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—— Abstract

The CAP theorem demonstrates a trade-off between consistency and availability (and, by extension,
latency) in systems where network partitions are unavoidable, such as in cloud computing and
local-first software. While adopting weak consistency can preserve availability, it may result in
inconsistencies that compromise application correctness. Replicated data types provide a principled,
coordination-free approach to guarantee convergence but do not consider application invariants.
Existing methods for maintaining invariants in replicated systems either rely on coordination —
undermining the benefits of weak consistency — or suffer from limited applicability. This paper
introduces the No-Op framework, a generic approach for enforcing consistency without coordination
while guaranteeing both convergence and invariant preservation. The core idea of the No-Op
approach is to resolve conflicts among concurrent operations by prioritising one operation over the
other according to programmer-defined conflict resolution policies. This prioritisation transforms
the less-preferred operation into a no-side-effect operation, ensuring conflict-free execution. We
formalise the model underlying the No-Op framework and introduce a replication protocol built
upon it, accompanied by a formal proof of correctness for both the framework and the protocol.
Furthermore, we demonstrate the framework’s applicability by showcasing the design of widely used
replicated data types and the preservation of a wide range of application invariants.
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1 Introduction

Replication is a key technique in data management systems that enables high availability,
fault tolerance, low latency, and scalability. In cloud storage systems [28, 19, 5, 16], data is
typically geo-replicated across multiple geographic locations to ensure low latency for clients.
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Similarly, local-first software [27] allows clients to maintain a local copy of the data, enabling
fast execution and continuous operation, even when disconnected. However, achieving these
benefits relies on clients accessing a replica without coordinating with others. As a result,
replication creates a trade-off between consistency and latency [1].

Weak consistency [45, 2, 34, 10, 43, 27] sacrifices consistency in favour of low latency
and offline availability. In these models, operations are first executed locally on a replica
(without coordination), with their effects propagating asynchronously to other replicas. This
execution model leads to different execution orders across replicas, requiring a mechanism
to guarantee that all replicas eventually converge to the same state. Replicated data types
(RDTs) [40, 18, 13, 26, 9] offer a principled, coordination-free approach to ensure that, after
the execution of the same set of updates, replicas converge to the same state.

However, state convergence alone does not ensure application correctness, as combining
the effects of concurrent operations may violate application invariants and lead to an incorrect
state. Although synchronising all operations (i.e., employing strong consistency [11, 23]) can
preserve invariants, this approach significantly compromises system performance [4].

Much research [15, 30, 7, 21, 31, 25, 18] has focused on reducing coordination by synchron-
ising only operations that might violate invariants, typically identified through static analysis
tools. Non-conflicting operations, in contrast, are executed without requiring coordination.
An alternative strategy is to move coordination outside the critical execution path, building
on escrow and reservation techniques [36, 8, 7, 33, 38, 41]. By reserving the right to execute
specific operations in advance, replicas allow operations to be safely executed without syn-
chronisation, provided the necessary rights are locally available. Otherwise, coordination is
required to acquire the rights from other replicas, or the operation must abort.

Finally, recent research has focused on maintaining invariants using coordination-free
mechanisms [35, 6]. These mechanisms enable asynchronous execution, automatically resolv-
ing invariant violations using automatic resolution policies. These approaches build on the
principles of RDTs, extending them from ensuring data convergence to preserving invariants:
concurrent operations are executed without coordination while guaranteeing that replicas
converge to a state where application invariants remain upheld. However, while some solu-
tions, such as Antidote SQL [35], focus solely on referential integrity, others, like IPA [6],
address invariant conflicts but rely on RDTs to achieve convergence.

In this paper, we propose a coordination-free consistency framework that addresses both
data convergence and invariant preservation in a unified way. Our approach builds on a
simple observation: when concurrent operations occur, their effects can be combined to
ensure that replicas converge without violating invariants unless the operations conflict with
one another. In cases of conflicting operations, it becomes necessary to prioritise the effects
of one operation over the other. Our framework conceptually achieves this by transforming
the not-preferred operation into an operation with no side effect (or a No-Op).

To validate our claim, we employ two complementary methods. First, we formally define
our No-Op approach and provide proof establishing its correctness. Second, we demonstrate
its applicability by showing that this simple model can encode popular RDTs and enforce a
wide range of invariants, including referential integrity.

We introduce a replication protocol that adopts this framework to maintain consistency
in replicated applications. The protocol was implemented in VeriFx [17], a high-level
programming language with built-in automated proof capabilities, enabling validation of its
correctness through automated proofs on specific data type implementations. These results
corroborate the formal proofs provided, confirming the correctness of the No-Op approach.
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To summarise, the main contributions of this paper are:

The No-Op generic framework for enforcing consistency without coordination, achieving
both convergence and invariant preservation in a unified way.

A replication protocol that integrates the No-Op framework.

Formal proofs of correctness for the proposed framework and replication protocol.

The applicability of the No-Op framework to the design of popular RDTs and the
maintenance of general application invariants.

The remainder of this paper is organised as follows. Section 2 offers an overview of the
No-Op approach, followed by Section 3, which introduces its formal model and a formal
proof of its correctness. Section 4 details the No-Op replication protocol and provides the
corresponding correctness proofs. Section 5 explores the applicability of the proposed solution.
Section 6 discusses limitations of the No-Op approach and possible solutions to avoid these
limitations. Then, Section 7 discusses related work. Finally, Section 8 concludes the paper.

2 Overview

This section overviews our approach using an album management system as a running
example. This application manages a collection of artists and their albums, supporting
operations such as adding, removing, and updating artists, as well as adding and removing
albums. This example was previously used in [35] and is similar to an example from [16].

The goal of our No-Op approach is to guarantee state convergence and invariant preser-
vation without requiring coordination. Figure 1 and Figure 2 illustrate a convergence and
an invariant conflict that could occur when implementing the album management system.
Consider that the application’s state is modelled as a set of pairs (artist, country) represent-
ing artists and their respective countries, along with a set of elements representing albums.
Figure 1 shows a convergence conflict. Initially, both replicas are in an equivalent state, each
containing one artist (Sam, UK). Replica 1 updates the artist, resulting in a state with one
artist (Sam, USA). Replica 2 removes the artist, leaving its state empty. After propagating
both updates, the replicas have applied all operations yet reached divergent states. Figure 2
shows how a referential integrity invariant can be violated. The application must ensure
that albums are not associated with non-existent artists. Starting again from an initial state
where both replicas contain one artist (Sam, UK), replica 1 adds an album, A1, for Sam,
updating its state to include the album. Meanwhile, replica 2 removes the artist, leaving its
state empty. After propagating both updates, both replicas converge to a state containing
the album but not the artist. Therefore, even though the replicas converge after applying all
operations, the referential integrity invariant is violated, as the replicas’ state contains an
album whose associated artist does not exist.

The core idea of the No-Op approach is to avoid by design conflicting operations, i.e.,
operations that violate state convergence or application invariants. When two conflicting
operations are executed concurrently, one is converted into a no-side-effect operation (i.e., a
No-Op) based on a predefined conflict resolution policy. These policies vary based on the
application’s intended semantics, and it is the programmer’s responsibility to select the most
suitable one for the application. The No-Op approach implements conflict resolution using
an auxiliary operation called block, which encodes the conflict resolution policy defined by
the programmer. A block is triggered atomically when a conflicting operation is executed
and specifies which operations cannot run concurrently due to conflicts. The system then
transforms any operation that conflicts with the block into a No-Op.
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{(Sam, UK)} {} {(Sam, USA)} {} izt {(Sam, UK)} {} {(Sam, UK)} {A1} A1
Replica 1 updArtist (Sam) Replica 1 addAlbum (A1, Sam)
{(Sam, UK)} {} lixt] {(Sam, USA)} {} {(Sam, UK)} {} ¢ {} {A1}
Replica 2 rmvArtist (Sam) Replica 2 rmvArtist (Sam)
Figure 1 Convergence conflict. Figure 2 Invariant conflict.

By leveraging conflict resolution policies, the No-Op approach enforces both convergence
and invariant preservation in a unified manner. Let us revisit Figure 1 and Figure 2 to
see which conflict resolution policies could be applied to solve these conflicts. A conflict
resolution policy for solving the convergence conflict in Figure 1 is to prioritise the remove
operation by discarding the update operation. This behaviour aligns with the remove-wins
policy used in existing remove-wins CRDT sets [40, 9]. Our No-Op approach can encode
remove-wins semantics by having remove operations trigger a block on updates for the same
artist. The block on updates will render any concurrent update on the deleted artist a No-Op.

An alternative policy for the convergence conflict is a privilege-based policy suitable for
systems where users are assigned privilege levels. Under this policy, both update and remove
operations trigger a block. An update operation triggers a block on all remove operations for
the same artist issued by users with lower priority. Similarly, a remove operation triggers a
block on all update operations for the same artist submitted by users of lower priority. When
users share the same privilege level, the policy must specify how to resolve ties. For example,
a total order could determine the winning operation among users with equal privilege levels.

Note that an operation only issues a block if it can win. For example, under the remove-
wins semantics, the update operation never issues a block because it never wins against any
other operation. In contrast, in a privilege-based policy, both update and remove operations
issue a block, as either operation can be the winner depending on the user’s privilege level.

