Wastrumentation: Portable WebAssembly
Dynamic Analysis with Support for Intercession
Aaron Munsters &

Vrije Universiteit Brussel, Brussels, Belgium

Angel Luis Scull Pupo &

Vrije Universiteit Brussel, Brussels, Belgium

Elisa Gonzalez Boix =
Vrije Universiteit Brussel, Brussels, Belgium

—— Abstract

Dynamic program analyses help in understanding a program’s runtime behavior and detect issues
related to security, program comprehension, or profiling. Instrumentation platforms aid analysis
developers by offering a high-level API to write the analysis, and inserting the analysis into the
target program. However, current instrumentation platforms for WebAssembly (Wasm) restrict
analysis portability because they require concrete runtime environments. Moreover, their analysis
API only allows the development of analyses that observe the target program but cannot modify it.
As a result, many popular dynamic analyses present for other languages, such as runtime hardening,
virtual patching or runtime optimization, cannot currently be implemented for Wasm atop a dynamic
analysis platform. Instead, they need to be built manually, which requires knowledge of low-level
details of the Wasm’s semantics and instruction set, and how to safely manipulate it.

This paper introduces Wastrumentation, the first dynamic analysis platform for WebAssembly
that supports intercession. Our solution, based on source code instrumentation, weaves the analysis
code directly into the target program code. Inlining the analysis into the target’s source code avoids
dependencies on the runtime environment, making analyses portable across Wasm VMs. Moreover,
it enables the implementation of analyses in any Wasm-compatible language. We evaluate our
solution in two ways. First, we compare it against a state-of-the-art source code instrumentation
platform using the WasmR3 benchmarks. The results show improved memory consumption and
competitive performance overhead. Second, we develop an extensive portfolio of dynamic analyses,
including novel analyses previously unattainable with source code instrumentation platforms, such
as memoization, safe heap access, and the removal of NaN non-determinism.

2012 ACM Subject Classification Software and its engineering — Object oriented frameworks;
Software and its engineering — Dynamic analysis; Information systems — Web applications; Security
and privacy — Information flow control

Keywords and phrases WebAssembly, dynamic analysis, instrumentation platform, intercession
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2025.23

Funding Adron Munsters: Funded by the Research Foundation Flanders, project number 1553725N.
Angel Luis Scull Pupo: Funded by the Cybersecurity Research Program Flanders (CRPF) from the
Flemish Government.

1 Introduction

WebAssembly (Wasm) [13] has become a compilation target for many high-level languages
such as C, C++, and Rust, thanks to its portability and predictable performance [31]. It
was originally designed as a binary instruction set for the web and is currently supported by
all major browsers.

Wasm offers predictable performance through its compact program representation, en-
abling efficient loading, validation and execution as parts of the program are being loaded.
To safely execute untrusted code, it features control-flow integrity (ensuring programs cannot

© Adron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix;
37 licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).

Editors: Jonathan Aldrich and Alexandra Silva; Article No. 23; pp. 23:1-23:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:amunster@vub.be
https://orcid.org/0000-0001-5593-1273
mailto:ascullpu@vub.be
https://orcid.org/0000-0003-2083-1285
mailto:egonzale@vub.be
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.4230/LIPIcs.ECOOP.2025.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

23:2

Wastrumentation

jump to unintended code locations), a modular system with strict encapsulation and type
safety, and a sandboxed linear memory layout that isolates data from code and prevents
unauthorized memory access [13].

Although Wasm was designed with built-in security and efficient mechanisms, it does
not inherently address questions of software quality. For example, recent research reports
performance issues in server-side Wasm applications [14] and memory safety issues [18, 23].
Dynamic analysis tools are increasingly being leveraged for Wasm to enhance security [9, 2],
improve program comprehension [20, 30, 26, 39] and enable profiling [21].

To implement dynamic analyses, developers often rely on code transformation tools
or general-purpose analysis platforms. In the context of Wasm, transformation tools like
Brewasm [5] and WasmManipulator [29] allow developers to instrument the target program
code by injecting additional Wasm instructions implementing the analysis. However, this
approach requires a deep understanding of the instruction set and how it can be manipulated,
such that the injected instructions uphold type safety and do not unintentionally interfere
with the target program.

Alternatively, developers can use a general-purpose dynamic analysis framework for
Wasm, either Wizard [38], or Wasabi [19]. These frameworks provide developers with a
high-level API to implement analyses while avoiding unintentional analysis interference and
ensuring type-safe instrumentation. Wizard’s instrumentation framework is implemented
within the Wizard execution engine. The integration at the level of the execution engine
allows the instrumentation code to be turned on and off at runtime. Wasabi on the other
hand instruments the target program with hooks that call into a JavaScript analysis which
co-exists with the instrumented input program. Unfortunately, analyses implemented with
these frameworks are restricted to concrete runtime environments. Wizard’s instrumentation
executes only on top of the Wizard engine, while Wasabi requires a JavaScript Virtual
Machine (VM) along the Wasm VM. Moreover, analyses implemented with Wizard and
Wasabi can only observe a program execution but not modify it, i.e. they do not support
intercession. As a result, a wide range of dynamic analyses cannot be implemented with
these frameworks, including runtime hardening [27, 18], virtual patching [34, 42], or runtime
optimization [34, 43].

This paper presents Wastrumentation, the first general-purpose framework for dynamic
analysis of WebAssembly that supports intercession and is portable among the many Wasm
environments through its design as a source code instrumentation platform. To avoid the
requirement of a JavaScript VM to be present for the instrumentation, Wastrumentation
exposes its instrumentation API as a Wasm application binary interface (ABI). Furthermore,
targeting a Wasm ABI has the benefit that any language that compiles to Wasm can be
used to implement the analysis. Wastrumentation then merges both the target program and
the analysis implementation as one Wasm program, making the instrumentation portable to
any Wasm VM. To enable the construction of dynamic analyses requiring intercession, the
instrumentation API of Wastrumentation enables the analysis to alter or skip operations
happening at the target program side.

In summary, the main contributions of the paper are:

We develop a novel instrumentation approach for Wasm programs to deploy dynamic
analyses through source code rewriting featuring an instrumentation ABI akin to state-of-
the-art high-level APIs but language-agnostic and extended with support for intercession.
We show the usefulness of Wastrumentation by building an extensive portfolio of dynamic
analyses, including a variety of existing analyses from Wasabi, as well as the imple-
mentation of three novel dynamic analyses that require intercession support, previously

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

unattainable with existing source code instrumentation platforms for Wasm. These
analyses cover the domains of runtime optimization (memoization analysis), security
(safe-heap analysis) and program repair (“DeNaN” analysis).

We conducted a performance evaluation of Wastrumentation for the developed dynamic
analyses on real-world programs from the Wasm-R3 benchmark suite [1], which shows
improved memory consumption and competitive performance overhead compared to the
state-of-the-art source code instrumentation platform, Wasabi [19].

2 Approach

This section describes our source code instrumentation platform for dynamic analysing Wasm
applications. We first introduce Wastrumentation from the point of view of the analysis
developer. Section 2.1 shows how to build a dynamic analysis atop of Wastrumentation,
and Section 2.2 details the analysis API. Then, we turn our attention to the platform itself.
Section 2.3 shows its architecture and gives an overview of the design choices. Section 2.4
details the transformations at the Wasm level where the instrumentation code is injected.

2.1 Developing a Dynamic Analysis with Wastrumentation

We now explain Wastrumentation from the perspective of an analysis developer implementing
a concrete dynamic analysis. To this end, we present the “DeNaN” dynamic analysis, a novel
dynamic analysis inspired by the “~-denan” pass from the Wasm compiler framework Bin-
aryen [10]. The “DeNaN” analysis ensures determinism among different Wasm VMs regarding
floating point operations, as the Wasm language specification for “NaN Propagation”® does
not enforce a canonical floating-point NaN representation. To address this, the “DeNaN”
analysis replaces all runtime floating-point NaN values with a deterministic value 0.0.

To implement the “DeNaN” analysis, all Wasm instructions that may operate on runtime
floating-point values must be intercepted. For each intercepted instruction, the analysis
distinguishes between integer types (132, i64), which are unaffected by NaN propagation,
and floating-point type (£32, £64). Integer values remain unchanged, while floating-point
NaN values must be replaced with 0.0. The relevant Wasm instructions include:

Stack operations: const, pushes a constant on the value stack.

Local and global variable operations: local.get, local.set, global.get, global.set,

a “get” reads from a variable or global and pushed onto the value stack, a “set” does the

opposite.

Memory operations: load, store, a “load” reads from linear memory to the value stack,

a “store” does the opposite.

Arithmetic operations: unary, binary, operates on value(s) atop of the value stack.

Function calls: passing arguments and receiving results for local, imported or exported

functions.

Listing 1 shows a Rust implementation of the “DeNaN” analysis using the Wastru-
mentation API. Each Wastrumentation analysis implements traps that allow developers to
register for specific Wasm events. The “DeNaN” analysis registers traps corresponding to the
aforementioned instructions (Sections 2.1-2.1): const_, local, global, load, store, unary,
binary and apply. The traps are defined using the advice! macro and are invoked by the
instrumentation platform when corresponding events occur.

! WebAssembly 2.0 Specification — NaN Propagation (accessed on 28 Nov 2024).

23:3

ECOOP 2025

https://webassembly.github.io/spec/core/exec/numerics.html#nan-propagation

23:4

Wastrumentation

The analysis instructs each trap function to capture each involved runtime value v and
replace v with the result of v.denan(). It implements the method denan for Wasm values
as an extension trait for the type Value (Sections 2.1-2.1). In Rust, extension traits allow
to extend types with additional methods. This analysis declares the extension trait Denan
(Section 2.1) and implements it for the type Value (Section 2.1) to allow invoking denan on
Wasm values.

The implementation of denan (Section 2.1) matches on the type of the value. Integer values
(matching WasmType: :I32 or WasmType: :164) are left untouched (Section 2.1). Floating
point values (matching WasmType: :F32 or WasmType: :F64) are cast to Rust’s respective
floating point type. On this floating type the method is_nan is called to intercept NaN
instances. If is_nan() identifies a NaN instance, the value is replaced with 0.0, otherwise, it
is returned unchanged (Section 2.1 and Section 2.1).

Listing 1 The Rust implementation of the “DeNaN” analysis. This analysis replaces all NaN
floating-point values with 0.0 to ensure deterministic NaN-propagation across Wasm VMs.

1 #![no_std]

2 use wastrumentation_rs_stdlib::x;

3 advice! {

4 const_ (v: Value, _1: Loc) {

5 v.denan() }

6 local (v: Value, _i: LocalIndex, _1: LocalOp, _1l: Loc) {

7 v.denan() }

8 global (v: Value, _i: GlobalIndex, _g: GlobalOp, _1: Loc) {

9 v.denan() }

10 load (i: LoadIndex, o: LoadOffset, op: LoadOperation, _1: Loc) {

11 op.perform(&i, &o).denan() }

12 store (i: StoreIndex, v: Value, o: StoreOffset, op: StoreOperation, _1: Loc) {
13 op.perform(&i, &v.denan(), &o); }

14 unary (opt: UnaryOperator, opnd: Value, _1: Loc) {

15 opt.apply(opnd.denan()) .denan() }

16 binary (opt: BinaryOperator, 1_opnd: Value, r_opnd: Value, _1: Loc) {
17 opt.apply(l_opnd.denan(), r_opnd.denan()).denan() }

18 apply (func: WasmFunction, args: MutDynArgs, ress: MutDynResults) {
19 args.update_each_arg(|_index, v| v.denan());

20 func.apply();

21 ress.update_each_res(|_index, v| v.denan()); } }

22 trait Denan { fn denan(self) -> Self; }
23 impl Denan for Value {

24 fn denan(self) -> Self {

25 use WasmType::{I32, I64, F32, F64};

26 match self.type_(O) {

27 132 | 164 => self,

28 F32 => self.as_£32().is_nan().then(|| 0_f32.into()) .unwrap_or(self),
29 F64 => self.as_£64().is_nan().then(|| 0_f64.into()) .unwrap_or(self),
30 } 3

2.2 Dynamic Analysis API

Table 1 shows the trap functions supported by Wastrumentation to build dynamic analyses.
The table shows the high-level conceptual API, referring to Wasm constructs such as
“location”, “operator” and “operand”. The trap functions are named after their corresponding
program event. Each trap function gets as arguments details on the corresponding Wasm
instruction and its code location. Such a conceptual API can then be implemented for a
concrete high-level language that compiles to Wasm. Currently, our platform offers a Rust and
AssemblyScript implementation of that APT to implement dynamic analysis. The concrete
language API is mapped onto the low-level Wasm instrumentation ABI by Wastrumentation
at instrumentation time. The actual ABI for the conceptual API in Table 1 is specificied in
Appendix A in [25].

