
The Sampling Threat when Mining Generalizable

Inter-Library Usage Patterns

Yunior Pacheco Correaa, Coen De Roovera, Johannes Härtelb

aVrije Universiteit Brussel, Brussels, Belgium
bVrije Universiteit Amsterdam, Amsterdam, Netherlands

Abstract

Tool support in software engineering often relies on relationships, regularities,
patterns, or rules mined from other users’ code. Examples include approaches
to bug prediction, code recommendation, and code autocompletion. Mining
is typically performed on samples of code rather than the entirety of available
software projects. While sampling is crucial for scaling data analysis, it can
affect the generalization of the mined patterns.

This paper focuses on sampling software projects filtered for specific li-
braries and frameworks, and on mining patterns that connect different li-
braries. We call these inter-library patterns. We observe that limiting the
sample to a specific library may hinder the generalization of inter-library
patterns, posing a threat to their use or interpretation. Using a simulation
and a real case study, we show this threat for different sampling methods.
Our simulation shows that only when sampling for the disjunction of both
libraries involved in the implication of a pattern, the implication general-
izes well. Additionally, we show that real empirical data sampled using the
GitHub search API does not behave as expected from our simulation. This
identifies a potential threat relevant for many studies that use the GitHub
search API for studying inter-library patterns.

Keywords: Sampling, Usage Patterns, Inter-Library, Dataset, Data Mining

Email addresses: ypacheco@vub.be (Yunior Pacheco Correa),
coen.de.roover@vub.be (Coen De Roover), j.a.hartel@vu.nl (Johannes Härtel)

URL: https://orcid.org/0000-0002-7849-7841 (Yunior Pacheco Correa),
https://orcid.org/0000-0002-1710-1268 (Coen De Roover),
https://orcid.org/0000-0002-7461-2320 (Johannes Härtel)

Preprint submitted to Science of Computer Programming September 22, 2025

1. Introduction

Tool support for software engineering often depends on regularities, pat-
terns, or rules mined from code. If an analysis of all code does not scale, it
can also be conducted on a small sample of it. Since a sample can represent
an entire population, the mining process can also be performed on samples
of code (e.g., top-n most starred projects on GitHub) rather than the entire
population of software projects (e.g., all projects on GitHub). The specifics
of how the sample is collected, however, might influence the generalization.

Sampling is crucial in empirical research [1], including Empirical Software
Engineering (ESE) [2] and Mining Software Repositories (MSR) [3, 4, 5]. In
MSR and ESE, researchers often sample software projects from sources like
GitHub [6] and aim to generalize their findings to unseen software projects [7].

1.1. Motivation

For studies that mine library or framework (API) patterns, sampling is
equally important. Researchers extract API usage patterns from code by
sampling examples from existing API applications. The most basic sampling
method involves searching and filtering for client applications that use a
specific API, such as a subset found via GitHub’s search, querying for the
specific library or framework. For instance, Nuryyev et al. [8] selected 533
repositories from GitHub that use the MicroProfile framework.

Since sampling is often unavoidable, recent MSR and ESE research has
started to investigate the consequences of different sampling forms [9, 5]. In
this context, related work tries to optimize the accuracy of mined patterns
while potentially threatening the generalizability. When sampling client soft-
ware projects, we must ensure two key properties of the mined patterns:

• Accuracy: The patterns should be precise and accurately reflect the
client projects in the sample.

• Generalizability: The patterns should generalize well to the entire
population of client projects, potentially using the same libraries or
frameworks or not.

Nuryyev et al., for instance, mined the sample of 533 repositories for
annotation usage rules and validated them by human experts. We can find
a rule of the following form:

2

type(javax.json.JsonString)

→ annotation(org.eclipse.microprofile.jwt.Claim)

This rule can be interpreted as a logical or probabilistic relationship, indi-
cating that when a method returns a JsonString, it should carry a Claim anno-
tation. This statement crosses different libraries, making it an inter-library
pattern. Since JavaX’s JsonString may also appear in other contexts, unrelated
to MicroProfile’s Claim annotation, the rule is not logically true. However, it
may hold probabilistically with a certain confidence. This concept of con-
fidence originates from association rule mining and is described in Sec. 2.
Such patterns are relevant, indicating that JsonString facilitates the usage of
a Claim annotation. Another example might be Pandas DataFrame facilitating
the usage of the Matplotlib library.

Nuryyev et al. discovered this pattern with unexpectedly high confidence.
Human experts, however, identified it as incorrect and attributed the issue
to a limitation in their rule mining approach. We show that this problem
actually arises from the sampling method they used, rather than from the
rule mining algorithm itself.

1.2. Problem Statement

Reflecting deeper on the origin of this problem, the authors assume JavaX
to be an integral part of the MicroProfile framework. This implies that
whenever we sample for MicroProfile, we also sample for JavaX. This is
not true and renders it a rule between different libraries. We call it an
inter-library pattern instead of an intra-library pattern. From a sampling
perspective, we noticed that this distinction can be crucial. We show that
the sensitive context of multiple libraries introduces the risk of incorrect rules
that do not generalize.