Similar to convergence conflicts, various conflict resolution policies can be applied to
address invariant conflicts. In the case of the referential integrity conflict shown in Figure 2,
we can prioritise the operation that adds the album, rendering the remove artist operation
ineffective. This behaviour corresponds to an update-wins conflict resolution policy similar
to the one used in Antidote SQL [35]. Alternatively, we can prioritise removing the artist
by dropping the add album operation, corresponding to remove-wins semantics. These
policies are implemented akin to the policies for handling convergence conflicts: the winning
operation type issues a block on the losing operation type.

2.1 The No-Op Approach by Example

We will now illustrate how the No-Op approach works through a concrete execution trace of
the album management system shown in Figure 3.

The execution trace consists of five operations involving two replicas. Replica 1 executes
an addArtist(Sam) operation, which gets delivered to both replicas. Next, two concurrent
addAlbum operations are executed and delivered to both replicas. Finally, two concurrent
operations follow: updateArtist in replica 1 and rmvArtist in replica 2.

The No-Op approach stores operations in a graph to determine when a conflict occurs
and applies the appropriate conflict resolution policy. This graph forms the core of the
No-Op mechanism, representing a partial order of operations that accurately captures
concurrency and causality of operations. Figure 3 depicts both replicas’ execution graphs for
the aforementioned execution trace. Solid circles represent local operations; dashed ones,
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Figure 3 Execution graph for an execution trace of the album management system.

delivered remote operations. Blue, green, and red indicate operations from replica 1, replica 2,
and No-Ops, respectively. Each vertex lists the operation call, the block operation, and its
timestamp. In this example, both referential integrity and convergence conflicts are resolved
following the update-wins semantics.

The first node in the operation graph corresponds to the addArtist(Sam) operation,
which got delivered to both replicas before any subsequent concurrent operations were
executed, causally preceding all other operations in the graph. Since the operation was
originally executed at replica 1, the node in replica 2 for this operation is dashed. Following
this, the two replicas concurrently execute two addAlbum operations. Both operations issue a
block on concurrent rmvArtist (Sam) to uphold the referential integrity invariant (according
to the update-wins semantics). However, the operations do not conflict, as neither operation
blocks the other. Consequently, after propagation, both graphs have two concurrent addAlbum
operations (one local and one remote), but neither operation is marked as a No-Op.

Lastly, two additional operations are executed concurrently. Replica 1 executes an
updArtist (A1, Sam) operation, which issues a block on concurrent rmvArtist on the
updated artist, namely Sam. Concurrently, replica 2 executes a rmvArtist(Sam) operation
that does not block any operation. After this operation is propagated to replica 1, the
conflict between the block on rmvArtist(Sam) and the delivered rmvArtist (Sam) operation
is detected, marking the latter as a No-Op to resolve the conflict. Since the updArtist
operation has not yet been delivered to replica 2, the graphs currently diverge. Once the
updArtist operation is delivered to replica 2, the system will also detect the conflict, and
the local rmvArtist (Sam) operation will be marked as a No-Op.

Note that there are no edges between concurrent operations (e.g., the two concurrent
addAlbum operations), so there are different possible serialisations of the execution graph. For
example, in the graph of replica 2, there are two possible serialisations: i) addArtist(Sam),
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addAlbum(Al, Sam), addAlbum(A2, Sam), and rmvArtist(Sam), and ii) addArtist(Sam),
addAlbum(A2, Sam), addAlbum(Al, Sam), and rmvArtist(Sam). However, as we prove in
Section 3.1, all serialisations are safe and equivalent.

2.2 The No-Op Approach Workflow

We now present the envisioned workflow for developing replicated systems that guarantee
state convergence and maintain application invariants using the No-Op approach. This
workflow follows a three-step process, which we outline below.

Step 1. Identifying Conflicting Operations. Given the application state and the operations,
programmers start by identifying conflicting operations within the system. We assume
programmers can leverage existing analysis tools, such as Hamsaz [24] or Ordana [18], to
detect conflicts between operations automatically.

Step 2. Defining Conflict Resolution Policies. For each pair of conflicting operations iden-
tified by the analysis tool, programmers must define a conflict resolution policy. These
policies determine how conflicts are resolved, ensuring consistency while preserving the
intended system behaviour. As noted in [37] and illustrated earlier in this section, different
concurrency semantics can be applied to solving a conflict, with some being more suitable
for specific applications. Our prototype implementation offers a range of conflict resolution
policies (e.g., add-wins, remove-wins, last-writer-wins) as shown later in Section 5. These
predefined policies enable programmers to adapt them when implementing new data
types. Section 4.1.1 shows conflict resolution policy examples.

Step 3. Verification. After defining all conflict resolution policies, we foresee programmers
verifying the correctness of the data type or application. In our work, we use VeriFx [17]
to validate the correctness of our implementation, though other verification tools could
be used. Note that correctness is independent of the conflict resolution semantics, i.e.,
VeriFx does not validate whether a conflict resolution policy aligns with the programmer’s
intended semantics. For instance, if a programmer intends to implement an add-wins set
but defines a remove-wins policy, the system will enforce the policy as specified without
detecting a mismatch. Since we aim to provide flexibility in defining conflict resolution
policies, we assume that the programmer correctly specifies policies that align with the
application’s intended behaviour. To simplify, developers can use or adapt our predefined
standard policies covering common concurrency semantics.

3 Model

We now present our model and provide a formal proof of its correctness. The No-Op framework
ensures strong convergence and safety, guaranteeing that replicas remain consistent while
preserving application invariants without coordination. Strong convergence [39] ensures that
correct replicas processing the same set of updates — potentially in different orders — reach
equivalent states. Safety ensures that the replicated state consistently upholds the invariants.

We consider a causally consistent database fully replicated across multiple data centres.
Replicas may also be stored in mobile devices, which may temporarily be offline. We assume
a fail-recover model that preserves durable state and excludes Byzantine faults.

The application state comprises a set of objects, each of which can be accessed and modified
at any time through application-defined operations. In turn, the replica state comprises two
components: i) the initial application state, and ii) a partial order of operations that tracks
concurrency and allows the identification of conflicts as they arise. The current application
state of a replica is calculated by applying all operations in partial order to the initial state.
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Algorithm 1 Execution model of an update operation under the No-Op approach.

types

m = <0p, block} > a message is a pair containing operation op and the block operation
1: on operation;(op)
2 m <~ PREPARE;(op)
3 if m 75 1 then > m is set to L when the operation’s precondition is not satisfied
4: bcast;(m)
5: on deliver;(m,t) > we assume causal delivery
6 C <0p, block, t> > call ¢ contains the operation op, the block operation, and the timestamp ¢
7 EFFECT;(c)

An operation consists of a sequence of reads and writes that a replica executes atom-
ically. In line with causal consistency, operations are propagated between replicas using a
broadcasting mechanism that guarantees causal delivery. Causally-related operations are
ordered according to the “happens-before” relation [29], whilst concurrent operations remain
unordered relative to each other. Consequently, the execution order of concurrent operations
may differ across replicas, potentially leading to consistency conflicts. These conflicts fall
into two categories: i) convergence conflicts, which occur when replicas reach different states
by applying concurrent operations in different orders, and ii) invariant conflicts, which arise
when concurrent operations violate application-specific invariants.

An operation is conflicting if it can cause convergence or invariant conflicts. As such,
read-only operations, which do not modify the application state, are non-conflicting.

Algorithm 1 outlines the execution model of the No-Op framework. It draws inspiration
from operation-based CRDTs [40] and divides the execution of an update operation into two
phases: the prepare phase and the effect phase.

When a user invokes op on replica ¢, the operation; event on that replica is triggered.
This event triggers the prepare phase, executed exclusively on the replica where the operation
was invoked. During this phase, the system validates the operation’s preconditions. If the
preconditions are satisfied, the PREPARE; returns a message m containing the operation op
and a block operation, codifying the conflict resolution policy to handle conflicts involving
the submitted operation. Based on the predefined policy, the block specifies which operations
cannot be executed concurrently with the operation that issued it. In other words, the block
encodes the less preferred operations. Consequently, there may be operations where the
block is null, meaning that it represents the losing operation in the conflict. Conversely, an
operation may have a block on multiple operations, indicating that it conflicts with and
prevails over several others. Then, bcast; broadcasts the message to all replicas by calling
the reliable causal broadcast API (which will add a timestamp to the message).

When a message m with timestamp ¢ is delivered to replica ¢, the deliver; event is triggered.
The event first creates a tagged call ¢, associating the message with its timestamp. As the
message includes the operation call and the issued block, the tagged call is a triple consisting
of the operation call, the block, and the timestamp. EFFECT; incorporates the tagged call (or
simply call) into the partial order of operations and resolves any resulting local conflicts. A
local conflict occurs when the replica detects that the delivered operation has a block against
a local operation or vice versa. When the conflict is detected, the system transforms the
blocked operation into a no-side-effect operation, called a No-Op. This transformation ensures
that only the preferred operation (the one that issued the block) affects the application state,
thus maintaining consistency and enforcing the predefined conflict resolution policy. Conflicts
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can also arise with operations that have already been transformed into No-Ops. For instance,
if a No-Op has a block for a newly received operation, a conflict exists between the two
operations, and the system resolves it by transforming the new operation into a No-Op.

