Miiller propose a theoretical framework to automatically
detect (unintended) filtering, which relies on established program analysis tech-
niques, such as dependency analysis and strongly live variable analysis [44]. For
“data leakage”, Suboti¢ et al. suggested a general static analysis framework, where
user-provided annotations tag training and testing functions [45]. Tosch et al.
developed a tool to check the validity of code for online experiments statically,
identifying problems that arise in experimental design and causal inference [46].
Pimentel et al. created a proof-of-concept lint tool that is capable of identifying
21 potential issues within Jupyter notebooks [25]. Hértel et al. runs simulations
with artificial data to verify whether the statistical tools adopted in a model
produce acceptable results [47].

Silico4SE. As typical in today’s software engineering research, the aforemen-
tioned proof-of-concept tools are validated on a selection of open-source projects
by the creators of the tools. All of them do find quality issues with varying lev-
els of precision. However, it remains unknown whether repairing these issues is

Threats to Instrument Validity Within “in Silico” Research 93

worth the effort. To bring these proof-of-concept tool prototypes from Technol-
ogy Readiness Level 4 (technology validated in lab) to Technology Readiness
Level 5 (validated in relevant environment) the software engineers need to reach
out to the “In Silico” scientists. This is the normal way for research prototypes
to achieve sufficient maturity. The good news is that it is likely that “In Sil-
ico” scientists will be open to such collaborations, because they share the same
background.

5 Conclusion

In this position paper, we argue the eminent risk of so-called instrument validity
within “in silico” research. As with any piece of software, the data processing
pipelines used within this research paradigm incorporate mistakes, sometimes
accidental and sometimes intentional. As a consequence, subtle changes in the
underlying program code may affect the results in unpredictable ways, com-
pletely invalidating the conclusions. We illustrate that, despite the adoption
of many good software engineering practices, there are still a lot of room for
improvement. We derive a research agenda from two complementary perspec-
tives.

(i) SE4Silico, where we pick achievements from software engineering research
and elaborate on how these may be applied in today’s data processing pipe-
lines.

(ii) Silico4SE, where we sketch how software engineering research may benefit
from the different perspective provided in today’s data processing pipelines.

Since the two communities share the same background, setting up such an
exchange should be possible. Indeed, “In Silico” researchers must publish papers
which may serve as precise requirement documents so appraised by Software
Engineers. Therefore it is ultimately a matter of investing the necessary time
and effort for the greater benefit of our society.

References

1. Ahmstorf, S., Ganopolski, A.: Long-term global warming scenarios computed with
an efficient coupled climate model. Clim. Change 43(2), 353-367 (1999)

2. Sharma, M., et al.: Understanding the effectiveness of government interventions
against the resurgence of Covid-19 in Europe. Nat. Commun. 12(1), 1723-2041
(1999)

3. Kara, Y., Boyacioglu, M.A., Baykan, O.: Predicting direction of stock price index
movement using artificial neural networks and support vector machines: The sam-
ple of the Istanbul stock exchange. Expert Systems with Appl. 38(5), 5311-5319
(2011)

4. McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R and
STAN (2nd edition). Chapman and Hall/CRC (2020)

94

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Demeyer et al.

Miller, G.: A scientist’s nightmare: Software problem leads to five retractions. Sci-
ence 314(5807), 1856-1857 (2007)

Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic
growth? A critique of Reinhart and Rogoff. Cambridge J. Econom. 38, 257-279
(2013)

Whitehouse, H., et al.: RETRACTED ARTICLE: complex societies precede mor-
alizing gods throughout world history. Nature 568, 226-229 (2019)

Beheim, B., et al.: Treatment of missing data determined conclusions regarding
moralizing gods. Nature 595, E29-E34 (2021)

Whitehouse, H., et al.: Retraction note: complex societies precede moralizing gods
throughout world history. Nature 595, 320 (2021)

Yusuf, M.: Insights into the in-silico research: current scenario, advantages, limits,
and future perspectives. Life in Silico 1, 13-25 (2023)

Mike, K., Hazzan, O.: What is data science? Commun. ACM 66, 12-13 (2023)
Lieberman, H., Paterno, F., Wulf, V. (eds.): End-User Development. Springer,
Netherlands, Dordrecht (2006)