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

23:5

Table 1 The dynamic analysis API supported by Wastrumentation. The columns show the
trap name, the arguments provided to the trap, the type of value the trap must return and the
implementation to ensure a transparent execution.

Trap name

Typed arguments

Return Type

Transparent Base

if-thenp.,

if-then-elseyre c:typepool, input:id2, arity:type;sa, l:Loc typepool c

br Ll:label, 1: Loc 0

br-if c:typepoot, 1:label, 1: Loc typepool c

br-table t:132, effective-target:label, d:label, 1: Loc type;sa t

select c:itypepool, 1:Loc typepool c

callyre, callpest fn:idx pune, 1:Loc 0

call-indirectyre fn-idx:i32, tbliidzy, 1: Loc typeisa fn-idx
call-indirectpost tbl:idasy, 1: Loc 0

unary op:unary, o:typeyar, l:Loc typeyal op.apply(o)
binary op:binary, L:itypeyar, ritypeyar, 1:Loc typeyal op.apply(l, r)
const vitypeyal, 1:Loc typeyal v

local Vitypeyal, 1:4dTocals 1:0Piocal, l:Loc typeyal v

global Vitypeval, 1:0dZ global s 8:0Pglobal, 1:Loc typeyal v

load i1idTioad, 0:0f fS€tstore, OP:OPIoad, 1:LoC typeyal op.perform(i, o)
store 1dT spores VitYpeyal, 0:0f fS€lsiore, OP:0Pstore, 1:Loc op.perform(i, v, o)
memory-size s:tYPeyal, 1:9dTmemory, 1:LoC typeyal s
memory-grow a:typeval, 1dTmemory, 1:Loc typeval i.grow(a)
blockpre, 100ppre input:i32, arity:type;ss, l: Loc 0

if-thenp,sy, if-then-elsepost,

blockpoest; 100Ppost

drop, return l:Loc 0

apply f: Function, args: Arguments, ress: Results,] f.apply()

Our high-level API is inspired by Wasabi’s instrumentation API, but it supports inter-
cession, i.e. the ability of the analysis to modify the target program. This has two major
implications for the design of the instrumentation API. We need to conceive (1) how the
analysis controls the target program given the built-in safety and security characteristics
of Wasm (detailed in Section 2.2.1), and (2) how the analysis can forward the intercepted
operation to the target Wasm program (detailed in Section 2.2.2). The column “Transparent
Base” in Table 1 denotes the operation that the analysis can call to forward the intercepted
operation (captured at the trap function) to the target program.

2.2.1 Intercession: Modifying the Target Program

Dynamic analyses written on Wastrumentation can not only observe all the runtime behaviour
of a target application but also control it. More concretely, analyses can change part of
the target program behavior during the execution of the trap function. To illustrate this,
consider the trap function const_ that intercepts pushing a constant on the Wasm value
stack. This trap function receives two arguments: the constant value v that would be pushed
and the source code location 1 of the instruction. Wastrumentation allows the analysis to
decide what value is pushed on the stack when the control flow returns to the target program

by using the return value of the trap function. For example, the “DeNaN” analysis (cf.

Section 2.1) uses this to alter the constant value v to a deterministic NaN value.

Generally, the API of Wastrumentation uses the return value of trap functions to alter
the behavior of the target instruction. Whereas this is not always applicable (due to reasons
further explained in Section 2.4), Table 1 shows when a return value dictates (part of) the
target program behavior in the column “Return Type”. Below, we further outline how the
analysis is in control once a trap function is invoked.

ECOOP 2025

23:6

Wastrumentation

Intercession of control flow: For the trap functions ify.., if-then-elsep,. select, and
br-if, the return value dictates control flow of the branch expression as a boolean. For
the trap function br-table the return value dictates the target label that control-flow
will jump to. The return value of the trap function call-indirecty,, determines the
index in the function table of the instruction that will be invoked.

Intercession of value stack manipulation: The following trap functions intercept instruc-
tions that push on the value stack: unary, binary, const, local, global, load, store,
memory-size and memory-grow. The return value of the corresponding trap function is
used as the outcome value that will be pushed on the stack.

Introspection only: Aside for general intercession, the following trap functions cannot
influence their respective instruction: br, callpye, callyost, call-indirectpost, blockpre,
1looppre, ifpost, if—then-elsepost, blockpest, 100Ppost, drop and return. This is due
to how the respective program events do not depend on runtime information (eg. br) or
report the termination of a program event (eg. if—then—elsepost).

Intercession of function application: The trap function apply can control a Wasm function
application. When a function application takes place, this trap receives two pointers.
The former points to an array containing the function arguments, and the latter points
to the array containing the function results. This trap can alter the passed arguments
before the function application takes place, and it can alter the return values before the
control flow returns to the caller. Furthermore, this trap function is in control of whether
the function application takes place at all.

2.2.2 Forwarding Intercepted Operations Back to the Target Program

Even if an analysis does not need to modify the target program, it remains responsible for
the execution of intercepted program events. For example, if the trap function const_ must
remain transparent then the unaltered argument v must be the return value of the trap
function. For the traps involved, the analysis is thus responsible for ensuring that the target
operation takes place within the execution of the trap function. As mentioned before, Table 1
shows within the column “Transparent Base” the functions to be called within the trap
function to forward the intercepted operation back to the target program.

Actually, the functions in the column “Transparent Base” represent the continuation
of the intercepted operation that yields a return value. This design enables the analysis
developer to add analysis code around the continuation of the intercepted operation and
decide either to call the continuation or skip it altogether. This is most notable for the
program events “apply” and “memory-grow”. For “apply” the analysis controls function
applications. This may further imply calling recursive functions. For “memory-grow”, the
return value either points to the next allocated page in linear memory or —1 if no allocation
could be performed. This enables the analysis to artificially limit the available memory by
not calling the memory to growth continuation and early returning with —1. For all other
operations, the transparent base continuation is side-effect free and has no significant impact
on analysis code that may go before or after the continuation.

2.3 Wastrumentation Design

Figure 1 depicts at a high-level the instrumentation process of Wastrumentation. We first
describe the input provided to Wastrumentation, followed by the instrumentation process
and the additional code that is generated. Then we elaborate on how the different modules
are merged into a single output program. The numerical labels in the figure allow us to
reference to visual elements in the following text.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

a Wastrumentation h

s N
0) pointcut @/ generate @ instrumentation |compile]
specification \] infrastructure —_—
|\ —
1\ -
" validate ‘r—f merge||l—|

@analysis.wasm "I:I:I:I:I > -@- -——-[instrumented . wasm]

\]
PN -

s N

target. wasm I:I:I:I:I II[@]II

@ L ; inject hooks —

instrumentation phase

Figure 1 High-level overview of the architecture of Wastrumentation.

Input and Pointcut specification. In what follows, we adopt the pointcut specification ter-
minology from aspect-oriented programming (AOP) to describe Wastrumentation inputs and
their relationship. Note, however, that our implementation is limited compared to AOP, as
our pointcut specification only supports static instruction targeting. As Figure 1 depicts, the
input for Wastrumentation consists of the pointcut specification (1), the analysis program (2),
and the target program to instrument (3). The pointcut specification enables selective instru-
mentation, by declaring the set of program instructions I and the set of functions of interest
F within the target program. For example, the Rust implementation of the “denan” analysis
in Listing 1 can be compiled to a Wasm module (2), along with a pointcut specification to
target all implemented traps I = {const, local, global,load, store, unary, binary, apply}, and
restrict instrumentation to the Wasm functions 4, 5, and 6 of the input program, F' = {4, 5,6}.

Instrumentation Process. For a given pointcut specification, Wastrumentation validates
that the analysis module implements the trap functions corresponding to the specified target
program instructions /. This validation takes place by iterating over the set I and validating
that each corresponding trap function is exported by the analysis with the proper signature. If
validation fails, Wastrumentation aborts the current instrumentation. If validation succeeds,
Wastrumentation rewrites the identified instructions I within target functions F' to inject
hooks to placeholder analysis functions (5) , according to the strategy explained in Section 2.4.

On-demand Instrumentation Code Generation. Some hooks pass compound data struc-
tures to traps functions that go beyond what the primitive number types of Wasm (132, i64,
i64, f64) can represent. For example, the apply trap function receives an array of Wasm
arguments passed to the intercepted function call (cf. Section 2.4). Wastrumentation will
generate additional instrumentation infrastructure as a new module (4). This infrastructure
is generated on-demand, based on the input modules at hand. The module is responsible for
managing such complex data structures, leaving the other modules untouched.

Bundling and Output. The final phase of Wastrumentation bundles the intermediate Wasm
modules as a single instrumented module (6) . To bundle these modules, Wastrumentation
leverages the tool wasm-merge that is provided as part of the Binaryen tools [10]. This tool
acts like a linker where multiple modules are merged into one. In doing so, wasm-merge
replaces module imports that cross-reference other modules’ exports with inline references to
local functions in the resulting Wasm binary.

23:7

ECOOP 2025

23:8

Wastrumentation

Preserving the Program State Space. Injecting analysis code into a target program comes
with the challenge of preserving its original behavior. Any changes made during rewriting
must not be observable for the input program. This requirement is critical to prevent
deviations that could, for example, hide the program from a security analysis. The applied
changes during instrumentation cannot interfere with the program state, including its memory,
value stack, or call stack. This is unique to Wastrumentation. Other tools, e.g. Wasabi and
Wizard, avoid this complexity because their analysis operates in a separate address space
within the JavaScript interpreter or at the level of the Wasm interpreter, respectively. Our
solution to preserve the input program state departs from the following properties of Wasm.
No Reflection. Wasm disallows runtime reflection regarding program code, the value stack,
or the call stack [13]. This ensures that program code cannot inadvertently observe nor
modify these components. Consequently, at execution time, the original input program
code within the instrumented module remains unaware of the additional instrumentation
code structure, values on the value stack and activation records on the call stack.
Separation of Linear Memory. Each memory load and write instruction in the instrumented
module is statically tied to a unique memory view. When bundling the different code
units (the target program, the analysis module, and additional instrumentation code),
Wastrumentation leverages wasm-merge to assign distinct memory regions to each code
unit. This separation leverages the Wasm standardized Multi-Memory proposal [12].
Multi-Memory enables to statically associate a unique memory index for every memory-
related Wasm-instruction. This allows each module to operate exclusively on its unique
linear memory index, ensuring complete isolation at runtime.
Figure 2 shows the statically enforced memory separation of merged program modules
before and after program bundling. In the figure, the memory-relevant instructions
such as i32.1oad and i132.store have a static memory index and a dynamic value that
dictates the offset in the memory. Whereas each module has instructions addressing on
its own set of linear memories, the instrumented module will contain the input program
addressing the first indices of linear memory, followed by instrumentation and analysis
modules operating at an on-demand decided memory index.
We ensure that the input program remains at its own offset, as external interoperation
with the linear memory might make assumptions in the memory index, such as is the
case for the widely adopted Wasm System Interface?.

input.wasm
(func Sf el 0 merged.wasm
(32,1000 (T | 51— 1 (Func 52 0
(i32.store [Index; \P_ B (i32.1ocad [Indexg 0 _m—|—| i
(i32.store [index, 0 ﬁ_)|_|_|—| n (i32.store [Ll dex :
ﬁ (132.store |H‘u;:‘\<h (J'_)ﬁ)' T I — 1n
analysis.wasm wasm-merge
(func Sg (fuljc Sg Dl n+1
(:32. 10ad = R n+2
(i32.store [index; Tp—f : (i32.store [ind 2 :
32 =, 0 T (i32.store & -
(2 etore [0 ey T T m w3

Before bundling After bundling

Figure 2 Visualization of the multi-memory access model before and after transformation.