3.1 Model Correctness

We now prove that the No-Op framework guarantees strong convergence and safety. To do so,
we assume three key prerequisites: i) all replicas receive all updates, ii) updates are delivered
in causal order, and ii) a resolution policy is defined for every pair of conflicting operations.

As mentioned before, our model represents the partial order of operations as an execution
graph, G = (V, E). G is a labelled directed acyclic graph (DAG) where vertices (V') represent
tagged operation calls, and the edges (E) denote sequential dependencies between these
calls. No-Ops are maintained in a set N, which consists of all the vertices marked as No-Ops.
Concurrent operations remain unconnected in the graph, allowing for multiple topological
orders. We prove that all topological orders are safe serialisations (Theorem 5) and that
replicas receiving the same set of calls will converge to the same state (Theorem 7).

For simplicity, the proofs focus on the effect phase, as the prepare phase only creates the
message to be broadcast to all replicas and does not modify the replica state. We assume the
prepare phase has been executed, and the block has been issued according to the predefined
conflict resolution policies. Additionally, the proofs do not distinguish between local and
remote replicas, as only EFFECT; modifies the state.

» Lemma 1. Two replicas that observed the same calls have the same execution graph and
the same set of No-Ops:

Vry = (G1, N1), 72 = (G2, N2) :
(Gl = <‘/1,E1> NGy = <V2,E2> ANV = VQ) - (El =Fy ANy = NQ)

Proof. The graphs are equivalent iff, upon receiving the same set of calls, they contain the
same vertices and edges. When executing the effect phase, the replica adds the call to its
execution graph. Consequently, two replicas that observe the same calls will have identical
vertices in their execution graphs. We now show that the graphs contain identical edges
across replicas. The effect phase computes the edges between sequential calls by comparing
each new call ¢ with every other call in the graph. Causal consistency ensures that operations
are causally delivered, allowing all replicas to process sequential operations in the same order.
As a result, all calls preceding c¢ are consistently compared to ¢, generating the necessary
edges. Thus, all replicas maintain the same edges in their execution graphs. As the vertices
and the edges are the same, we can infer that both graphs, G; and G, are identical.
Lastly, we demonstrate that even when replicas process concurrent calls in different
orders, the model marks the same operations as No-Ops. When a tagged call ¢ is added to
the graph, the model checks whether ¢ conflicts with its concurrent operations. For each
pair of concurrent operations, we distinguish two scenarios. First, if one operation issues
a block against the other, the blocked operation is marked as a No-Op. Second, if the
operations do not conflict, no further action is taken. Since we assume that all operations
are eventually delivered, all updates are processed, ensuring all blocks are also processed.
Consequently, after processing the same set of operations, all replicas will have identified the
same No-Ops. <

To demonstrate that all topological orders are safe serialisations, we first define safety
based on the definition from [18] adapted to our model.



D. Borrego, N. Preguica, E. Gonzalez Boix, and C. Ferreira

» Definition 2 (Safe calls). Two concurrent calls are safe iff applying them in any order
preserves the operations’ preconditions and invariants. Otherwise, they are unsafe.

» Definition 3 (Safe operations). Two operations are safe iff all pairs of concurrent calls to
those operations are safe.

» Definition 4 (Safe serialisation). A serialisation of correct calls is safe iff every pair of
concurrent calls is either safe or includes at least one call that has been marked as a No-Op.

» Theorem 5. All topological orderings of an execution graph G are safe serialisations.

Proof. By induction on the length of the topological order.
Base Case. No calls occurred, so the topological ordering is empty and trivially safe.

Induction Step. Assume a safe topological order of dimension n derived from an execution
graph. When a message is delivered, the effect phase incorporates the new call into the
execution graph and calculates the No-Ops according to the issued blocks. We distinguish
two cases: either the new call is safe or unsafe.

Case 1. If the new call is safe, indicating no conflicts with any other concurrent call in the
execution graph, we can add the call to the graph, ensuring that the resulting topological
order(s) are safe serialisations.

Case 2. If the new call is unsafe, the new call invariant conflicts with at least a concurrent
operation in the execution graph. Since the call is conflicting, it either appended a
block during the prepare phase or the conflicting calls did. The blocked operations
are then transformed into No-Ops, ensuring that the resulting topological order(s) are
safe serialisations. Therefore, assuming the prepare phase was correctly executed, and
conflict resolution policies are defined for all conflicts, a block must exist for every pair of
conflicting operations, ensuring safety.

Starting from an execution graph with a safe topological order of dimension n, our model
builds an expanded graph whose topological order of dimension n+1 is a safe serialisation. <

» Lemma 6. Two topological orderings from the same graph G converge to equivalent states.

Proof. We follow a proof by contradiction. Assume two topological orderings, ¢, and to, that
result in divergent states. We know that, in both ¢1 and ¢2, all sequential operations appear
in the same order. However, concurrent operations may appear in different orders. Given the
assumption that the states diverge, there must be at least two concurrent non-commutative
calls, ¢; and ¢y, appearing in different orders in ¢; and ;. Let us assume, without loss
of generality, that t1[c1] < ti[ca] and tafc1] £ t2[ca], where t;[c;] represents the position
of call ¢; in the topological ordering ¢;. Since ¢; and ¢y are non-commutative, executing
them in different orders would lead to divergent outcomes. However, according to the

conflict resolution policy, non-commutative operations will issue a block in the prepare phase.

Therefore, one operation will block the other for all pairs of non-commutative conflicting
operations. Consequently, either ¢; or co would become a No-Op. As No-Ops do not affect the
application state, it follows that ¢; and ¢ commute, which contradicts our initial assumption
that ¢; and ¢y are non-commutative and lead to divergent states. By processing all operations
in the graph this way, we ensure that all remaining operations are commutative, guaranteeing
that any topological ordering will yield equivalent results. <

» Theorem 7. Two replicas that observed the same tagged calls converge to equivalent states.
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Proof. Assuming both graphs have observed the same calls, it follows from Lemma 1 that
they have the same execution graph. Additionally, by Lemma 6, any topological order within
the same graph leads to an equivalent state. Considering the graphs are equal, we can infer
that their topological orders are equivalent, thus converging to an equivalent state. |

4 No-Op Replication Protocol

We now introduce a coordination-free replication protocol that leverages the No-Op approach
to ensure strong convergence and uphold invariants in distributed systems without requiring
coordination. The protocol enables replicas to execute operations without synchronisation
and handles conflicts as they arise. As explained in Section 2, conflicts are identified and
resolved using a block operation that encodes a programmer-defined resolution policy. After
resolving the conflict, at most one of the conflicting operations affects the state.

Algorithm 2 provides an overview of the replication algorithm that implements the model
proposed in Section 3. Each replica maintains an execution graph, a No-Op (losing calls)
set, and the application’s initial state. As in the model, the execution graph is a labelled
directed acyclic graph (DAG) in which vertices represent tagged operation calls, and edges
denote the sequential dependencies between them. When two concurrent operations conflict —
one operation blocks the other — the algorithm designates the blocked operation as a No-Op,
ensuring that only the preferred operation affects the application’s state.

Since each replica only maintains the initial state, the current state of the application
must be calculated based on the operations in the execution graph. The GETSTATE function
computes the current state by executing the operations according to the partial order
maintained in the graph. The function begins by determining a topological order of the
graph. Starting from the initial state, each operation in the topological order is applied,
except for No-Op calls, which are ignored and left unexecuted.

The PREPARE function, executed exclusively by the replica where the operation was
submitted, verifies whether the operation is enabled in its current state and, if necessary,
issues a block. The function begins by calculating the replica’s local state and evaluating
the precondition. If the precondition does not hold, the operation cannot execute, and
the function returns L. Otherwise, it returns a message containing the operation and the
corresponding block. The block is determined based on the operation, the current state, and
the predefined conflict resolution policies. In some cases, the application’s state does not
influence the block. However, specific policies may use the state to decide which operations
to block (as discussed later in Section 5.2.4).

The EFFECT function operates on all replicas and incorporates the received call into each
replica’s local operation graph. The function begins by adding the edges between the new
call ¢ and all preceding calls in the graph. Since the model assumes causal delivery, no
calls occurring after c¢ exist in the graph at this stage. Next, the function checks if the new
call conflicts with its concurrent operations. Conflicts are detected using the OPSCONFLICT
function, which returns true if one operation has a block on the other. If a conflict is detected,
the algorithm gets the blocked operation through the GETBLOCKEDOP function and adds it
to the No-Ops set. Finally, the function adds the call to the set of vertices.

