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Abstract Open-source software, with its extensive array of reusable com-
ponents, is the foundation of modern software development. Package man-
agers like npm simplify the integration of numerous modules and dependen-
cies. While previous research has examined dependency management, security
vulnerabilities, and package updates, little is known about the effects of ex-
tended inactivity on these packages. This study aims to investigate the phe-
nomenon of “dormant” packages and explore the implications of this dormancy
on software projects and the broader open-source community. We propose a
two-step investigation of the dormant packages in npm. First, we quantita-
tively investigate the duration and timing of release gaps, the nature of up-
dates following dormancy, and the state of dependencies during these periods
of inactivity. Second, we qualitatively examine the activities of maintainers
and users through an analysis of commit messages, pull requests, and issues.
The key findings of our study reveal significant risks associated with dormant
packages, including outdated dependencies, unpatched security vulnerabilities,
and potential erosion of community trust. While some packages are eventually
updated to address these issues, others remain neglected, posing challenges
in using open-source software. Our study highlights the potential benefits of
proactive maintenance and suggests that community involvement may play a
role in mitigating the risks associated with dormant packages.
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1 Introduction

The use of open-source software has become essential for modern development,
offering a wealth of reusable components that accelerate innovation and reduce
development costs [12]. Among these, package managers like npm play a piv-
otal role, providing developers with easy access to a vast library of modules
and dependencies [26]. However, the health and maintenance of these pack-
ages are critical to ensuring the stability and security of the software that
relies on them [13, 17, 25, 34]. Security issues are even more severe due to the
phenomenon of “dormant” packages—those that experience prolonged gaps
in releasing new versions from their maintainers. Dormant packages can pose
significant risks, including outdated dependencies, unpatched security vulnera-
bilities, and the erosion of community trust [20]. Despite these risks, many dor-
mant packages continue to be widely used, raising important questions about
the consequences on software development practices and the overall resilience
of open-source projects. This study aims to investigate this phenomenon within
npm and examines the implications of this dormancy on software projects and
the broader open-source community. Through a comprehensive analysis, we
aim to explore the prevalence of these packages in npm, the versions released
after the gap, and the patterns of their revival.

The study is organized into two parts: A quantitative analysis that is struc-
tured around several research questions aimed at uncovering the characteristics
of dormant packages, the status of dependencies during the gap, and the static
vulnerabilities that affect packages’ dependencies; and a qualitative analysis
that manually examines commit messages, pull requests, and issues to explore
the experiences of maintainers and users with dormant packages. Both analy-
ses shed light on the lifecycle of these packages, the factors that lead to their
dormancy, and the circumstances under which they are revived. More specifi-
cally, the quantitative analysis addresses the following research questions:

– RQ1: How long are the release gaps in software packages? This
question investigates the duration of the periods in which packages do not
release any new versions. Understanding the length of these gaps helps to
identify how long packages remain dormant and the potential risks that
accumulate during these periods.

– RQ2: At what point in packages’ lifecyle do release gaps most
commonly occur, and how do these attributes relate to the du-
ration of dormancy? This question investigates when release gaps arise
and whether certain package attributes are linked to longer dormancy pe-
riods. By identifying patterns in the timing and duration of gaps, we aim
to uncover early indicators of dormancy.

– RQ3: What is the type of the first version released after the gap?
This question examines the nature of the updates made when a package re-
sumes activity after a period of dormancy. Understanding the first changes
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can reveal how maintainers address the issues that may have accumulated
during the gap.

– RQ4: What files were modified between the versions before and
after the gap? This question explores the specific changes made to the
package’s codebase when it is revived. By analyzing which files are mod-
ified, we can identify the focus areas of the updates, such as bug fixes,
security patches, or new features.

– RQ5: Do packages modify their dependencies upon resuming ac-
tivity? This question investigates whether packages change, remove, or
add their dependencies when they become active again. Analyzing these
modifications can reveal how maintainers address the package’s external
dependencies and whether they prioritize updating or altering these con-
nections when reviving the package.

– RQ6: How outdated were the dependencies during the gap? This
question examines the extent to which the dependencies of dormant npm
packages become outdated during the period of inactivity. Understanding
the level of obsolescence helps in assessing the potential risks posed by
these dependencies.

– RQ7: How do security vulnerabilities affect a package’s depen-
dencies before, during, and after a gap? This question assesses the
security of package dependencies throughout the lifecycle of a dormant pe-
riod. By examining the security status before, during, and after the gap,
the study aims to understand the potential risks that may have been in-
troduced or mitigated during these periods of inactivity.

– RQ8: To what extent do dependents continue using dormant pack-
ages during and after the gap?: This question investigates the be-
havioral patterns of dependent packages when their dependencies become
dormant, examining whether and when they abandon these relationships
during or after release gaps. Understanding these dependency abandon-
ment and loyalty patterns reveals package manager resilience and provides
insights into how developers respond to maintenance uncertainty in their
dependency chains.

By understanding the dynamics of dormant npm packages, this research
provides valuable insights into challenges faced in open-source development
and point toward the potential benefits of proactive maintenance and stronger
community engagement for improving package reliability.

The results of this study reveal some patterns in how dormant packages are
managed and revived. While some packages are eventually updated to address
security vulnerabilities or adapt to evolving software environments, others re-
main neglected, with maintainers offering little or no explanation for their
prolonged inactivity. Our findings underscore the need for further research to
understand the factors that contribute to dormancy and the strategies that
can be employed to mitigate its effects.

Structure of the paper. Section 2 overviews the background and the
related work, positioning our work within the current body of knowledge. Sec-
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tion 3 elaborates on the research method employed to create our dataset. In
Section 4, we analyze the results achieved from the quantitative analysis, while
Section 5 reports the results of the qualitative analysis. Section 6 further dis-
cusses the main findings of our work, emphasizing the implications for research
and practice. The potential limitations of our study are discussed in Section 7.
Finally, Section 8 concludes the paper and outlines our future research agenda.

2 Background and Related Work

This section describes the background and the related work we build upon.

2.1 Terminology

This section introduces the terminology used throughout this article. All main
terms are highlighted in boldface.

In the realm of software development, software packages serve as essen-
tial building blocks, encapsulating specific functionalities or tasks that can be
easily reused across various projects. These packages are typically open source
and are distributed through package distributions such as npm or Maven.
These distributions act as centralized repositories where developers can find,
manage, and integrate a wide array of packages into their software projects.
Each package can have different versions, with each version being referred to
as a package release. These releases are denoted by unique version numbers
that follow a sequential order, often adhering to semantic versioning1 to
communicate the nature and significance of the changes made.

A key aspect of software packages is their dependencies, which define the
relationships between different packages. When a package relies on another to
function properly, it establishes a dependency relationship. These dependencies
are crucial for maintaining the integrity and compatibility of software, as they
specify the range of acceptable versions that can be installed alongside a given
package release. However, when no new versions of a package are released for
an extended period, a release gap occurs. This gap might not necessarily
indicate a lack of activity in the package’s development but rather a pause in
the release cycle. If such a gap is intentional or goes unaddressed, it can lead
to a release pause, as shown in Figure 1, which may cause concerns about
the maintenance and future viability of the package. Packages that exhibit one
or more of these release gaps are called dormant package.

During these periods of inactivity, security risks can emerge, particularly
if the package or its dependencies contain known vulnerabilities. A vulner-
ability is a reported security threat that affects certain versions of a package,
potentially exposing any dependent software to exploitation. These vulner-
able dependencies can have far-reaching consequences, affecting not just
the directly dependent packages but also any software that indirectly relies on

1 https://semver.org/
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them. Addressing these vulnerabilities requires careful monitoring of package
releases and dependencies to ensure that updates are applied promptly and
that the overall security of the software is maintained.

1.0.0

1.0.1

1.0.2

1.1.0

1.2.0

1.2.1 1.3.0

1.3.1

2.0.0

Pause

Fig. 1 An example of a package release timeline showing a release pause between versions
1.2.1 and 1.3.0.

2.2 Related work

2.2.1 On package distributions

Software package distributions have been the focus of numerous research stud-
ies across software development. Wittern et al. [26] conducted a comprehensive
analysis of the npm packages, exploring aspects such as package descriptions,
interdependencies, download metrics, and the usage of these packages in pub-
licly accessible repositories. Their study revealed that the number of npm
packages and their updates is growing at a superlinear rate. Additionally, they
found that packages are becoming increasingly interconnected through depen-
dencies, with over 80% of npm packages having at least one direct dependency.

Kikas et al. [14] analyzed the structure and evolution of the dependency
networks in the JavaScript, Ruby, and Rust package distributions. They dis-
covered that the number of transitive dependencies increased by 60% in 2016.
Additionally, they highlighted the growing negative impact of removing a pop-
ular package, as evidenced by incidents like the left-pad removal.

Bogart et al. [4] carried out case studies on three distinct package man-
agers – Eclipse, CRAN, and npm– each with its tooling and philosophy toward
change. Their findings revealed substantial differences in practices, policies,
and community values, offering insights into how developers make decisions
about change and its associated costs. In a similar vein, Decan et al. [10] con-
ducted an empirical comparison of dependency issues across the npm, CRAN,
and RubyGems package distributions. In a subsequent study [9], this compar-
ison was extended to include four additional distributions: CPAN, Packagist,
Cargo, and NuGet. Their findings revealed notable differences among these
package managers, which they attributed to variations in characteristics and
maturity levels across distributions.
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2.2.2 On package outdatedness and security

Many researchers have studied the impact of outdated and vulnerable depen-
dencies. Kula et al. [15] conducted an empirical analysis of thousands of Java
libraries distributed on Maven to investigate their latency in adopting the
latest versions of dependencies. Their findings revealed that maintainers are
initially hesitant to upgrade to the latest library versions at the start of a
project. However, they observed that maintainers are more likely to use the
latest version when introducing a new dependency. In a subsequent study,
Kula et al. [16] examined library migration across over 4,600 GitHub software
projects and 2,700 library dependencies. They observed that four out of five
projects had outdated dependencies. A survey of project maintainers revealed
that a significant majority were unaware of these outdated dependencies.

Zerouali et al. [28, 31] introduced the notion of technical lag to quantify
the degree of outdatedness of packages and dependencies along different di-
mensions: time, version, and vulnerability lags. Their findings on different
package distributions highlighted a significant prevalence of outdated package
dependencies and technical lag, reflecting a tendency to avoid updates due to
concerns about backward incompatibility. Later, the same authors carried out
a study on security vulnerabilities affecting npm and RubyGems packages and
their dependencies. They found that vulnerabilities in npm are both increas-
ing and being disclosed more rapidly than in RubyGems. On average, npm
vulnerabilities affect 30 releases, compared to 59 for RubyGems [30].

Cox et al. [8] examined 75 software systems and introduced various met-
rics to assess their usage of recent dependency versions. They discovered that
systems with outdated dependencies were four times more likely to encounter
security issues compared to those that were current.