2 For our work we target the WAST P1, https://wasi.dev (accessed on 17 Dec 2024).

https://wasi.dev

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

Listing 2 A analysis program that intercepts function applications and forwards the application.

1 (module ;; input analysis

2 (func $apply (type $frase:132 $bufsig:132 $bufsigiype 1132 $carg:132 $cres = v0id:132)
3 (; pre apply analysis code ;)

4 (call $applybase $fba.se $bufszg)

5 (; post apply analysis code ;))

6 (import "instrumented_input" "apply_base") (func $applypese (param i32 i32)))

2.4 Instrumentation through Transformation

In what follows we detail the transformation strategy taken by Wastrumentation of the input
program. The transformation follows two distinct patterns, one for function applications and
another more general pattern for all other operations.

2.4.1 Function Application Instrumentation

The API of the “apply” trap receives a pointer to the continuation function and a pointer to
a buffer containing the runtime arguments and results. The continuation function represents
the next step in the execution flow. For the apply hook, this is the original function
being intercepted. As Section 2.2.2 explains, the “apply” trap is responsible for calling the
continuation function to allow a transparent execution of the target program. Inspired by the
CLOS auxiliary “around:” method definition [3], the analysis code can (a) manipulate the
arguments before the continuation, (b) determine when or if at all the function application
takes place and (c) manipulate the results after the function application.

Listing 2 shows the minimal transparent analysis as a Wasm program that instruments
function applications. The only implementation is the trap definition $apply (Section 2.4.1)
that receives five arguments. The first argument (fpqse) is @ pointer to the continuation func-
tion. The second and third arguments (bu fs;g, bt fsigrype) are pointers to buffers that contain
the arguments and results for the current intercepted function application. The last two
arguments (Cqrg, Cres) dictate the number of arguments and results for that call respectively
(to bound the value access of bufsig, bufsigiype). Section 2.4.1 calls the continuation, which
may be preceded or succeeded with additional analysis code that is left out of the listing for
brevity. Since the implementation of $applyp.se resides in the transformed target program,
the analysis must declare it as a function import (Section 2.4.1).

Listing 3 shows the input program for the transformation, containing a single function
definition $f. Whereas the transformation generalizes to any input set of function definitions,
we restrict the example transformation to that of $f for brevity. Some intentional design
considerations that influenced the transformation approach are the following:

The analysis must be notified of all function applications of a target function, including

(a) internal function applications through call or call_indirect statements local to

the target module, (b) external function applications that may stem from the host and

(c) for target functions that have no implementation details specification but are defined

through an import statement.

The API of the $apply trap is polymorphic for the target function application signature.

This design choice enables low coupling between the analysis and the target input program,

as the analysis program needs not to monomorphize the $apply trap implementation per

signature as shown in [19]. Consequently, the analysis implementation must dispatch on
function-specific behavior at runtime which may incur a performance penalty.

Listing 4 shows the input program result after transformation. The transformation of
target function $f from Listing 3 results in two definitions $ foriginas (Section 2.4.1) and $f
(Section 2.4.1). It is transparent to client code of $f (both internal and external to the Wasm

23:9

ECOOP 2025

23:10

Wastrumentation

Listing 3 An input program candidate for dynamic analysis on function applications.

1 (module ;; input program
2 (func $f (export "f") (type f{" = f5) bodys))

module) since after transformation $f preserves its identity?®, its signature and its export
declaration. However, $f will now call the trap $apply defined in Listing 2 with the required
information.

In preparation for the call to $apply, $f first stores arguments and runtime types to
buffers (Sections 2.4.1-2.4.1) that $apply may manipulate at will. Next, $f yields control flow
to Sapply (Section 2.4.1), after which the results are loaded from the buffers (Sections 2.4.1-
2.4.1) and eventually $f returns. The arguments to $apply (Section 2.4.1) are 0, the function
pointer to the continuation function index in the table $tablepgse— functions, the pointers
Sbufsig and $bufsiguaiues pointing to the value- and types-buffers respectively and the the
number of arguments m and results n.

If the trap $apply in Listing 2 calls the continuation $applypqse, in Listing 4 the applicable
continuation is resolved at runtime with the function pointer argument $ fy,s. that is looked up
in the function table $tablepgse— functions (Section 2.4.1). The call to the resolved applicable
continuation $f,se loads the arguments from the buffer $bufs;, (Section 2.4.1) and calls
$ foriginal (Section 2.4.1), after which the results are stored to $bufs;, (Section 2.4.1) and
control is yielded to the post-analysis code in the trap $apply.

Listing 4 The input program from Listing 3 after the instrumentation phase.

(module ;; input program, instrumented

(func $fo'r7lginal (type f:n = f;n) bOdyf)
(func $f (export "f") (type f" = f3)

(local $bufsig 132) (local $bufsigtype 132)

;3 push values on stack

(local.get 0) (local.get 1) ... (local.get m)

;; store args & types to instr-module-heap from value stack

(local.set $bufsig (call $alloc-vals-f"~fo'))

(local.set $bufsigiype (call $alloc-typs-fi"=f5))

;; call analysis apply

(call $apply 0 $bufsig $bufsigiype m M)

;; retrieve results from instr-module-heap onto value stack

(call $free-vals-f"-f5)

(call $free-typs-f;"-fo))
(func $frase (type $bufsig:i32 = void)

;; retrieve args from instr-module-heap onto value stack

(call $load-args-f;"-fs (local.get $bufsig))

;3 call original body

(call $f07‘iginal)

;; store results to instr-module-heap from value stack

(call $store-results-f;" (local.get $bufsig)))
(import "analysis" "apply" (func $apply (type 132 i32 i32 i32 i32 = woid)))
(import "instr" "alloc-vals-f" (func $alloc-vals-f;"-f7 (type fi" = i32)))
(import "instr" "alloc-typs-f" (func $alloc-typs-f;"-f5 (type void = i32)))
(import "instr" "load-args-f" (func $load-args-f;"-f; (type i32= f")))
(import "instr" "store-results-f" (func $store-results-f/" (type i32 = f')))
(import "instr" "free-vals-f" (func $free-vals-f/"-f; (type i32 = wvoid)))
(import "instr" "free-typs-f" (func $free-typs-f;"-f; (type i32 = wvoid)))
(table $tablepase— functions [$fpase] funcref)
(func (export "apply_base") (param $fpqse 132) (param $bufsig 132) ;; => void

(call_indirect $tablepgse— functions (type 132 = void) $fpase)))

© 0 N O oA W N

W OwW N NN NN NN NN N R R R R R R e e e
A~ O © ® N & O KA W N R O ©® 0 N & G A WM R O

3 Identifiers are defined as alphanumeric tokens prefixed with a $-sign. In practice, Wasm functions are
defined by an index as an i32-value, so a function name is actually a number that dictates its index.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

The buffers used to communicate the runtime arguments and results between the function
application, the analysis trap and the continuation function are handled by an external
“instrumentation” module. This “instrumentation” module can orchestrate its linear memory
while leaving the linear memory of the input program and the analysis code untouched.
Functions to allocate and free memory, to load and store values in the buffers are imported
in the instrumented module (Sections 2.4.1-2.4.1) and can be imported by the input analysis,
though the pre- and post-analysis code is left out.

2.4.2 General Program Operation Instrumentation

All other instructions follow more concise rewrite strategies by Wastrumentation. These
rewrite strategies rewrite each target operation into instructions that prepare context inform-
ation on the value stack, followed by a call to an associated analysis trap function.

Table 2 summarizes the rewrite strategy, grouping instructions with similar rewrite
patterns. The “Original instruction” column lists the unaltered instructions, while the
“Rewritten instruction” column shows the instrumented result. The trap function is denoted
as “$trap” for brevity but is specific to each instruction, such as “$return” for “return” or
“$br” for “br”.

As shown in Table 1, each trap function also receives the instruction’s location. To
provide this information, two constants (function index and instruction offset) are pushed on
the stack before each trap call. These details are omitted from Table 2 for simplicity.

Maintaining the transformed program’s well-typed property is essential. Thus the in-
strumented hooks must preserve the type correctness, including their interaction with the
VM stack. Therefore, the analysis may modify the values handled by the target program,
but it cannot alter their types. For instance, the rewrite of ¢t.const ¢ involves pushing the
constant onto the value stack, followed by a call to the trap function “$const”. This trap
function receives the constant, returning a value of the same type while controlling its final
value. Similarly, instructions like ¢.unop and t.binop are replaced with trap function calls
that take the instruction operands and compute the resulting value on behalf of the program.
The operands are available on the stack as they must have been for the original instruction.

For control-flow-related instructions such as “br-if”, “br-table”, and “select”, the rewrite
introduces a preceding trap function that controls the dynamic control flow. For “br-if” and
“select,” this is an 132 value representing the condition. For “br-table,”
selecting a branch label from the statically predefined table associated with the instruction.

it is an 132 value

Instructions like “if-then-else”, “if-then”, “call-indirect”, “call”, “block”, and “loop”,
include both pre- and post-trap functions. This design allows the analysis to trace the flow
of execution per instruction, as additional instrumented code can be executed in between.
For “if-then-else” and “if-then,” the pre-trap function may modify the boolean condition
controlling the flow. In contrast, trap functions for “return” and “drop” are observational,
i.e. unable to alter control flow. For instructions like “local-get,” “global-get,” “local-set,”
7 “global-set,” and “global-tee,” the trap functions can alter the values being read
or written to the respective variables.

“local-tee,

3 Implementation

We implemented Wastrumentation in Rust and modularized the platform across different
crates for improved maintainability and reusability. The core crate, as described in Figure 1,
is responsible for transforming an input program based on a given analysis specification and
pointcut specification. This crate consists of 5,118 lines of Rust code.

23:11

ECOOP 2025

23:12 Wastrumentation

Table 2 The transformations applied by Wastrumentation.

Original Instruction Rewritten instruction Transformation description
const
t.const ¢ t.const ¢ Push constant on top of stack (TOS).
call $trap Call trap with constant, return value is result.

unary, binary
Operands are on TOS, will be args to trap.

t.unop call $trap Call trap, return value is instruction result.
br, br-if, br-table, select
(i32.const 1) Serialize target label (“br”).
call $trap Call trap, passing serialized target label.
br l br [Return value of trap can change control flow

for “br-if” and “br-table” and “select”.
if-then-else, if-then

(call $trap,,.. Call pre-trap with blocktype arity: n input
(i32.const n) (i32.const m)) values on stack, m result values on stack.
if blocktype if blocktype Return value of pre-trap can alter control flow.
instr* instr*
(call $trap,,s;) Call post-trap.
else else
instr’® instr*
(call $trap,,q;) Call post-trap.
end end
call-indirect, call
i32.const z Push fridx (“call”) or tbl-idx (“call-indirect”).
(call $trappre) Trap does not take call args, only context.
call_indirect = y call__indirect = y To view or alter args / results, use trap apply.
(call $trap,,; (i32.const x)) Call post-trap.
block, loop
(call $trap,,,.. Call pre-trap with blocktype arity.
(i32.const n) (i32.const m))
block blocktype block blocktype
instr® instr™
end end
(call $trap,,,q, Call post-trap with blocktype arity.

(i32.const n) (i32.const m))
return, drop

call $trap Call trap before instruction.

return return Trap can only observe, not alter semantics.
local-get, global-get

local.get = local.get = Push value on the value stack.

(call $trap (i32.const x)) Call trap, return value is instruction result.

local-set, local-tee, global-set, global-tee

(call $trap) Instruction argument is TOS, call trap.

local.set x local.set x Trap may alter argument for instruction.