This problem leads us to ask: Is the confidence of a rule computed on the
sample the same as for the entire population? In short, can we generalize?
Is there a difference between intra-library and inter-library patterns? More
concretely, we define our research question as follows:
How do sampling methods influence the generalizability of mined inter-library
usage patterns from client software projects?

3

1.3. Research Method and Results

To answer the research question, this paper follows a research method
that combines an empirical study and a simulation study that examines inter-
library patterns mined on data using different practices: i) random samples,
ii) single library samples that collect client projects that use a particular li-
brary, and iii) co-used library samples that collect client projects by analyzing
different combinations of usage of two libraries.

In the simulation study, we analyze the generalizability in terms of con-
fidence for both intra-library and inter-library patterns. In the empirical
study, we focus on inter-library patterns. In general, we examine the pat-
terns obtained by the same rule mining algorithm run on data collected using
different sampling methods and for different degrees of library popularity. We
present evidence that confidence of mined inter-library usage patterns dif-
fers depending on the sampling method. Thereby, patterns may or may not
generalize. We provide a replication package online1.

1.4. Contributions and Actionable Insights

This paper makes the following contribution: An empirical and simulation
study examining the impact of different sampling methods on the mined
inter-library patterns, considering the degree of popularity of the libraries
involved.

The resulting insights of our study can directly be used by future studies
that extract patterns from samples. Either they improve their sampling
method in a way that the mined patterns generalize better, or they
improve their threats to validity section by discussing the limita-
tions that we identified.

1.5. Roadmap

Sec. 2 gives the background on representing source code, recovering pat-
terns, computing confidence, and the examined sampling methods. Sec. 3
presents the research method that we use to answer the research question.
Sec. 4 presents the simulation study. Sec. 5 presents the empirical study.
Sec. 6 discusses limitations and threats. Sec. 7 covers the related work.
Sec. 8 discusses the implications of our findings. Sec. 9 concludes the paper.

1https://doi.org/10.5281/zenodo.14841462

4

https://doi.org/10.5281/zenodo.14841462

2. Background on Pattern Mining and Sampling

This section starts with a discussion of established background needed
for the paper. We introduce the relevant concepts to make the paper as
self-contained as possible. We will provide the relevant pointers for further
reading. In particular, we will discuss rule mining methods and establish
single library sampling. We finally present our idea of new co-used libraries
sampling methods. The related work section will discuss which method com-
binations of sampling and rule mining already appear in the literature.

2.1. Pattern Mining Method

We start our discourse with a straightforward but common method to
mine usage patterns based on a logic representation of the abstract syntax
tree (AST). We will use this same mining method in all our experiments,
being a constant in our research design. Less straightforward alternatives
are meaningful to study, but we consider them out of scope for now.

2.1.1. Representational Mapping

Approaches to pattern mining often rely on a representational mapping.
The representational mapping converts the abstract syntax tree (AST) of the
client projects, those that are contained in a sample, into a representation
that can be mined.

Logic Facts. We use a fact-based representation of the AST that is common
to approaches doing logic-based reasoning [10, 11, 12]. The example fact
type(javax.json.JsonString) from such a representation expresses the usage of a
type that is part of a JSON library. We can use such facts to create an
abstract representation of the clients that use a library or framework. We
choose this representation because it is a very transparent and formal way of
reasoning about regularities in source code.

Structure. The usage of libraries is often reflected in the program structure.
In the following experiments, we convert methods and fields we find in the
code into sets of logic facts. These sets of logic facts are referred to as
transactions in Data Mining literature [13]. Throughout the remainder of the
paper, we refer to them as observations, as it is a terminology that better
suits the context of usage pattern mining. In each analyzed client project, we
collect various of these observations. This is comparable to studies like [8].

5

2.1.2. Confidence and Support

We use the sets of logic facts to recover new patterns or verify whether
specific patterns fit the data or not. A pattern, usable in a tool for recom-
mendation and autocompletion, can be written A→ B. We call it a rule due
to the specific shape. Logic facts in A will need to be present in the code,
so that B can be recommended. We call the left side the antecedent and the
right side the consequent.

Rules are a form of pattern or regularity. Whereas patterns can only be
associated with a support when mined from data, rules are typically associ-
ated with some sort of confidence or likelihood because they have the shape
of an implication (i.e., antecedent implies consequent)

There are mining algorithms, like association rule mining, that can re-
cover patterns in the form of rules from data [14, 15]. However, one can
also compute confidence and support of existing rules on a dataset. In the
experiments, we will use basic association rule mining, but in several cases,
it will be sufficient to only compute the confidence and support of rules on
a sample. We will repeat the definition of confidence and support next (but
also refer to [14, 15]).

Support. The support of a logic fact is defined by counting its occurrences
in the representation of the client projects. The support of a rule A→ B is
defined as the support of {A,B}. The support reflects the popularity of a
certain usage.

Confidence. The confidence of a rule A → B is defined as the support of
{A,B} divided by the support of {A}. Such a definition is close to the
probability of facing B when A is present.

Giving the example of having A = {type(JsonString), return}, B =
{annotation(Claim)} and the confidence of rule A→ B is 50%, then it means
that 50% of the observations that contain “return” and “type(JsonString)”
also contain “annotation(Claim)”.