Cogo et al. [6] investigated the impact of package downgrades in npm on
technical lag. They found that one-fifth of all downgraded packages contributed
to an increase in technical lag for client packages. Notably, downgrades involv-
ing major versions were found to introduce more technical lag compared to
downgrades of minor and patch versions, often reverting to a version earlier
than the most recent functional version. This resulted in an avoidable increase
in technical lag for 13% of the downgrades.

Zhong et al. [33] analyzed the deprecation level of packages in Python,
showing the consequences of making deprecation declarations. Additionally,
they have investigated the challenges that package developers and users face,
as well as their expectations for the future deprecation pattern. Finally, they
provided guidelines for developing package-level deprecation mechanisms.

2.2.3 On package activity and abandonment

Other researchers focused on package abandonment, deprecation, and activity
decline. Avelino et al. [2] investigated the phenomenon of project abandonment
in open-source software, focusing on how often projects are abandoned or
survive and the factors influencing these outcomes. Analyzing 1,932 popular
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GitHub projects, they found that 16% were abandoned, but 41% of these
survived due to new core developers taking over. Their survey revealed that
new maintainers were often motivated by their own use of the software, while
social factors and access issues were significant challenges.

Cogo et al. [5] examined the use of the deprecation mechanism in npm, fo-
cusing on how often package releases are deprecated and the implications for
client packages. They found that 3.7% of npm packages have at least one dep-
recated release, with 66% of these packages deprecating all their releases, leav-
ing no replacement options. Additionally, 31% of partially deprecated packages
lacked replacement releases. The study identified five main reasons for depre-
cation: withdrawal, supersession, defect, test, and incompatibility. They also
discovered that 27% of client packages directly adopt deprecated releases, and
54% do so transitively.

Mujahid et al. [21] investigated the automatic identification of declining
packages in distributions and suggested alternatives for developers to migrate
their dependencies. Their method, based on observed dependency migration
patterns, was evaluated on npm, showing 96% of accuracy.

Miller et al. [19] conducted a large-scale analysis of widely used npm pack-
ages to investigate the prevalence and impact of package abandonment. They
found that abandonment is common, leaving many projects exposed and often
unresponsive. In addition, the authors highlighted that proactive responses
to abandonment are linked to better dependency management practices, and
practitioners remove abandoned packages more quickly when their end-of-life
status is clearly communicated.

2.3 Novelty of our Contribution

Our work builds on top of the aforementioned research and contributes to the
broader software engineering community by raising awareness of the prevalence
of dormant npm packages. While our analysis is focused on npm, the findings
and research method can inform the practices of other package managers as
well. For instance, community managers can use our dormancy indicators to
more effectively monitor package activity and take action to prevent long-
term inactivity. Similarly, library maintainers and users can use our findings
to assess the risks associated with depending on dormant packages. Our study
thus provides a foundation for further research and development of tools aimed
at improving ecosystem health and enhancing visibility in maintenance.

More specifically, our research contributes to the study of package dor-
mancy by addressing several unexplored dimensions within npm. Through an
extensive analysis of release gaps, our work provides a comprehensive under-
standing of the duration and timing of dormancy periods in software packages
(RQ1, RQ2). Then, we analyze the types of updates released after periods
of inactivity, offering insights into how maintainers prioritize changes (RQ3).
We also investigate specific file changes and the extent of dependency modifi-
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cations upon a package’s return to activity, revealing hints into how technical
debt and security issues are managed post-dormancy (RQ4, RQ5).

An important aspect of our study is the investigation of dependency, out-
datedness, and security risks throughout the dormant periods. By examining
how dependencies age and become insecure before, during, and after these
gaps (RQ6, RQ7), our work highlights the potential vulnerabilities that can
accumulate in dormant packages. Finally, we investigated the effect of dor-
mant npm packages on the dependent packages in order to extract possible
behavioral patterns (RQ8). This analysis is complemented by a qualitative
exploration of the experiences and decision-making processes of maintainers
during these dormant periods, offering valuable insights into the social factors
that influence package maintenance and revival.

3 Dataset and Research Method

This paper studies reusable software packages that have been distributed via
package managers and that have stopped releasing updates for a long period
of time2 before resuming. We decided to focus on the well-established and
mature package manager npm that represents the most used package man-
ager of JavaScript libraries with a large and active developer community [7].
We focused on npm and JavaScript for two main reasons. First, numerous
researchers in the empirical software engineering field have used npm as a
case study [1, 3, 6, 9]. Then, JavaScript represents one of the most popular
programming languages on GitHub in the last decade.3

3.1 Data Selection

To study npm, we relied on a PostgreSQL data dump from Ecosyste.ms.4

This is an open API service that provides metadata about packages from
many open-source software and registries. For our empirical study, we used
the data dump version that was released on 2023-10-22,5 which is available
as open access under the CC BY-SA 4.0 license. We only extracted npm data
from this dump, creating a new dataset comprising 3.5M npm packages, 38.9M
releases, and 587.3M direct (runtime, development, or optional) dependencies
with unresolved dependency requirements [9].

For vulnerability analysis, we used the GitHub Advisory Database.6 We
retrieved all vulnerabilities reviewed by GitHub and impacting npm packages.
The vulnerability extraction was done on 2023-10-22. Our dataset comprises

2 This period will be defined later in Section 3.2.
3 https://github.blog/2023-11-08-the-state-of-open-source-and-ai/
4 https://ecosyste.ms/
5 https://packages.ecosyste.ms/open-data
6 https://github.com/advisories
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3,774 vulnerabilities with different degrees of severity. Given the different infor-
mation in vulnerability reports, we only extracted data that we required for
our study, including the affected package’s name, vulnerability ID, severity,
affected version range, CVE and CWE identifiers, and publication date.

3.2 Inclusion Criteria

After extracting npm data from Ecosyste.ms, the next step was the identifi-
cation of packages that had a release gap in their process. Our strategy was
performed in three different steps.

We started by identifying all versions of all npm packages and computing
the time between each two consecutive version releases of the same package. In
our study, we aim not only to identify packages that experienced a gap in their
release schedule but also to explore how this gap impacted their dependents.
For instance, a recently created package with minimal adoption will likely have
less influence if it stops its releases. Conversely, a package with a longer history
and widespread usage is likely to have a more significant impact. For this
reason, we established several assumptions. First, we focus on packages with at
least two years of consistent updates since their initial release, indicating they
have gained trust and adoption over time. Additionally, we focus on packages
with at least three versions, indicating a pattern of at least two regular pauses
between releases. To identify the release gap, we compare the time between
each pair of consecutive releases with the average pause time between previous
releases. If the current pause exceeds this average by at least one year, we
classify the package as having experienced a release gap.

The choice of the threshold was driven by two different works. Avelino et
al. [2] explicitly performed a sensitivity analysis across five different thresholds
(3 months, 6 months, 1 year, 1.5 years, and 2 years) to assess how threshold
selection affects the classification of developers as abandoners. Their results
show that the one-year threshold offers the best trade-off between precision
and error sensitivity, achieving the highest harmonic mean (66%) of those two
measures. Based on these findings, the authors concluded that the one-year
threshold was the least sensitive to error and therefore the most appropriate for
identifying project abandonment. We aligned our study with this empirically
validated choice to ensure methodological consistency and comparability.

To further justify this threshold, we focused on one additional study. The
work presented by English and Schweik [11] examined the institutional designs
of FLOSS commons, arguing that projects must clear two minimal thresholds,
sustained developer contribution activity and a baseline level of user adoption,
to avoid collective-action failure. In their framework, the authors operational-
ize project abandonment as having no (or very few) code commits, forum
posts, or mailing-list messages for a full year, using this one-year inactivity
window as the critical threshold for diagnosing a non-active project.

Following the research method proposed by Avelino et al. [2] to identify
all packages that experienced a release gap, we filtered out those that were
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not used by any other package. This step allows us to focus on the impact of
releasing gaps in packages that are more interconnected and potentially more
consequential for the broader software.

Finally, we identified 11,970 packages that experienced at least one release
gap, accounting for 0.34% of all npm packages. These packages collectively
released 718,507 versions between December 18, 2010, and October 22, 2023.

Considering all versions, we found that 1,280,518 packages have required
these dormant packages in at least one version and collectively have used 25,534
packages as direct dependencies. The dormant maintained packages have been
predominantly used as development dependencies in 56.6% of cases and as
runtime dependencies in 43.3%.

For all these packages, we analyze their dependencies and dependents by
tracking them at various release dates. Since packages specify dependencies
using version constraints, which allow for a range of dependency versions in-
stead of one strict version, resolving these constraints can lead to different
package versions being installed depending on the installation time [9]. To en-
sure accurate resolution of dependency constraints at specific time points, we
only consider package releases available at that time. Then, using the depen-
dency constraint resolver proposed by Decan and Mens [9], we determine the
appropriate package version that will be installed for each direct dependency
according to its version constraints.

4 Quantitative Analysis

Using the datasets prepared in Section 3, this section answers the research
questions introduced in the introduction.

RQ1: How long are the release gaps in software packages?

With this research question, we measure the duration of release gaps in soft-
ware packages. By understanding the length of these gaps, we can assess their
significance and impact on software maintenance and development processes.

Figure 2 illustrates the distribution of the number of days between two
consecutive versions, grouped by versions of a release gap, versions before the
gap, and all versions of all 11,970 packages that experienced a release gap. We
observe that the distribution of the time between two versions before the gap is
heavily skewed. The median time between consecutive versions before the gap
is 3 days, while the average is 25.5 days, with 36% of the pairs of consecutive
versions being released on the same day. The fact that there is a short median
time between consecutive versions before a gap suggests that these packages
were actively maintained and updated frequently. However, once a gap occurs,
the duration varies significantly. The minimum gap duration observed is 12.3
months, while the maximum is 7.1 years. The median release gap for dormant
packages is 18.7 months. This is critical since users of these packages rely on
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regular updates to ensure the software’s functionality, security, and compati-
bility with other components in their projects. On the one hand, the absence
of new updates for a long time could indicate that new bugs or vulnerabilities
are present, but are not being addressed, thereby jeopardizing the project. On
the other hand, the wide range of gap durations highlights the unpredictability
and potential challenges in maintaining consistent release schedules.
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Fig. 2 Distribution of the number of days between two consecutive versions for the packages
with a releasing gap.

We also observe that the distribution for all versions is skewed. This might
be impacted by the versions before the gap. In that case, we would expect
packages to have fewer versions after the gap. We will verify this hypothesis
in the next research question.

� Answer RQ1. The median time between consecutive versions before a gap
is 3 days, indicating active maintenance, while the median release gap itself
is 18.7 months. Gaps vary widely, ranging from 12.3 months to 7.1 years.
The unpredictability of these gaps can lead to potential security risks and
maintenance challenges, as long periods without updates may leave packages
vulnerable. This highlights the critical need for consistent update schedules
to ensure the reliability and security of software dependencies.

RQ2: At what point in packages’ lifecyle do release gaps most commonly occur,
and how do these attributes relate to the duration of dormancy?