The core crate accepts only Wasm modules as analysis inputs, as explained in Section 2.3.
However, these analyses must adhere to the analysis ABI (see Appendix A in [25]), which
is typically not written by hand. To facilitate interaction with this ABI, we developed a
domain-specific language (DSL) that exposes the high-level API described in Section 2.2.
The primary and most mature implementation of this DSL is written in Rust as a set of
Rust macros, and it is used in our evaluation (in Section 4). We also have a less mature
implementation written in AssemblyScript as an AssemblyScript library, demonstrating the
language agnosticism of the analysis ABI. The Rust DSL comprises 1,943 lines of code, and
the AssemblyScript DSL, which currently only partially abstracts the low-level ABI, consists
of 450 lines of code. Figure 3 illustrates how the analysis, along with the DSL implementation,
is compiled into a Wasm module that serves as input for Wastrumentation. Note that once
an analysis is compiled to a Wasm module, the trap functions must adhere to the statically
typed signature in the ABI (Appendix A in [25]), or otherwise, Wastrumentation will reject
the analysis.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

~

macros. rs

®

o J

(7 .
analysis. rs
+

pointcut
specification @

X language-specific . .
analysis code compiles to analysis . wasm

DSL
- N\
+ lib.as P
.wasm
¢
J

input instrumentation output

Wastrumentation H instrumented . wasm

(7 .
analysis . as

high-level analysis

Figure 3 Overview of implementing analyses for Wastrumentation using a high-level language.

Rust and AssemblyScript are also supported for generating the instrumentation infrastruc-
ture. The code to generate the instrumentation infrastructure in either language amounts to
a total of 4,451 lines of Rust code. Note that other languages can be supported, as long as a
Rust-wrapper library can built around them, that implements the compiler interface used by
Wastrumentation to compile the high-level program to a Wasm module.

4 Evaluation

We evaluate our work to check whether Wastrumentation is suitable for building dynamic

analyses for Wasm applications. To this end, we assess the practicality and performance of

our approach. We conduct several experiments to answer the following research questions

(inspired by the ones found to evaluate other instrumentation platforms [19, 33, 35, 8, 38]):

RQ1. Does Wastrumentation aid the development of dynamic analyses compared to state-of-
the-art approaches?

RQ2. Do the instrumented Wasm programs remain faithful to their original execution?

RQ3. How much does the code size increase after transformation?

RQ4. What is the runtime overhead due to instrumentation?

RQ5. What is the memory overhead due to instrumentation?

4.1 Methodology

We performed our experiments on two machines. The first is a server running Ubuntu
24.04.1 LTS (GNU/Linux 6.8.0-48-generic x86_64). The server has an AMD Ryzen 9 7950X
processor (16 cores, 32 threads, 4.5-5.7GHz) and 128GB of main memory. The second
machine is an Apple Mac Mini, with an M4 processor (4 performance and 6 efficiency cores)
and 24GB of main memory.

We employed WasmR3 [1] commit 299be52, as target for a set of dynamic analyses. This
benchmark suite includes 27 programs and serves as a reference for “realistic and standalone
Wasm benchmarks” based on a 2024 record-reduce-replay pass of real-world programs.

To compare our approach to three state-of-the-art tools operating at three different levels:

We use Wasabi to compare our approach to another source code instrumentation platform.

We patched it to be compatible with WebAssembly 2.0 programs, commit ee2fb70

We use Binaryen v122 to compare to a bytecode rewriting framework.

We use Wizard [38] commit 1810b61 (compiled with Virgil [37] commit e64483e) to

compare to a VM-level Wasm instrumentation framework.

In terms of runtimes, we execute Wasabi on Node V22.5.1, and we execute standalone
Wasm programs on Wasmtime V30.0.2 and the aforementioned version of Wizard.

23:13

ECOOP 2025

https://github.com/sola-st/wasm-r3/tree/299be52000046e5d49248c4c66a21238855587d7
https://github.com/aaronmunsters/wasabi/commit/ee2fb702228c123b9b391e262440bd28ef17960d
https://github.com/titzer/wizard-engine/tree/1810b61c909ca4e81e3c4b3d230a8c2134ce4973
http://github.com/titzer/virgil/tree/e64483ecec7584ddad7f94922c79261a97c62583

23:14

Wastrumentation

To avoid skewed results due to the VM warmup time or noise from other processes on
the system, we compute the median of 30 executions of the target Wasm program for each
individual runtime instance. When deploying an analysis with an instrumentation platform,
we target every function of the input program and enable instrumentation for every program
operation that the analysis depends on.

4.2 RQ1: Evaluating the Development of Dynamic Analysis Using
Wastrumentation

To evaluate how Wastrumentation aids the development of dynamic analyses compared to
state-of-the-art approaches, we implemented twelve dynamic analyses summarized in Table 3.
The analysis code is written in Rust.

Table 3 The dynamic analyses implemented in Wastrumentation. We include the type of hooks
and lines of code for the analyses in Wastrumentation and Wasabi. Those cells marked with X
correspond to analyses not possible to implement in Wasabi. The hooks used in * (“Basic Block Pro-
filing”) are if _then_else, if_then, call pre, call_indirect pre, block pre, loop_ pre, in
b (“Branch Coverage”) if_then_else, if_then, br_if, br_table, select and in ¢ (“DeNaN”)
apply, unary, binary, const_, local, global, load, store.

Analysis Name Hooks Lines of code
Wasabi Wastrumentation Wasabi Wastrumentation
(JavaScript) (Rust)
Instruction Mix all all (introspection) 62 81
Basic Block Profiling begin 6 11 33
Instruction Coverage all all (introspection) 16 52
Branch Coverage if, br_if, 50 21 30
br_table, select

Call Graph call_pre call pre 29 52
Dynamic Taint all all (introspection) 272 500
Memory Access Tracing load, store load, store 99 107
Cryptominer Detection binary binary 10 32
Forward all all 26 33
Denan X 8¢ X 35
Safe Heap X load, store X 69
Memoization X apply X 82

The first eight analyses in Table 3 (“Instruction Mix”, “Basic Block Profiling”, “Instruction
Coverage”, “Branch Coverage”, “Call Graph”, “Dynamic Taint”, “Memory Access Tracing”,
“Cryptominer Detection”) are analyses we ported from Wasabi [19]*. We use the Wasabi
analysis implementations available on the latest commit 21a322b in their public repository.
The lines of code for the ported implementation in Rust remain in the same order of magnitute
than those implemented in JavaScript for Wasabi. The main reason for the code size increase
is to conform with the Rust type system and borrow checker (e.g., strict typing, synchronize
on mutable global state). The ported analyses show that Wastrumentation does not sacrifice
in terms of its ability to implement existing analyses.

The latter four analyses in Table 3 (“Forward”, “DeNaN”, “Safe Heap”, “Memoization”)
are new analyses. More concretely, we implemented “Forward” in both platforms, and the
last three are novel analyses that require intercession (which is not supported in Wasabi).
We describe those analyses in what follows.

4 Due to space constraints, the code for those analyses is included in the artifact. The semantics of the
analyses are the same as they were implemented for Wasabi for the evaluation [19].

https://github.com/danleh/wasabi/tree/21a322b7faac9440b931762aae124ffa57d0fa17/examples/analyses

A.

Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

Forward. This analysis implements all trap functions without altering the original
program (cf. Table 1, column “Transparent Base”). It provides insight into the instru-
mentation platform’s minimum performance overhead as no additional analysis code is
included. Section 4.3 also uses it as a reference analysis to validate that input programs
remain faithful to their execution semantics after instrumentation.

Denan. This analysis replaces all NaN-floating point values in the program with the
floating point value zero. The analysis is inspired by the “--denan” instrumentation pass
from Binaryen. Section 2.1 showed our implementation and Section 4.2.2 compares it to
the ad-hoc implementation in Binaryen.

Safe Heap. This analysis checks for incorrect heap access. It is inspired by the
“-—safe-heap” instrumentation pass from Binaryen. Listing 5 shows its implementation
and Section 4.2.2 compares it to the ad-hoc implementation in Binaryen. For every load
or store operation, the analysis checks null dereferencing, reading past available memory
and usage of addresses with incorrect memory alignment (Sections 4.2-4.2).

Memoization. This analysis implements a memoization strategy of pure functions [24].
Its goal is to cache the outcome of pure function applications to save on repeated
computation efforts. Section 4.2.1 details our implementation.

For didactical purposes, we omit (1) synchronization primitives on global state, (2) type

casting and (3) method invocations for type conversion in Listing 5 and Listing 6.

Listing 5 Implementation of Binaryen’s Listing 6 A dynamic analysis implementation

“--safe-heap” pass in Wastrumentation. that caches the result of stateless function.

1
2
3
4
5
6
7
8
9
10

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

use wastrumentation_rs_stdlib: :x*; use std::collections::HashMap;
use wastrumentation_rs_stdlib: :*;
const WASM_PAGE_SIZE:i64 = 65_536;
fn bounds(idx:i64,byts:i64,o0fst:i64) {
// strict_add: assert no overflow
let last_idx_byte =
idx.strict_add(byts).strict_add(ofst);
assert!((last_idx_byte != 0) &&
(last_idx_byte <=
(base_memory_size(0)) *
WASM_PAGE_SIZE)); }

struct Key{fn_idx:i32,ags:Vec<Byte>}
static mut CACHE:HashMap<Key,Vec<Value>>
= HashMap: :new() ;

fn cache_hit(key:&Key) -> bool {
CACHE. contains_key (&key) }

© 0 N o A W N e

[
o

fn cache_retrieve(

key:&Key, results:&mut Results) {

CACHE. get (&key) .unwrap() .into_iter ()
.enumerate() .for_each(| (i, v)|
results.set_res(i, v.to_owned()));

==
[C—

// turn size into bitmask (‘-1¢), then
// assert mask-region is zero-only (‘&)
fn alignment(idx:i64, size:i64) {

// size == 4 (_32) | 8 (_64)
assert!(idx & (size - 1) == 0); }

= e
oo W

3

==
S ECY

fn cache_insert(key:Key, rss:&Results) {
let rss = rss.rss_iter().collect();
CACHE.insert (key, rss);

}

i
o

advice! {
load (i:LoadIndex,o:LoadOffset,
op:LoadOperation,l:Loc) {
bounds (i,op.target_size(),o.offset());
alignment (i,op.target_size());

IO I R
M = O ©

advice! { apply (

N
w

op.perform(&i,&o) 24 fnc:WasmFn, ags:Args, rss:Results) {
25 let ags = ags.map(to_bytes).collect();

store (i:StorelIndex,v:WasmValue, 26 let key = Key {fn_idx: fnc.idx, ags};

o:Store0ffset,op:StoreOperation, 27 if cache_hit(&key) {

1:Loc) { 28 cache_retrieve(&key, &mut rss);
bounds(i,op.target_size(),o0.offset()); 29 } else {
alignment (i,op.target_size()); 30 fnc.apply();
op.perform(&i,&v,&o0); } } 31 cache_insert(key, &rss); } } }

23:15

ECOOP 2025

23:16

Wastrumentation

4.2.1 The Memoization Analysis

We now discuss the details of the memoization analysis. Listing 6 shows its implementation
in Wastrumentation. The analysis maintains a global hashmap as cache where it associates
a function index and its arguments with the results for that function call (Sections 4.2—
4.2). The analysis targets the apply trap since only function applications will be memoized
(Section 4.2). The trap implementation computes the cache key (Sections 4.2-4.2) and returns
the associated result values if the key is stored in the cache. If the cache had no associated
entry for the computed key, the function application continues and the computed result is
stored in the cache for successive function applications (Sections 4.2-4.2).

1183650 ms
648020ms 591800 ms

A

>

10,000 - ooms
828.09 ms
1,000 - N S,

1230 ms 1210ms 1180 ms 1080 ms 1010 ms

10264ms 7gERs 7231ms

4267 ms

Relative Speedup with Memoization (X)

100 -
10 -
14
I I I I I I I I I I I I I I
0° s SO Y SRS S \e o N O AC
oo PR P L P
K >
A\ '(\%((\

Figure 4 Execution times after instrumentation with the memoization analysis. The programs
are sorted by their absolute runtime in miliseconds (A) from left to right. The bar charts indicate
the relative speedup on a logarithmic scale.

To assess the effectiveness of the memoization analysis, we conduct an experiment to
check whether it would benefit the programs in the WasmR3 benchmark suite executed
on Wasmtime. We first perform a static analysis phase to identify the programs with pure
functions which could be good candidates for memoization. This phase identified 14 candidate
programs (out of the 27) featuring pure functions. Figure 4 plots the measured runtimes of
those programs and their instrumented variants. Our results show that the analysis can incur
a performance penalty for some programs, and it can speed up others. The performance
penalty ranges from 1.02x slowdown (rguilayout) to 3.10x slowdown (funky-kart), while the
speed-up ranges from 1.02x speedup (rguistyler) to 1,1526.50x speedup (fib). This experiment
shows that such analyses can be developed at low cost for exploration, and yield the potential
to then be ported within concrete VM implementations if they offer promising results.

