
ReDunT: Automatically Deriving Redundancy
Relations for Pure Op-Based CRDTs

Dina Borrego∗
Universidade NOVA de Lisboa

Vrije Universiteit Brussel
Portugal, Belgium

d.borrego@campus.fct.unl.pt

Afonso Vilalonga∗
Universidade NOVA de Lisboa

Portugal
j.vilalonga@campus.fct.unl.pt

Henrique Domingos
Universidade NOVA de Lisboa

Portugal
hj@fct.unl.pt

Nuno Preguiça
Universidade NOVA de Lisboa

Portugal
nuno.preguica@fct.unl.pt

Elisa Gonzalez Boix
Vrije Universiteit Brussel

Belgium
egonzale@vub.be

Carla Ferreira
Universidade NOVA de Lisboa

Portugal
carla.ferreira@fct.unl.pt

Abstract
Conflict-free Replicated Data Types (CRDTs) are a family of
data structures that incorporate conflict resolution mecha-
nisms to ensure state convergence and ease the development
of highly available distributed systems. Pure operation-based
CRDTs provide a unified framework for defining CRDTs
based on a partially ordered log of operations. The frame-
work eases the implementation of CRDTs and reduces the
risk of introducing bugs. However, developers are still re-
quired to manually define the CRDT semantics and com-
paction functions, which can be complex and error-prone.
This paper proposes ReDunT, a framework for the automatic
synthesis of compaction functions for pure op-based CRDTs
using a rewrite-based semantic approach. We evaluate Re-
DunT by applying it to a portfolio of pure operation-based
CRDTs, including sets and flags, and comparing the obtained
results with the manually optimised specifications. We also
demonstrate the feasibility of the framework by implement-
ing it as an automatic tool in K semantic framework.

CCS Concepts: • Software and its engineering→ Auto-
matic programming; • Computing methodologies →
Distributed computing methodologies.

Keywords: CRDTs, program synthesis, optimisations
ACM Reference Format:
Dina Borrego, Afonso Vilalonga, HenriqueDomingos, Nuno Preguiça,
Elisa Gonzalez Boix, and Carla Ferreira. 2025. ReDunT: Automat-
ically Deriving Redundancy Relations for Pure Op-Based CRDTs.
In 12th Workshop on Principles and Practice of Consistency for Dis-
tributed Data (PaPoC ’25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3721473.3722145

1 Introduction
Modern distributed applications require high availability,
low latency, fault tolerance, and scalability. However, as the
CAP theorem [3] demonstrates, systems operating under
∗Both authors contributed equally to this research.

unavoidable network partitions face an inherent trade-off be-
tween consistency and availability. Highly available systems
weaken consistency, allowing operations to execute inde-
pendently and propagate asynchronously to other replicas.
While this can lead to temporary divergence, a mechanism
is needed to ensure eventual convergence, guaranteeing that
all replicas reach a consistent state.

Replicated Data Types (RDTs) [1, 4, 5, 7, 11] have emerged
as a fundamental abstraction for simplifying the develop-
ment of highly available distributed systems. They enable
replicas to converge without coordination, eliminating costly
synchronisation and making them well-suited for scalable
systems such as collaborative editing, edge computing, etc.

While RDTs are a promising technique for building highly
scalable systems, designing new RDTs remains challeng-
ing. This challenge stems from the need to reason about
all possible orders of concurrent operations to ensure that
conflicts are correctly detected and resolved. Prior research
has investigated automatic techniques for simplifying RDT
construction, including methods to synthesise Conflict-free
Replicated Data Types (CRDTs) [7, 8], and derive RDTs from
sequential data types [5, 6, 9]. These approaches have made
substantial progress in formalising correctness conditions to
enable automatic synthesis. However, their primary focus
has been on ensuring correctness rather than producing op-
timised designs. On the other hand, pure operation-based
CRDTs [1] provide a principled and practical approach to
designing optimised CRDTs [11]. This approach structures
CRDTs around a Partially Ordered Log (PO-Log) of opera-
tions, ensuring efficient replication and conflict resolution.
The approach exposes causal information from the underly-
ing broadcast middleware that can be leveraged to minimise
resource usage through redundancy relations and causal sta-
bility. However, developers must still manually encode the
CRDT semantics and the compaction functions, which can
be complex and error-prone.

In this paper, we propose ReDunT, a rewrite-based frame-
work that, given a non-optimised specification of a pure

38

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PaPoC ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1558-7/2025/03
https://doi.org/10.1145/3721473.3722145

https://doi.org/10.1145/3721473.3722145
https://doi.org/10.1145/3721473.3722145
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3721473.3722145&domain=pdf&date_stamp=2025-04-02


PaPoC ’25, March 30-April 3, 2025, Rotterdam, Netherlands Borrego et al.