The algorithm allows a replica to validate an operation’s precondition while concurrently
delivering a remote operation. This is not a problem, as any invalidation of the precondition
by the remote operation indicates a conflict, which the system detects and resolves when the
effect function integrates the local operation into the graph.
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Algorithm 2 The No-Op algorithm main functions.

replica local state

G=(V,E) > execution graph
N > set of calls marked as No-Ops
oo > initial state
1: function PREPARE(op) > check if an operation can be executed in the current state
2 0 4 GETSTATE() > calculate the current state based on the execution graph
3 if PRE(op, o) then > check if the operation precondition holds in the current state
4 b« GETBLOCK(Op, 0') > generate the block according to the conflict resolution policy
5: return <0p, b> > return the operation and the block if the precondition is satisfied
6 else
7 return | > indicate the operation is not enabled in the current state
8: function EFFECT(C) > integrate call ¢ into the execution graph
9 for v € V do > determine edges and No-Ops generated by call ¢
10: if v < ¢ then > call v happens-before call ¢
11: E+ EU{{(v,0)} > add edge between call v and call ¢
12: else if v H (AN OPSCONFLICT(’U, C) then © operation blocks the concurrent operation
13: I+ GETBLOCKEDOP(U7 C) > get the blocked operation
14: N+ NU {l} > add the losing call [ to the No-Op set
15: V + Vu{c} > add call ¢ to the graph vertices
16: function GETSTATE() > calculate the current state
17: to < GETTOPOLOGICALORDER() > get a topological order from the graph
18: o < 0y
19: for ¢ € to do > apply all calls according to the topological order
20: if ¢c¢ N then > No-Ops are ignored and are not executed
21: 0 < EXECUTE(0, ¢) > execute call c over state o
22: return o > return the current state

4.1 Implementation in VeriFx

We implemented the core of the No-Op replication protocol in VeriFx [17], a programming
language for RDTs with automated proof capabilities. VeriFx allows developers to implement
RDTs in a high-level language atop functional collections and express correctness properties
that are verified automatically. Alongside the algorithm implementation, we developed formal
proofs to automatically verify the algorithm’s correctness properties when applied to specific
data types or application implementations. The implementation considers only the effect
phase of Algorithm 2. As in the formal proofs in Section 3.1, we assume the prepare phase
was correctly executed according to the programmer-defined conflict resolution policies.

4.1.1 Conflict Resolution Policies Specification

We start by detailing how conflict resolution policies are specified in our VeriFx implementa-

tion. These policies are implemented by means of two functions:
The blocksEncoding function verifies whether an operation call is valid. It takes
TaggedOp type, combining the operation and a corresponding block, and defines the
block value according to the operation type. Since we assume that the prepare phase
was correctly executed and VeriFx will generate any possible combination of operation
and block, we use this function to restrict the set of operations considered in the proofs
to those that are correct (i.e., those whose blocks match GETBLOCK in Algorithm 2).
Programmers must define this function.
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The isBlockedBy function takes two calls and defines the condition under which a
given operation instance is blocked by another. It corresponds to the OPSCONFLICT in
Algorithm 2. Typically, an operation blocks all instances of another operation of a given
type. Accordingly, the default implementation of this function returns true if a given
operation has a block that matches the other operation. For some data types (e.g., the
LWW Register), an operation may not block all instances of another type. In such cases,
the programmer must provide their custom implementation.

The implementation of blocksEncoding and isBlockedBy depends on the data type

semantics. We now illustrate how programmers specify conflict resolution policies through
these functions in the context of two concrete data types.

Add-Wins Set. The implementation of blocksEncoding for a replicated set defining an

add-wins policy is shown below:

def blocksEncoding(vl: TaggedOp[Time, ID, SetOp[V]]): Boolean =
vl.op match {

case Add(e) => v1.b == new Rmv(e)
case Rmv(_) => v1.b == new NullOp[V]Q()
case _ => false

}

Given an operation, the blocksEncoding function encodes how blocks should have been
assigned during the prepare phase. In this case, if the operation is an Add(e), the
block is equal to Rmv(e). Conversely, if the operation is a Rmv(_), the block is null
(i-e., the operation does not block any operation) since it represents the losing side of
the conflict. In VeriFx, we represent this null value using a special operation called
NullOp. Accordingly, for the case of Rmv, the function returns true if the associated
block is NullOp. The last case ensures pattern matching covers all possible scenarios,
including Null0Op. Since NullOp does not correspond to an actual operation, there are no
operations of this type, and the function returns false. This encoding guarantees that
only operations with correctly triggered blocks are considered. For example, it ensures
that in the proofs we only consider Add(e) operations that correctly blocks Rmv (e), and
excludes any Add(e) that does not block any operation.

In the add-wins set, the block matches precisely the operation that should be transformed
into a No-Op, i.e., the removes on the same element. Therefore, we can rely on the default
implementation of the isBlockedBy function.

LWW Register. Listing 1 shows the specification of a register defining a last-writer-wins

(LWW) policy. The blocksEncoding function defines that an Assign operation must
block other concurrent Assign operations that assign the same value to the register (i.e.,
Assign(5) would only block concurrent Assign(5) operations). However, to implement
the LWW policy, an Assign operation should block all operations lower in the total order
for the LWW, regardless of the assigned value. For instance, a block on Assign(5) must
block all concurrent instances of Assign(e) operations that are older in the total order,
independently of the value of e. We specify this requirement in the custom implementation
of the isBlockedBy function where blocking is defined by operation identifiers (opID).
As shown in lines 8-10, the operation in the first call (opl.op) is considered blocked if
both opl.op and the block of the second call (op2.b) are of type Assign(_), regardless
of their arguments (denoted by the underscore in pattern matching), and if the identifier
of the first call (op1.0pID) is smaller than that of the second (op2.0pID). Line 14 ensures
exhaustive pattern matching. In the LWW register, it only matches NullOp, which is
never triggered and thus never evaluated.
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Listing 1 Conflict resolution policy specification for a last-writer-wins register.

def blocksEncoding(vl: TaggedOp[Time, ID, RegOp[V]]): Boolean =
vl.op match {
case Assign(x) => vl.b == new Assign(x)
case _ => false

}

override def isBlockedBy(opl: TaggedOp[Time, ID, RegOp[VI1],
op2: TaggedOp[Time, ID, RegOpl[VI]1) = {
opl.op match {
case Assign(_) => op2.b match {
case Assign(_) => this.smaller (opl.opID, op2.o0opID)
case _ => false
}
case _ => false
}
}

4.1.2 Implementation and Verification of the No-Op Replication
Protocol

Our implementation closely follows the formal model, with a few optimisations. In the
model, the prepare phase assigns blocks according to conflict resolution policies, and all block
operations are issued during this phase. In the VeriFx implementation, we assume the prepare
phase has been correctly applied. We encode this assumption using the blocksEncoding
function, which specifies which operations are invalid and should not be considered in the
verification process. Additionally, rather than issuing all block operations, our implement-
ation only allows one type of concurrent operation to be blocked. Therefore, we need the
isBlockedBy function to determine whether a specific operation instance is blocked.

To prove the algorithm’s correctness, we must guarantee that the implementation upholds
the properties of the model proposed in Section 3: strong convergence and safety. In VeriFx,
we encoded these properties through two graph-based properties. The first property aligns
with the property proven in Lemma 1, demonstrating that applying two concurrent operations
in different orders on the same state produces an identical graph and the same No-Ops.
We only need to verify this property for concurrent operations, as sequential operations
are processed in the same order due to the assumption of causal delivery. The second
property encodes the structural characteristics of the graph. It ensures that edges connect
all sequential operations and that, for any conflicting pair of concurrent operations, one
operation is marked as a No-Op and added to the set of No-Ops. This second property
encodes the properties of Theorems 5 and 7.

Listing 2 presents the proofs used to verify the algorithm’s correctness. The proofs employ
three helper functions present in VeriFx to facilitate the verification process of RDTs:

The compatible function returns true if the two operations denote different operations.

The enabledOp function assesses whether an operation is enabled in the current state.

It first checks that the operation has not yet been delivered and that all predecessor

operations have already been delivered. This verification is needed because our model

assumes causal delivery of operations. Additionally, the function ensures the tagged
operation call is correct using the blocksEncoding function.

The reachable function defines the states the system can attain. It integrates the

structural properties of the graph, ensuring that conflicts between concurrent operations

are appropriately resolved and that edges exist between sequential operations.
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Listing 2 Proof verifying the algorithm’s correctness under concurrent operations, leveraging
graph-based properties.

proof noOpStrongConverges [Time, ID] {
forall(s: T[Time, ID], x: TaggedOp[Op, ID, Timel,
y: TaggedOp[Op, ID, Timel]) {
(s.compatible(x, y) && s.reachable() &&
s.enabledOp(x) && s.enabledOp(y) &&
s.execGraph.timeProps.concurrent (x.stamp, y.stamp)) =>:
s.effect(x).effect(y).equals(s.effect(y).effect(x))
}
}

proof noOpIsSafe[Time, ID] {
forall(s: T[Time, ID], x: TaggedOp[Time, ID, 0Opl) {
(s.reachable() && s.enabledOp(x)) =>: s.effect(x).reachable()
}
}

The proof noOpStrongConverges ensures that starting from a reachable state with two
concurrent operations enabled, applying these operations in different orders results in the
same graph state. The proof noOpIsSafe verifies that integrating an enabled operation into
the graph preserves the safety properties encoded in the reachable function.

Like our manual proofs (cf. Section 3.1), the VeriFx proofs assume that all possible
conflicts have a defined conflict resolution policy. Thus, the analysis may incorrectly indicate
that the data type is correct if the resolution policies do not cover all conflicts.