4.2.2 Comparison to Bytecode Rewriting Frameworks

As mentioned before, state-of-the-art dynamic analysis platforms for Wasm do not support
intercession, but bytecode rewriting frameworks such as Binaryen [10] and Walrus [32] do. We

M«

observe that Binaryen v122 offers six instrumentation passes: “--safe-heap”, “~-denan”,
“--instrument-locals”, “--instrument-memory”, “~-log-execution”, “~-trace-calls”.
Out of the six, all offer support for intercession except for “~--log-execution” . Unfortunately,
the “~-denan” analysis is the only instrumentation pass that rewrites the input program into

a variant that can execute standalone. All other instrumentation passes rewrite the target

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

program such the host must implement a part of the analysis, eg. what to perform when
observing reads or writes into locals for the “~--instrument-locals” pass. This couples the
analysis with host-provided functionality. Titzer et al. developed in [38] two standalone
ad-hoc analyses, “branches” and “opcodes”, in the Walrus bytecode rewriting framework.
To further evaluate RQ1, we compare the implementation of these three ad-hoc analysis
implementations (“DeNaN”, “branches”, and “opcodes”) that can execute standalone with
an equivalent analysis on Wastrumentation.

When comparing the implementation of a given analysis on Wastrumentation to an
ad-hoc solution, we observe three main limitations of bytecode rewriting frameworks.

Higher implementation effort. We observe repeated efforts of constructing the low-level
Wasm constructs and injecting these within the target program when using bytecode
rewriting frameworks. This most notably affects the code size of the analyses: “DeNaN”
(195 LoC on Binaryen, 35 on Wastrumentation), “branches” (291 LoC on Walrus, 24 on
Wastrumentation), and “opcodes” (242 LoC on Walrus, 81 on Wastrumentation). The
lines of code for analyses in Wastrumentation are smaller since the transformation efforts
are reused among analyses as they happen within Wastrumentation and Wasm-Merge.

Semantic abstraction loss. We observe a notable loss of high-level semantic expressive-
ness in bytecode rewriting systems because analysis implementations are restricted
to low-level, elementary operations due to the lack of access to rich abstractions,
such as complex data structures and a strong type system. For example, “De-
NaN” analysis is limited to changing a value to 0 while the “branches” and “op-
codes” increment a fixed set of global counters by 1. The other analyses implemen-

43 MW MW

ted by Binaryen (“--safe-heap”, “--instrument-locals”, “~-instrument-memory”,

“--log-execution”, “--trace-calls”) avoid additional complexity by forcing the ana-
lysis developer to implement more complex data structures within the host, such as
logging infrastructure, hashmap dictionaries, or debugging infrastructure. In contrast,
implementing the analyses on a general-purpose analysis platform is easier since developers
do not need to manipulate Wasm instructions nor ensure the type safety of the analysis
code. In Wastrumentation, developers can implement the analysis using a high-level API
and in a high-level language like Rust. This reduces the complexity of the analysis by
raising the abstraction level, allowing for a compiler to type-check, validate, and optimize

the analysis code.

Lack of Separation of Concerns. We observe the analysis logic is tightly interwoven with
the transformation pass, resulting in reduced modularity and maintainability. This
means that instructions such as ’increment a counter’ (analysis code) are scattered
among instructions such as ’extend target body with increment’ (transformation code).
Wastrumentation decouples these concerns by treating the analysis implementation as a
unit separate from the instrumentation phases. As a result, it becomes easier to maintain,
comprehend, and evolve the semantics of the analysis independently from instrumentation.

Finally, we would like to note that the Binaryen instrumentation pass “DeNaN” is incom-
plete. The implementation of the “~-denan” pass in Binaryen documents does not support
the instrumentation of local.get, as doing so “would cause problems if we ran this pass
more than once (the added functions use gets, and we don’t want to instrument them)” [11].
Since Wastrumentation decouples instrumentation from the analysis implementation, the
instrumentation of local.get operations do not run the risk that analysis code and its
instructions of local.get are instrumented too.

23:17

ECOOP 2025

23:18

Wastrumentation

Table 4 Violated assertions when deploying the Forward analysis using Wastrumentation on the
Wasm official test suite.

Tool Execution Stage Warning # Modules # Assertions
(1) Wastrumentation Transformation Expected type 64, got 32 1 0
(2) Wasm-Merge Transformation ~ Unknown misc operation 8 36
(3) Wasmtime Runtime Uninitialized element 4 4
(4) Wasmtime Runtime Equality assertion failure 2 2
(5) Wasmtime Validation Undeclared func. reference 2 8

4.3 RQ2: Evaluating the Faithful Execution

We take an experimental approach to validate that input programs remain faithful to their
execution semantics after instrumentation. We validate that instrumented programs maintain
structural integrity and correct execution semantics across (a) the 4,082 programs in the
official Wasm test suite and (b) the 27 programs in the WasmR3 benchmark suite.

To validate the faithful execution of the 4,082 programs from the official Wasm test suite,
we instrumented them with the “Forward” analysis (presented in Section 4.2). This analysis
targets every supported trap without altering the semantics of the original program. The
official Wasm test suite includes 26,632 assertions. We disabled those that assert failures
(i.e., assertions that expect an invocation to trap)®, as the goal of the experiment is to
show that the “Forward” analysis does not alter successful tests. Disabling assertions on
failures ensures proper execution of subsequent assertions. Otherwise, an exception in the
input program halts the module’s execution, preventing the instrumentation code from being
notified and unable to clean up its internal state®. While the forward analysis is stateless, the
instrumentation infrastructure remains stateful with respect to the apply trap (cf. Listing 4).
For this reason, we disable failure assertions to retain all success assertions.

For the remaining 21,392 assertions, Wastrumentation has a success rate of 99.77%, with
only 50 assertions failing across 17 modules. Table 4 categorizes the failures by the tool
reporting the failure (Wastrumentation, Wasm-Merge, or the Wasmtime runtime), the stage
at which the failure occurred (Transformation, Validation, or Runtime), the reported warning,
the number of affected modules, and the number of affected assertions.

Failure (1) stems from wasabi-wasm [17], the underlying transformation library used by
Wastrumentation which fails to infer the types of the input program. Failure (2) originates
from Wasm-Merge, which cannot identify an input operation. We suspect this can be solved by
enabling more feature flags provided by Wasm-Merge as they enable more Wasm instructions.
Failure (3) results from uninitialized elements (static declared Wasm memory segments),
which Wastrumentation does not directly manipulate. This issue could be addressed with
further investigation into the serialization of our transformed module or the merge step.
Failure (4) is a runtime failure caused by disabling previous assertions after they failed,
violating the expected state. Finally, failure (5) requires more investigation.

In a second experiment, we verify Wastrumentation using the 27 programs of the WasmR3
benchmark suite across all 12 analyses listed in Table 3. For each input program in the
WasmR3 and each analysis, we used wasm-validate, a Wasm binary validation tool, to
verify the structural integrity of the code after instrumentation. The results showed no
errors reported by wasm-validate for any of the analyses, confirming that Wastrumentation
produces valid Wasm code that fully adheres to the requirements of the Wasm binary format.

5 The following assertions (including count) were disabled: “assert_invalid” (1,476), “assert_trap” (2,388),
“assert__exhaustion” (15), “assert_ malformed” (1,277), “assert_ unlinkable” (84).

6 A proposal for Wasm exception handling is not yet standardized. If it were standardized, a set of
exceptions could be accommodated by the instrumentation platform to clean up the analysis state.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

4.4 RQ3: Evaluating Code Size Increase

We now compare the code size increase of Wastrumentation with respect to the state-of-
the-art source code instrumentation platform Wasabi. To compare binary output size after
instrumentation for both platforms, we computed s = code—sizeuasbi —mstumented __ Thig ratio

code— SIZ€yastrumentation —instrumented

s indicates where Wastrumentation-instrumented programs require fewer bytes (s > 1) or

when Wasabi-instrumented programs require fewer bytes (s < 1).

We calculated the s ratio for each instrumentation of the WasmR3 benchmark suite using
the dynamic analyses supported by both platforms. More concretely, the dynamic analyses
used are the first eight analyses in Table 3 along with an adapted version of the “Forward”
analysis. To ensure a fair comparison, we modified our “Forward” analysis to only include
hooks that are compatible with Wasabi.

Note that, for Wasabi, the analysis logic is implemented on the JavaScript side, whereas,
in Wastrumentation, it is embedded as Wasm code within the instrumented binary. Since
JavaScript and Wasm serve different execution models and cannot be directly compared, we
exclude the JavaScript analysis implementation from the code size comparison for Wasabi’s
instrumented programs to ensure a fair evaluation.

4.4.1 Results

Figure 5 shows the ratio s for each instrumentation in the cross-product. In cases where
Wasabi failed to instrument a specific input program, we leave the cell blank as no ratio
can be computed. Additionally, Figure 6 shows the size of the input programs prior to any
instrumentation. The code size increases for each platform individually are presented in
Appendix B in [25].

Out of a total of 180 successful ratios, 140 indicate the output Wasm module code
generated by Wastrumentation is smaller, while the remaining 40 favor Wasabi. The analyses
“Basic Block Profiling”, “Branch Coverage” and “Call Graph” tend to favor Wasabi, which
aligns with the low number of target operations in these analyses (6, 5 and 1, respectively).
For the other analyses, which involve a larger number of traps, the size ratio generally favor
Wastrumentation, resulting in smaller binary sizes compared to Wasabi.

The noticeable “red stripe” for the input program “game-of-life” indicates a significant
advantage for Wasabi’s instrumentation. This is largely due to the significant difference in
binary sizes among the input programs. Whereas “game-of-life” has an uninstrumented size of
just 1.199 bytes, the other input programs range from 38.965-22.264.896 bytes. This suggests
that Wastrumentation introduces a relatively larger size overhead for smaller programs
compared to Wasabi, which may be expected as this metric counts for Wastrumentation the
additional analysis code, whereas it does not count the JavaScript analysis code for Wasabi.

4.5 RQA4: Evaluating the Runtime Overhead of Wastrumentation

To assess the runtime overhead of Wastrumentation, we performed 4 experiments. The
first experiment evaluates the runtime overhead for Wastrumentation for its load, validate
and execution of the “Forward” analysis. The second experiment computes the execution
overhead of Wastrumentation for the 12 analyses discussed in Table 3. The third experiment
compares the runtime overhead to the Wasabi source code instrumentation platform. Lastly,
we compare the performance overhead to state-of-the-art bytecode rewriting frameworks.

23:19

ECOOP 2025

23:20

Wastrumentation

Wasabi Output Code Size / Wastrumentation Output Code Size

0.07 0.1 0.2 0.3 0.4 05 06 07 1

0645 0.775 0835 0.987 ‘.0942 0.839 0.855 0898 0.775 0.775 0839 0.933 0.968 0.954 0.957 0885 0.856 0.834

0774 1123 1252 1.019 1.088 1213 1.187 0990 1.124 1124 1.119 1.131 1.094 1.096 1.003 1.136 1.157 1306

0956 0.757 0.757 0994 1.046 1.040 1.097 1100 1.034 1.025 1.053

analysis
[}

1.090 1232 1214 1232 1232

o g\eﬁxee‘ox\)og\\e(\\o et et et I
"0@% e ‘°‘\'<\ Q’a) 9’6‘%9;@ SN ~;°) \?5?'\‘)‘0 ‘1‘9*{\,@03 \\‘\6 «;\ \\@; \5\\\:\ N \e:" 9900
PN\ o ‘(\ 91 oo <\
6\

oo“‘“\ I
Input Program

Figure 5 Code size ratio of Wasabi-over Wastrumentation-analyzed programs.