Algorithm 1 (Simplified) distributed algorithm for replica 𝑖
showing the interaction between the RCB middleware and
the pure op-based CRDT framework (from [2]).

state: 𝑠𝑖 := ∅
on operation𝑖 (𝑜)

broadcast𝑖 (𝑜)
on deliver𝑖 (𝑡, 𝑜)

𝑠𝑖 := 𝑠𝑖 \ {(𝑡 ′, 𝑜 ′) | (𝑡 ′, 𝑜 ′) ∈ 𝑠𝑖 · (𝑡 ′, 𝑜 ′) R_ (𝑡, 𝑜)}
∪ {(𝑡, 𝑜) | (𝑡, 𝑜) �R 𝑠𝑖 }

operation-based CRDT, automatically synthesises an equiv-
alent optimised version of the CRDT. By automating this
process, our framework simplifies CRDT design while en-
suring correctness and optimised storage performance. We
applied ReDunT to the portfolio of non-commutative pure
op-based CRDTs from [1], showcasing its ability to derive
automatically the optimised versions of the CRDTs. We did
not apply ReDunT to commutative data types, as they can
be implemented without a log. Additionally, we present a
prototype implementation of ReDunT using K [10], a rewrite-
based executable semantic framework.
We compared our results with manually optimised im-

plementations from [1], finding that for some CRDTs, we
obtained an equivalent specification. In contrast, for others,
ReDunT produced a less optimised version due to its inability
to leverage operations semantics knowledge encoded in man-
ual optimisations. While still a work in progress, ReDunT
provides an initial foundation for automatically transforming
non-optimised CRDTs into their optimised counterparts.

2 Background
In this section, we provide the necessary background on the
pure operation-based (op-based) CRDT framework [1] to un-
derstand the contributions of this work. The pure op-based
CRDT framework supports the design of CRDTs by using
a partially ordered log of operations (PO-Log) constructed
using causality information. The framework is built on top
of Reliable Causal Broadcast (RCB) middleware, which en-
sures causal delivery and automatically tags each operation
with causality metadata, eliminating the need for manual
encoding of this metadata in the CRDT definition.
Algorithm 1 outlines the interaction between the RCB

middleware and the pure op-based CRDT framework. Each
replica maintains a PO-Log, denoted as 𝑠𝑖 , which is initially
empty. When a user invokes an operation 𝑜 on replica 𝑖 , the
operation𝑖 event on that replica is triggered, broadcasting the
operation to all replicas via the RCB middleware, which tags
a timestamp to the operation. Upon delivery of an operation
𝑜 tagged with timestamp 𝑡 to replica 𝑖 , the deliver𝑖 event is
triggered, integrating the operation into the log if needed.
The framework introduces the concepts of causal redun-

dancy to keep the log compact and causal stabilisation to

eval𝑖 (rd, 𝑠) = {𝑣 | (𝑡, [wr, 𝑣]) ∈ 𝑠 ∧ ∀(𝑡 ′, _) ∈ 𝑠 · 𝑡 ⊀ 𝑡 ′}

Figure 1.MVRegister Concurrent Semantics (from [1]).

(𝑡, 𝑜) R 𝑠 ⇐⇒ 𝑜 [0] = clear

(𝑡 ′, 𝑜 ′) R_ (𝑡, 𝑜) ⇐⇒ 𝑡 ′ < 𝑡

eval𝑖 (rd, 𝑠) = {𝑣 | (_, [wr, 𝑣]) ∈ 𝑠}

Figure 2. (Simplified) Compact MVRegister CRDT (from [1])

trim causal information from the log entries once all replicas
have observed an operation. Our work focuses on deriving
the compacting relations for causal redundancy.
The idea of causal redundancy is to compact the log by

removing operations whose effects do not affect the state of
the data type (and thus do not impact the output of query op-
erations). Specifically, the framework introduces two binary
relations, R and R_, defining the conditions that make opera-
tions causal redundant. R defines whether to store a newly
arriving operation in the log, and R_ defines whether an
arriving operation renders existing log entries redundant. A
concrete CRDT implementation built on the framework must
define these relations to ensure correct PO-Log compaction.

We now discuss the implementation of a Multi-Value Reg-
ister (MVRegister) pure op-based CRDT. We assume two
update operations: wr, which writes a value to the regis-
ter, and clear, which removes all values from the set. In the
pure op-based framework, the concurrency semantics of
non-commutative data types, such as the MVRegister, are
determined by the output of query operations, considering
all operations kept in the log. The eval query function takes
a query and the current log state as input, returning a result
based on the stored operations. Figure 1 shows the query
operation for the MVRegister, which states that a read (rd)
operation returns a set of values v for which the correspond-
ing write (wr) operations are not causally succeeded by any
other wr or clear operation.
Figure 2 presents the compact MVRegister CRDT design

from [1]. The R relation defines clear operations as redun-
dant, meaning they are not added to the PO-Log, as they only
affect causally precedent operations that have already been
delivered. The R_ relation defines that an arriving operation
𝑜 renders a stored operation 𝑜 ′ redundant if and only if 𝑜 ′
causally precedes 𝑜 . This means that wr operations are re-
moved from the PO-Log if a later wr or clear operation exists
in their causal future. As a result, the PO-Log maintains the
concurrent wr operations. Finally, the rd operation returns
all values with wr operations in the PO-Log. While the R and
R_ relations in figure 2 were manually defined, this work
aims to derive them automatically from the concurrency
semantics in figure 1.