With this research question, we aim to shed light on when gap events tend to
occur and whether certain characteristics, such as package maturity, activity
level, or popularity, are associated with longer or shorter gaps. By identifying
temporal patterns and package attributes that correlate with the start and
duration of release gaps, we seek to uncover signals that could help developers,
users, and platform maintainers anticipate future release gaps.

First, we quantify the number of regular versions that packages released
before experiencing a release gap: Table 1 shows the number of versions that
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packages had before the gap. We notice that, on average, packages released 44.9
versions before experiencing a release gap, while the median number of versions
before the gap is 28, reflecting a sustained period of active maintenance before
experiencing release pauses.

We have also looked at the age of the packages when they paused releasing
versions—Figure 3 shows the age of packages before the gap. On average,
packages were 3 years and one month old at the release date of the last version
before the gap. The median age of these packages before the gap is 2 years and
9 months. This confirms our previous observation that packages had enough
time to gain user trust before the occurrence of the gap.

Table 1 Distribution of the number of versions before and after the release gap.

Min Mean Median Max Std

Before the gap 4 44.9 28 3,907 75.2
After the gap 1 38.5 4 2,123 32.3
All 5 51.8 33 5,000 88

Looking at the number of versions released after a gap, we found that 4,297
(30.5%) of the packages that had a release gap created just one version after
the gap. This means that around one in three packages with a release gap
resumed releases but only issued a single version. Therefore, we filtered out
this subset of packages and focused solely on those with at least two versions
after the gap (69,5%). Their median number of versions after the gap is 4, while
the average is 38.5. This big difference between the average and the median
is due to some packages that released thousands of versions after their release
gap (i.e., the maximum is 2,123 versions). For instance, we found that 80% of
these packages (which had more than one version after the gap) released less
than 10 versions, confirming our assumption in the previous question.
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Fig. 3 Distribution of the time before and after the release gap.

In terms of time between the first and the latest version after the gap,
Figure 3 shows our results. We observe that this distribution is skewed to-
wards shorter periods, particularly near 0. On average, this subset of packages
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continued releasing updates after a gap of approximately 466 days. However,
since some packages may still be in the process of preparing new versions, this
last information does not give us much insight. Therefore, it is more important
to look at the time between two consecutive versions after the gap. We found
that the median is only 24 days to release the second version after the gap.
Considering all versions after the gap, the median is 3 days to release a new
version. Since 50% of the packages had less than 2 versions after the gap, we
hypothesize that many of the packages release few versions after the gap and
then stop releasing again. This led us to investigate whether the gap happens
again. We found that 2,197 of the packages (18.3%) have another release gap.
In addition, 5,510 (46%) of the packages have not been updated for more than
one year, and 803 of them have more than one release gap.

We also carried out correlation tests for three different aspects. First, we
looked at the relationship between the package age (in terms of the number of
versions) when the gap starts and the duration of the gap. Then, we analyzed
the length of the release gap and the number of versions after it to see whether
packages with a longer release gap have fewer or more versions after it. Finally,
we performed two other correlation analyses between the number of downloads
and gap duration, and the length of the gap and the time between consecutive
versions after the gap. In each case, we applied both Pearson and Spearman
correlation tests [23, 24]: the former is ideal for uncovering a linear relation.
The latter is more tolerant of skewed data and will reveal any consistent order.
The results show that there is no correlation between the packages’ age and
the gap duration (Pearson coefficient = −0.068 and Spearman coefficient =
−0.061). Even for the length of the release gap and the number of versions
after it, we did not find any significant correlation (Pearson coefficient = −0.05
and Spearman coefficient = −0.17). Similarly, we did not find a correlation
between the number of downloads of a package and the gap duration (Pearson
coefficient = −0.007 and Spearman coefficient = 0.005). Finally, we found
a very weak correlation when testing the relation between the length of the
gap and the median time between consecutive versions after the gap (Pearson
coefficient = 0.15 and Spearman coefficient = 0.09). The statistical results
reinforce the idea that dormancy duration is driven by factors beyond simple
package profile metrics.

� Answer RQ2. Before experiencing a release gap, the median number of
versions released was 28, suggesting packages were actively maintained and
trusted by users. The median age of packages before the gap is around 3
years. After a gap, 30.5% of packages released only one version, while the
rest had a median of 4 versions. Short intervals were observed between post-
gap releases, with a median of 24 days for the second version. Notably, 18.3%
of packages experienced a second gap, and 46% remained inactive for over
a year. Finally, looking at the correlation analyses, there was no significant
correlation between the package age when the gap starts and the duration of
the gap, the length of the gap and the number of versions released after it,
nor the number of downloads and gap duration

.
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We observed a weak correlation for the time between consecutive versions fol-
lowing the gap.

RQ3: What is the type of the first version released after the gap?

This research question aims to dissect the first version released following a
release gap. By examining these versions, we can gain insights into the devel-
opment team’s priorities and focus areas upon resumption. With this analysis,
we can reveal whether the post-gap versions primarily address technical debt
accumulated during the hiatus, introduce significant new features, fix reported
bugs, or just make minor edits.

Thus, the first step is to classify the type of the first release based on ver-
sion numbers using as heuristic the semantic versioning scheme.7 We focused
on SemVer because, as previously demonstrated, npm relies on this scheme
to maintain a healthy environment, where bug-fixes are reliably delivered to
downstream packages as quickly as possible, while breaking changes require
manual intervention by downstream package maintainers [22]. By examining
whether the first version after the gap is a major, minor, or patch release, we
can infer the scale and impact of the changes:

- Major: Significant changes that may include new features, architectural
changes, or backward-incompatible updates.

- Minor: Incremental improvements and additions are backward-compatible.
- Patch: Small updates focused on bug fixes and minor improvements.

Considering all packages that experienced a release gap (i.e., 11,970 pack-
ages), we found that the first version released after the gap was a major version
for 2,613 (21.83%) packages, a minor version for 3,403 (28.43%) packages, and
a patch version for 5,954 (49.74%) packages.

These results suggest some interesting trends in how practitioners could
prioritize their work after a period of inactivity. Notably, nearly half of the
packages released a patch version first, even after a long pause. This suggests
that many package maintainers could focus on fixing urgent bugs and minor
improvements immediately after resuming activity, possibly to stabilize the
software and address any critical issues that might have arisen during the
inactivity period.

The fact that 28.43% of the packages released a minor version could indi-
cate that a significant portion of the maintainers resumed activity with incre-
mental improvements and new features that are backward-compatible. This
approach allows for enhancing functionality without disrupting existing users
with backward-incompatible changes.

Interestingly, despite the long pause, only 21.83% of packages released a
major version first. These should reflect cases where significant changes were
made, possibly including new features, architectural changes, or incompatible

7 https://semver.org/
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updates. This could indicate a substantial shift in the project’s direction or a
major overhaul that had been planned for some time.

This last finding might seem counterintuitive, as one might expect a major
release to be more appropriate given the extended development time. However,
this could indicate that many maintainers prefer to ensure stability and address
smaller issues before rolling out substantial changes. It might also suggest that
the work required for a major release was started but not completed before
the gap, and developers chose to focus on immediate fixes and improvements
upon resumption. Note that our interpretation of the results is based on the
assumption that maintainers of npm packages adhere to semantic versioning
principles [22]. For instance, major versions should take more time to release
since they require more effort compared to minor or patch releases.

Next, we analyze the gap period by categorizing it according to release type.
Table 2 presents the distribution of gap periods in days grouped by release
type. We observe that major releases tend to have slightly longer average and
median gap periods compared to minor and patch releases, but the differences
are relatively minor. This might suggest that the duration of the gap period
does not significantly depend on the type of release.

Table 2 Distribution of gap periods in days grouped by release type.

Release type Mean Std Min Median Max

major 670.19 296.42 371 577 2,564
minor 652.70 283.23 371 560 2,550
patch 659.72 284.91 369 557 2,470

We also observed that 306 (2.6%) of the packages were initially in the early
development phase (i.e., version number 0.x.y) before the release gap. Subse-
quently, when they released their first version after the gap, they transitioned
to a non-zero major version number (e.g., 1.x.y).

These initial findings provide valuable insights; however, to gain a more
comprehensive understanding of what transpired in the first release after the
gap, further analysis will be conducted in RQ4.

� Answer RQ3. Nearly half of the dormant packages resumed with a patch
release, indicating a focus on fixing urgent bugs and minor improvements.
Minor releases accounted for 28.4%, while only 21.8% of packages released a
major version, reflecting significant changes or incompatible updates. Inter-
estingly, gap periods were similar across release types, suggesting that other
factors, such as project planning or resources, may influence the timing of
updates. Additionally, 2.6% of packages transitioned from early development
(0.x.y) to a stable major version (1.x.y) upon resumption.
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RQ4: What files were modified between the versions before and after the gap?

Understanding the nature of changes in software packages between the last
version before a release gap and the first version after resumption can provide
valuable insights into the development practices and strategies employed by
software maintainers. This research question focuses on identifying and ana-
lyzing the specific files that were modified during this period.

By examining which files were touched, we can gain a clearer picture of the
scope and focus of updates implemented after the gap. This includes identi-
fying whether changes were predominantly in source code files, configuration
files, documentation, or other components of the software package. Such an
analysis helps us understand how development teams prioritize different as-
pects of the software and uncover their patterns.

For 96.2% (11,516) of the packages that experienced a release gap, we
downloaded the last release before the gap and the first release after the gap
and analyzed their differences to identify the files that were changed during this
period. We had to exclude from our analysis 3.8% (454) of the packages due to
download timeouts. Table 3 shows the files that are frequently modified as well
as the most common file formats (and their categories) that were changed.

Table 3 Distribution of categories, formats and specific files modified after the release gap.

Category Packages % Format Packages % File Packages %

configuration 88.2 json 84.6 package.json 81.9

Source Code 84.6 js 75.4 readme.md 50.9

Documentation 63.2 md 62.1 license 18.9

build/meta 17.3 ts 28 changelog.md 15.4

UI/presentation 12.4 yml 14.6 index.js 15.2

Script 1.9 html 6.7 .npmignore 10.8

IDE/project file 1.4 css 6.1 index.d.ts 10.4

misc 1.2 txt 3.5 .travis.yml 9.2

security/patch 0.35 lock 3.3 lib/index.js 7.6

other 25.1 xml 3 src/index.js8 3.4

We found that JSON files were modified in 84.6% of the packages, indicat-
ing that configuration and metadata updates, such as those in package.json
(excluding mandatory version number changes), are essential and consistently
addressed after a gap. JavaScript files were changed in 75.4% of the pack-
ages, reflecting updates to the core logic and functionality of the software.