Absolute Code Size per Input Program

100,000,000

968'v92'22
LI0'LEEY
2s52'e88's
§60°SeL'e
60S'0L¥'S
v.6'9€}'E

10,000,000
1,000,000

2v 1889
€50°601°}
G80've8
§69°'028
S€0°20S
69€°9LS
600855
£v5'98Y
2ee'osy
219'98¢e
1£8°126
14YA4YA

8€8'9/€

Program Size (bytes)
596°8€

6€5°90 1
gov'ove

028901

¥£9°901
0s2'162
281961

100,000
10,000
1,000
% é(///@/ O, ’éo,o,)%?:é 04) %, :9$,>) A @o’o 940;@0 07%0;)?(,// z(,,, %, 0'9,% 6,,33—90@%9@&;00%%%&%+17:%%@9@4
o%;/ %% ﬁs,, 04% 2, % %, %0;4, S %, % . ‘904&%, . %
%, o %

Input Program

Figure 6 Code size of input programs from the WasmR3 benchmark suite.

4.5.1 Load, Validate and Execute Time

In this section, we evaluate the cost of loading, validating and executing programs for each
stage for the input programs of the WasmR3 input suite when instrumenting with the
“Forward” analysis. Figure 7 plots the overhead for each stage for 20 instrumented input
programs with Wastrumentation. The overhead is computed using the Wizard engine. The
median is computed for both the uninstrumented and instrumented variant over 30 runs.
For the remaining input programs, 5 timed out, and 2 could not execute.

We observe that the relative increase for loading and validating an instrumented variant
correlates with the absolute code size increase from Section 4.4. This is because both phases
require reading the input program into the execution engine and performing a static validation
on it. For loading, this is in the range 1.13-5.37, for validating in the range 1.84-5.65.

Second, we observe that the increase in execution time spent for the input programs differs
significantly depending on the input program. We further ported 10 analyses other than
“Forward” to Wastrumentation for further comparison, however other analyses execution failed
with the message “!trap [MEM_OUT_OF_BOUNDS]”. We believe this error does not originate
for the “Forward” analysis since it does not reserve additional linear memory in that analysis
code. To the best of our knowledge, this may point out a regression for the Wizard baseline
engine, since no such exceptions occurred when executing the same experiments on other
execution engines such as NodeJS, Wasmtime, and Wasmer.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

Load, Validate and Runtime Overhead for Forward Analysis on Wastrumentation, executing on Wizard.
M Load Validate Execute

29
2509
19°68

s
£9'69

-
o
<]
606
68'95
819
2gLe
28'6E
80'1e

g - :
~ A © S
T 20 > g -
o oo o - o o o & o » -
@ o IS - I I IS : & »
& 1057 8% "es | & £ 7eB L2 183 0 £ IER L8 LB L8 .8 .8 B .2 9B
1 H N g . N 8 g o ° ® 2 @ 3 » e 2
S 4- S N N 3 © @ 8 3 8 @ 8 2 s
- 5 = = @ = - -
c>’27|%3|| | gl I||||||||
. 3
1- I \. I I . T I I I I . I I I I I I I I I
N AR 3 & $© &) O O \C N o R\ < e X X @ R
NG @ 0 o e e o & J ¢ 2 N ©f o §© 3@ SR 0)
oo SO (T o 3 o 5 o o PP FOS MR e o o 2 & S
S &0 o <@ o o o o o PO\ ot o &
o o PR AR

o

Figure 7 Overhead for loading, validating and executing time after instrumenting WasmR3
programs with the “Forward” analysis on Wastrumentation, executing on Wizard.

4.5.2 Setup for NodelS experiments

To determine the runtime overhead of Wastrumentation, we compute the ratio o as the
performance of instrumented execution relative to uninstrumented execution. An o value of
2 means instrumentation slows the execution time down by a factor of 2.

To compare the performance overhead for Wastrumentation and Wasabi, we computed
a ratio p as the execution time of a Wasabi-instrumented module relative to the execution
time of a Wastrumentation-instrumented module. A value p > 1 indicates Wastrumentation-
instrumented execution requires less time to complete, and a value of p < 1 indicates
Wasabi-instrumented execution requires less time to complete. For example, a p value of 0.5
means that “Wasabi is twice as fast at runtime to analyse the program”, while a p value of 2
means that “Wastrumentation is twice as fast at runtime to analyse the program”.

Similar to Section 4.4, we compute the ratio’s o and p for the programs in WasmR3 using
the analyses supported by both platforms. We profile the execution of uninstrumented and
instrumented programs using the performance observation API from NodeJS “perf hooks”.
The recorded times do not include the program loading from main memory or the verification
or compilation of the module. As mentioned in Section 4.1, we calculate the median of 30
executions of the program within a single NodeJS instance. During our experiments, the
execution of an instrumented program was limited to a timeout of 300 seconds.

4.5.3 Runtime overhead of Wastrumentation

Figure 8 shows the results for the overhead ratio o. The white cells indicate missing data,
either due to the instrumented execution exceeding the timeout (T) or due to raising an
uncaught exception (MD). In total, 51 combinations timed out, while 1 raised an uncaught
exception (“memory-tracing” for the input program “pathfinding”).

The results show that the instrumentation overhead for Wastrumentation ranges from
1x-514.0x. The analyses “coverage-instruction” and “taint” generally incur a higher overhead
of 5.5x-514.0x and 12.85x-376.9x, respectively. These analyses are, however, heavy-weight
as they implement all traps and maintain heap-allocated data structures that grow during
the target program execution (a coverage hashmap and growable vectors, respectively).
Nevertheless, Wastrumentation’s overhead aligns with expectations for similar source code
instrumentation platforms such as Wasabi [19], Jalangi [33] and Aran [6].

23:21

ECOOP 2025

23:22

Wastrumentation

4.5.4 Comparison to Wasabi

Figure 9 shows the results for p ratio used to compare the runtime overhead for Wastrument-
ationand Wasabi. Note that figure only plots 20 input programs, as 7 input programs could
not be instrumented by Wasabi so no ratio could be computed. The white cells indicate
missing data, labeling T for “timeout”; followed by the platform “M” (Wastrumentation), “S”
(Wasabi) or “M&S” (both). For a total of 180 combinations where both Wastrumentation
and Wasabi yield a valid instrumented module, 140 combinations yield a measurement.
For 31 combinations both Wastrumentation and Wasabi timeout. For Wastrumentation
an additional 3 combinations timeout and for Wasabi an additional 6. The performance
overhead individually per platform for additional reference are further detailed in Appendix
C in [25].

Overhead for Wastrumentation

1 2 3 4 10 20 30 40 100 200 300 400

N Q. -7.798 4655 2122 T 9.981 .7,376 -4.574 3580 6648 T T T .. T 1000 9.274 .. 5981 4893 T .
(0(\\\(\

o 5.167 2432 1436 2427 1.749 T 4263 2782 3.088 3.136 2446 2.134 3.593 1.005 0.999 1.000 3.656 7.451 5.250 1.423 1.751 2.905 2.655 5.399 5.598 4.221 2916

. T 5545 2234 4.154 .7.7% .4.187 3236 5490 T T T .5.455 T -... 0.947 0.983 ..

" T .6'5"7 . " . ! .9'“‘ . T . . -55se i ' .

. T s 7 T 4sis .H.A,oss 17% 7788 T T1.175 1213 ..

. T ase 24 .9.537 2z . ..1430 129 T

analysis

. TS m...'797 il = ' .
.3762 3.447 1.621 1.000 3.187 . .4786 1.642 10.14 1.877 0.999 1.000 .65& ﬁ....‘ﬂQ 1.775 ..
MD T

02 N e i@ 0O O o@ o N 08 O O &S ‘o\e’ RN \)?' (\g o\\ Nt et et P
S \0\\6 ¥ s e® x'b&&%‘*“:\ \Q o \;6 o9 \62\3‘0«\\,&*?0\3 P ‘*\)\\xx .«,\\\ 30*"'3; %t 65'9 S
& o e «© &

\) «
o' A

Input Program

Figure 8 Execution overhead for instrumenting programs using Wastrumentation. Instrumenta-
tion is done for the cross-product of shared dynamic analyses and the WasmR3 benchmark suite.

The results of this experiment show that the distribution does not favor any particular
instrumentation platform. Overall, the most suitable platform is determined by the specific
input program, rather than the type of analysis applied. For example, for some input programs
(“figma-startpage”™“hydro”) Wastrumentation incurs a notable lower overhead across all
analyses, while for other input programs (“jgkungfu”, “rtexpacker”, “rtexviewer”) the opposite
holds. Some notable outliers are [“jgkungfu”,“taint”] where Wasabi-instrumented execution
is 17.5x faster and the “memory-tracing” analysis for “bullet”, “funky”-kart, “guiicons”,
“ffxgen”, and “rguistyler” where Wastrumentation is >9.0x faster than Wasabi.

"W

To coroborate that our findings are consistent across virtual machines, we also deployed
the “Forward” analysis for Wastrumentation on Wasmtime. Appendix D in [25] plots our
findings, and confirms that across NodeJS and Wasmtime the overhead for the “Forward”
analysis remains within the same order of magnitude.

4.5.5 Comparison to bytecode rewriting systems

Lastly, we compare the performance overhead of Wastrumentation with that of analyses
implemented in bytecode rewriting systems. To this end, we compute the overhead of the
bytecode rewriting analyses that we ported to Wastrumentation as described in Section 4.2.2.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

Wasabi Execution Time / Wastrumentation Execution Time

0.1 02 03 1 2 3

1.939 0.868 TM&S 3209 2.305 1.458 -1.652 0591 T:M&S T:M&S TM&S 1.448 8579 1.426 1.658 2.346 0.223 0.276 3.01

2149 2489 0.258 0.253 m

1.113 1.827 0.968 0.979 2.345

1.048 TM&S 2811 .1.332 2078 2269 084 1005 1 1 1619 149

1506 0.856 T:M&S 8635 1.547 1.125 1.627 2742 0.761 T:M&S TM&S TM&S 0.847 .1,385

“M&S 0.904 TM&S 8031 TM&S 1.017 TM 1.194 1.181 TM&S TM&S TM&S 0725 2696 TM TM 0602 0427 0338 0.764

% o Q(QQ \)0‘\0“
_>' Go *\(\5\" '0‘\ 0.967 2446 T:M&S 2703 0.928 1.523 0.858 2.376 1.662 T:M&S T:M&S T:M&S 1.115 1.491 0.827 0.721 0.941 0.901 0.885 1.057
© 2 X\
O
g Gox\e‘age‘¢6e'\z (6 1.128 .T:M&S .1.096 2719 0.905 ..TM&S TM&S T:M&S 1.455 2,698 0.992 1.004 0.979 1.312 1.604 1.99
: &
< N
Q\o((\ ’\0 ‘(* 2273 .TM&S.ZJS& 3.625 2.083 ..TM&S TM&S TM&S 252 1.045 1.737 3.288
C 5
N .. .\
2.039 0.998 2.564 756 2379 TS 1 31 0.765 0.719 3.555
,\(\5\‘ ,‘)c',\“g N
.\ | TS 0458 T:M&S [849 TS 1.166 TS 0.468 TM&S T:M&S T:M&S 3.386 2313 TS TS 3.341 0284 0314 3.146
O o
((\ T T T T T T T T T T T T T T T T T T 1
S e <\ e & O e £ of M
0“:\ o };‘\ 239 5% e \\5‘ “‘%@“0 ":\Q\\!\‘\ ,&Q‘) é*%e\gﬂ\?’,&c“gac‘lf "%
o
a\\«\@ 6‘“\‘?*‘“ o(\<\
«

)
Input Program

Figure 9 Execution time ratio of Wasabi-analyzed programs over Wastrumentation-analyzed
programes.

Figure 10 plots the performance overhead for various input programs of the WasmR3
benchmark suite. For all analyses and input programs, the runtime overhead of bytecode
rewriting is one or two orders of magnitude lower. These results are confirmed by earlier
experiments, as pointed out by Titzer et al. [38].

The performance advantage of bytecode rewriting systems stems from two aspects. First,
bytecode rewriting systems allow developers to have more fine-grained control over which
specific locations to inject instrumentation code statically. Second, they can directly inline
the analysis within the target operations. In contrast, Wastrumentation, requires runtime
dispatching on generic operations. For example, our “binary” trap encapsulates 76 different
instructions requiring additional dispatch at runtime.