2

39



ReDunT: Automatically Deriving Redundancy Relations for Pure Op-Based CRDTs PaPoC ’25, March 30-April 3, 2025, Rotterdam, Netherlands

2. Get the Redundant 
Operations

Pure Op-Based CRDT 
Concurrent Semantics

1. Get the Non-Redundant 
Operations

4. Establish the 
Redundancy Relations

3. Formulate the 
Redundancy Rules

5. Simplify Eval definition

Compact Pure Op-Based 
CRDT

Set of non-redundant 
operations Set of redundant 

operations

Redundancy Rule
Redundancy 
Relations

Figure 3. The ReDunT workflow.

3 The ReDunT Approach
We aim to derive a compact pure op-based CDRT from its
non-optimised design. To this end, we introduce ReDunT,
a five-step methodology that automatically synthesises the
redundancy relations of a pure op-based CRDT given its
concurrent semantics expressed in the eval function.

Figure 3 illustrates ReDunT’s five steps. The process starts
by identifying non-redundant operations—those needed for
state evaluation. Next, ReDunT identifies the redundant op-
erations—those not impacting the CRDT’s state and that can
be removed from the PO-Log without loss of information. It
then defines the redundancy rules, specifying the conditions
under which an operation is considered redundant. These
rules form the basis for establishing redundancy relations,
which determine how operations are added or removed from
the log. Finally, ReDunT simplifies the eval function based
on the derived relations. We now detail each step using the
MVRegister CRDT discussed in section 2.

1. Get the non-redundant operations. Generating re-
dundancy relations begins by identifying the set of non-
redundant operations. In this step, ReDunT analyses the
eval definition of a given pure op-based CRDT to extract the
operations that influence state computation. In a nutshell,
this step converts the eval definition into its correspond-
ing set of operations. These operations, referred to as non-
redundant operations, form the minimal set necessary to
reconstruct the state while maintaining correctness. Starting
from figure 1, ReDunT identifies that, for an MVRegister
CRDT, the non-redundant operations are the write opera-
tions not causally succeeded by any other operation, i.e.,
{(𝑡, [wr, 𝑣]) ∈ 𝑠 | ∀(𝑡 ′, _) ∈ 𝑠 · 𝑡 ⊀ 𝑡 ′}.

2. Get the redundant operations. Starting from the set of
non-redundant operations, ReDunT derives the set of redun-
dant operations, which consists of the operations that do not

affect the CRDT state and can, therefore, be safely removed
from the PO-Log. From a purely mathematical perspective,
the set of redundant operations corresponds to the comple-
ment of the set of non-redundant operations. However, the
complement may classify as redundant certain operations
that, while not directly contributing to state computation,
play an indirect role in defining the CRDT’s behaviour—
particularly in specifying its semantics. We discuss this issue
further, with an example, in section 4. To prevent the incor-
rect removal of non-redundant operations, ReDunT derives
the redundant operations in two steps. First, it computes the
complement of the non-redundant operations. Then, it filters
out operations required for defining the CRDT’s concurrency
semantics and conflict resolution. For example, in theMVReg-
ister CRDT, the complement of the non-redundant operation
is {(𝑡, [wr, 𝑣]) ∈ 𝑠 | ∃(𝑡 ′, _) ∈ 𝑠 ·𝑡 ≺ 𝑡 ′}∪{(𝑡, [clear]) ∈ 𝑠}. In
this case, no operations need to be filtered out, as both writes
and clears only make preceding operations redundant. How-
ever, if the eval function specified that the clear operation
(for example) also rendered concurrent writes redundant,
then {(𝑡, [clear]) ∈ 𝑠} would need to be filtered from the
complement, as it would define concurrency semantics.

3. Formulate the redundancy rules. A redundancy rule
captures the conditions under which an operation becomes
redundant due to the presence of another one. Unlike re-
dundancy relations, which determine whether a specific
operation—either an existing entry in the log or a newly
received one—is redundant, our redundancy rule establishes
the general criteria for redundancy, serving as the founda-
tion for deriving these relations. A redundancy rule evaluates
two tagged operations, (𝑜𝑟 , 𝑡𝑟 ) and (𝑜, 𝑡). The first, (𝑜𝑟 , 𝑡𝑟 ),
represents the operation rendered redundant, while the sec-
ond, (𝑜, 𝑡), represents the operation responsible for causing
the redundancy. Each redundancy rule consists of a set of
conditions that define when 𝑜𝑟 is redundant. These condi-
tions are expressed as logical conjunctions, ensuring that all
specified criteria must hold for the redundancy to apply.