Hern, A.: Covid: how Excel may have caused loss of 16,000 test results in England.
The Guardian (2020)

Roy, S., Deursen, A.V., Hermans, F.: Perceived relevance of automatic code inspec-
tion in end-user development: A study on VBA. In: Proceedings EASE 2019 (23rd
International Conference on Evaluation and Assessment in Software Engineering),
(New York, NY, USA), pp. 167—176, Association for Computing Machinery (2019)
Pernia, D.L., Demeyer, S., Schalm, O., Anaf, W.: A data mining approach for
indoor air assessment, an alternative tool for cultural heritage conservation. In:
Proceedings HERI-TECH 2018 (IOP Conference Series: Materials Science and
Engineering), vol. 364 — 1, p. 012045 (2018)

Carro, G., et al.: A new approach to make indoor air quality in the accommodation
of ships understandable and actionable for seafaring staff. In: Proceedings ICMT
2020 8th International Conference on Maritime Transport — Maritime Transport
VIII Sept (2020)

Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131-164 (2009)

Perkel, J.: Why jupyter is data scientists’ computational notebook of choice. Nature
563, 145-146 (2018)

Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Buschmann, F.: Pattern-
Oriented Software Architecture, vol. 1. Wiley, A System of Patterns (1996)

Kery, M.B., Radensky, M., Arya, M., John, B.E., Myers, B.A.: The story in the
notebook: Exploratory data science using a literate programming tool. In: CHI
2018 Proceedings 2018 CHI Conference on Human Factors in Computing Systems,
pp. 1-11, Association for Computing Machinery, (2018)

Businge, J., Openja, M., Nadi, S., Berger, T.: Reuse and maintenance practices
among divergent forks in three software ecosystems. J. Emp. Softw. Eng. 27(2),
54 (2022)

Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An
exploratory study of cloning in industrial software product lines. In: Proceedings
CSMR 2013 17th European Conference on Software Maintenance and Reengineer-
ing, pp. 25 — 34 (2013)

Wang, J., Li, L., Zeller, A.: Better code, better sharing: on the need of analyz-
ing jupyter notebooks. In: ICSE-NIER 2020 Proceedings ACM /IEEE 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
pp- 53—>56, Association for Computing Machinery (2020)

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Threats to Instrument Validity Within “in Silico” Research 95

Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about
quality and reproducibility of jupyter notebooks. In: MSR 2019 Proceedings
2019 IEEE/ACM 16th International Conference on Mining Software Repositorie,
pp. 507-517, IEEE (2019)

Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: Understanding and improving
the quality and reproducibility of Jupyter notebooks. Emp. Soft. Eng. 26(4), 1-55
(2021). https://doi.org/10.1007/s10664-021-09961-9

Trisovic, A., Lau, M.K., Pasquier, T., Crosas, M.: A large-scale study on research
code quality and execution. Sci. Data 9(60) (2022)

Boll, A., Vieregg, N., Kehrer, T.: Replicability of experimental tool evaluations in
model-based software and systems engineering with matlab/simulink. Innov. Syst.
Softw. Eng. (2022). https://doi.org/10.1007/s11334-022-00442-w

Lundblad, A.: The most copied stackoverflow snippet of all time is flawed!. pro-
gramming.guide. https://programming.guide/worlds-most-copied-so-snippet.html
Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns.
Morgan Kaufmann (2003)

Kapser, C., Godfrey, M.W.: Cloning considered harmful’ considered harmful. In:
Proceedings WCRE 2006 13th Working Conference on Reverse Engineering, pp. 19
— 28 (2006)

Tang, Y., Khatchadourian, R., Bagherzadeh, M., Singh, R., Stewart, A., Raja, A.:
An empirical study of refactorings and technical debt in machine learning systems.
In: ICSE 2021 Proceedings of 2021 IEEE/ACM 43rd International Conference on
Software Engineering, pp. 238-250 (2021)

Koenzen, A.P., Ernst, N.A., Storey, M.A.D.: Code duplication and reuse in jupyter
notebooks. In: Proceedings VL/HCC2020 2020 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, pp. 1-9 (2020)