A recommender system using this rule can operate as follows: If a method
returns “JsonString”, it can suggest including the annotation “Claim” with
a 50% confidence. Whether the recommender system makes this suggestion
depends on a threshold. Our primary interest is in providing the correct
confidence to the recommender system.

6

2.2. Examined Sampling Methods

The methods we discuss here are all referred to as ‘sampling’ methods
because empirical research uses them to collect data. However, we acknowl-
edge that they can also be called data collection or filtering methods. For
consistency, throughout the paper, we use the term ‘sampling’, even for more
black-box notions of accessing data via the GitHub search API.

We now discuss established ways of sampling, which are the central sub-
ject of our paper. A general introduction to sampling can be found in [1].

2.2.1. Random Sample

Findings of empirical studies target a population. For us, the population
consists of all software projects on GitHub, denoted as P. Due to scalability
limitations, studies often rely on random samples, which are random subsets
of the original population. Random samples have desirable properties; they
can be small, yet insights may still generalize from the sample to the entire
population. Such insights often need to be associated with estimates of un-
certainty. Software engineering studies frequently use random sampling from
dumps, as seen in [6, 4]. In the remainder of this paper, we will refer to a
random sample as R.

2.2.2. Single Library Samples

Random sampling faces practical limitations when studies aim to examine
specific and rare aspects of a population. This is due to the lack of sufficient
data for studying the target aspect. When studying rare libraries and frame-
works, we encounter this issue, as discussed in [16] regarding the popularity
of libraries.

Therefore, several studies filter samples from GitHub for the usage of a
particular (target) library (e.g., [8, 17]). Assuming our study’s population
corresponds to all projects on GitHub, we consider that a project uses a
library if the source code includes a reference to the library. Specifically,
we search for client projects with Java imports to the target library using
the standard filter of the GitHub search API. The exact method of access is
detailed in the online material. We call this a single library sample. We will
later refer to single library samples as H and L, depending on the popularity
of the library.

7

2.2.3. Restrictive Single Library Samples

A more restrictive sampling strategy considers only observations directly
related to the target library within the selected projects. Since observations
can be more fine-grained than projects, this strategy may exclude any class,
method, or field in a project that is not directly related to the target library.
Filtering out observations unrelated to the target library may initially seem
to improve scalability.

This approach is used when mining API usage patterns from client code.
For example, the authors of [8] only use observations with a type from the
MicroProfile framework as input to the mining algorithm. Samples generated
by this method are identified as H′ and L′.

2.2.4. Co-used library samples

Some patterns might span across multiple libraries, which can also be rel-
evant in the context of a target library. We consider co-used library samples
that include such relevant libraries. Our study specifically examines pairs
of libraries and investigates the results when mining inter-library patterns
involving them. If necessary, we differentiate between the two libraries in a
pair by their popularity. In this context, we refer to popularity as the degree
to which a library is used in the population of projects on GitHub. The next
section will clarify this notion. We use the convention that the samples of
the more popular library (high) are identified as H and of the less popular
library (low) as L. We now define sampling methods that target both, high
and low libraries. Accordingly, we have new sampling methods:

• H∨L: This sample includes projects that use either the more popular
(high) library or the less popular (low) one.

• H ∧ L: This sample includes projects that use both the more and less
popular library.

Co-used library samples are expected to be more representative of possible
interrelations between the involved libraries. Therefore, they are subject to
our study.

3. Research Method

We first outline the design of our research method to address the impact
of sampling methods on mined inter-library patterns. We then explain our

8

adoption of a hybrid research method, combining empirical and simulation
studies. Limitations and threats to our study are discussed in Sec. 6. Figure 1
depicts a sketch of the design of this study. Specific aspects in green and blue
correspond to the simulation and empirical study, respectively.

3.1. Scenarios on Asymmetric Library Popularity

Our design aims to examine the impact of the sampling method on the
resulting patterns and the possible influence of the popularity of the libraries
involved in the patterns. To analyze the effect of library popularity on the
generalizability of inter-library patterns, we define two scenarios for the de-
gree of popularity for high and low .

• Imbalanced scenario: While high is very popular, low is rare. We use
phigh = 37% and plow = 0.12% to represent this large difference in
popularity.

• Balanced scenario: Both, high and low have more balanced popularity.
We use phigh = 14% and plow = 2%.

SamplingPopulation Mining

Sample

Popularity
scenarios

Balanced Imbalanced

Analysis

Patterns
Population

Software
repositories
on GitHub

Popularity values
approximated via

Github Web Search

Filter observations
from the collected repositories

Association
rule mining

No ground true.
No conclusive claims

Matrix of
binary
values

Filter observations from the
population matrix

Popularity values taken
from the empirical study

Ground true available.
Insights are conclusive

No actual mining.
Compute support and

confidence of the observations

Figure 1: A sketch of our research methodology: Simulation and empirical
studies are shown in green and blue, respectively.

The values of p are set based on two scenarios of co-usage presented in
our empirical study. In particular, the empirical study examined pairs JavaX
and MicroProfile as the imbalanced scenario and JUnit and Mockito as the
balanced scenario. The JavaX and MicroProfile have also been studied in [8].