8 We also observed dist/index.js with 6.2%, but did not include it in the table since files
in the dist/ directory are typically auto-generated by the build process. Their modifications
are more likely to reflect changes in the source code or build configuration rather than direct
developer edits.
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This suggests that significant code changes, whether for adding features or
fixing bugs, are the primary focus upon resuming development. Markdown
files, including readme.md, were updated in 62.1% of the packages, underscor-
ing the importance of maintaining current documentation to support users
and provide information on new features or changes. The presence of changes
in Typescript (28%), YAML files (14.6%), HTML files (6.7%), etc., further
illustrates the diverse range of files touched during these updates, indicating
that various aspects of the software, from configuration and build processes to
user interfaces and styles, are considered during the post-gap release.

Looking at the specific files modified after the release gap, we observe
that specific files such as package.json (81.9%9), readme.md (50.9%), license
(18.9%), and changelog.md (15.4%) were frequently touched. These results em-
phasize the need to keep metadata, documentation, licensing information, and
changelogs up to date. Notably, package.json is expected to be modified after
each release, primarily to update the version number. However, even when ex-
cluding cases where changes were limited to version number updates, we found
that package.json was of the most modified, indicating frequent updates to
other metadata. These changes likely pertain to dependencies and their ver-
sions, which play a crucial role in ensuring compatibility and functionality
across software versions. Further investigation into the nature of these depen-
dency changes will be discussed later, aiming to provide deeper insights into
how maintainers manage and update dependencies to enhance software stabil-
ity and performance after the release gap. In addition, other files like index.js
(15.2%), .npmignore (10.8%), index.d.ts (10.4%), and .travis.yml (9.2%) were
also commonly changed, pointing to updates in entry points, package manage-
ment configurations, type definitions, and CI/CD configurations, respectively.

To provide a clearer overview of the functional nature of changes, we
grouped files into broader categories based on their roles. As expected, we
found that configuration files (e.g., package.json, .yml) were the most
frequently updated, appearing in 88.2% of the packages. Source code files
(e.g., .js, .ts) followed closely at 84.6%, while documentation files (e.g.,
readme.md, license) were updated in 63.2% of the packages. Other categories
such as build/meta (17.3%), UI/presentation (12.4%), and scripts (1.9%)
were also touched, albeit less frequently.

While this analysis provides a descriptive foundation for understanding the
types of files that are frequently modified, a deeper investigation into whether
the changes adhere to semantic versioning (SemVer) conventions would require
more sophisticated methods. In JavaScript, due to its dynamic nature and lack
of static types, detecting true breaking changes or API evolution through sim-
ple file diffs or AST analysis is unreliable. Moreover, packages often involve
complex build pipelines that obfuscate actual developer-facing APIs. As such,
a rigorous SemVer compliance check would demand reconstructing module
interfaces, tracing exports, and potentially using dynamic or test-based anal-

9 All packages modify package.json during a release. This percentage only considers
packages that modified package.json beyond the mandatory version number change.



18 Ahmed Zerouali et al.

ysis—an effort we identify as an important direction for future work. At this
stage, we treat semantic versioning labels as informative heuristics and focus
our efforts on cataloging change patterns to support future audits.

Concerning the size of changes that occurred during the gap, Figure 4
shows the distribution of the number of changes grouped by file formats. We
observe that JavaScript files experience the highest median number of changes
(94), reflecting its central role in application logic and functionality. This sug-
gests that significant updates in the codebase are common when development
resumes after a gap. TypeScript files also see substantial changes (median of
32), highlighting its importance in modern development practices for adding
type safety and improving code quality.

JSON files, with a median of 14 changes, are frequently updated to reflect
changes in configuration and dependencies. Markdown files, often used for
documentation (median of 21 changes), show the importance of keeping doc-
umentation current with the latest changes. YAML files have lower median
changes (12), but their updates are still significant.

The overall median of 147 changes per release suggests that resuming devel-
opment often involves important updates across various parts of the project.
The average of 2,999 changes indicates that some packages undergo very large-
scale modifications, possibly involving major refactoring or significant new
feature additions. This result highlights the effort and complexity involved in
revitalizing a software package after a period of inactivity.
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Fig. 4 Distribution of the number of changes grouped by file formats after the release gap.
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� Answer RQ4. JSON files were modified in 84.6% of the packages,
indicating frequent updates to configurations and metadata, particularly
package.json. JavaScript files were changed in 75.4% of the packages, re-
flecting substantial updates to the core logic. Documentation files, such as
readme.md, were updated in 62.1%, highlighting the importance of keeping
user-facing information current. Concerning the size of changes, the aver-
age of 2,999 indicates that some packages are involved in big modifications.
Finally, the median of 147 changes suggests that resuming packages often
involves extensive modifications across configuration, code, and documenta-
tion to ensure software stability after a gap.

RQ5: Do packages modify their dependencies upon resuming activity?

In RQ4, we found that package.json is the most frequently changed file after a
release gap, indicating that maintainers often update metadata upon resuming
activity. This file typically includes crucial information about the package, such
as its version, scripts, and dependencies. Given the centrality of dependencies
in ensuring a software package functions correctly and stays up-to-date with
security patches and feature improvements, it is reasonable to hypothesize that
maintainers frequently modify their dependencies when updating package.json.

In this research question, we aim to investigate whether packages mod-
ify their dependencies upon resuming activity. By examining the extent and
nature of these changes, we can confirm or refute the assumption that depen-
dency updates are a common part of the post-gap release process. Additionally,
we quantify the changes in dependencies, providing insights into how main-
tainers manage external packages to ensure the stability and improvement of
their software. Understanding these patterns is essential for comprehending the
broader maintenance strategies employed by open-source project maintainers.

Initially, we found that 11,337 (94.7%) of the packages had at least one
dependency either before or after the gap, with 11,260 packages having depen-
dencies before the gap and 11,285 after the gap. Collectively, these packages
used 25,534 unique packages as dependencies. Of these, 66.06% were for de-
velopment purposes, 33.91% for run-time, and 0.02% for optional use. Both
before and after the gap, the median number of dependencies per package was
10, with a similar average of approximately 14 dependencies. This consistency
suggests that, despite the development pause, the overall dependency footprint
of the packages remained stable.

Examining the dependencies before and after the gap, we found that 62.3%
of the dependencies remained unchanged, indicating a significant proportion of
stability in dependency management. However, 27.5% of the dependencies had
changed their version requirements, reflecting efforts to upgrade or downgrade
dependency versions to maintain compatibility and leverage new features or
fixes. Additionally, 10.2% of the dependencies were removed, suggesting some
level of refactoring or optimization. Notably, after the release gap, packages
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Table 4 Distribution of dependency changes in packages after a release gap, showing the
number and proportion of added, removed, changed, and unchanged dependencies.

Dependencies # packages mean # (%) median # (%)

Added 3,645 5 (23.6) 2 (16.7)
Removed 3,172 5.2 (23.6) 2 (16)
Changed requirement 6,976 6.3 (44.4) 4 (40)
No change 3,172 10.3 (68.9) 6 (83.3)

added about 11.3% new dependencies, indicating ongoing development and
integration of new functionalities. Table 4 provides a detailed breakdown of
the changes in dependencies across the packages that experienced a release
gap, with proportions calculated by merging both pre-gap and post-gap de-
pendencies for each package. For example, if a package initially had three de-
pendencies, then added two new ones, modified one, retained one, and removed
one, the total number of dependencies would be five. The proportions for each
category are then derived from this total. The data shows that, on average, 5
new dependencies were added per package (23.6%), 5.2 dependencies were re-
moved (23.6%), and 6.3 dependencies had their version requirements changed
(44.4%), with medians of 2 and 4 for each of these categories, respectively.
Additionally, on average, 68.9% of dependencies remained unchanged, with
a median of 6. These findings highlight that many packages actively change
their dependencies when resuming releases, reflecting efforts to stay current
and secure. However, the proportion of unchanged dependencies indicates that
many packages do not update their dependencies, potentially leaving them
out of date and possibly vulnerable. Furthermore, we noticed that run-time
dependencies are less prone to change compared to development dependencies,
suggesting that maintainers prioritize stability for run-time components while
being more flexible with development tools and libraries.

� Answer RQ5. While 62.3% of dependencies remained unchanged, 44.4%
of the changed dependencies had their version requirements modified, and
23.6% of packages added new dependencies, reflecting active efforts to up-
date or improve functionality. Another 23.6% of packages removed depen-
dencies, indicating refactoring or optimization. Run-time dependencies were
less frequently changed compared to development dependencies, highlighting
a focus on maintaining stability in production environments. These findings
reveal that maintainers frequently adjust dependencies post-gap to ensure
compatibility and security, though many dependencies remain unchanged,
posing potential risks.

RQ6: How outdated were the dependencies during the gap?

In the previous research question, we observed that many packages modify
their dependencies upon resuming releases, while a significant portion do not,
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potentially leaving their dependencies outdated. This finding is particularly
concerning for packages with extended release gaps, as they can result in sig-
nificantly outdated dependencies, increasing the risk of security vulnerabilities,
performance issues, and incompatibility with newer technologies.

Given the long release gaps, it is plausible that dependencies may have
fallen behind on critical updates during this period. This situation can pose
risks not only to the inactive packages but also to the broader software develop-
ment. Therefore, it is essential to understand how outdated the dependencies
were during the gap to assess the potential impact on software security.

In this research question, we investigate the extent to which dependencies
became outdated during the release gap. By analyzing the version histories,
we understand how far these dependencies fell relative to their latest versions
available during the gap. This analysis provides insights into the challenges
maintainers face when reactivating their projects and highlights the impor-
tance of keeping dependencies up-to-date even during periods of inactivity.

After identifying the exact dependency version installed by each package
at three different time points – before the gap (i.e., the last version before
the gap), during the gap (i.e., right before resuming releases), and after the
gap (i.e., the first version after the gap) – we compared these versions to their
latest available versions.

Table 5 Statistics about outdated dependencies before, during, and after the release gap.

Before the gap During the gap After the gap

Proportion of
outdated dependencies

32.4% 55.2% 37.8%

Number of packages with
outdated dependencies

6,933 8,757 7,184

Mean number of
outdated dependencies

6.6 9 7.7

Median number of
outdated dependencies

4 6 5

Table 5 reports our results. We found that 32.4% of the dependencies were
out-of-date before the gap. However, during the pause and right before resum-
ing releases, this proportion increased to 55.2%. After the gap, maintainers
updated their dependencies, reducing the proportion of outdated dependen-
cies to 37.8%. Additionally, the number of packages with outdated dependen-
cies increased from 6,933 before the gap to 8,757 during the gap, but then
decreased to 7,184 after the gap. The mean number of outdated dependen-
cies per package increased from 6.6 before the gap to 9 during the gap, then
decreased to 7.7 after the gap. A similar trend was observed for the median.

This result shows that many dependencies become outdated during the
release pause, which might be harmful to the packages’ dependents as they
inherit outdated dependencies beyond their control. Moreover, the fact that
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37.8% of dependencies remain outdated even after the gap suggests that main-
tainers might be less meticulous in updating dependencies than they were be-
fore the gap. This could happen for several reasons, e.g., a shift in priorities,
limited resources, or a focus on addressing immediate critical issues first.