In this step, ReDunT derives redundancy rules from the set
of redundant operations. This set defines the conditions un-
der which an operation becomes redundant and may consist
of multiple subsets, as shown above. Each subset represents a
specific redundancy condition, leading to the formulation of
a redundancy rule. For the MVRegister, ReDunT derives the
following two rules from the identified redundant operations:
i) 𝑜𝑟 [0] = wr ∧ 𝑜 [0] = _ ∧ 𝑡𝑟 ≺ 𝑡 , and ii) 𝑜𝑟 [0] = clear.

4. Establish the redundancy relations. ReDunT derives
the two redundancy relations by applying symbol substitu-
tions to the redundancy rules. In both R and R_ relations,
(𝑜, 𝑡) represents the newly delivered operation, while (𝑜 ′, 𝑡 ′)
corresponds to an existing operation in the log. The R rela-
tion defines the conditions under which a newly received
operation is made redundant. Therefore, ReDunT derives
this relation by replacing (𝑜𝑟 , 𝑡𝑟 ) and (𝑜, 𝑡) in the redundancy

3

40



PaPoC ’25, March 30-April 3, 2025, Rotterdam, Netherlands Borrego et al.

rules with (𝑜, 𝑡) and (𝑜 ′, 𝑡 ′), respectively. Conversely, the R_
relation defines the conditions under which an operation in
the log is rendered redundant. Thus, to define the R_ relation,
ReDunT applies the opposite substitutions: (𝑜𝑟 , 𝑡𝑟 ) and (𝑜, 𝑡)
are replaced with (𝑜 ′, 𝑡 ′) and (𝑜, 𝑡), respectively.
This step processes the redundancy rules iteratively, ap-

plying symbol substitutions based on the relation:

(𝑡, 𝑜) R (𝑡 ′, 𝑜 ′) ⇐⇒ (𝑜 [0] = wr) ∧ 𝑜 ′ [0] = _ ∧ 𝑡 ≺ 𝑡 ′) ∨
(𝑜 [0] = clear)

(𝑡, 𝑜) R_ (𝑡 ′, 𝑜 ′) ⇐⇒ (𝑜 ′ [0] = wr ∧ 𝑜 [0] = _ ∧ 𝑡 ′ ≺ 𝑡) ∨
(𝑜 ′ [0] = clear)

Once substitutions are applied, ReDunT verifies that the
derived properties do not introduce contradictions. While
redundancy rules are agnostic to which operation is rendered
redundant, redundancy relations must respect causality.
By the properties of causal delivery, a newly delivered

operation (𝑜, 𝑡) can only be sequential or concurrent with
operations already in the log. An example of a contradiction
can be observed in the MVRegister as 𝑡 ≺ 𝑡 ′ in the derived R
relation contradicts the causal delivery assumption. To re-
solve this, ReDunT removes the conflicting rule from the re-
lation, yielding the following R relation: (𝑡, 𝑜) R (𝑡 ′, 𝑜 ′) ⇐⇒
𝑜 [0] = clear. The R_ relation has no contradictions related
to causality and, therefore, remains unchanged.

5. Simplify eval’s definition. Recall that the starting
eval function determines the CRDT state, assuming the log
contains all operations. However, once redundancy relations
are established, the system removes redundant operations
from the log whenever a new operation is delivered. There-
fore, the eval function can be simplified, as redundant opera-
tions no longer need to be considered. The final step of our
methodology consists of refining the eval function by elimi-
nating constraints that are now always satisfied due to the
absence of redundant operations. For the MVRegister, this
step simplifies the original eval function shown in figure 1
to {𝑣 | (𝑡, [wr, 𝑣]) ∈ 𝑠} as we know from the redundancy
relations that ∀(𝑡 ′, _) ∈ 𝑠 · 𝑡 ⊀ 𝑡 ′ always holds.

4 Use Case: Remove-Wins Set CRDT
We now illustrate how ReDunT applies to a more complex
data type, a Remove-Wins Set (RWSet) CRDT. Starting from
the original specification from [1], we explain how to derive
a compact design, detailing each step and presenting the
results obtained at each stage. The process starts with the
RWSet concurrent semantics expressed by its eval function:

eval𝑖 (elems, 𝑠) = {𝑣 | (𝑡, [add, 𝑣]) ∈ 𝑠

∧ ∀(𝑡 ′, [rmv, 𝑣]) ∈ 𝑠 · 𝑡 ′ ≺ 𝑡

∧ ∀(𝑡 ′′, [clear]) ∈ 𝑠 · 𝑡 ⊀ 𝑡 ′′}
The elems operation returns all values that satisfy three

conditions. First, an add operation for the value exists in the

log. Second, all rmv operations for the value have occurred
before the corresponding add operation. Finally, no clear
operations took place after the add operation.