The second pair of libraries are two popular libraries that are often used
together in unit testing. We believe that, as applications use both frequently,
this pair is representative of a more balanced co-usage relationship.

9

We use the GitHub web search tool to estimate the popularity of these
libraries. First, the entire population of projects is obtained by querying
for Java files that contain an import statement with the package ”java.”,
resulting in 71.8M code files. Likewise, for each library, we query for Java files
that contain an import statement with the base package name of the library.
An example of the query for the JavaX library is ”import javax” language:Java,
resulting in 26.9M code files and a value of p = 26.9M/71.8M ≈ 37%.

In the simulation, we use the same values for p. This enhances the realism
of the simulation and provides a better reference point for discussion in the
empirical study.

3.2. Hybrid Study

We adopt a research method that combines an empirical study with a
simulation study. For the use of simulations, we refer to [18] and [19, 20].
Also see our recent work on simulations between SE and active learning [21].

To ensure we isolate the effect of the sampling method, we keep all other
parts of the study constant. We do not evaluate entirely different combina-
tions of methods, such as alternative rule mining algorithms. This approach
aligns with a standard controlled experiment design, where most variables
are held constant while some are varied by us. A standard reference is [22].
The constants in our research design are:

• We target the same population: synthetic data in the simulation and
Java projects on GitHub for the empirical study.

• We use the same rule mining method throughout the study.

The size and properties of the resulting samples vary across different
sampling methods. Consequently, the properties of the mined patterns also
vary. We align and compare the patterns computed by the different sampling
methods to answer our research question. Table 1 summarizes the different
types of patterns examined in our hybrid setup.

3.2.1. Simulation Study

Simulations are essential in our context, as not all insights can be derived
from empirical data alone. Simulations provide transparent, controllable,
and repeatable environments to study our problem. We can control the
simulated population and make it fully transparent for analysis. This allows
us to identify which sampling methods produce correct confidence values

10

Table 1: Type of patterns examined in our research design

Simulation Empirical
Scenario Type of pattern examined
Balanced

phigh = 14% and plow = 2%
Intra-library / Inter-library Inter-library

Imbalanced
phigh = 37% and plow = 0.12%

Inter-library Inter-library

that reflect the entire population. We examine both intra-library and inter-
library patterns, demonstrating that generalizability issues arise only with
inter-library relations. These simulation results serve as a reference point
for our empirical study. Simulation insights, however, are conditional on the
assumptions made in our simulations.

3.2.2. Empirical Study

The empirical study then turns to real data using GitHub. Here, we ob-
serve a contradiction between real sampling and simulated sampling. The
simulation suggests that confidence values should be similar, while the em-
pirical data shows differences between alternatives that we considered both
good approximations of the correct confidence.

Unlike the simulation, the empirical setting makes definitive statements
about the entire population of Java projects difficult. However, the difference
between the simulation and empirical results indicates a potential threat to
the reliability of sampling from GitHub if our simulation assumptions are
correct.

3.3. Insights

The insights answering our research question are listed below and are
repeated in the remainder of the paper when we show them. They have
been tagged, denoting whether they come from the empirical or from the
simulation study. We only use correct and incorrect in the context of
the simulation because there we can definitely state a relation to the entire
population. In the empirical study, we only describe differences.

• Insight 1 (simulation): For implications of shape A→ B, sampling
for the library in the antecedent (A) will result in correct confidences;
sampling for the library in the consequent (B) will result in wrong
confidences.

11

• Insight 1 (empirical): For implications of shape A → B, and using
the GitHub Search API, sampling for the library in the antecedent (A)
can result in different confidence values than sampling for the library
in the consequent (B). This conforms to the simulation insight.

• Insight 2 (simulation): For implications of shape A → B and vice
versa (B → A), sampling for the disjunctionA∨B will result in correct
confidence values for both types of rules.

• Insight 2 (empirical): For implications of shape A → B and vice
versa (B → A), and using the GitHub Search API, sampling for the
corresponding library in the antecedent will result in different confi-
dence values than sampling for the disjunction A ∨ B. This does not
conform to the simulation insight.

4. Simulation Study

The first part of our evaluation of the sampling methods involves a simula-
tion study. A simulation is almost unavoidable due to a conceptual problem:
It is nearly impossible to obtain data on the entire population of GitHub
projects. All insights that describe the generalization of patterns from any
sample to the entire population are therefore demonstrated through simula-
tion.

The simulation is divided into two parts. The first part focuses on intra-
library patterns, where we mine for patterns within a single library. The core
insight is that intra-library patterns are accurate and generalizable regard-
less of the sampling method used. The second part addresses inter-library
patterns that cross library boundaries. This highlights issues with generaliz-
ability. We use the simulation to demonstrate that the sampling method used
to collect the data is crucial for ensuring that inter-library patterns mined
from the sample can generalize to the entire population. We first describe
the common setup and then specialize patterns in each part.

4.1. Common Assumptions

The following are the assumptions and closely related simplifications that
we are willing to make about library usage patterns in GitHub projects. The
evidence that comes from the simulation is conditional on these assumptions.
We consider them plausible, but we cannot prove this.