4.6 RQ5: Evaluating the Memory Overhead of Wastrumentation

We now assess the runtime memory overhead incurred by Wastrumentation and compare it to
Wasabi. To evaluate the memory overhead, we used the “Forward” analysis on the WasmR3
benchmark suite for both platforms. We measured the runtime memory using Node.js’s built-
in process.memoryUsage () method after executing each program. The memory overhead
for each instrumented program was calculated relative to an uninstrumented baseline,
representing the increase in memory usage (expressed as times more memory usage).

4.6.1 Results

Figure 11 shows the results for each input program. For Wasabi, memory overhead could
not be computed for the seven programs that failed to be instrumented, and these programs
show no value in the figure. We observe that Wastrumentation’s memory overhead ranges
from 1.01x to 37.65x, while the memory overhead for Wasabi ranges from 1.03x to 12.34x.
We suspect that the higher memory overhead in Wasabi is due to Node.js JIT employing
more memory, as the analysis is written in JavaScript, but further experimentation is needed
to quantify this hypothesis.

23:23

ECOOP 2025

23:24

Wastrumentation

Runtime Overhead Comparison between Wastrumentation and Bytecode Rewriting on Wasmtime
Bytecode-Rewriting Wastrumentation

1,000 5

6g
81'ze
61t
96701
202
€02
e
€82
[
602
W
8002
6t
e
og't
90°1L
o't
€82
62t
e
ozt
e
pag
66'1
og't
og'e
90t
19k
[T
£9'6
660
sv0z
o'
IR
2
o
€02
6922
orse
62'SE
£0'52
W
e
$O'L
£8°0
2
09'02
s6'L
og'sh

branches
Overhead (X)

ov'e
SH6ve
et
05'9LL
6Vt
199
69’k
85
20t
€8t
€e'le
E2A8
g2LIE
IS
28y
25t
96'€8¢
15t
€€'6
09't
25T
s0't
oe'vek
282
60't
00k
290vk
€
6L€6k
51
ev'6y
[
95°9Le
sL1
1£°69€
05t
8L'65€
51
1oy
et
v2'808
62e
ev's
S0
Eg
1o
EIN
ve'Z0k

denan
Overhead (X)

0v'00k
88601
2088
2506
96'6L}
pres
S6'16
1098
8109
66's8
SLL0k
£EV6L
96'1LL
6L'664
26851
8605

€9
%€'e
£€'s
9T
10
we
vo'L
66
et
ev'L
ey
092
2
80
are
e
08’k
86
£9'%
09t
29k
s
6.6
we
6€'9
£5°G
9%
(54
s8'e
S0t
20

opcodes
Overhead (X)

T T T T T T T \ T T T T T T T T \ T T T T T T T T T
02 N oo @ e \\ e\ (@ © O P e (S o\ O O e g8
o “\)\6 NS \o‘\ Z® ?)?\“N\ \; ™ \\ﬁ RO 6\‘0;00\@ O s 0% \Q“ (\5‘ &» \\z‘! 0)55“‘\(\ 00\‘;9'00\“ \'2?'A 699\ 40
00 ‘\e (\B e
6‘ . \0 W Q
o© o™

Input Program

Figure 10 Performance overhead comparison between Wastrumentation and bytecode rewriting
systems across various input programs from the WasmR3 benchmark suite.

In the context of Wasm programs, runtime memory is often a limited resource, particularly
in environments such as cloud-based platforms or microcontrollers. As a result, minimizing
memory overhead is critical for ensuring efficient execution. These results indicate that
Wastrumentation may be better suited for deployment in memory-constrained environments.

5 Related Work

In recent years, WebAssembly has become a popular target for dynamic analysis. These
analyses span various domains, including security [2], taint tracking [9, 36], program compre-
hension [20, 30, 26, 39], and profiling [21]. This section compares Wastrumentation to other
instrumentation platforms for Wasm and discusses closely related work beyond Wasm.

Memory Overhead Comparison for Forward Analysis using Wasabi and Wastrumentation

—_ Wasabi Wastrumentation
x
<
k] w
§ 1005 9
< 3 »
g 407 ® N 2
> m = © N
c; 20 - 2 o @ 3
] 103 ':: w o o g

3 =2 ® o N N N o
£ 3 N N 3 @ z o - [N M © Nn Cp S
o 4 @ B~ o & © . NRo = = g.°=* . N © o= N
= L0 b P ®D @ oz B @2 2wz s Ch 8 R ez i
[S <8 N8 ° 3R Na ARSI S ® © 8282 °
g 1 T T T T T T T T T T T T T T T \ T T T T \ T T T T \ T
c 0% £ et B 0O SR \\ &0 e O ¢ @ O e M @ @ g ¢
2 © ‘0\“\6@“@ o° &« 2 O O o 0\“&(@ o \\Q\‘! i Q@Q’a\ ‘\“\6 &9 \\@! \)\sﬂ an 990 *\,\e 66‘))

& <

N
”‘\ \o“*\‘g«\ ‘:\5 AN

cp“\‘(\ o

Figure 11 Runtime memory overhead of programs analyzed with Wasabi and Wastrumentation
using the “Forward” analysis on the WasmR3 benchmarks. Baseline runs uninstrumented on NodeJS.

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

5.1 Instrumentation Platforms for WebAssembly

As mentioned before, there exist several tools that enable code transformation and instru-
mentation for Wasm binaries, Brewasm [5], WasmManipulator [29], and Binaryen [10]. These
tools facilitate code injection by providing low-level APIs to modify the input program binary
code. However, the analysis developer is responsible for the correctness of the transformation.
Wasabi [19] was the first dynamic analysis platform for Wasm, enabling developers
to implement analysis against a high-level instrumentation API and ensuring a correct
transformation. The analyses are written in JavaScript by implementing functions that
execute code for specific program events of interest. Wasabi achieves instrumentation through
source-level code rewriting, generating an instrumented version of the target program that
calls the analysis code at runtime. Like Wasabi, Wastrumentation also performs source code
instrumentation. In contrast, Wastrumentation does not require a specific language for the
analysis, as long as the language can compile to Wasm. Moreover, analyses can operate in
environments outside the web, where the Wasm VM may run without a JavaScript VM.
Wizard [38] follows a different instrumentation approach than that of Wasabi and Wastru-
mentation. Wizard is a Wasm VM with built-in support for instrumentation. In Wizard,
analyses are implemented as instrumentation “probes”. These probes are developed as
extensions to classes within the Wizard VM, which upon execution of a target program will
invoke the relevant probe. Wizard focuses on minimizing instrumentation overhead through
features that VM-level instrumentation can benefit from, e.g., dynamically adapting analysis
code during execution and JIT intrinsification of instrumentation code. However, with this
approach, applications executed in the Wizard VM are the only ones that could be analysed.
In contrast, dynamic analyses implemented with Wastrumentation do not have additional
requirements for the runtime environment, making them portable to any Wasm VM.

5.2 Instrumentation Platforms Supporting Intercession

Dynamic analysis frameworks supporting intercession have been explored for languages
other than Wasm. The GraalVM [41] is a polyglot VM that supports instrumentation and
dynamic language execution. GraalVM’s Truffle framework [40] enables high-performance
instrumentation and runtime adaptation [7]. This capability has been used for building a
taint analysis platform [16, 15]. In contrast to GraalVM, Wastrumentation performs the
instrumentation ahead of time, allowing the instrumented program to run on any Wasm VM,
at the cost of not being able to disable instrumentation once the program is executed.

Pin [22], Valgrind [28], and DynamoRIO [4] are dynamic binary instrumentation frame-
works for native code analysis. Valgrind provides tools like Memcheck, Callgrind, and
Helgrind, which allow intercession and monitoring of x86, ARM, and other instruction set
architectures. Its approach of translating code into an intermediate representation enables
detailed runtime analysis, including memory checking and profiling. Wastrumentation differs
from these approaches for its target domain of applications. The distinct semantics of Wasm,
such as its static strong type system and lack of reflection, challenge instrumentation.

6 Conclusion

This paper presented Wastrumentation, a general-purpose source code instrumentation
platform for Wasm. Developers can build dynamic analyses using a high-level API that
compiles to the Wasm application binary interface supported by Wastrumentation. As a
result, analyses can be implemented in any language that compiles to Wasm. The platform

23:25

ECOOP 2025

23:26

Wastrumentation

then merges the target program and the analysis code into a single Wasm program. The
resulting instrumented code can be run in any Wasm VM. The high-level APT allows for
implementing analysis requiring intercession, e.g., altering or skipping operations at the
target program. Our evaluation with real-world applications from the WasmR3 benchmark
suite shows a competitive performance overhead compared to the state-of-the-art source code
instrumentation platforms. We also implemented three novel analyses requiring intercession,
which were unattainable with existing source code instrumentation platforms for Wasm.

In future work, we aim to improve the platform’s modularity so that analyses that do
not need intercession do not incurr any performance costs. Currently, it is not possible to
eliminate intercession when it is not needed. We also aim to explore a more fine-grained
specification language, enabling analysis developers to specify precisely what needs to be
instrumented. This could further reduce performance overhead and the binary size of the
instrumented application. Finally, we aim to gain more experience and insights in intercession
analyses and explore ways to prevent them from compromising overall integrity or efficiency,
e.g., detect analyses that pollute the target linear memory or impose a significant overhead.

—— References

1 Doehyun Baek, Jakob Getz, Yusung Sim, Daniel Lehmann, Ben L. Titzer, Sukyoung Ryu, and
Michael Pradel. Wasm-R3: Record-Reduce-Replay for Realistic and Standalone WebAssembly
Benchmarks. Proc. ACM Program. Lang., 8(OOPSLA2):2156-2182, October 2024. doi:
10.1145/3689787.

2 Iulia Bastys, Maximilian Algehed, Alexander Sjosten, and Andrei Sabelfeld. SecWasm:
Information Flow Control for WebAssembly. In Gagandeep Singh and Caterina Urban, editors,
Static Analysis - 29th International Symposium, SAS 2022, Auckland, New Zealand, December
5-7, 2022, Proceedings, volume 13790 of Lecture Notes in Computer Science, pages 74—103,
Cham, 2022. Springer. doi:10.1007/978-3-031-22308-2_5.

3 Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common lisp object system specification X2JI3 document 88-002r. ACM
SIGPLAN Notices, 23(SI):1.1-2.94, 1988. doi:10.1145/885631.885632.

4 Derek Bruening. Efficient, transparent, and comprehensive runtime code manipulation. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, USA, 2004. AAIO807735.
URL: https://hdl.handle.net/1721.1/30160.

5 Shangtong Cao, Ningyu He, Yao Guo, and Haoyu Wang. BREWasm: A General Static Binary
Rewriting Framework for WebAssembly. In Manuel V. Hermenegildo and José F. Morales,
editors, Static Analysis - 80th International Symposium, SAS 2028, Cascais, Portugal, October
22-2/, 2023, Proceedings, volume 14284 of Lecture Notes in Computer Science, pages 139-163,
Cham, 2023. Springer. doi:10.1007/978-3-031-44245-2_8.

6 Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and Coen De Roover. Linvail:
A General-Purpose Platform for Shadow Execution of JavaScript. In 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 260-270. IEEE Computer Society, 2016. doi:10.1109/SANER.2016.91.

7 Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian Humer, and Thomas
Wiirthinger. Fast, Flexible, Polyglot Instrumentation Support for Debuggers and other Tools.
Art Sci. Eng. Program., 2(3):14, March 2018. doi:10.22152/programming-journal.org/
2018/2/14.

8 Aryaz Eghbali and Michael Pradel. DynaPyt: a dynamic analysis framework for Python. In
Abhik Roychoudhury, Cristian Cadar, and Miryung Kim, editors, Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, pages 760-771. ACM, 2022. doi:10.1145/3540250.
3549126.

https://doi.org/10.1145/3689787
https://doi.org/10.1145/3689787
https://doi.org/10.1007/978-3-031-22308-2_5
https://doi.org/10.1145/885631.885632
https://hdl.handle.net/1721.1/30160
https://doi.org/10.1007/978-3-031-44245-2_8
https://doi.org/10.1109/SANER.2016.91
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.1145/3540250.3549126
https://doi.org/10.1145/3540250.3549126

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

10

11

12

13

14

15

16

17

18

19

20

21

22

William Fu, Raymond Lin, and Daniel Inge. TaintAssembly: Taint-Based Information Flow
Control Tracking for WebAssembly. CoRR, abs/1802.01050, 2018. doi:10.48550/arXiv.1802.
01050.