Step 1. ReDunT starts by identifying the non-redundant
operations. It analyses the eval definition to extract opera-
tions that influence the state. This process yields the follow-
ing set of non-redundant operations for the RWSet:

{(𝑡, [add, 𝑣]) ∈ 𝑠 |
∧∀(𝑡 ′, [rmv, 𝑣]) ∈ 𝑠 · 𝑡 ′ ≺ 𝑡 ∧ ∀(𝑡 ′′, [clear]) ∈ 𝑠 · 𝑡 ⊀ 𝑡 ′′}

Step 2. ReDunT derives the set of redundant operations
from the set of non-redundant operations in two steps.

Step 2.1. ReDunT computes the complement of the non-
redundant operations. In this process, quantifiers and con-
straints are negated: universal quantifiers (∀) become exis-
tential quantifiers (∃), and temporal constraints are inverted,
replacing ≺ with ⊀, and vice versa. Furthermore, since rmv
and clear operations serve only to filter add operations, they
are inherently included in the complement. Given that the
universal set consists of add, rmv, and clear operations, the
complement of the non-redundant operations for the RWSet
is defined as follows:

{(𝑡, [add, 𝑣]) ∈ 𝑠 | ∃(𝑡 ′, [rmv, 𝑣]) ∈ 𝑠 · 𝑡 ′ ⊀ 𝑡} ∪
{(𝑡, [add, 𝑣]) ∈ 𝑠 | ∃(𝑡 ′′, [clear]) ∈ 𝑠 · 𝑡 ≺ 𝑡 ′′} ∪

{(𝑡, [rmv, 𝑣]) ∈ 𝑠} ∪ {(𝑡, [clear, 𝑣]) ∈ 𝑠}

Step 2.2. ReDunT filters the complement result to exclude
operations needed for conflict resolution. For example, in the
RWSet, ReDunT needs to filter the rmv operations from the
complement, as these are not redundant and must remain
in the PO-Log. Making rmv operations redundant would
lead to an incorrect CRDT specification. Specifically, when
a new rmv operation arrives, all prior or concurrent add
operations for the same value would be removed from the log.
Additionally, if the rmv itself were classified as redundant, it
would not be added to the log. Up to this point, the process
may seem consistent. However, if a concurrent add operation
were later delivered, it would be inserted into the log, as the
absence of the concurrent rmv prevents it from being marked
as redundant. Evaluating the state would incorrectly include
the element in the set, violating the remove-wins semantics.
In contrast, clear operations are redundant. Unlike rmvs,

which contribute to defining conflict resolution, clears only
filter out preceding adds during state evaluation. As a result,
clear operations can be safely considered redundant.
After filtering the complement set, ReDunT obtains the

following set of redundant operations:

{(𝑡, [add, 𝑣]) ∈ 𝑠 | ∃(𝑡 ′, [rmv, 𝑣]) ∈ 𝑠 · 𝑡 ′ ⊀ 𝑡} ∪
{(𝑡, [add, 𝑣]) ∈ 𝑠 | ∃(𝑡 ′′, [clear]) ∈ 𝑠 · 𝑡 ≺ 𝑡 ′′} ∪

{(𝑡, [clear, 𝑣]) ∈ 𝑠}
The formula defines the redundant operations as follows:

4

41



ReDunT: Automatically Deriving Redundancy Relations for Pure Op-Based CRDTs PaPoC ’25, March 30-April 3, 2025, Rotterdam, Netherlands

• all add operations that did not happen after a rmv
operation for a given value v (i.e., the rmv is either
concurrent with or happened after the add),

• all add operations that happened before a clear, or
• all clear operations.

These conditions align with the semantics of a remove-wins
set, confirming that the identified operations are redundant
and can be safely removed from the log.

Step 3. ReDunT formulates the redundancy rules by trans-
forming the definition of redundant operations into an equiv-
alent formulation that explicitly considers two operations:
one that becomes redundant and another that makes the
first redundant. As explained, each subset of redundant op-
erations generates a corresponding redundancy rule. Con-
sequently, in this example, ReDunT generates three redun-
dancy rules, each addressing a distinct redundancy scenario.

𝑜𝑟 [0] = add ∧ 𝑜 [0] = rmv ∧ 𝑜𝑟 [1] = 𝑜 [1] ∧ 𝑡 ⊀ 𝑡𝑟 (1)
𝑜𝑟 [0] = add ∧ 𝑜 [0] = clear ∧ 𝑡𝑟 ≺ 𝑡 (2)

𝑜𝑟 [0] = clear (3)

Step 4. ReDunT derives the redundancy relations by sub-
stituting the symbols representing operations and validat-
ing the resulting formulas to ensure no contradictions arise.
Thus, for the RWSet, the R relation is given by:

(𝑡, 𝑜) R (𝑡 ′, 𝑜 ′) ⇐⇒ (𝑜 [0] = clear) ∨
(𝑜 [0] = add ∧ 𝑜 ′ [0] = rmv ∧
𝑜 [1] = 𝑜 ′ [1] ∧ 𝑡 ∥ 𝑡 ′)