12

4.1.1. Co-usage

The simulation captures our scenario where two libraries are used together
in client projects. We refer to these libraries as high and low , based on
their popularity as mentioned in Sec. 2.2.4. We simplify by not structuring
usages (into client projects, classes, or fields in the Java files). Instead, we
simulate observations flat, only with the presence of an import statement or
a method call. An observed usage is represented in terms of four logic facts
C = {importHigh(), callHigh(), importLow(), callLow()}. These logic facts are binary.

We can then simulate an observation with a vector of four binary values.
Using C as the index of the vectors, the observation vector v = (1, 1, 1, 0)
indicates that both high and low are imported, and the method from high is
called.

4.1.2. Population

The following are the population details:

• We use a flat population represented as a matrix, where each row cor-
responds to a vector of binary values.

• The population size is a parameter n. In the simulations presented, we
use a population size n of 1, 000, 000 observed usages.

• Logic facts in the matrix are populated randomly with probabilities
phigh and plow, which correspond to the index positions in C. These
parameters reflect the popularity of high and low libraries.

• We assume a set of logic rules built on top of C in the form of implica-
tions A→ B.

4.1.3. Rules

We simulate different types of rules enforced in the population matrix.

Logic. We simulate rules in the form A→ B that are always correct. When-
ever we see A, we also see B. This is enforced in the simulation by setting
the value of the facts in the consequent of the rule to 1 whenever the facts
in the antecedent are 1.

For example, if we want to enforce the rule callHigh()→ callLow(), we set the
value of callLow() to 1 whenever callHigh() is 1 for all vectors in the population
matrix. In this case, the observation represented by vector v = (1, 1, 1, 0)
would be transformed to v′ = (1, 1, 1, 1).

13

Facilitate. We are certain that logic rules hold in all samples. This makes
the opposite direction interesting because there we have a confidence (the
confidence if seeing B also seeing A). We refer to this as facilitate-rules F
and they are problematic for sampling.

Import. In each simulation, apart from the logic rule above, we enforce two
other logic rules that reflect the real world restriction that if we want to use a
library, we must import it: callHigh()→ importHigh() and callLow()→ importLow().

4.1.4. Sampling Methods

We examine the sampling methods introduced in Sec. 2.2 in the context
of the simulation. We produce the samples by filtering the observations from
the population for a specific set of facts, depending on the sampling method.
To not influence our insights, we use the same sample size for all methods:
1% of n. Details of sampling are the following:

• The method to produce a random sample (R) does not filter for any
facts and randomly selects the observations.

• The method to produce the sample targeting the high library (H) filters
for the fact importHigh(). This aligns with our notion that an application
uses a library if it includes ‘some’ reference, and thereby an import to
the library. The same applies for the sample L targeting the low library,
which filters for the fact importLow().

• To simulate a more restrictive filter, we use the call facts for filtering.
Thus, the method to produce the sample H′ filters for the fact callHigh()

and not by the import. The same applies for L′.

• The method for sample H ∨ L filters observations containing at least
one of the facts importHigh() or importLow(). For sample H ∧ L, the filter
requires that both importHigh() and importLow() must be present in the
observation.

As an example, the vector v = (1, 1, 1, 0) could have been filtered to be
included in any of the samples explained above, except for the method to
produce sample L′. The value for the fact callLow() is 0 and therefore the
observation would not be included in the sample L′.

14

4.1.5. General Simulation Setup

In summary, the simulation generates a matrix with n rows (number of
observations) and 4 columns (size of C) using a binomial distribution with
probabilities phigh and plow, which correspond to the columns. As mentioned
previously, these parameters are adjusted to reflect the popularity of the
libraries analyzed in the empirical study.

The process of population generation, sampling, and computing the con-
fidence for the facilitate-rules for each sample is repeated 100 times. The
results are then aggregated or shown as distributions. This repetition mit-
igates the risk of deriving insights from an anomalous distribution of the
population data. Algorithm 1 outlines the general simulation process. Fur-
ther implementation details can be found online.

Algorithm 1 Simulation

Require: n, phigh, plow, runs return Confs
1: methods⇐ (P,R,H,L,H′,L′,H ∨ L,H ∧ L)
2: Confs⇐ ∅
3: for iter = 1, 2, . . . , runs do
4: population⇐ initialize(n, phigh, plow)
5: population⇐ enforceLogicRule(population)
6: population⇐ enforceImports(population)
7: for each m ∈ methods do
8: sample⇐ filter(population,m)
9: conf ⇐ confidence(sample) //Compute the confidence of the

facilitate-rule.
10: Confs⇐ add(iter,m, conf)
11: end for
12: end for
13: return Confs

4.2. Intra-library Usage Patterns

We start with the intra-library patterns. Can we generalize the confi-
dence of rules that involve a single library to the entire population
under a given sampling method?

We use the same simulation setup as for the inter-library patterns, but
with some minor changes.

15

4.2.1. Specialized Rules

To stress single library usage, we change C a little to C1 = {importHigh(),
callHigh1(), callHigh2(), importLow(), callLow()}. Note that we introduce two new
facts callHigh1() and callHigh2() to represent a possible usage pattern inside the
single library high. We ignore calls to low for brevity but we keep imports
to it. Sampling for another library (low) might still be relevant for the
generalization.