Next, we quantify the extent to which these dependencies were outdated,
in terms of missed versions and the time elapsed between the latest available
releases and the versions used by the dormant packages. Figure 5 illustrates
the distribution of these two metrics. We observe that during the gap, packages
had the highest number of missed releases for their dependencies. Specifically,
the median number of versions behind the latest available release for outdated
dependencies was 9 versions before the gap and 13 during and after the gap.
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Fig. 5 Distribution of the number of missed versions and time of outdated dependencies in
three points in time of dormant packages.

Similarly, in terms of time, we observe that outdated dependencies became
progressively more outdated during and after the gap. Specifically, before the
gap, outdated dependencies lagged behind the latest available version by a
median of 13 months. During the gap, this increased to 22 months, and it re-
mained at 22 months after the gap. This indicates that the period of inactivity
significantly contributes to the staleness of dependencies, with maintainers po-
tentially facing more substantial technical debt upon resuming activity.

To statistically confirm our observation, we conducted a non-parametric
statistical test using the Mann-Whitney U test [18] to compare the distribution
of missed versions across different time periods. The null hypothesis (H0)
states that there is no difference between the distributions being compared.
We established a global confidence level of 99%, corresponding to a significance
level of α = 0.01. Our analysis revealed significant differences in the number of
missed versions for outdated dependencies before the gap compared to other
periods (p − value < 0.01). However, for outdated dependencies during and
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after the gap, we could not reject the null hypothesis (p = 0.16). This suggests
that outdated dependencies after the gap exhibited a similar number of missed
versions as those during the gap. A possible explanation for this finding is
that the outdated dependencies after the gap may be those that accumulated
more lag compared to before and during the gap periods. When maintainers
resume releasing, they may prioritize updating some dependencies but overlook
others that have fallen significantly behind in versions. This selective updating
behavior could explain the observed similarity in the number of missed versions
during and after the gap periods.

� Answer RQ6. Before the gap, 32.4% of dependencies were outdated,
increasing to 55.2% during the gap. After the gap, this number dropped to
37.8%, indicating that many packages remained outdated even after resum-
ing activity. Dependencies lagged behind the latest versions by a median of
13 months before the gap, which grew to 22 months during and after the gap.
This suggests that maintainers often face significant technical debt upon re-
suming development and may not fully update all dependencies, potentially
leaving some outdated.

RQ7: How do security vulnerabilities affect a package’s dependencies before,
during, and after a gap?

Building on our previous analysis of outdated dependencies, this research ques-
tion explores the security implications associated with these dependencies.
Specifically, we aim to assess the number of vulnerabilities affecting the depen-
dencies of packages before, during, and after the gap in their release activity.
Understanding the security posture of dormant packages is crucial for several
reasons. Outdated dependencies often harbor known vulnerabilities that can
be exploited if not addressed. For dormant packages, the risk is amplified as the
period of inactivity may lead to an accumulation of security issues, potentially
putting dependent packages and systems at risk. By analyzing the security
status of dependencies across these three time points, we can gain insights
into how periods of inactivity impact the overall security of software packages.
This will also give us an idea of whether maintainers effectively mitigate these
risks when they resume releasing new versions.

To collect the vulnerabilities, we employed a static approach, considering
all vulnerabilities affecting a package, regardless of when they were discovered
or publicly disclosed. In other words, a vulnerability is considered present from
the moment it is introduced in the package, even if it remains undisclosed until
reported later, rather than counting the vulnerabilities that had been officially
disclosed by that time. Our choice of a static analysis is motivated by the need
to accurately capture the security risk accumulated during dormancy. If we
were to restrict our analysis to a dynamic view, counting only vulnerabilities
as of their disclosure date, we potentially underestimate the exposure that la-
tent, yet-to-be-disclosed flaws present to downstream users during a gap. By
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attributing each vulnerability to the point at which its code first appears, we
ensure that our risk assessment reflects the full window of potential exploita-
tion, rather than just the period after public disclosure.

Table 6 Overview of vulnerabilities affecting dependencies before, during, and after the
release gap, including the number of vulnerabilities, affected dependencies, and the propor-
tion of exposed dormant packages.

Time point # vulnerabilities # affected dependencies % exposed packages

Before 1,162 837 6.6
During 4,759 2,920 19.7
After 3,095 1,897 12.3

Table 6 provides a detailed overview of the number of vulnerabilities affect-
ing dependencies at three key time points. We observe a significant increase in
the number of vulnerabilities and affected dependencies during the gap period.
Specifically, the number of vulnerabilities jumps to 4,759 during the gap from
1,162 before the gap, while the number of affected dependencies rises from
837 to 2,920. This substantial increase during the gap underscores the risk
associated with periods of inactivity, as dependencies become more prone to
accumulating known security vulnerabilities. The percentage of exposed pack-
ages also more than doubles during the gap, rising from 6.6% before the gap to
19.7% during the gap. This indicates that a larger proportion of packages are
at risk during the period of inactivity, potentially exposing dependent projects
and systems to security threats.

After the gap, there is a notable decrease in the number of vulnerabilities
and affected dependencies, with the figures dropping to 3,095 and 1,897, re-
spectively. Despite this decrease, the percentage of exposed packages remains
higher than before the gap, at 12.3%. This suggests that while maintainers
address some vulnerabilities when they resume activity, a significant number
of dependencies remain unsecured, leaving a substantial portion of packages
exposed to potential security risks. This highlights the importance of regular
maintenance and updates to dependencies, especially for dormant packages,
to mitigate the risks associated with security vulnerabilities.

We also observed that run-time dependencies consistently have a higher
proportion of being affected by vulnerabilities compared to development de-
pendencies across all time points. For example, before the gap, 1.05% of run-
time dependencies were affected by vulnerabilities, whereas only 0.34% of de-
velopment dependencies were affected. During the gap, the proportion of af-
fected runtime dependencies increased to 2.99%, while 1.54% of development
dependencies were affected. After the gap, the trend persisted, with 2.02% of
runtime dependencies being affected compared to 0.94% of development de-
pendencies. This suggests that run-time dependencies are more vulnerable to
security issues than development dependencies throughout the release cycle.

Finally, Tables 7, 8, and 9 report some statistics on the security issues
present in dormant packages. Specifically, Table 7 presents the most common
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Table 7 Top 5 common
weakness enumerations
(CWE).

CWE # vulnerabilities

400 1,333
79 1,149
20 904
1321 780
1333 630

Table 8 Top 5 depen-
dencies affecting dormant
packages.

Dependency # affected packages

debug 257
lodash 185
node-sass 163
eslint 151
semantic-release 147

Table 9 Number of vul-
nerabilities grouped by
severity.

Severity # vulnerabilities

Moderate 4,882
High 2,856
Critical 732
Low 602

types of vulnerabilities affecting packages. We can observe that CWE-400,
i.e., Uncontrolled Resource Consumption leads the list with 1,333 occurrences,
followed closely by CWE-79, i.e., Cross-Site Scripting with 1,149. These vul-
nerabilities highlight the prevalence of both resource management and input
validation issues in modern software development. In Table 8, we see that
the debug library tops the list, impacting 257 dormant packages, followed by
lodash with 185. These libraries are widely used in various projects, and their
vulnerabilities have wide-ranging consequences, especially for packages that
experience prolonged inactivity. Table 9 categorizes vulnerabilities based on
their severity, revealing that most of the vulnerabilities are classified as Mod-
erate (4,882) and High (2,856). Although Critical vulnerabilities are fewer in
number (732), their potential impact on security cannot be overstated.

� Answer RQ7. During the gap, the number of vulnerabilities increased
from 1,162 to 4,759, affecting 19.7% of packages, compared to 6.6% before
the gap. After the gap, vulnerabilities decreased but remained concerning,
with 12.3% of packages still exposed. Run-time dependencies were consis-
tently more affected than development dependencies across all periods. The
most common vulnerabilities included CWE-400 and CWE-79. Despite ad-
dressing some issues post-gap, many dependencies remained outdated, posing
ongoing security risks.



26 Ahmed Zerouali et al.

RQ8: To what extent do dependents continue using dormant packages during
and after the gap?

When a dependency becomes dormant, dependent packages face uncertainty
about future support, bug fixes, and security updates (RQ7). This creates a
complex decision-making scenario for developers who must balance the risks of
continuing to use potentially outdated dependencies (RQ6) against the costs
and risks of migrating to alternatives.

This research question investigates the behavior of packages that depend on
dormant npm packages, specifically examining whether and when they aban-
don these dependencies during or after a release gap. Understanding how de-
pendent packages respond to such dormancy is crucial for assessing the broader
impact of inactivity within the npm ecosystem and for evaluating ecosystem
resilience to dependency maintenance gaps.

To analyze this response, we tracked 19.2 million release-level dependency
relationships involving 6,854 dormant packages and 94,621 dependent pack-
ages from our comprehensive npm dataset. We identified 160,799 cases where
a dependent was using a dormant package prior to the start of its dormancy
gap.10 Using a breakpoint analysis framework, we examined the behavior of
these dependents across five critical timepoints: before the gap began, at 25%
through the gap, at 75% through the gap, at gap end, and after gap conclusion.
Based on dependency usage patterns across these breakpoints, we classified
packages into eight distinct behavioral categories: loyal throughout, various
abandonment patterns (early, mid, late, and post-gap), and re-adoption pat-
terns (quick, mid-gap, and late re-adoption).

Our analysis revealed distinct and compelling behavioral patterns in how
packages respond to dependency dormancy. The overwhelming majority of de-
pendent packages (81.2%) exhibit loyal behavior throughout, continuing to use
dormant dependencies throughout the entire dormancy period without inter-
ruption. This substantial loyalty rate suggests strong inertia in dependency
management decisions, indicating that many dormant packages continue to
function adequately despite a lack of active maintenance.

However, a significant minority (18.3%) of dependents eventually aban-
doned the dormant package, demonstrating various timing patterns in their
abandonment decisions. Figure 6 shows these patterns. The most common
abandonment pattern is abandoned mid-gap (7.0%), where packages cease
using the dormant dependency approximately halfway through the dormancy
period. This is followed by abandonment early in the gap (4.7%), where depen-
dents make relatively quick decisions to discontinue usage, and abandonment
after the gap ends (3.6%), where abandonment occurs only after the dormancy
period has concluded. Additionally, 3.0% of packages show abandoned late in
gap behavior, suggesting that some dependents wait until near the end of
dormancy before making abandonment decisions.

10 One dependent package may have used more than one dormant package
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Fig. 6 Distribution of behavioral patterns at different breakpoints.

Notably, only a small fraction of dependents exhibited re-adoption behav-
ior, where they initially abandoned the dormant dependency but later resumed
its use. Specifically, 0.2% showed quick abandonment then re-adopt behavior,
0.2% demonstrated mid-gap abandonment then re-adopt, and 0.1% exhibited
late gap abandonment then re-adopt patterns. This extremely low overall re-
adoption rate (0.5%) contrasts sharply with the abandonment rate, indicat-
ing that abandonment decisions are typically permanent and that developers
rarely reconsider their dependency choices once they have decided to abandon.