The relation does not fully alignwith the redundancy rules.
The first rule states that 𝑡 ⊀ 𝑡𝑟 (equivalent to 𝑡 ≻ 𝑡𝑟 ∨ 𝑡 ∥ 𝑡𝑟 ).
However, in pure operation-based CRDTs, causal delivery
ensures that an operation in the log cannot be a successor
of a newly received operation. As a result, in the R relation,
this rule only holds for 𝑡 ∥ 𝑡𝑟 . The second rule stipulates that
the operation being made redundant must be a predecessor
of the clear. This condition does not hold in R, as the newly
received operation cannot be a predecessor of an operation
already in the log due to the causal delivery property.
Conversely, the substitutions to the redundancy rule to

generate R_ do not introduce contradictions. Therefore, the
resulting formula fully matches the redundancy rules:

(𝑡 ′, 𝑜 ′) R_ (𝑡, 𝑜) ⇐⇒ (𝑜 ′ [0] = clear) ∨
(𝑜 ′ [0] = add ∧ 𝑜 [0] = rmv ∧
𝑜 ′ [1] = 𝑜 [1] ∧ 𝑡 ⊀ 𝑡 ′) ∨
(𝑜 ′ [0] = add ∧ 𝑜 [0] = clear ∧ 𝑡 ′ < 𝑡)

Step 5. ReDunT simplifies the eval definition consider-
ing the established redundancy relations. As previously ex-
plained, eliminating redundant operations from the log al-
lows for a more concise eval function, as those operations
no longer need to be considered for computing the state. In

particular, all add operations that occurred before a clear
operation are redundant. Consequently, any add operation
in the log must have occurred after a clear. Similarly, all add
operations in the log must have occurred after a rmv since
any rmv operation that is concurrent with or follows an add
renders it redundant. As a result, the two quantified formulas
in the eval will always evaluate to true when applying the re-
dundancy relations. Since these formulas no longer provide
meaningful constraints, we can simplify the eval function by
removing them, yielding the following simplified definition:

eval𝑖 (elems, 𝑠) = {𝑣 | (𝑡, [add, 𝑣]) ∈ 𝑠}

5 Portfolio of Pure Op-based CRDTs
We validated our approach by deriving the compact ver-
sion of the portfolio of non-commutative data types pre-
sented in [1]. Table 1 overviews the concrete CRDTs. For
each data type, the table includes the redundancy relations
and eval function derived using ReDunT, and the (manually
optimised) compact specification from [1].
When comparing both specifications, ReDunT does not

always generate identical designs to those in [1]. In particular,
ReDunT successfully derives an equivalent simplification for
the multi-value register (see section 3). Despite structural
differences, the formulas are semantically equivalent, and
further simplifications could adjust our formula with [1].
For the remaining CRDTs, the manually optimised speci-

fications eliminate more operations than the automatically
derived ones with ReDunT. For instance, in the add-wins and
remove-wins sets, ReDunT cannot remove sequential adds.
This is because the eval formula that ReDunT takes as input
provides no information about the semantics between se-
quential add operations. In contrast, the specifications in [1]
were manually crafted by a programmer who understands
the semantics of the operations, a level of knowledge that
ReDunT lacks and, therefore, cannot derive automatically.
The remove-wins set and the disable-wins flag exhibit

another difference compared to the original specification.
Unlike in [1], where only sequential operations are marked
as redundant, ReDunT identifies both sequential and concur-
rent operations as redundant. As a result, using ReDunT’s
synthesised relations, some operations can be removed from
the log earlier than with the handcrafted design.

6 Implementation
We implemented the ReDunT approach for synthesising re-
dundancy relations in pure op-based CRDTs using K [10]. K
is a rewrite-based semantic framework to specify languages,
type systems, and formal analysis tools. It defines execution
semantics using configurations to represent program states
and rewrite rules to model state transitions. We formally
specified ReDunT in K by defining a transformation system
for pure op-based CRDTs. Our approach captures the logical

5

42



PaPoC ’25, March 30-April 3, 2025, Rotterdam, Netherlands Borrego et al.

Table 1. Comparison between the designs obtained using ReDunT and those presented in [1].