To simulate the intra-library pattern we use the logic facts callHigh1() and
callHigh2(). The idea is to represent the typical usage pattern where a call
to a method from a library depends on a previous method call to the same
library.

We enforce the logic rule callHigh2() → callHigh1() in the same way as de-
scribed before. Similarly, we are interested in the facilitate-rule which is
the opposite direction. We want to know the confidence that if we call
method callHigh1(), we also need to call method callHigh2() referring to this
as high1→ high2. For parameters phigh and plow, we use the values from the
balanced scenario (phigh = 14% and plow = 2%).

4.2.2. Simulation Results

We present the confidence of the facilitate-rule in the opposite direction of
the encoded logic rule. This is high1→ high2. Figure 2 shows the difference
in the confidence values computed in the different samples compared to the
confidence in the entire population (P). We expect that the confidence values
computed in the other samples approximate the confidence values in the
entire population. The population P is the ground truth. Ideally,
comparable confidence values should be computed from the other
samples.

The figure shows that, on average, the confidence values computed from
all other samples correctly approximate the confidence computed from the
entire population. There is no systematic error by any method, even for
samples like L or L′. We only observe some uncertainty. The impact on
generalization is negligible.

These results support the idea that when mining for intra-library pat-
terns, the sampling method is not relevant for the generalization of the pat-
terns. Using any of the sampling methods presented here, a recommen-
dation system can suggest a pattern with the same certainty as if
that pattern were mined on the entire population. This behavior is
what we would like to have in inter-library patterns, but as shown in the

16

' '
Samples compared to

0.02

0.01

0.00

0.01

0.02

Co
nf

id
en

ce
 D

iff
er

en
ce

Figure 2: Difference in confidence between samples and P for rule high1 → high2. The
red line denotes the baseline P.

next section, this is not the case.

4.3. Inter-library Usage Patterns: Simulation Results

In this part, we show how we derive the two simulations insights. We
present the results for the two popularity scenarios introduced in Sec. 3.1,
with facilitate-rules in both directions, referred to as high→ low and low →
high. This results in four plots shown in Figure 3.

Random Sample. The random sample R suffices to correctly identify con-
fidence values. The confidence values are almost identical to the entire pop-
ulation. However, for rule low → high they are less accurate. This is typical
for random samples and can be compensated by statements on uncertainty
(e.g., confidence intervals or p-values). If we compare the difference in con-
fidence between R and the entire population in Figure 3b and Figure 3d, we
observe that in the balanced scenario, the variation in accuracy is lower than
in the imbalanced scenario. This may indicate that R is more accurate for
popular libraries.

Regardless of uncertainty, in both scenarios, one can approximate the
confidence values of the entire population correctly. This enables generalizing
from the random sample to the entire population. However, random samples
become impractical in our empirical study, not always providing sufficient
observations for both libraries.

17

' '
Samples compared to

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 D

iff
er

en
ce

(a) rule high→ low imbalanced scenario.

' '
Samples compared to

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

Co
nf

id
en

ce
 D

iff
er

en
ce

(b) rule low → high imbalanced scenario.

' '
Samples compared to

0.0

0.2

0.4

0.6

0.8

Co
nf

id
en

ce
 D

iff
er

en
ce

(c) rule high→ low balanced scenario.

' '
Samples compared to

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Co
nf

id
en

ce
 D

iff
er

en
ce

(d) rule low → high balanced scenario.

Figure 3: Difference in confidence between samples and P in the two scenarios. A red
dotted line denotes the baseline P.

18

Single Library Samples. For confidence values computed from single li-
brary samples, we get different results for the facilitates rules.

In general, for a rule A → B, the confidence values computed on sin-
gle library samples targeting the library of the antecedent (A) correctly ap-
proximate the confidence computed on the entire population. However, the
confidence values computed on single library samples targeting the library of
the consequent (B) overestimate the real confidence values (if the rule is not
logic).

This is depicted in Figure 3. For rule low → high: samples L and
L′ closely approximate P, while samples H and H′ largely overestimate the
confidence. Analogously, for rule high → low: samples H and H′ closely
approximate P, and samples L and L′ do not. This behavior is consistent
in both scenarios, independently of the degree of popularity of the libraries.
However, in the balanced scenario, the overestimation is less dramatic than
in the imbalanced scenario.

Summarizing these results independent of popularity;
Insight 1 (simulation): For implications of shape A → B,
sampling for the library in the antecedent (A) will result in
correct confidences; sampling for the library in the consequent
(B) will result in wrong confidences.

Co-used library samples. Sample H ∨ L approximates the confidence
values computed on P correctly.

For the two types of rules in Figure 3, we observe that on sample H∨L the
confidence values don’t differ too much from the confidence values computed
on P.

For co-used libraries samples, we cannot identify a consistent difference
in the accuracy between imbalanced scenario and balanced scenario. For
rule high → low, the confidence values appear to be more accurate in an
imbalanced scenario (see Figure 3a). For rule low → high, the difference
in confidence between sample H ∨ L and P is lower in the balanced scenario
(see Figure 3d). This does not influence the generalizability of the confidence
computed on these samples.