The timing analysis reveals important insights into the decision-making
process surrounding dependency abandonment. Figure 7 shows the distribu-
tion of abandonment timing from the start of the gap. Packages that abandon
dormant dependencies do so after an average of 281.5 days from gap start (me-
dian: 251.5 days), indicating that abandonment decisions are not immediate
responses to dormancy but occur after substantial waiting periods. This delay
suggests that developers adopt a cautious approach to dependency changes,
potentially waiting to assess whether the dormancy is temporary or represents
a permanent shift away from active maintenance.

0 250 500 750 1000 1250 1500 1750
Days to Abandon (from gap start)

Fig. 7 Distribution of abandonment timing.
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For the small subset of packages that re-adopt dormant dependencies, the
temporal patterns are even more extended. The average time to re-adoption
is approximately 670.2 days (median: 610 days), indicating that re-adoption
typically occurs well into or after the dormancy period has concluded. This ex-
tended timeline suggests that re-adoption is often driven by the dependency’s
eventual return to active maintenance rather than by urgent functional needs
during the dormancy period itself.

� Answer RQ8. Out of 160,799 dependent packages using dormant depen-
dencies before gaps, 81.2% remained loyal throughout the entire dormancy
period, while 18.3% eventually abandoned these dependencies. Abandonment
occurred gradually, with dependents waiting an average of 281.5 days before
discontinuing usage, most commonly abandoning mid-gap (7.0%) or early
in the gap (4.7%). Only 0.5% of packages showed re-adoption behavior, in-
dicating that abandonment decisions are typically permanent.

5 Qualitative Analysis

In Section 4, we explored the quantitative aspects of dormant packages, such as
dependency management and security vulnerabilities. To gain a more compre-
hensive understanding of these packages, we now turn to a qualitative analysis.
In particular, starting from a random sample of 18 dormant packages, we man-
ually inspected the commit messages, pull requests, and issues to analyze the
dynamics of package development during the release gap and the decisions
made by maintainers when resuming release. We repeated the same process
until saturation to find new patterns related to package dormancy and subse-
quent revival. After the third iteration, we did not find new patterns, so we
stopped our analysis with a final sample of 54 dormant packages—more details
on the analyzed packages are reported in our online appendix [32].

This qualitative analysis aims to reveal the dynamics of package devel-
opment during release gaps and the decisions made by maintainers when re-
suming release. By examining commit messages, we can identify the types of
changes implemented and the motivations behind them. Pull requests offer
insights into the collaboration between contributors and maintainers, high-
lighting the review processes and discussions. Issues provide a glimpse into
the challenges and priorities faced by the maintainers, as well as the feedback
and concerns raised by the user community.

After manually inspecting these packages, we observed several recurring
themes and patterns regarding their package dormancy and subsequent revival.

Author Interaction and Maintenance Patterns

A common observation is that many packages had minimal or no commits
during their dormancy period. However, some authors remained intermit-
tently active, addressing critical issues or merging pull requests. For instance,
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grunt-compile-handlebars11 saw some activity during the gap, primarily
for updating dependencies to avoid vulnerabilities, indicating sporadic yet es-
sential maintenance. Similarly, sax12 had commit activity and merged pull
requests during its dormant period, showing that even during inactivity, some
level of maintenance continued. On the other hand, packages like copy-paste13

and bitcoin14 had no activity during the gap but were revived with signifi-
cant updates, demonstrating a renewed interest or need for maintenance. The
package bitcoin was notably revived by a different author who deprecated all
previous versions, signaling a significant overhaul and a fresh start.

Reasons for Revival and Updates

Several packages were revived to address accumulated technical debt, such
as updating dependencies, fixing security vulnerabilities, or making minor
patches. For example, js-md515 and dox16 were revived with updates focused
on dependency management and security enhancements. The package grunt-
string-replace17 came back with updates to dependencies and added con-
tinuous integration (CI) workflows. The auto-reload-brunch18 package was
updated to avoid vulnerabilities, highlighting the importance of security in
reviving dormant packages. In some cases, the revival was driven by specific
needs or changes in the development environment, such as componentjs,19

which added new features upon its revival.

Impact on Users and Community Interaction

User complaints and interactions often played a crucial role in the revival of
dormant packages. Many packages saw user inquiries about the status of the
project, offers for help, or even forks and new projects being created due to the
lack of updates. For instance, spritesheet-js20 saw users asking about the
state of the project and offering to help, while the semantic-ui-* packages21

experienced community-driven forks like fomantic-UI.22 Still, the ip23 pack-
age had users questioning its status and the original owner eventually offering

11 https://www.npmjs.com/package/grunt-compile-handlebars
12 https://www.npmjs.com/package/sax
13 https://www.npmjs.com/package/copy-paste
14 https://www.npmjs.com/package/bitcoin
15 https://www.npmjs.com/package/js-md5
16 https://www.npmjs.com/package/dox
17 https://www.npmjs.com/package/grunt-string-replace
18 https://www.npmjs.com/package/auto-reload-brunch
19 https://www.npmjs.com/package/componentjs
20 https://www.npmjs.com/package/spritesheet-js
21 https://semantic-ui.com/
22 https://www.npmjs.com/package/fomantic-ui
23 https://www.npmjs.com/package/ip
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to transfer the package to experienced maintainers, illustrating how commu-
nity pressure can lead to package revival.24

Changes and Management Post-Revival

The approach to managing the package post-revival varied. Some authors con-
tinued with minor updates and patches, while others undertook major over-
hauls. For example, the package a25 introduced a new major version and cre-
ated a funding file upon its revival, indicating an attempt to sustain the pack-
age financially. The package js-md5 not only updated dependencies but also
deprecated elements and added new features, showing a comprehensive update
strategy. These overall observed patterns can be attributed to several factors:

Resource Constraints. Open-source maintainers often face time and re-
source constraints, leading to periods of inactivity or dormancy. When
critical issues accumulate, or community demand resurges, maintainers or
new contributors step in to revive the package.

Community Influence. User feedback and community pressure significantly
influence the revival of dormant packages. Persistent user interest, offers of
help, and the creation of forks highlight the community’s role in sustaining
open-source projects.

Technical Debt and Security. The need to address technical debt, such
as outdated dependencies and security vulnerabilities, is a strong motiva-
tor for reviving dormant packages. Security concerns, in particular, drive
maintainers to update and patch packages to ensure their safety for users.

Changing Development Needs. As the development environment evolves,
previously dormant packages may become relevant again, necessitating up-
dates and new features to keep pace with current standards and practices.

6 Discussion

In this section, we elaborate on the main insights coming from our analyses.

6.1 Contextualizing Our Findings

In this section, we compare our findings on dependency changes, outdatedness,
security, and use of dormant packages with those from prior studies.

Starting from the activity to resume a dormant package (RQ5), we found
that only about 38% of dependencies change upon revival, while 62% remain
exactly the same. This behavior closely mirrors the formal technical-lag frame-
work for npm proposed by Zerouali et al. [31], which shows that packages up-
dating after falling behind typically address only a subset of their outdated

24 https://github.com/indutny/node-ip/issues/128
25 https://www.npmjs.com/package/a
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dependencies rather than performing a full upgrade. Always within npm, Mu-
jahid et al. [21] demonstrated that when clear migration paths are offered,
maintainers will adopt them. Yet absent such guidance, packages often stick
with existing dependencies. Together, these studies underscore that maintain-
ers balance stability and modernization after dormancy, rather than pursuing
all-or-nothing updates. Finally, Cogo et al. [5] observed that among packages
that partially deprecate, nearly 30% never supply direct replacements, sug-
gesting maintainers’ cautious approach to sweeping dependency shuffles.

Concerning RQ6, our findings show that the use of outdated dependencies
jumps from 32% to 55%, with a median version lag from just over a year to
nearly two years. This trend confirms the one revealed by Zerouali et al. [31],
especially for transitive dependencies. Kula et al. [16] reported that more than
80% of systems have outdated dependencies, and that security patches take on
average 14 months to be applied. Furthermore, Miller et al. [19] showed that
once popular npm packages are flagged as abandoned, downstream projects
struggle to respond, highlighting how the lack of clear deprecation warnings
allows stagnation. These patterns confirm that without active maintenance or
reporting, dependencies are severely delayed.

Moving to RQ7, we observed an increase in vulnerability from around
1,100 before the gap to nearly 4,800, then receding only partially once releases
resume. The analysis performed by Kula et al. [15] on Maven shows a median
delay of a year in adopting the latest Maven release, creating a latent window
in which bug fixes and security patches go unused. Again, Miller et al. [19]
demonstrated that when maintainers explicitly declare end-of-life, downstream
projects remove vulnerable dependencies roughly 1.6 times faster, pointing to
communication as the key lever in mitigating security debt. Complementing
these observations, Zerouali et al. [30] quantified a median of 31 months to
disclosure lag and 55 months to fix lag for npm vulnerabilities, resulting in
42% of packages and 79% of external projects remaining exposed for years be-
fore remediation is available. Thus, the security-debt accumulation we observe
during npm dormancy is part of a wider challenge.

Finally, RQ8 examines how dependents react to dormancy: we found that
81% of dependents continue to declare and install the inactive package through-
out its gap. At the same time, only 18% eventually abandon it, doing so after
a median of 252 days. This result recalls the work by Miller et al. [19]: about
18% of downstream projects remove an abandoned dependency. In addition,
the removal is typically delayed unless a clear sunset signal is provided.

6.2 Quantitative analysis

The analysis of release gaps in RQ1 reveals that while packages are often ac-
tively maintained with frequent updates, they can enter extended periods of
dormancy, with gaps lasting from 12.3 months to over 7 years. This unpre-
dictability underscores the importance of developers and users maintaining
awareness of the activity levels of the packages they rely on. Long gaps can
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lead to significant technical debt and potential security risks, especially for
critical dependencies. To mitigate these risks, developers should consider im-
plementing automated monitoring tools to track the update frequency of their
dependencies and proactively plan for alternatives or forks when a package
shows signs of entering a dormant phase. Additionally, communities could
benefit from fostering a culture of shared responsibility, where dormant but
widely used packages receive community-driven maintenance to ensure their
continued reliability and security. Furthermore, at the package managers level,
npm itself could introduce an “inactive-package” badge, so practitioners can
immediately know when a dependency is experiencing a dormant period.

� Lesson1. Automated tools or badges can help track update frequency
and signal when a package enters dormancy, enabling developers to plan
for alternatives or forks proactively. Additionally, fostering a community-
driven approach to maintaining widely used, dormant packages can mitigate
the risks of technical debt and security vulnerabilities, ensuring the continued
reliability of critical software components.