Kallén, M., Wrigstad, T.: Jupyter notebooks on github: characteristics and code
clones. In: The Art, Science, and Engineering of Programming, vol.5, no. 3, (2021)
De Santana, T.L., Neto, P.A.D.M.S., De Almeida, E.S., Ahmed, I.: Bug analysis in
jupyter notebook projects: an empirical study. ACM Trans. Softw. Eng. Methodol.
33 (2024)

Islam, M.J., Nguyen, G., Pan, R., Rajan, H.: A comprehensive study on deep
learning bug characteristics. In: ESEC/FSE 2019 Proceedings 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, New York, NY, USA, p. 510-520, Association
for Computing Machinery (2019)

Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical
Models. Cambridge University Press (2006)

Buyl, M., De Bie, T.: Inherent limitations of Al fairness. Commun. ACM 67, 48-55
(2024)

Kowalczyk, E., Nair, K., Gao, Z., Silberstein, L., Long, T., Memon, A.: Modeling
and ranking flaky tests at apple. In: Proceedings ICSE-SEIP 2020 42nd Inter-
national Conference on Software Engineering: Software Engineering in Practice,
pp- 110-119 (2020)

Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. In: Proceedings ESEC/FSE 2005 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 187-196 (2005)

Krinke, J.: Is cloned code more stable than non-cloned code?. In: Proceedings
SCAM 2008 2008 Eighth IEEE International Working Conference on Source Code
Analysis and Manipulation, pp. 57-66, IEEE (2008)

https://doi.org/10.1007/s10664-021-09961-9
https://doi.org/10.1007/s11334-022-00442-w
https://programming.guide/worlds-most-copied-so-snippet.html

96

41.

42.

43.

44.

45.

46.

47.

S. Demeyer et al.

Krinke, J.: A study of consistent and inconsistent changes to code clones. In: Pro-
ceedings WCRE 2007 14th Working Conference on Reverse Engineering, pp. 170
178, IEEE, (2007)

van Bladel, B., Demeyer, S.: A comparative study of code clone genealogies in
test code and production code. In: Proceedings VST 2023 IEEE Workshop on
Validation, Analysis and Evolution of Software Tests, pp. 913 — 920, IEEE (2023)
Bessey, A., et al.: A few billion lines of code later: using static analysis to find bugs
in the real world. Commun. ACM 53, 66-75 (2010)

Urban, C., Miiller, P.: An abstract interpretation framework for input data usage.
In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 683-710. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 24

Subotié, P., Miliki¢, L., Stoji¢, M.: A static analysis framework for data science
notebooks. In: Proceedings ICSE-SEIP 2022 44th International Conference on Soft-
ware Engineering: Software Engineering in Practice, (New York, NY, USA), pp. 13
— 22, Association for Computing Machinery (2022)

Tosch, E., Bakshy, E., Berger, E.D., Jensen, D.D., Moss, J.E.B.: PlanAlyzer: assess-
ing threats to the validity of online experiments. Commun. ACM 64, 108-116
(2021)

Hartel, J., Lammel, R.: Operationalizing validity of empirical software engineer-
ing studies. Emp. Softw. Eng. 28(6) (2023). https://doi.org/10.1007/s10664-023-
10370-3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-89884-1_24
https://doi.org/10.1007/s10664-023-10370-3
https://doi.org/10.1007/s10664-023-10370-3
http://creativecommons.org/licenses/by/4.0/

	Threats to Instrument Validity Within ``in Silico'' Research: Software Engineering to the Rescue
	1 Introduction
	2 Instrument Validity Within ``In Silico'' Research
	2.1 Defining ``In Silico'' Research
	2.2 Illustrative Examples of ``In Silico'' Research
	2.3 Threats to Instrument Validity

	3 Software Engineering Within ``In Silico'' Research
	3.1 Software Engineering Best Practices
	3.2 Software Engineering Missed Opportunities

	4 Remediation of Threats to Validity in ``In Silico'' Research
	4.1 Smoke Tests and Regression Tests
	4.2 Clone Genealogies
	4.3 Static and Dynamic Code Analysis

	5 Conclusion
	References