ReDunT Specification Original Compact Specification (from [1])

MVRegister

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ 𝑜 [0] = clear

(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ (𝑜 ′ [0] = wr ∧ 𝑡 ′ < 𝑡 ) ∨ (𝑜 ′ [0] = clear)
eval𝑖 (rd, 𝑠 ) = {𝑣 | (𝑡, [wr, 𝑣 ] ) ∈ 𝑠 }

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ 𝑜 [0] = clear

(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ 𝑡 ′ < 𝑡

eval𝑖 (rd, 𝑠 ) = {𝑣 | (_, [wr, 𝑣 ] ) ∈ 𝑠 }

Add-Wins Set

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ (𝑜 [0] = clear) ∨ (𝑜 [0] = rmv)
(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ (𝑜 ′ [0] = clear) ∨ (𝑜 ′ [0] = rmv) ∨

(𝑜 ′ [0] = add ∧ 𝑜 [0] = rmv ∧ 𝑜 ′ [1] = 𝑜 [1] ∧ 𝑡 ′ < 𝑡 ) ∨
(𝑜 ′ [0] = add ∧ 𝑜 [0] = clear ∧ 𝑡 ′ < 𝑡 )

eval𝑖 (elems, 𝑠 ) = {𝑣 | (𝑡, [add, 𝑣 ] ) ∈ 𝑠

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ (𝑜 [0] = clear) ∨ (𝑜 [0] = rmv)
(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ 𝑡 ′ < 𝑡 ∧ (𝑜 [0] = clear ∨ 𝑜 [1] = 𝑜 ′ [1] )

eval𝑖 (elems, 𝑠 ) = {𝑣 | (_, [add, 𝑣 ] ) ∈ 𝑠 }

Rmv-Wins Set

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ (𝑜 [0] = clear) ∨
(𝑜 [0] = add ∧ 𝑜 ′ [0] = rmv ∧ 𝑜 [1] = 𝑜 ′ [1] ∧ 𝑡 ∥ 𝑡 ′ )

(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ (𝑜 ′ [0] = clear) ∨
(𝑜 ′ [0] = add ∧ 𝑜 [0] = rmv ∧ 𝑜 ′ [1] = 𝑜 [1] ∧ 𝑡 ⊀ 𝑡 ′ ) ∨
(𝑜 ′ [0] = add ∧ 𝑜 [0] = clear ∧ 𝑡 ′ < 𝑡 )

eval𝑖 (elems, 𝑠 ) = {𝑣 | (𝑡, [add, 𝑣 ] ) ∈ 𝑠 }

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ 𝑜 [0] = clear

(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ 𝑡 ′ < 𝑡 ∧ (𝑜 [0] = clear ∨ 𝑜 [1] = 𝑜 ′ [1] )

eval𝑖 (elems, 𝑠 ) = {𝑣 | (_, [add, 𝑣 ] ) ∈ 𝑠 ∧ (, [rmv, 𝑣 ] ) ∉ 𝑠 }

Enable-Wins Flag

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ (𝑜 [0] = clear) ∨ (𝑜 [0] = disable)
(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ (𝑜 ′ [0] = clear) ∨ (𝑜 ′ [0] = disable) ∨

(𝑜 ′ [0] = enable ∧ 𝑜 [0] = disable ∧ 𝑡 ′ < 𝑡 ) ∨
(𝑜 ′ [0] = enable ∧ 𝑜 [0] = clear ∧ 𝑡 ′ < 𝑡 )

eval𝑖 (read, 𝑠 ) = (𝑡, [enable] ) ∈ 𝑠

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ (𝑜 [0] = clear) ∨ (𝑜 [0] = disable)
(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ 𝑡 ′ < 𝑡

eval𝑖 (read, 𝑠 ) = (_, [enable] ) ∈ 𝑠

Disable-Wins Flag

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ (𝑜 [0] = clear) ∨
(𝑜 [0] = enable ∧ 𝑜 ′ [0] = disable ∧ 𝑡 ′ ∥ 𝑡 )

(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ (𝑜 ′ [0] = clear) ∨
(𝑜 ′ [0] = enable ∧ 𝑜 [0] = disable ∧ 𝑡 ⊀ 𝑡 ′ ) ∨
(𝑜 ′ [0] = enable ∧ 𝑜 [0] = clear ∧ 𝑡 ′ ≺ 𝑡 )

eval𝑖 (read, 𝑠 ) = (𝑡, [enable] ) ∈ 𝑠

(𝑡, 𝑜 ) R (𝑡 ′, 𝑜 ′ ) ⇐⇒ 𝑜 [0] = clear

(𝑡 ′, 𝑜 ′ ) R_ (𝑡, 𝑜 ) ⇐⇒ 𝑡 ′ < 𝑡

eval𝑖 (read, 𝑠 ) = (_, [enable] ) ∈ 𝑠 ∧ (_, [disable] ) ∉ 𝑠

structure of the eval definition and uses formal rewrite rules
to compute the redundancy relations.

The ReDunT implementation in K is still a work in progress,
and it is not extensible to all CRDTs used to evaluate the
methodology. Currently, it only supports sets. Nevertheless,
it provides a structured foundation for synthesising optimi-
sations in replicated data types.

7 Related Work
Prior research has focused on synthesising CRDTs [7, 8] and
deriving RDTs from sequential data types [5, 6, 9].

Mergeable Data Types [7] automatically derive correct dis-
tributed data types by leveraging merge functions to resolve
conflicts in a principled way. Katara [8] is a synthesis-based
system that transforms sequential data type implementa-
tions into verified CRDT designs, lifting annotated C/C++
data types into nearly equivalent CRDT implementations.