The results for RQ2 indicate that release gaps often occur after packages
have built a significant history of regular updates, typically around three years
of age. This suggests that while packages may initially maintain user trust
through frequent updates, they are still vulnerable to periods of dormancy.
Notably, when packages resume activity after a gap, a significant portion re-
leases only a single version, implying that many may not fully recover and are
at risk of future inactivity.

Rather than assuming that any revival signals a return to normal, con-
sumers should place revived packages on a “short watchlist”, re-evaluating
their health each time a new release appears. From a practical perspective,
packages that have experienced a release gap should be scrutinized closely,
and users should consider contingency plans, like alternative packages, to mit-
igate the impact of future gaps. Users are also encouraged to contribute to
maintain momentum, especially after a gap. Additionally, given the weak cor-
relation between gap length and subsequent version activity, developers should
not assume that a longer gap will necessarily result in fewer updates afterward.

� Lesson2. Practitioners should prepare for potential disruptions by identi-
fying alternatives and monitoring packages that have resumed activity post-
gap, as many may not fully recover. Community engagement and consistent
contributions are essential to sustaining package vitality and preventing fu-
ture dormancy, regardless of the length of the initial gap.

The findings from RQ3 reveal that the majority of packages (49.74%)
release a patch version immediately after a release gap, emphasizing a strong
focus on stabilizing the software.

This trend suggests that maintainers prioritize immediate stability and
user confidence after a period of inactivity. We observed that only 21.83%
of packages resume with a major release despite the potential for substantial
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changes during a prolonged development gap. This may indicate a strategic
decision to re-establish software stability before implementing more disruptive
or large-scale updates. It also suggests that practitioners often adopt a phased
approach to significant changes, making incremental updates first to lay a solid
foundation for future major releases.

From a practical standpoint, developers should prioritize stability and mi-
nor improvements post-gap. Users can plan a gradual adoption of updates to
avoid disruptions, while community managers should encourage maintainers
to communicate their post-gap plans and address critical issues early.

While 49.74% of dormant packages resume with a patch release, this pro-
portion is relatively low when compared to general npm trends, where 68.8%
of all releases are patches [31]. This suggests that dormant packages tend to
resume activity with more substantial changes (often major or minor versions)
than regularly maintained packages. This contrast highlights that post-gap re-
leases may not simply reflect routine maintenance but instead signal important
functional or architectural updates that accumulated during the dormant pe-
riod. For this reason, maintainers should accompany major or minor post-gap
changes with detailed migration guides and semantic-version checklists to ease
downstream upgrades.

� Lesson3. Developers and users should anticipate the focus on stability
post-gap by scheduling the updates. Clear communication from maintainers
about post-gap plans can further manage expectations and ensure that critical
issues are addressed early, fostering smoother transitions.

RQ4 reveals that after a release gap, developers consistently focus on up-
dating key files like configuration files, core code files, and documentation.
This indicates a priority on stabilizing the software, ensuring compatibility,
and keeping users informed through updated documentation. For practition-
ers, this suggests the importance of systematically addressing technical debt
and potential dependency vulnerabilities that may have accumulated during
the gap. Prioritizing updates to configuration and dependency management
files is important to ensure that the software remains secure and functional.
Furthermore, clear and comprehensive documentation updates are essential for
maintaining user trust and easing the transition to new versions. Maintainers
can streamline this work by enabling automated dependency bots (e.g., Dep-
dendabot), so that every update triggers a pull request with a human-readable
summary and documentation automatically refreshed. Such automation en-
sures configuration, code, and docs remain in sync out of the box.

� Lesson4. Developers should systematically address technical debt and de-
pendency vulnerabilities. Moreover, implementing automated tools for depen-
dency management can further enhance the efficiency of post-gap updates,
ensuring high-quality releases and maintaining user trust through clear doc-
umentation and communication.

In RQ5 we found that most software packages maintain stability in their
dependencies after resuming activity, with 62.3% of dependencies unchanged.
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However, a non-negligible portion of packages actively manage their dependen-
cies, reflecting an effort to maintain compatibility, incorporate new features,
and address security concerns. The data also shows that runtime dependencies
are less frequently altered compared to development dependencies, indicating
a priority on maintaining stability for end-users. These findings suggest that
maintainers should focus on updating critical dependencies, particularly those
affecting security and core functionality, while ensuring the stability of runtime
environments. To help maintainers prioritize these updates, projects should
adopt a “risk-scoring” metric in their dashboards that weights dependencies
by runtime impact and known vulnerabilities, automatically surfacing critical
patches first.

� Lesson5. The active management and update of critical dependencies,
especially those related to security and core functionality, is crucial. By bal-
ancing stability with necessary updates, maintainers can address potential
risks while preserving the reliability of their software packages.

The analysis in RQ6 highlights that even after resuming activity, 37.8% of
dependencies remain outdated, suggesting that maintainers may only partially
address the technical debt accumulated during the pause. This underscores the
risks associated with prolonged inactivity, as outdated dependencies can affect
both the dormant packages and their dependents by introducing compatibility
issues and security vulnerabilities. Furthermore, the number of missed versions
for outdated dependencies shows little improvement after the gap, indicating
that maintainers often prioritize updating a subset of critical dependencies
while reducing the priority of others due to resource constraints or immediate
development needs.

� Lesson6. To mitigate these risks, maintainers should adopt a targeted
yet systematic approach to dependency management. By prioritizing updates
for critical and high-risk dependencies while leveraging automated tools and
community support to address non-critical dependencies over time, main-
tainers can better prevent security vulnerabilities and ensure long-term com-
patibility, especially for packages with extended-release gaps.

RQ7 shows an increase in security vulnerabilities during periods of in-
activity, with the number of affected dependencies and vulnerabilities more
than quadrupling during the gap. This confirms the significant security risks
posed by dormant packages, as outdated dependencies can accumulate known
vulnerabilities that compromise the security of dependent systems. Even after
resuming activity, a portion of dependencies remains vulnerable, with 12.3% of
packages still exposed, compared to 6.6% before the gap. This underscores the
critical need for continuous maintenance of dependencies, particularly in run-
time environments, which are more prone to exposure to security issues than
development dependencies. Upon resuming releases, addressing these vulner-
abilities should be a top priority to ensure the software remains secure.
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� Lesson7. The increase in vulnerabilities during periods of inactivity high-
lights the critical need for maintainers to prioritize updating and securing
dependencies, especially in runtime environments, which are more vulner-
able. Users of dormant packages should be vigilant and conduct their own
security assessments to mitigate risks. Proactive, continuous maintenance
is essential to minimize the security risks posed by outdated dependencies.

RQ8 reveals that the majority of dependent packages (81.2%) remain loyal
to dormant dependencies throughout the entire dormancy period, demonstrat-
ing significant ecosystem resilience to maintenance gaps. However, 18.3% of
dependents eventually abandon dormant packages, with abandonment deci-
sions occurring after careful consideration (average 281.5 days) rather than
immediate responses to dormancy. During that window, we observed that
160,799 dependent-package relationships persisted through dormancy. Hence,
these packages remain connected to a dormant dependency that can no longer
receive updates (including security patches). In other words, every dependent
inherits any preexisting vulnerabilities of its dormant dependency, and no new
version is available to fix them. Thus, even if a dormant package has known
security flaws, its dependents remain exposed until they choose to abandon
it or a new release appears. The extremely low readoption rate (0.5%) indi-
cates that abandonment decisions are typically permanent, suggesting that
dormancy periods can result in lasting ecosystem fragmentation. These pat-
terns reveal that while ecosystems can tolerate dependency dormancy in the
short term, extended periods of inactivity gradually erode dependency rela-
tionships and may lead to permanent loss of dependent packages. To prevent
this, maintainers should publish a concise “revival roadmap” upon first re-
turning from dormancy, outlining which vulnerabilities will be patched, which
dependencies will be upgraded, and a tentative schedule for further minor and
major releases.

� Lesson8. The high loyalty rate during dormancy demonstrates ecosystem
resilience, but the gradual abandonment and low readoption rates highlight
the long-term costs of maintenance gaps. Maintainers should be aware that
extended dormancy may result in permanent loss of dependents, even if they
later resume development. For users of dormant packages, the data suggest
that most dependencies continue to function during gaps; however, criti-
cal evaluation of alternatives becomes increasingly important as dormancy
periods extend.

6.3 Qualitative analysis

The qualitative analysis reveals several key insights into the dynamics of dor-
mant package management and revival, offering practical recommendations for
maintainers, users, and developers.



36 Ahmed Zerouali et al.

Maintainers should recognize the importance of continuous engagement
with their projects, even during periods of low activity. As observed in pack-
ages like sax and grunt-compile-handlebars, sporadic yet critical mainte-
nance, such as updating dependencies to address security vulnerabilities or
merging pull requests, can prevent the accumulation of technical debt and en-
sure that packages remain available for future improvement. In contrast, pack-
ages like bitcoin and copy-paste demonstrated that a revival after complete
dormancy often requires significant updates. This highlights the importance
of adopting a clear fixing strategy that first addresses core dependencies and
security issues, and then considers whether a fresh start is necessary. Addi-
tionally, proactive communication could help maintainers prioritize issues and
set realistic expectations, improving the transition from dormancy to active
maintenance and ensuring long-term sustainability.

� Lesson9. Sporadic maintenance, such as addressing security vulnerabil-
ities and merging pull requests, helps keep packages stable. When reviving a
package, maintainers should adopt a clear fixing strategy to prioritize issues
and manage expectations for smoother revival and long-term sustainability.

Users play a crucial role in the lifecycle of open-source projects, particularly
in prompting the revival of dormant packages. The case of bitcoin, in which
a new maintainer took over and made a significant revision, demonstrates
that external contributions can give new life to a previously inactive project.
Similarly, sporadic maintenance activity observed in packages like sax and
grunt-compile-handlebars indicates that reporting issues or pull requests
may have influenced maintainers to address critical updates during dormancy.
In cases where maintainers are unresponsive, users may consider forking the
project or collaborating with the community to sustain it. However, as seen
in packages with prolonged inactivity like copy-paste, reliance on dormant
packages without active maintenance can expose users to risks from outdated
dependencies or unpatched vulnerabilities.

� Lesson10. Users are vital in sustaining open-source projects by engaging
with maintainers and offering contributions. If maintainers are unrespon-
sive, users can fork or collaborate to maintain the project.

Finally, developers considering the adoption of open-source packages should,
therefore, assess their maintenance history, community activity, and respon-
siveness to updates. If signs of dormancy appear, such as outdated dependen-
cies or unresolved issues, developers should carefully weigh the risks, explore
alternative packages, or contribute directly by submitting patches or depen-
dency updates. Moreover, community involvement, as seen in the cases of
packages revived in response to user interest or forks, e.g., spritesheet-js,
can play a crucial role in maintaining package relevance.
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� Lesson11. Developers should assess a package’s maintenance history be-
fore adoption, weighing risks of dormancy. Contributing to dormant projects
by updating dependencies, fixing vulnerabilities, and engaging with the com-
munity can help ensure continued relevance and security.