Summarizing these results independent of popularity;
Insight 2 (simulation): For implications of shape A → B
and vice versa (B → A), sampling for the disjunction A ∨ B will
result in correct confidence values for both types of rules.

19

In the case of the sample H ∧ L, we did not observe confidence values
that correctly generalize to the population.

4.4. Sample Size

As mentioned earlier, we used a sample size of 1% of the population.
A valid question is whether this sample size is large enough, or how does
sample size influence the results. The intuitive answer is based on the well-
established idea that more is better and that the larger the sample, the more
accurate the results. In our case, this is not correct, since the method used
to collect the sample is the primary factor regardless of the sample size.

We conducted a small experiment to analyze the impact of the sample size
on the results obtained for the inter-library patterns. For this experiment, we
use the case where the facilitate-rule is high→ low in the balanced scenario
(Figure 3c). To examine sample size, we change it to 1%, 10%, 20% and
100% of the population. Figure 4 shows the results of these four simulations
in terms of the average and the standard deviation of the confidence difference
between the samples and P. The standard deviations are scaled by the same
constant factor for better visualization.

The results indicate that the sample size does not have a significant im-
pact on the results. The standard deviation decreases as the sample
size increases. Larger samples provide a better representation of the pop-
ulation, as random noise diminishes. However, the average difference in
confidence remains consistent regardless of sample size. The mean
of the differences we show depends on the filtering strategy, used by the
sampling method, and not on the size of the sample.

5. Empirical Study

We now turn to real data. The objective is to understand, in practice,
the generalizability of patterns mined by the same mining approach, using
input from different sampling methods. We expect to observe results similar
to those of the simulation.

5.1. Baseline Related Work

For this study, we keep close to the procedure presented in [8] while
putting an emphasis on the sampling methods. We point out that authors
run into a filtering that might be problematic using the following direct
citation:

20

' '
Samples compared to

0.2

0.0

0.2

0.4

0.6

0.8

Co
nf

id
en

ce
 D

iff
er

en
ce

Sample Size
1%
10%
20%
100%

Figure 4: Difference in confidence between samples and P for different sample sizes, for
rule high→ low in the balanced scenario.

‘Remove frequent itemsets with no target API usage: Developers tend to
use different libraries and frameworks in their code to accomplish different
tasks. Our technique focuses on mining API usages of MicroProfile. There-
fore, we are not interested in API usages from other libraries or frameworks.
Thus, we remove all frequent itemsets that do not have at least one element
of MicroProfile API.’ (direct citation of [8], page 5).

To extend our analysis, we not only studied the same combination of
libraries as Nuryyev et al., but also included a second scenario with a more
balanced popularity of libraries.

• Imbalanced scenario (JavaX and MicroProfile): We study the same
target library as Nuryyev et al. and report on similar results from
association rule mining as the original work. We include alternatives
of sampling by considering the secondary JavaX library in co-used li-
brary samples. In this scenario, we face a significant difference in their
respective popularity.

• Balanced scenario (JUnit and Mockito): We also study a second case
with a more balanced popularity of libraries, focusing on the combina-
tion of JUnit and Mockito, which are frequently used together.

Notation: To describe the results obtained in these empirical scenarios,
we maintain consistency with the notation used in the simulation. Library

21

high corresponds to JavaX in the imbalanced scenario and to JUnit in the
balanced scenario, and the low library corresponds to MicroProfile in the
imbalanced scenario and to Mockito in the balanced scenario.

Table 2: Size of the different samples

Sample
Imbalanced Scenario Balanced Scenario
Repos. Observ. Repos. Observ.

P ? ? ? ?
R 754 1,254,633 754 1,254,633
H 2,693 19,852,532 2127 40,649,726
H′ 2,335 3,260,983 2016 6,942,311
L 1,317 10,566,780 1055 59,537,772
L′ 1,315 142,396 701 440,376
H ∨ L 1,316 11,090,623 951 56,051,500
H ∧ L 1,123 11,142,344 869 56,343,950

5.2. Characteristics of the Samples

Every sample is a set of client projects. We used the GitHub search API
to search for projects that include import sections with a reference to the
high library, the low library, or a combination of both. The characteristics
of the samples are summarized in Table 2.

5.2.1. Random Sample

We use the dataset provided in [4] to create a random sample of client
projects. The only restriction applied to the sample is a filter on Java as
the programming language. We sample for 1% of the Java projects, but only
754 of them include valid observations. The random sample has 1, 254, 633
observations in total.

5.2.2. Single Library Samples

For samples H and L, we use the GitHub Search API to search for Java
files containing import statements with the base package name of high and
low libraries, respectively. After we collect the observations in the client
projects for H and L, the samples H′ and L′ are derived by filtering the
observations for the presence of the respective library.

For example, in the case of the imbalanced scenario, from the 10, 566, 780
observations in L, we only keep those logic facts with a type of MicroProfile,

22

packaged under org.eclipse.microprofile. This results in 142, 396 observations in
L′ (approximately 1% of L). A consequence is that even more data on other
libraries is removed from this sample.

5.2.3. Co-used library samples

Similarly to H and L, we use the GitHub Search API to construct the
samples H ∨ L and H ∧ L. This search combines the presence of high and
low libraries in a file with the respective logical operators.