We used the VeriFx implementation of our approach to implement some data types
(discussed later in Section 5) and successfully verified their correctness. In this work, data
type implementations are used exclusively for verification purposes. However, VeriFx also
supports the transpilation of the data types into mainstream languages such as Scala and
JavaScript. Thus, if the No-Op algorithm were integrated into a database, developers could
design and verify their data types in VeriFx, subsequently transpiling them into a mainstream
language for seamless database integration.

4.2 Graph Compaction

Although the algorithm maintains consistency properties, i.e., ensuring convergence and
preserving invariants, it is impractical for real-world use due to the linear growth of each
replica’s state with the number of operations. To make our approach practical and more
efficient, we leverage the concept of causal stability [9] to determine when an operation call
can be committed and removed from the graph. This optimisation reduces space and prevents
the need to reapply the entire operation history for every incoming call. By committing
causally stable calls, we ensure that the graph remains compact, improving efficiency while
preserving the correctness guarantees of the original algorithm.

An operation is causally stable at a replica i when the replica can no longer receive any
additional concurrent operations. Once stabilised, the operation can no longer be transformed
into a No-Op nor cause other operations to become No-Ops. Therefore, replicas can locally
commit causally stable calls without requiring coordination.

The cOMMITSTABLECALLS function, described in Algorithm 3, implements the causal
stabilisation of our approach. The function takes a stable timestamp ¢ as its argument and
begins by identifying the stable calls in the graph. The GETSTABLECALLS function identifies
all calls with a timestamp less than or equal to ¢ and returns them as a sequence of operations.
This sequence respects the causal ordering defined by the graph. Next, each stable call in
the sequence is removed from the graph and applied to the state oy. If an operation is a
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Algorithm 3 Commiting causally stable calls.

1: function COMMITSTABLECALLS(t)

2 stableCalls < GETSTABLECALLS(t) > get the stable calls
3 for ¢, € stableCalls do > we assume stableCalls respect causal ordering
4 V«V \ {Cs} > remove the stable call from the vertices
5: E + E\1N(cs) \ ouT(cs) > remove incoming and outgoing edges
6 if ¢; ¢ N then > the stable call is not a No-Op
7 oo EXECUTE(O’O, CS) > apply the stable call ¢s in the state og
8 else > the stable call is a No-Op
9 N + N\ {os} > remove the stable call from the set of No-Ops

No-Op, it does not affect the stable state, as it has no side effects.

Some applications may benefit from being notified when operations are committed. For
example, in an online sales application, a developer may want a purchase to remain in an
accepted pending state until it is final. Only after the operation is committed (and can no
longer be modified) should a notification be sent to the customer, confirming that the purchase
has been successfully processed. To support this behaviour, our framework can be extended
to let developers register callbacks on operations, which are triggered asynchronously when
the operation is committed. Note that the callback notification can be sent as soon as a
single replica commits the operation; there’s no need to wait for every replica to commit.

4.2.1 Causal Stabilisation and No-Op Operations

During execution, conflicts are resolved by transforming operation calls into no-side-effect
operations, known as No-Ops. Since conflicts are handled locally by each replica as they
arise, different replicas may detect and resolve them in different orders due to variations
in operation arrival. To ensure determinism, the computation of No-Ops must consider all
concurrent operations, including those already marked as No-Ops. Consequently, although
No-Ops do not modify the application state, they must remain in the graph until causal
stabilisation to ensure deterministic conflict resolution and prevent divergence.

To illustrate why No-Op operations must remain in the graph, consider the example
in Figure 4, based on the albums management system introduced in Section 2. Initially,
the database contains an artist named Sam. Now, consider three concurrent operations:
addAlbum(A1l, Sam), which adds an album A7 by Sam; rmvArtist (Sam), which removes
Sam from the database; and updArtist(Sam), which updates Sam’s information. The
operations are executed on replicas 1, 2, and 3, respectively. For simplicity, the figure depicts
only two of the three replicas, showing their stable and current state. Replica 1 first executes
addAlbum(Al, Sam)(denoted as c1 in the graph), and then it receives the rmvArtist (Sam)
operation. When the effect phase for rmvArtist (Sam) is triggered, replica 1 detects a conflict
between the operation and the block issued by call c1. Consider that the conflict is resolved
by removing c2 from the graph (as the operation would be marked as a No-Op). When
updArtist(Sam) is delivered to replica 1, it is added to the graph without conflict.

Let us turn our attention to the execution graph in replica 2. Consider that rep-
lica 2 executed the rmvArtist(Sam) operation, but its effect phase is only triggered after
the effect phase of the two remote operations: addAlbum(Al, Sam) and updArtist(Sam).
First, addAlbum(Al, Sam) is processed and added to the graph (denoted as c1). Later
updArtist(Sam) is also added (denoted as c3) as the operation does not conflict with c1.
However, two conflicts arise when the effect phase of rmvArtist (Sam) is triggered. The block
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O O OO O

Stable State: {(Sam, UK)} {} {(Sam, UK)} {} {(Sam, UK)} {} {(Sam, UK)} {
Current State: {(Sam, UK)} {} {(Sam, UK)} {A1} {(Sam, UK)} {A1} {(Sam, USA)} {A1}
Replica 1 cl: <addAlbum(Al,Sam) , c2:<rmvArtist(Sam) , c3:<updArtist (Sam),
rmvArtist(Sam), updArtist (Sam) , L,
[2,0,0]> [1,1,0]> [1,0,1]>
27N
( cl /‘
:’A\ St l/"\
‘\CI,‘ 27N \ﬂ,"
- 3 \ -
Stable State: {(Sam, UK)} {} {(Sam, UK)} {} {(Sam, UK)} {} {(Sam, UK)} {}
Current State: {(Sam, UK)} {} {(Sam, UK)} {A1} {(Sam, USA)} {A1} {(Sam, UK)} {}
Replica 2 cl: <addAlbum(Al,Sam), c3: <updArtist(Sam), c2:<rmvArtist (Sam),
rmvArtist(Sam) , 1, updArtist(Sam) ,
[2,0,01> [1,0,1]> [1,1,01>

Figure 4 Convergence problems caused by removing No-Op operations from the graph before
stabilisation.

on updArtist (Sam) issued by call ¢3 leads to the removal of call c2 from the graph. On the
other hand, the block issued by addAlbum (A1, Sam) on rmvArtist(Sam) also results in call
c2 being removed from the graph. After executing the same set of operations, the state of
the replicas diverges. The problem is that removing operations from the graph when marked
as a No-Op before they are causally stable does not guarantee convergence. As such, our
algorithm retains unstable No-Op operations in the graph. Maintaining these operations,
along with comparing each operation against all its concurrent operations — including those
already marked as No-Ops— ensures consistent conflict resolution and prevents divergence.

To optimise metadata storage in the graph, we can replace the operation marked as
No-Op with null (i.e., store (L, block, timestamp)). This optimisation is possible because the
only information required for a No-Op is the associated block operation and the timestamp
to detect causal stability. Retaining the operation information is thus unnecessary since a
No-Op does not affect the system state.

5 Applicability of the Solution

This section demonstrates how the No-Op framework supports the implementation of CRDTs
(Section 5.1), enforces a wide variety of application invariants (Section 5.2), and enables the
development of distributed geo-replicated applications such as the RUBIS system (Section 5.3).

The No-Op approach supports a wide range of conflict resolution policies, allowing
flexibility in handling concurrent operations. Examples include operation-type-based policies,
such as update-wins and delete-wins, where one type of operation takes precedence over the
other. Additionally, it supports total-order-based policies, such as the last-writer-wins and
first-writer-wins policies, which resolve conflicts based on a total order of operations. Finally,
privilege-based policies can resolve conflicts based on criteria, such as user roles, giving
precedence to operations initiated by higher-privileged users within the system. Besides
these static policies, the framework supports state-dependent policies, where decisions are
made based on the system’s current state. Ultimately, our mechanism’s generality allows
programmers to define any policy expressible in terms of blocks.

All policies and mechanisms outlined in this section were implemented and verified using
VeriFx. This confirms the correctness of our approach and demonstrates its practicality for
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real-world applications.

5.1 CRDTs

Conflict-free Replicated Data Types (CRDTs) [40] are the most well-known class of RDTs.
They automatically resolve conflicts by leveraging mathematical properties to ensure con-
vergence by design. These data types can be classified into two categories: those with
commutative operations, which naturally avoid conflicts, and those with non-commutative
operations, which require conflict resolution policies.

Commutative data types inherently avoid convergence conflicts and do not require conflict
resolution policies. Under causal delivery assumptions, if all operations are commutative,
they can be applied directly to the state without needing an execution graph. Examples
of such data types include the grow-only set [40] and the counter [40]. Since these data
types are conflict-free, no operations become No-Ops, making them immediately causally
stable and directly applicable to the stable state. In other words, these data types can be
implemented as a sequential set and a sequential counter, respectively.

In contrast, non-commutative data types require embedding a conflict resolution policy
within the data structure to prioritise specific operations when conflicts arise. These CRDTs
leverage conflict resolution policies, making their implementation straightforward with the
No-Op framework. For instance, to implement an add-wins set, the conflict resolution policy
specifies that add operations take precedence over remove operations on the same element
(cf. Section 4.1.1). During the prepare phase of an add operation, the No-Op framework
generates a block on concurrent removes targeting the same element. As a result, those
remove operations are transformed into No-Ops.