7 Threats to Validity

Given the empirical nature of our study, there are several potential threats
to validity that we need to mention. We discussed these threats following the
classification and recommendations provided by Wohlin et al. [27].

Construct Validity arises from potential imprecision or incompleteness in
our data sources used to identify packages and their associated vulnerabilities.
We relied on the open dataset provided by Ecosyste.ms.26 Although we con-
ducted a manual inspection of a sample of packages and did not find missing
data, there is no guarantee that the dataset is exhaustive – some packages may
be missing. Additionally, the dataset may reference packages that have been
removed from the registry.

Another possible limitation comes from our focus exclusively on dormant
packages that are used by other packages distributed via npm. Our filtering
strategy provides a clean basis for measuring cascading delays within the npm.
Still, it may underestimate the broader influence of dormant packages that are
used in software projects that are not published on npm. As part of our future
work, we plan to extend our analysis to include GitHub projects that depend
on dormant packages but are not themselves distributed via npm [30].

Another concern is our reliance on the GitHub vulnerability database,
which we assume to be a comprehensive source of vulnerability reports for
third-party packages. This may result in underestimations, as some vulnera-
bilities may not yet be disclosed and thus not included in the database. Still,
we computed the number of known vulnerabilities before, during, and after a
release gap statically. However, this approach does not account for whether the
vulnerable functionality is actually used by the package. Due to the dynamic
and flexible nature of JavaScript, performing reliable dynamic analysis to trace
the usage of vulnerable code is not trivial. As a result, our vulnerability counts
may overestimate the actual security risk faced by downstream users.

Internal Validity pertains to factors within the study that could influence
the observed results. A primary threat is our method for identifying dormant
packages. We defined a release pause as occurring when the gap between re-
leases exceeds one year more than the average gap. This choice, while consis-
tent with prior studies [2,11], lacks a strong theoretical justification. Addition-
ally, our focus on the first release pause, rather than subsequent pauses, could
impact the results. To partially mitigate this threat, we computed the selection
of dormant packages with a different gap, i.e., the gap as the average pause
between two releases + 18 months. We found 9,114 packages that experienced

26 https://ecosyste.ms/
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a release gap, of which 76.14% were the same packages analyzed in the initial
analysis. This result suggests that our identification of dormant packages is
generally stable across different thresholds. Additionally, we corroborated our
quantitative results through a qualitative analysis of a subset of packages.

Concerning RQ3, we used a semantic versioning scheme as a heuristic be-
cause a previous study has shown its use in the context of npm [22]. Nonethe-
less, we recognize that not every package adheres to SemVer, so further analysis
is necessary to validate these inferences through qualitative analysis of commit
messages or issue trackers.

Another internal validity threat is that our analysis in RQ4 reports per-
centages of packages modifying specific file types relative to all packages. Still,
we lack data on which packages actually contain those file types. Thus, mod-
ification rates may reflect frequency across all packages rather than among
projects using the files. For example, YAML files were modified in 14.6% of
packages, though only some contain YAML. This limitation means our findings
indicate modification prevalence but not precise usage-based rates. Addressing
this would require detailed project metadata.

Conclusion Validity addresses whether the conclusions drawn from our
data analysis are reasonable. Given that our findings are primarily based on
empirical observations, we believe this validity threat is minimal. To further
corroborate the conclusions drawn in the study, we applied the Pearson and
Spearman correlation coefficients [23, 24], and the Mann-Whitney test [18],
which allowed us to report our findings from a statistical perspective. Our
conclusions about maintenance motivations and decision processes rely on the
analysis of public artifacts such as commit messages, pull requests, and issue
discussions; therefore, they may not accurately reflect the decisions that drive
dormancy, reactivation, or versioning choices. However, conducting such an
analysis, for instance, through a survey, is beyond the scope of this paper for
two reasons. First, dormant packages account for only 0.34% of the entire npm
package manager (11,970 out of 3.5 million modules). While this focus makes
our dataset both novel and valuable, it also means that the maintainers who
can speak of “release-gap” motivations are few and dispersed. Recruiting and
engaging that specific sample would require substantial outreach and tailored
incentives, lest we end up surveying mostly active-only maintainers who cannot
address dormancy. Second, designing a survey that fairly captures reasons
for inactivity, dependency update strategies, and reactivation triggers across
projects of wildly different sizes and domains would require a research method
groundwork to ensure valid and unbiased questions. As part of our future
agenda, we plan to design and conduct a survey with the maintainers of npm
dormant packages. Specifically, we will leverage the dataset of 11,970 known
gaps to identify and recruit the right contributors to explain the packages’
dormancy, reactivation, and versioning choices.

As forRQ1, we computed our analysis by counting every individual change.
Our decision could potentially include “burst” sequences of same-day or next-
day patch releases addressing a single defect. While RQ2 already breaks down
patch vs. minor/major timing, aggregating those rapid patch clusters into sin-
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gle “logical” release events could indeed filter out noise and provide a cleaner
view of true maintenance rhythms. Unfortunately, such clustering would re-
quire a deeper pre-processing step, e.g., defining per-package time windows,
identifying sequences of patch-only bumps, and collapsing them into one up-
date, which is not feasible in a timely manner and goes beyond our current
scope. Nonetheless, we recognize that the current analysis may overemphasize
clustered patch activity. Further study should aggregate the multiple changes
performed for the same issue in a single patch to assess how such clustering
shifts the median inter-release time and gap detection.

External Validity concerns the extent to which our results and conclusions
can be generalized beyond the scope of our study. While our current study
focuses exclusively on JavaScript packages (from npm), early signs from other
package managers suggest that dormancy is a cross-language phenomenon
rather than an npm peculiarity. For instance, the analysis performed by Ze-
rouali et al. [29] on both npm and RubyGems shows that vulnerabilities ac-
cumulate rapidly in unmaintained releases across these registries. Still, Zhong
et al. [33] highlighted that packages in the PyPI ecosystem often remain non-
updated for extended periods. Such findings suggest that prolonged mainte-
nance gaps and the resulting security and trust concerns may be common in
modern package management systems. At the same time, each ecosystem has
its conventions and tooling that shape how dormancy is detected and miti-
gated. RubyGems, for instance, exposes commands and transfer mechanisms,
enabling community members to adopt and revive abandoned projects. The
“security contact” field in package metadata on PyPI can serve as an early
warning. npm lacks an analogous feature today, but learning from these exam-
ples could help us design registry-level signals, such as required metadata fields
or clearer ownership handoff workflows, to reduce long-term abandonment. We
can conclude that while our results cannot be generalized beyond npm, the
design of our study can easily be replicated for other package distributions.

8 Conclusion

The ultimate goal of our study was to explore the lifecycle and impact of dor-
mant npm packages, with a focus on understanding the risks and challenges
posed by prolonged periods of inactivity. Using a comprehensive dataset of dor-
mant packages and dependencies, we conducted quantitative and qualitative
investigations to uncover patterns in dormancy, maintenance, and security.

The key findings of our research reveal that dormant packages often ac-
cumulate technical debt, outdated dependencies, and security vulnerabilities,
posing risks to dependent systems. We found that while some packages suc-
cessfully revive with patches and minor updates, a significant portion do not
fully recover, leaving them vulnerable to future inactivity. Additionally, run-
time dependencies tend to be less frequently updated, leading to an increased
risk to end-users.
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Our investigation into dependent package behavior during dormancy pe-
riods revealed that while the majority of packages (81.2%) demonstrate re-
markable loyalty by continuing to use dormant dependencies throughout gaps,
nearly one in five packages eventually abandon these relationships.

To summarize, our paper has made the following contributions:

1. A detailed investigation into the lifecycle of dormant npm packages, in-
cluding the timing and duration of release gaps.

2. An analysis of the type and focus of updates following periods of dormancy,
emphasizing the challenges of dependency management and security risks.

3. A comprehensive study of the security implications associated with out-
dated dependencies, highlighting the critical need for proactive dependency
management.

4. An examination of dependent package behavioral patterns during dor-
mancy periods, revealing ecosystem resilience mechanisms and the long-
term consequences of maintenance gaps on dependency relationships.

5. An online appendix [32] in which we provide all material and scripts em-
ployed to address the goals of the study.

The main considerations and conclusions of the study represent the in-
put for our future research agenda. We plan to develop automated tools to
help maintainers and users track dormant packages and proactively address
potential risks. Additionally, we aim to investigate the long-term impacts of
dormancy on software sustainability and explore strategies for community en-
gagement in maintaining widely used, but neglected, packages. In future work,
we also plan to investigate and understand the behavioral patterns of depen-
dent packages during dormancy periods, which could inform the development
of early warning systems to help maintainers anticipate and mitigate the ero-
sion of their package’s user base.

Another promising direction involves a follow-up study that samples re-
vived releases to conduct diff-based and behavioral analyses, with the goal of
validating SemVer adherence across a representative subset of packages.

To better understand the human dimension of package dormancy, we plan
to conduct a targeted survey of maintainers from different ecosystems, in-
cluding npm, PyPI, and RubyGems, to investigate the factors influencing dor-
mancy, reactivation, and versioning practices. Finally, we propose to generalize
our definitions of release gap and dormant package across multiple ecosystems,
enabling a direct comparison of dormancy patterns, recovery strategies, and
vulnerability accumulation rates.
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10. Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical comparison of depen-
dency issues in OSS packaging ecosystems. In International Conference on Software
Analysis, Evolution and Reengineering, pages 2–12. IEEE, 2017.

11. Robert English and Charles M Schweik. Identifying success and tragedy of floss com-
mons: A preliminary classification of sourceforge. net projects. In First International
Workshop on Emerging Trends in FLOSS Research and Development (FLOSS’07:
ICSE Workshops 2007), pages 11–11. IEEE, 2007.

12. Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. Open source
software ecosystems: A systematic mapping. Information and software technology,
91:160–185, 2017.

13. Fang Hou and Slinger Jansen. A systematic literature review on trust in the software
ecosystem. Empirical Software Engineering, 28(1):8, 2023.

14. Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure and
evolution of package dependency networks. In International Conference on Mining
Software Repositories (MSR), pages 102–112. IEEE, 2017.

15. R. G. Kula, D. M. German, T. Ishio, and K. Inoue. Trusting a library: A study of
the latency to adopt the latest Maven release. In Int’l Conf. on Software Analysis,
Evolution, and Reengineering, pages 520–524, March 2015.

16. Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro Inoue.
Do developers update their library dependencies? Empirical Software Engineering,
23(1):384–417, 2017.

17. Fabio Massacci and Ivan Pashchenko. Technical leverage in a software ecosystem: De-
velopment opportunities and security risks. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 1386–1397. IEEE, 2021.

18. Patrick E McKnight and Julius Najab. Mann-whitney u test. The Corsini encyclopedia
of psychology, pages 1–1, 2010.

19. Courtney Miller, Mahmoud Jahanshahi, Audris Mockus, Bogdan Vasilescu, and Chris-
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