Hamsaz [6] and Hampa [9] automatically synthesise repli-
cated objects by coordinating unsafe operations. ECROs [5]
derives RDTs from sequential data types based on a dis-
tributed specification, where application semantics are ex-
pressed through invariants over the replicated state.
While these approaches successfully synthesise RDTs,

they do not optimise log storage. Particularly, mergeable data

types face practical challenges in efficiently storing, comput-
ing, and retrieving the lowest common ancestor between two
concurrent versions, as highlighted in [7]. ReDunT comple-
ments these works by focusing on log storage optimisation,
systematically deriving redundancy relations to eliminate
unnecessary operations while preserving correctness.

8 Conclusion
In this paper, we presented ReDunT, a methodology for
automatically deriving the redundancy relations of pure
operation-based CRDTs. Our approach allows programmers
to focus solely on defining the concurrency semantics for
pure operation-based CRDTs in the eval function. ReDunT
then automatically synthesises redundancy compaction func-
tions to optimise log storage. By eliminating the need for
programmers to manually define these functions, ReDunT
simplifies the implementation of new CRDTs and reduces
the risk of introducing bugs. To the best of our knowledge,
ReDunT is the first framework capable of synthesising op-
timisations for log storage. Currently, ReDunT is designed
for pure operation-based CRDTs. In the future, we aim to
explore its applicability to optimising other types of logs.

6

43



ReDunT: Automatically Deriving Redundancy Relations for Pure Op-Based CRDTs PaPoC ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Acknowledgments
We would like to thank Carlos Baquero for his initial idea
and valuable discussion. This work is partially supported by
PRT/BD/154519/2022 awarded by the EUTOPIA European
University Alliance, PRT/BD/154787/2023 awarded by the
CMU Portugal Affiliated Ph.D. program, UID/04516/NOVA
Laboratory for Computer Science and Informatics (NOVA
LINCS) with the financial support of FCT.IP and the Euro-
pean Commission through the TaRDIS project (agreement
ID 101093006).

References
[1] Carlos Baquero, Paulo S. Almeida, and Ali Shoker. 2017. Pure

Operation-Based Replicated Data Types. CoRR abs/1710.04469 (2017).
arXiv:1710.04469

[2] Jim Bauwens and Elisa Gonzalez Boix. 2023. Nested Pure Operation-
Based CRDTs. In 37th European Conference on Object-Oriented Program-
ming (ECOOP 2023) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2:1–
2:26. https://doi.org/10.4230/LIPIcs.ECOOP.2023.2

[3] Eric Brewer. 2012. CAP twelve years later: How the “rules” have
changed. Computer 45, 2 (2012), 23–29. https://doi.org/10.1109/MC.
2012.37

[4] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P.
Wood. 2012. Cloud Types for Eventual Consistency. In ECOOP 2012
– Object-Oriented Programming, James Noble (Ed.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 283–307.
[5] Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix.

2021. ECROs: Building Global Scale Systems from Sequential Code.
Proc. ACM Program. Lang. 5, OOPSLA, Article 107 (oct 2021), 30 pages.
https://doi.org/10.1145/3485484

[6] Farzin Houshmand and Mohsen Lesani. 2019. Hamsaz: replication
coordination analysis and synthesis. Proc. ACM Program. Lang. 3,
POPL (2019), 74:1–74:32. https://doi.org/10.1145/3290387

[7] Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Ja-
gannathan. 2019. Mergeable replicated data types. Proc. ACM Pro-
gram. Lang. 3, OOPSLA, Article 154 (oct 2019), 29 pages. https:
//doi.org/10.1145/3360580

[8] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and
Joseph M. Hellerstein. 2022. Katara: Synthesizing CRDTs with Verified
Lifting. Proc. ACM Program. Lang. 6, OOPSLA2, Article 173 (oct 2022).
https://doi.org/10.1145/3563336

[9] Xiao Li, Farzin Houshmand, and Mohsen Lesani. 2020. Hampa: Solver-
Aided Recency-Aware Replication. In Computer Aided Verification -
32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21-24, 2020, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12224). Springer, 324–349. https://doi.org/10.1007/978-3-030-
53288-8_16

[10] Runtime Verification. 2024. K Framework - GitHub Repository. https:
//github.com/runtimeverification/k Accessed: 1 Feb. 2024.

[11] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://inria.hal.science/inria-
00555588

7

44

https://arxiv.org/abs/1710.04469
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/3485484
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3563336
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.1007/978-3-030-53288-8_16
https://github.com/runtimeverification/k
https://github.com/runtimeverification/k
https://inria.hal.science/inria-00555588
https://inria.hal.science/inria-00555588

	Abstract
	1 Introduction
	2 Background
	3 The ReDunT Approach
	4 Use Case: Remove-Wins Set CRDT
	5 Portfolio of Pure Op-based CRDTs
	6 Implementation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