Overall, CRDTs typically rely on operation-type-based or total-order-based policies, both
supported by the No-Op framework, allowing diverse CRDT implementations. We have
implemented in our VeriFx implementation different registers, flags, counters, and sets.

5.2 Invariant Maintenance

This section describes how our model can enforce a wide variety of invariants, ranging from
simple invariants on single objects to more complex invariants over multiple objects. To
illustrate invariant’s examples, we use the albums management system presented in Section 2.

5.2.1 Equality and Inequality of Attributes

Equality and inequality of attributes [4] restrict the values assigned to an attribute. In our
running example, an example of attribute equality is defining that the genre of an album can
only take predefined values, such as “rock”, “pop”, “jazz”, or “classical”. This invariant type
does not generate conflicts between operations, not requiring any conflict resolution policy
to enforce it. Since this invariant does not generate conflicts, it is trivially maintained within

our framework without requiring any conflict resolution policy.

5.2.2 Uniqueness

Uniqueness [4, 7, 6] includes all constraints regarding attribute uniqueness and is commonly
used to denote primary keys or identifiers. For instance, in our running example, requiring
artist identifiers to be unique is a typical uniqueness invariant.

We can classify the identifiers into system-generated identifiers and user-chosen identifiers.
In system-generated identifiers, we assume a mechanism that automatically generates them,
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ensuring their uniqueness [7, 30]. By generating unique identifiers, the system guarantees
that no conflicts related to identifier uniqueness will arise, eliminating the need for a policy
to solve uniqueness conflicts. For user-chosen identifiers, two operations conflict if attempting
to add distinct objects with the same identifier (insertions with different identifiers do not
conflict). When n operations attempt to add different objects with the same identifier, n — 1
operations need to be converted into No-Ops, allowing only one operation to be successfully
executed, thereby preserving the invariant. Therefore, the No-Op approach can resolve these
conflicts through a total-order-based policy. Each operation blocks all preceding operations,
as determined by a total order (e.g., enforced by Lamport clocks), that attempt to add a
different object with the same identifier. As a result, after processing the operations, the
No-Op framework converts all but one into No-Ops, ensuring the invariant is preserved.

5.2.3 Referential Integrity

Referential integrity [4, 7, 6] defines dependency relationships between objects, with a parent
object representing the referenced entity and a child object referencing the parent. In the
context of the running example, a referential integrity constraint could ensure that albums
by nonexistent artists cannot exist in the system.

Conflicts arise when an operation inserts or updates an object that references a parent
object which has been concurrently deleted. To manage these conflicts without coordination,
Antidote SQL [35] introduced two conflict resolution policies: update-wins and delete-wins.
Under the update-wins policy, the conflict is resolved by keeping the parent object in the
database. In contrast, the delete-wins policy resolves the conflict by removing both the
parent object and the concurrently inserted or updated child.

Our model supports the implementation of both policies. In the update-wins policy, insert
and update operations on child objects take precedence by blocking the parent deletion,
rendering it a No-Op. In the delete-wins policy, the parent deletion takes precedence, blocking
insert and update operations on child objects and transforming them into No-Ops.

Furthermore, our model enables the implementation of variations of these policies by
simply adjusting how the operations are defined. Consider the update-wins policy. If the
operation that deletes the parent object also removes its children, applying the policy would
prevent both actions from being executed. As a result, after resolving the conflict, both the
parent and its children remain in the database. In contrast, if the operation that deletes the
parent first triggers a separate operation to delete its children, the outcome changes. Since
deleting the children is an independent operation, it does not conflict with inserting a new
child. As a result, the parent remains in the database, while the deleted children do not.
This behaviour aligns with the update-wins semantics proposed in Antidote SQL.

5.2.4 Disjunctions

A disjunction invariant requires at least one of several conditions to be true. A violation occurs
when all true predicates concurrently transition to false. Therefore, conflicting operations
are the operations that transition a predicate from true to false.

Consider an extension to the album management system where each album can contain
multiple tracks but must always include at least one. This version introduces two additional
operations: adding a track to an album and removing a track from an album. Given this
property, operations that remove different tracks conflict, as they may violate the invariant.
For example, if an album initially contains two tracks and two operations attempt to remove
them concurrently, the album would end up with no tracks, which breaks the invariant.

The disjunction invariant illustrates how issuing blocks based on the system’s state can
be beneficial. The remove track operation is self-conflicting, which makes it responsible
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for triggering blocks. However, traditional policies, such as operation-type or total-order-
based, are overly restrictive, limiting execution to at most one operation. Total-order-based
policies allow only a single operation to proceed, while operation-based policies prevent all
operations from executing, as self-conflicting operations block each other. However, enforcing
a disjunction invariant only requires ensuring that at least one predicate remains true.

To address this, we propose a state-based policy where the block operation is issued based
on the application’s current state. This approach preserves the truth value of a predicate by
transforming any operation that would transition it to false into a No-Op. By blocking all
operations that would make the predicate false, the policy ensures that at least one predicate
remains true, thereby maintaining the invariant.

In the example, the block operation would guarantee that a specific track could not be
removed from an album. In this scenario, the block operation would block all operations
that transition the predicate “track z is in album y” to false. Consequently, any operation
that concurrently attempts to remove track = from album y would conflict with the block
operation, as it alters the truth value of the blocked predicate. The conflicting remove
operation would then become a No-Op.

The specification of such a state-based policy follows a similar approach to the LWW
register shown in Section 4.1.1. The specification is provided in Appendix A in [12]. Assuming
the application defines the predicate to be blocked and returns the selected predicate to the
framework, the framework then issues blocks on all operations that would transition the
predicate to false.

Issuing blocks based on the system’s state enables the implementation of more fine-
grained policies, reducing the number of conflicts. However, it is important to note that some
operations may still be unnecessarily undone, depending on how the blocks are assigned. For
instance, if the predicate to be blocked is chosen randomly, different operations may block
multiple predicates, turning several operations into No-Ops. In contrast, if all operations
attempt to block the same predicate, only the operations affecting that specific predicate are
undone, minimising the number of No-Ops.

5.2.5 Numerical Invariants

Numerical invariants [4, 7, 6] are usually associated with attributes manipulated by increment
or decrement operations, and where there must be some control over the values of the
attribute since there is a lower or upper bound. An example of a numerical invariant is
guaranteeing that a user’s balance does not become negative.

Although the No-Op approach preserves numerical invariants, it can be overly restrictive.
Due to the self-conflicting nature of the operations, they block each other and, in some cases,
generate more No-Ops than necessary. Consider a counter with a lower bound of 0 and an
initial value of 100. Decrements are inherently self-conflicting. Applying the No-Op approach
would require decrements to trigger blocks on other decrements. If each decrement blocked
another, none of the operations would execute, as the decrements would cancel each other
out. Similarly, policies based on a total order would allow only one operation to succeed. For
example, if five concurrent decrements of 10 units each were issued, only one decrement would
be applied (e.g., the latter following the total order). This behaviour is overly restrictive, as
executing all decrements would maintain the invariant and respect the lower bound.

To overcome this limitation, we propose integrating escrow techniques [36, 7, 8] into the
model. These techniques enable replicas to pre-allocate permissions for executing future
updates, ensuring constraints are maintained. For example, consider a counter z = 2 with
the invariant > 0. In this case, the counter can be decremented by up to two units without
violating the invariant. This decrement capacity represents the available rights in the system,
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which are distributed among replicas. In a system with three replicas, the rights could be
allocated as follows: replica 1 and replica 2 each hold one right, while replica 3 has none.
If a decrement operation is submitted to replica 1, it can safely execute as it acquires an
available right, preserving the invariant. Conversely, if a decrement operation is submitted
to replica 3, it is aborted due to the lack of rights.

If the system supports escrow mechanisms, the necessary rights for an operation would
be acquired in advance during the prepare phase, ensuring that the operation can be safely
executed across replicas. In other words, escrow techniques eliminate conflicts by converting
conflicting operations into non-conflicting ones. As a result, operations that previously
required conflict resolution policies can now be executed safely within our framework, as
conflicts no longer arise. A bounded counter [8] can, therefore, be implemented as a sequential
counter, eliminating the need for an execution graph, much like in commutative CRDTs.

5.2.6 Aggregation Constraints

Aggregation constraints [6] enable the establishment of limits on the size of collections or
enumerable attributes. Since the counted objects are in the database, aggregation constraints
can be expressed as a disjunction of predicates. For instance, the example provided for the
disjunctions — the number of songs in an album must be greater than one — is also an example
of an aggregation constraint, as this property restricts the size of a collection of tracks.

Aggregation constraints comprise both lower and upper bounds. In lower bounds, the
operations that remove an element from the collection are self-conflicting. Therefore, blocks
are triggered whenever an element is removed from the collection. The number of blocked
operations depends on the specified limit. For example, if the limit is 1, removing an element
from the collection triggers a block on operations that remove a specific element. If the limit
is 2, removing an element must block the removal of two different elements. Therefore, it
triggers blocks on operations that remove one of the two blocked elements.