WebAssembly Group. Binaryen: Optimizer and compiler/toolchain library for WebAssembly,
2025. URL: https://github.com/WebAssembly/binaryen.

WebAssembly Group. DeNaN.cpp. https://github.com/WebAssembly/binaryen/blob/
8c0429ac09d06d6056687e36£d4fb37£61681233/src/passes/DeNaN. cpp#L44-1L46, 2025.
WebAssembly Group. Multi-Memory Proposal: Multiple per-module memories for Wasm.
https://github.com/WebAssembly/multi-memory, 2025.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with
WebAssembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
pages 185-200, New York, NY, USA, 2017. ACM. doi:10.1145/3062341.3062363.

Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R. Lyu.
Revealing Performance Issues in Server-Side WebAssembly Runtimes Via Differential Testing.
In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 661-672. IEEE, 2023. doi:10.1109/ASE56229.2023.00088.

Jacob Kreindl, Daniele Bonetta, David Leopoldseder, Lukas Stadler, and Hanspeter Mossen-
bock. Polyglot, Label-Defined Dynamic Taint Analysis in TruffleTaint. In Elisa Gonzalez Boix
and Tobias Wrigstad, editors, Proceedings of the 19th International Conference on Managed
Programming Languages and Runtimes, MPLR 22, pages 152—-153, New York, NY, USA, 2022.
ACM. doi:10.1145/3546918.3560807.

Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mdssen-
bock. Low-overhead multi-language dynamic taint analysis on managed runtimes through
speculative optimization. In Herbert Kuchen and Jeremy Singer, editors, Proceedings of the 18th
ACM SIGPLAN International Conference on Managed Programming Languages and Runtimes,
MPLR 2021, pages 70-87, New York, NY, USA, 2021. ACM. doi:10.1145/3475738.3480939.
Daniel Lehmann. Wasabi_Wasm. https://github.com/danleh/wasabi/tree/master/
crates/wasabi_wasm, 2025.

Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything Old is New Again: Binary
Security of WebAssembly. In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX
Security Symposium (USENIX Security 20), pages 217-234. USENIX Association, August
2020. doi:10.5555/3489212.3489225.

Daniel Lehmann and Michael Pradel. Wasabi: A Framework for Dynamically Analyzing
WebAssembly. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck,
editors, Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS 19, pages 1045-1058, New
York, NY, USA, 2019. ACM. doi:10.1145/3297858.3304068.

Daniel Lehmann and Michael Pradel. Finding the Dwarf: Recovering Precise Types from
WebAssembly Binaries. In Ranjit Jhala and Isil Dillig, editors, Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2022, pages 410-425. Association for Computing Machinery, 2022. doi:10.1145/
3519939.3523449.

Zhibo Liu, Dongwei Xiao, Zongjie Li, Shuai Wang, and Wei Meng. Exploring Missed Optimiz-
ations in WebAssembly Optimizers. In René Just and Gordon Fraser, editors, Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2023, pages 436448, New York, NY, USA, 2023. ACM. doi:10.1145/3597926.3598068.
Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Geoffrey
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Vivek Sarkar and
Mary W. Hall, editors, Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, pages 190-200, New York, NY, USA, 2005.
ACM. doi:10.1145/1065010.1065034.

23:27

ECOOP 2025

https://doi.org/10.48550/arXiv.1802.01050
https://doi.org/10.48550/arXiv.1802.01050
https://github.com/WebAssembly/binaryen
https://github.com/WebAssembly/binaryen/blob/8c0429ac09d06d6056687e36fd4fb37f61681233/src/passes/DeNaN.cpp#L44-L46
https://github.com/WebAssembly/binaryen/blob/8c0429ac09d06d6056687e36fd4fb37f61681233/src/passes/DeNaN.cpp#L44-L46
https://github.com/WebAssembly/multi-memory
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1109/ASE56229.2023.00088
https://doi.org/10.1145/3546918.3560807
https://doi.org/10.1145/3475738.3480939
https://github.com/danleh/wasabi/tree/master/crates/wasabi_wasm
https://github.com/danleh/wasabi/tree/master/crates/wasabi_wasm
https://doi.org/10.5555/3489212.3489225
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3519939.3523449
https://doi.org/10.1145/3519939.3523449
https://doi.org/10.1145/3597926.3598068
https://doi.org/10.1145/1065010.1065034

23:28

Wastrumentation

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

Quentin Michaud, Yohan Pipereau, Olivier Levillain, and Dhouha Ayed. Securing Stack
Smashing Protection in WebAssembly Applications. CoRR, abs/2410.17925, 2024. doi:
10.48550/arXiv.2410.17925.

Donald Michie. “Memo” functions and machine learning. Nature, 218(5136):19-22, April 1968.
doi:10.1038/218019a0.

Aédron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix. Wastrumentation: Portable
WebAssembly Dynamic Analysis with Support for Intercession (Appendix), 2025. URL:
https://soft.vub.ac.be/Publications/2025/vub-tr-soft-25-03.pdf.

Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. Thieves in the
Browser: Web-based Cryptojacking in the Wild. In Proceedings of the 14th International
Conference on Awvailability, Reliability and Security, ARES 19, pages 4:1-4:10, New York,
USA, 2019. ACM. doi:10.1145/3339252.3339261.

Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson, Zhao
Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean M. Tullsen, and
Deian Stefan. Swivel: Hardening WebAssembly against Spectre. In Michael D. Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Symposium (USENIX Security 21), pages
1433-1450. USENIX Association, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity2l/presentation/narayan.

Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Jeanne Ferrante and Kathryn S. McKinley, editors, Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’07, pages 89-100, New York, NY, USA, 2007. ACM. doi:10.1145/1250734.1250746.
Jodo Rodrigues and Jorge Barreiros. Aspect-Oriented Webassembly Transformation. In 2022
17th Iberian Conference on Information Systems and Technologies (CISTI), pages 1-6, 2022.
doi:10.23919/CISTI54924.2022.9820136.

Alan Romano and Weihang Wang. WasmView: Visual Testing for WebAssembly Applications.
In Gregg Rothermel and Doo-Hwan Bae, editors, 2020 IEEE/ACM 42nd International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion), pages 1316,
Seoul, Korea (South), 2020. ACM. doi:10.1145/3377812.3382155.

Mike Rourke. Learn WebAssembly: Build web applications with native performance using
Wasm and C/C++. Packt Publishing, 2018.

Rust and WebAssembly community. Walrus. https://github.com/rustwasm/walrus, 2025.
Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: a selective
record-replay and dynamic analysis framework for JavaScript. In Bertrand Meyer, Luciano
Baresi, and Mira Mezini, editors, Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 488-498. ACM, 2013. doi:10.1145/2491411.
2491447.

Suhyeon Song, Seonghwan Park, and Donghyun Kwon. metaSafer: A Technique to Detect
Heap Metadata Corruption in WebAssembly. IEEE Access, 11:124887-124898, 2023. doi:
10.1109/ACCESS.2023.3327817.

Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient dynamic
analysis for Node.js. In Christophe Dubach and Jingling Xue, editors, Proceedings of the
27th International Conference on Compiler Construction, CC ’18, pages 196-206. ACM, 2018.
doi:10.1145/3178372.3179527.

Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. Taint Tracking for WebAssembly. CoRR,
abs/1807.08349, 2018. doi:10.48550/arXiv.1807.08349.

Ben L. Titzer. Virgil: objects on the head of a pin. In Peri L. Tarr and William R. Cook, editors,
Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Portland, Oregon,
USA, volume 41, pages 191-208. ACM, October 2006. doi:10.1145/1167473.1167489.

https://doi.org/10.48550/arXiv.2410.17925
https://doi.org/10.48550/arXiv.2410.17925
https://doi.org/10.1038/218019a0
https://soft.vub.ac.be/Publications/2025/vub-tr-soft-25-03.pdf
https://doi.org/10.1145/3339252.3339261
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.23919/CISTI54924.2022.9820136
https://doi.org/10.1145/3377812.3382155
https://github.com/rustwasm/walrus
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1109/ACCESS.2023.3327817
https://doi.org/10.1109/ACCESS.2023.3327817
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.48550/arXiv.1807.08349
https://doi.org/10.1145/1167473.1167489

A. Munsters, A. L. Scull Pupo, and E. Gonzalez Boix

38

39

40

41

42

43

Ben L. Titzer, Elizabeth Gilbert, Bradley Wei Jie Teo, Yash Anand, Kazuyuki Takayama, and
Heather Miller. Flexible Non-intrusive Dynamic Instrumentation for WebAssembly. In Rajiv
Gupta, Nael B. Abu-Ghazaleh, Madan Musuvathi, and Dan Tsafrir, editors, Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 8, ASPLOS 24, pages 398-415, New York, NY, USA, 2024.
ACM. doi:10.1145/3620666.3651338.

Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W. Hamlen, and Shuang Hao. SEISMIC:
SEcure In-lined Script Monitors for Interrupting Cryptojacks. In Javier Lépez, Jianying Zhou,
and Miguel Soriano, editors, Computer Security, volume 11099 of Lecture Notes in Computer
Science, pages 122-142, Cham, 2018. Springer. doi:10.1007/978-3-319-98989-1_7.
Christian Wimmer and Thomas Wiirthinger. Truffle: a self-optimizing runtime system. In
Gary T. Leavens, editor, Proceedings of the 8rd Annual Conference on Systems, Programming,
and Applications: Software for Humanity, SPLASH 12, pages 13—-14, New York, NY, USA,
2012. ACM. doi:10.1145/2384716.2384723.

Thomas Wiirthinger, Christian Wimmer, Andreas Wo8, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule them
all. In Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, Proceedings of
the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on

Programming € Software, Onward! 2013, pages 187-204, New York, NY, USA, 2013. ACM.

doi:10.1145/2509578.2509581.

Ziyao Zhang, Wenlong Zheng, Baojian Hua, Qiliang Fan, and Zhizhong Pan. VMCanary:
Effective Memory Protection for WebAssembly via Virtual Machine-assisted Approach. In
2028 IEEFE 23rd International Conference on Software Quality, Reliability, and Security (QRS),
pages 662—671. IEEE, 2023. doi:10.1109/QRS60937.2023.00070.

Wenxuan Zhao, Ruiying Zeng, and Yangfan Zhou. Wapplique: Testing WebAssembly Runtime
via Execution Context-Aware Bytecode Mutation. In Maria Christakis and Michael Pradel,
editors, Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2024, pages 1035-1047. ACM, 2024. doi:10.1145/3650212.3680340.

23:29

ECOOP 2025

https://doi.org/10.1145/3620666.3651338
https://doi.org/10.1007/978-3-319-98989-1_7
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1109/QRS60937.2023.00070
https://doi.org/10.1145/3650212.3680340

	1 Introduction
	2 Approach
	2.1 Developing a Dynamic Analysis with Wastrumentation
	2.2 Dynamic Analysis API
	2.2.1 Intercession: Modifying the Target Program
	2.2.2 Forwarding Intercepted Operations Back to the Target Program

	2.3 Wastrumentation Design
	2.4 Instrumentation through Transformation
	2.4.1 Function Application Instrumentation
	2.4.2 General Program Operation Instrumentation

	3 Implementation
	4 Evaluation
	4.1 Methodology
	4.2 RQ1: Evaluating the Development of Dynamic Analysis Using Wastrumentation
	4.2.1 The Memoization Analysis
	4.2.2 Comparison to Bytecode Rewriting Frameworks

	4.3 RQ2: Evaluating the Faithful Execution
	4.4 RQ3: Evaluating Code Size Increase
	4.4.1 Results

	4.5 RQ4: Evaluating the Runtime Overhead of Wastrumentation
	4.5.1 Load, Validate and Execute Time
	4.5.2 Setup for NodeJS experiments
	4.5.3 Runtime overhead of Wastrumentation
	4.5.4 Comparison to Wasabi
	4.5.5 Comparison to bytecode rewriting systems

	4.6 RQ5: Evaluating the Memory Overhead of Wastrumentation
	4.6.1 Results

	5 Related Work
	5.1 Instrumentation Platforms for WebAssembly
	5.2 Instrumentation Platforms Supporting Intercession

	6 Conclusion