Conversely, in upper bounds, the conflicting operations are the operations that insert
elements into the collection. However, identifying which operations to block is challenging,
as it would require preemptively blocking any potential insertion, including block insertion
of elements that may not yet exist in the system. Since there is no mechanism to block
specific, non-existent elements, the block must be generic, restricting all insert operations.
This approach can be overly restrictive and shares the same limitations as those faced with
numerical invariants. In the future, we plan to explore alternative strategies to reduce the
number of blocked operations without relying on escrow techniques.

5.2.7 Linear Resources

Linear resources [7] are applied to partitionable objects/resources to ensure no overlap. For
example, a linear resource can be applied to ensure that a seat on a plane is not booked by
more than one person. This type of invariant functions similarly to uniqueness, allowing
only one operation from a set of concurrent operations to succeed. Consequently, any policy
based on a total order is well-suited for maintaining this type of invariant.

5.3 Real-World Example

Ensuring application correctness requires preserving all defined invariants throughout exe-
cution and guaranteeing that all replicas converge after applying the same operations. So
far, we have demonstrated how the No-Op framework supports the development of CRDTs
and enables the creation of data structures that automatically maintain invariants. In this
section, we bring these concepts together to illustrate how the No-Op framework can be used
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registerUser(uy, ...) u; = ug

unregisterUser (u;) v v

update (uy, ...) v up = u u; = up

placeBid(aj, uj, by, ...) v u; = uy v a; =as Aby =by Auy #us

closeAuction(a;) v v v a; = ap v
registerUser(uy, ...) unregisterUser(u;) update(us,...) placeBid(ag, uy, by, ...) closeAuction(as)

Figure 5 Analysis of conflicts for the RUBIS system. Convergence conflicts are shown in yellow,
whereas invariant conflicts are shown in red.

for developing a real-world distributed application. To this end, we develop an eBay-like
auction system akin to the RUBIS system [14].

RUBIS supports operations such as registering and unregistering users, updating user
information, opening and closing auctions, and bidding on open auctions. Additionally, it
allows for direct sales, with operations to list items for sale and to purchase items. Based on
the supported operations, we define five key invariants for RUBIS:

System-assigned identifiers must be unique.

User-chosen nicknames must be unique.

Item stock cannot be negative.

Each bid on an open auction must be associated with an existing user.

There cannot be two bids with the same value for the same auction from two users.

Figure 5 illustrates all considered conflicting operations and their potential conflicts. Read
operations are excluded, as they are safe-commutative and do not modify the database. The
operations openAuction, sellItem, and storeBuyNow were analysed but are not shown in
the figure since they do not conflict with any other operation. In the figure, yellow rectangles
represent convergence conflicts, while red rectangles indicate invariant conflicts. Additionally,
the relevant attributes responsible for each conflict are specified. For instance, conflicts
between two user registration operations occur only when both use the same identifier.

Our RUBIS implementation in VeriFx assumes the system operates with escrow techniques
and that its identifier generation mechanism ensures unique identifiers. These mechanisms
guarantee that system-assigned identifiers are unique and that the item stock remains
non-negative. As a result, there are no conflicting operations concerning these two invariants.

Recall that the No-Op approach relies on programmer-defined conflict resolution policies
to handle conflicts between operations. The framework applies these policies at runtime to
trigger blocks, which are used to detect and resolve conflicts. In the remainder of this section,
we describe the resolution policies chosen for each identified conflict in the RUBIS system.

We opted for the last-writer-wins policy to resolve the uniqueness conflict between two
registerUser operations. Similarly, we applied this same policy to address the convergence
conflict caused by two updateUser operations targeting the same user. In both cases, the
conflicts stem from self-conflicting operations, and only one operation from a set of concurrent
operations must be executed. Consequently, any total-order-based policy is appropriate for
resolving these conflicts.

For the same reasons, the uniqueness conflict caused by two users placing bids of the
same value can also be resolved using a total-order-based policy. However, in this case, we
have defined a policy that prioritises users based on the number of bids they have won.
Specifically, the user who has won more auctions takes priority. If both users have won the
same number of auctions, the policy resolves the tie using a total order over the operations.

Conflicts between unregisterUser and placeBid operations, which affect referential
integrity, can be resolved using any of the policies described in Section 2. In our VeriFx im-
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plementation, we adopted the remove-wins policy. This decision aligns with the application’s
semantics, favouring the removal of the user and their associated bids over forcing the user
to remain in the system, where they could win the auction.

In convergence conflicts between closeAuction and placeBid, we defined closeAuction
as the winning operation. Prioritising closeAuction ensures the auction closes properly,
avoiding inconsistencies such as reopening the auction due to a concurrent bid. If a placeBid
operation is delivered late due to a failure, it could inadvertently reopen the auction long
after it has been closed. By using this policy, we avoid these situations.

Finally, for conflicts involving updateUser and unregisterUser operations, we selected
updateUser as the winning operation.

6 Discussion

This section examines the practical implications of the No-Op approach, including its
applicability to different applications and the impact of poorly designed conflict resolution
policies. Additionally, it explores the trade-off between optimisation and policy determinism.

6.1 When and How to Apply the No-Op Approach

The No-Op approach resolves conflicts by discarding operations, transforming them into
no-side-effect operations. Each replica maintains its local view of the system and, using only
local knowledge, determines which operations should be transformed into No-Ops to ensure
convergence while preserving invariants.

The model may result in operations being discarded after a response has already been
sent to the client. For example, consider the referential integrity conflict in Figure 2. Under
an update-wins semantics, a client may initially observe an artist as removed but later find
that the artist is still present. This occurs because the remove operation is transformed
into a No-Op only after the concurrent update operation has been delivered and the conflict
resolved. As some operations may be discarded after execution, this mechanism is unsuitable
for applications that cannot tolerate such behaviour. Based on this, applications can be
classified into two categories:

Applications that can handle reversals through compensation mechanisms.

These applications can use the framework alongside compensation mechanisms [20, 44].

When an operation is transformed into a No-Op, the system can trigger a compensation

action to maintain consistency.

Applications that do not support operation reversals. These applications re-

quire strong consistency and cannot operate under weak consistency models, making

coordination the only viable solution.

Many conflict resolution policies prioritise certain operations over others. For example, in
the last-writer-wins policy, after applying all updates, the oldest update does not affect the
system’s state, which is similar to transforming it into a No-Op. By explicitly transforming an
operation into a No-Op, our approach has the advantage of clearly identifying the operations
with no side-effect, making it easier to integrate a recovery or notification mechanism, such
as the mentioned compensations.

In some cases, only a specific pair of operations may not support reversals, while all other
conflicting pairs do. For example, in the RUBIS scenario, a programmer may believe that
their application does not support reversals on placeBid and closeAuction, meaning neither
operation can be transformed into No-Ops. In this case, they may opt for coordination
to handle these operations [30]. However, using coordination to prevent the concurrent
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execution of operations that cannot be transformed into a No-Op does not preclude applying
the No-Op approach to resolve other conflicts within the application. In such scenarios, the
No-Op framework can be augmented with strong consistency mechanisms without affecting
the rest of the system. For example, coordination could be implemented using locks, ensuring
their correctness while allowing the remaining operations in the application to continue
following the No-Op framework. This hybrid approach maintains efficiency while addressing
specific consistency requirements where necessary.

6.2 Challenges with Poorly Designed Conflict Resolution Policies

Although the No-Op approach is coordination-free, it may sometimes mark operations as
No-Ops unnecessarily. This issue can arise for different reasons. Sometimes, the model is
overly restrictive for specific invariants, such as numerical invariants (cf. Section 5.2.5). In
others, it may stem from the design of the conflict resolution policies implemented by the
programmer. This section examines how poorly designed policies can increase the number of
No-Ops and explores strategies to identify policy definition improvements.

To illustrate how poorly designed conflict resolution policies can lead to unnecessary
No-Ops, let us revisit the example in Figure 4. Consider that the programmer specifies
that addAlbum wins in conflicts with rmvArtist. In turn, rmvArtist wins in conflicts with
updArtist. When addAlbum, rmvArtist, and updArtist are executed concurrently, the
algorithm marks both rmvArtist and updArtist as No-Ops. As a result, fewer concurrent
operations can be executed, impacting performance. However, defining rmvArtist as the
losing operation in both cases solves the conflicts and ensures that only one of the three
operations becomes a No-Op. Redefining the conflict resolution policies can thus improve
performance without compromising the application’s correctness.

Poorly designed conflict resolution policies could, however, lead to more severe issues
hindering the overall system progress. For example, operation op; marks operation ops as a
No-Op, operation ops marks operation ops as a No-Op, and operation ops, in turn, marks
operation op; as a No-Op. While this circular dependency does not compromise correctness,
it causes all conflicting operations to be marked as No-Ops, hampering progress.

A policy graph provides a systematic way to identify and address those issues. In a
policy graph, vertices represent conflicting operations, while edges show how conflicts are
resolved. Long path lengths in the graph highlight scenarios where an excessive number of
operations are unnecessarily marked as No-Ops. Meanwhile, cycles in the graph indicate
circular dependencies. Therefore, programmers should define conflict resolution policies that
ensure a cycle-free policy graph while minimising path lengths to reduce inefficiencies. In
future work, we plan to explore an automated analysis tool that generates and analyses the
policy graph based on programmer-defined conflict resolution policies. This tool will provide
feedback, guiding developers to the policies that can be refined to enhance performance.

6.3 Optimisation for Deterministic Resolution

The correctness of our model, described in Algorithms 1 and 2, does not depend on the
deterministic nature of conflict resolution policies. The policies only determine how blocks are
triggered. If a policy is non-deterministic, two replicas in the same state executing the same
operation may generate different blocks. However, since blocks are generated locally during
the prepare phase, they are triggered only once per operation, ensuring their assignment
remains deterministic. For example, consider a policy that resolves conflicts by randomly
selecting an operation to be transformed into a No-Op. In this case, the blocked operation is
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chosen randomly during the prepare phase. However, since the prepare phase is executed only
by the local replica, the same block assignment is propagated to all remote replicas. During
the effect phase, each delivered operation is compared against all its concurrent operation
calls, including those already marked as No-Ops. As a result, all replicas process blocks
uniformly, ensuring No-Ops converge. Therefore, by design, the No-Op approach ensures
that replicas processing the same operations produce identical No-Op sets. This is achieved
through the block abstraction, which guarantees that conflicts are resolved deterministically
regardless of policy non-determinism.

When implementing the model, the creation of blocks could be optimised. Rather than
creating the block when an operation is submitted (in the prepare phase), it is possible to
simply perform the effect of blocks — transform concurrent conflicting operations into No-Ops
according to the policy — upon detecting a conflict when an operation is delivered (in the
effect phase). This optimisation reduces the amount of metadata that must be broadcast over
the network and minimises the data stored in the graph, as blocks are no longer appended
to operations.

Note that this optimisation is only applicable to deterministic conflict resolution policies.
Since the policy is applied directly during the effect phase, a non-deterministic policy could
lead to divergence, as different replicas may resolve conflicts inconsistently. Consider again
the policy that resolves conflicts by randomly transforming an operation into a No-Op. In
this case, two replicas processing the same conflict could make different decisions, resulting
in divergent execution graphs. Another example is state-dependent policies, which issue
blocks based on the application’s current state.

Optimising the model comes at the cost of imposing stronger assumptions on the conflict
resolution policies. While this optimisation reduces metadata overhead and storage costs
by eliminating blocks, it requires deterministic conflict resolution to ensure convergence.
In contrast, the original model allows for greater flexibility in defining policies, including
non-deterministic ones, at the cost of maintaining extra metadata. If the optimised version is
adopted, the verification step should verify whether the resolution policies are deterministic.

7 Related Work

Ensuring correctness in applications built on weakly consistent storage is an active research
area, with two core challenges: achieving state convergence across replicas and preserving
application invariants. Traditional replicated data types (RDTs) [40, 13, 26, 9] provide a
principled, coordination-free approach to ensure replicas converge to the same state after
executing the same operations. However, these data types are typically hand-crafted for
specific use cases. In contrast, our framework offers a unified approach that can be applied
consistently to implement different policies. Pure operation-based CRDTs [9] also maintain a
graph of operations, encoding conflict resolution in the read operations. Our approach differs
fundamentally by resolving conflicts during the write operations. While these approaches for
building RDTs guarantee convergence, they do not address invariant maintenance.

The remainder of this section reviews methods for enforcing invariants, classifying them
into coordination-based, reservation-based, and coordination-free approaches, and examines
their characteristics and trade-offs.

Coordination-based approaches. Coordination-based approaches rely on synchronisation to
prevent operations from violating invariants. As described in [4], invariant confluence
provides a necessary and sufficient condition for determining whether invariants can be
maintained under concurrent operations. This principle identifies the operations requiring
coordination: non-Z-confluent operations. Several techniques aim to minimise the level
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of coordination required. Lucy [46] achieves this by segmenting the state space and
restricting transactions within each segment, ensuring each segment becomes Z-confluent.
Similarly, Blazes [3] identifies locations needing coordination and automatically synthes-
ises application-specific coordination code to reduce synchronisation overhead. Other
approaches focus on generating replicated objects that inherently maintain invariants.
For instance, Hamsaz [24] and Hampa [32] automatically synthesise replicated objects
by coordinating unsafe operations. CISE [21] provides an automated proof rule to verify
whether invariants are preserved on replicated databases under a given replication protocol.
To ensure invariant safety, CISE coordinates conflicting operations. Quelea [42] determines
the weakest consistency model that upholds invariants by statically analysing contracts
to assign the most efficient and sound consistency level to each operation. Similarly,
Q9 [25] identifies the weakest consistency model needed to prevent invariant violations.
Indigo [7] gives programmers more control by allowing them to either coordinate unsafe
operations or automatically repair invariants post-facto. It also introduces a multi-level
mask reservation mechanism, using fine-grained locking to prevent specific conflicting
operations. ECROs [18] reduce synchronisation by reordering conflicting operations, but
it still relies on coordination when reordering is impossible. LoRe [22] automatically
verifies developer-supplied safety properties for local-first applications, resolving invariant
violations due to concurrency by adding coordination logic as needed. Coordination-based
approaches optimise synchronisation but remain conservative, since they still rely on
coordination to uphold invariants. In contrast, we propose a coordination-free alternative
with the No-Op approach, which eliminates the need for synchronisation entirely, offering
a novel and efficient solution for maintaining consistency in replicated systems.

Reservation-based approaches. Reservation-based approaches [36, 8, 7, 33, 38, 41] reduce
coordination costs by moving synchronisation outside the execution path of operations.
By reserving the rights to perform specific operations in advance, replicas can execute
operations safely without requiring immediate coordination. However, these mechanisms
assume the necessary rights are available at the local replica. Otherwise, coordination is
needed to acquire rights from other replicas or operations are aborted. Escrow transac-
tions [36] apply this concept to enforce numerical invariants. The difference between the
current value of a numerical variable and its bound determines the number of rights dis-
tributed among replicas. The bounded counter CRDT [8] builds on escrow transactions by
implementing this mechanism asynchronously to uphold numerical invariants. Partition
lock reservation [7] extends these ideas to enforce linear resource constraints. It allows
replicas to reserve rights over non-overlapping value intervals, enabling operations within
these intervals to execute locally without coordination. However, operations that require
values outside the reserved intervals must synchronise with other replicas. Although these
mechanisms maximise concurrency for operations that might otherwise violate invariants,
they still rely on locks or coordination when local rights are exhausted. In our work, we
incorporate escrow techniques specifically for numerical invariants, as the No-Op approach
can be overly conservative in such cases. By pre-allocating execution rights, replicas can
safely execute concurrent operations without unnecessary No-Ops, ensuring safety. This
integration reduces the constraints of the No-Op model for numerical invariants while
preserving its coordination-free nature for other invariants.

Coordination-free approaches. Coordination-free approaches maintain invariants by trans-
forming non-Z-confluent operations into Z-confluent operations. Existing approaches, as
well as our approach, do so by introducing conflict resolution mechanisms. IPA [6] resolves
conflicts by extending conflicting operations with updates that ensure invariant preserva-
tion. It leverages static analysis to identify conflicts and suggests to programmers conflict
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resolution policies, enabling them to choose the policy that best suits their application.
Compared to IPA, our No-Op approach introduces two key differences. First, while IPA
resolves conflicts by adding updates, our approach discards conflicting operations. Second,
IPA relies on CRDTs for convergence, whereas our approach natively supports convergence
and invariant preservation without additional structures. Antidote SQL [35] enforces
referential integrity through resolution policies. However, these policies are limited to
referential integrity and cannot be extended to other invariants. In contrast, as shown in
Section 5.2, our approach provides broader applicability, enabling the preservation of a
wider range of invariants.

8 Conclusion

This paper introduced a coordination-free consistency framework that unifies data convergence
and invariant preservation through the novel No-Op approach. Conflicts are resolved by
designating one operation in each conflict as a no-side-effect operation. By transforming non-
preferred operations into no-side-effect operations, the No-Op approach ensures consistency
and safety across all replicas even under concurrent updates, as established by formal proofs.
To the best of our knowledge, this is the first unified approach that ensures strong convergence
and invariant preservation while eliminating the need for synchronisation.

Our approach allows programmers to define custom conflict resolution policies tailored to
the specific semantics of their applications. Additionally, it eliminates the need to design and
implement new data structures to support these policies, thereby simplifying the development
of highly available distributed systems. We implemented the framework in the VeriFx
programming language to demonstrate its practicality, leveraging its automated proof engine
to validate each data-type implementation. This implementation confirmed the manual
proofs of our approach, bridging the gap between theoretical guarantees of consistency and
real-world applicability. Additionally, we showcased its ability to encode popular CRDTs and
enforce a wide range of invariants, including referential integrity. Finally, we demonstrate our
approach for developing real-world applications, such as the geo-distributed RUBIS system.

While the No-Op approach is coordination-free, it can sometimes unnecessarily transform
operations into No-Ops. To address this challenge, we propose to integrate escrow techniques
to minimise superfluous No-Ops and leverage policy graphs to identify inefficiencies.
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