For example, in the case of the balanced scenario, we use the query ”import

org.junit” OR ”import org.mockito” language:Java for sample H ∨ L and the query
”import org.junit” AND ”import org.mockito” language:Java for sample H ∧ L.

5.3. Mining Algorithm

This section describes the procedure we designed to mine and compare
rules across different samples. First, we construct the different samples as
described above. Then, we mine a set of rules from the samples.

The technical details of mining align with the original method in [8]. We
use this same mining method, which is association rule mining, with a thresh-
old of 0.001 for support and 0.01 for confidence. We set these thresholds low
(less restrictive) to recover as many overlapping rules as possible across the
different samples. The thresholds do not influence the computed confidence
values, so they are not a threat to the validity of the results.

We mine observations that are logic facts for methods and fields. For each
method and field, we collect information describing the usage of libraries.
Usage information is represented as a set of the following logic constraints:

• The difference between method and field (method vs. field)

• Method’s return type (e.g., type(javax.json.JsonString))

• Field’s type (e.g., type(javax.json.JsonString))

• Parameter types (e.g., parameterType(javax.json.JsonString))

• Annotation types (e.g., annotation(org.eclipse.microprofile.jwt.Claim))

• Class annotations (containing a method or field) (e.g., classAnnotation(javax.ws.rs.Path))

• Inheritance hierarchy of a class (containing a method or field) (e.g., im-

plements(javax.ws.rs.Path))

• Calls to methods in the body of a method.

23

5.4. Rule Selection, Comparisons and Baseline

A key difference between the empirical and simulation studies is that
the empirical study lacks confidence values computed on the population and
thereby a formal baseline. Thus, this part of the study needs to compare con-
fidence values for the same rule mined from different samples with something
else.

Guided by the simulation results, we compare the confidence measures
to the best approximations of the population, thereby establishing a formal
baseline. Specifically, we use sample L′ for low → high and sample H′ for
high→ low (refer to the simulation results in Figure 3). We exclude random
samples from this comparison because they yield almost no overlapping rules,
rendering the comparison meaningless.

'
Samples compared to '

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 D

iff
er

en
ce

(a) rule high→ low imbalanced scenario.

'
Samples compared to '

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Co
nf

id
en

ce
 D

iff
er

en
ce

(b) rule low → high imbalanced scenario.

'
Samples compared to '

0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 D

iff
er

en
ce

(c) rule high→ low balanced scenario.

'
Samples compared to '

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
nf

id
en

ce
 D

iff
er

en
ce

(d) rule low → high balanced scenario.

Figure 5: Difference in confidence between samples and the baseline for the two scenarios.

24

5.5. Results

We now compare the rules mined on the samples.

5.5.1. Random Samples

Random sampling is commonly known to work, but it is impractical in
our case. For many rules that we see in other samples, the random sample
shows numerical errors or 0 confidence computed, rendering the comparison
meaningless. We exclude random samples from the plots.

5.5.2. Single Library Samples

In Figure 5, we show the differences between the confidence values by
a certain sampling method to our respective approximations of the popula-
tion. The four charts separately show high → low and low → high for the
imbalanced and balanced scenarios.

• Similar to the simulation, the confidence values computed on single
library samples targeting the library in the consequent (the ‘wrong’
side according to the simulation) can overestimate confidence.

• For the more restrictive samples H′ and L′, this overestimation is more
pronounced.

• In the balanced scenario, where popularity is more even, we noted that
overestimation is only an issue when taking samples H′ and L′ (lower
part of Figure 5).

Summarizing these results independent of what we assume approx-
imates the population best; Insight 1 (empirical): For implica-
tions of shape A→ B, and using the GitHub Search API, sampling
for the library in the antecedent (A) can result in different confi-
dence values than sampling for the library in the consequent (B).
This conforms to the simulation insight.

5.5.3. Co-used library samples

We now discuss co-used library samples. We limit our discussion to the
imbalanced scenario since the influence of sampling in the balanced scenario
on confidence is negligible. This relates to popularity (see Sec. 5.6.1).

25

From the simulation results, we expected that sample H ∨ L would be
the one closest to the confidence for both rule types. Here we find a central
inconsistency detected by our study. Sample H∨L does not work as expected.
We confirm by observing a difference to the baseline for both rule types in
the imbalanced scenario.

For sample H ∧ L, which we do not assume to be correct, the same
problems occur; confidence is systematically higher.

5.6. Interpretation GitHub Search API

We conclude that the GitHub Search API is even more of a black box than
we originally expected. We already know of several restrictions that must
be considered, such as pagination, rate limitations, and bisection strategies.
However, the problems with disjunction and conjunction are novel to us,
demonstrating a significant lack of transparency in how the API functions.
The API does not seem to properly reflect the proportions of the libraries
in the population when forming them and this is a significant threat for
generalizability as we show in the simulation.

Summarizing these results; Insight 2 (empirical): For implica-
tions of shape A → B and vice versa (B → A), and using the
GitHub Search API, sampling for the corresponding library in the
antecedent will result in different confidence values than sampling
for the disjunction A∨B. This does not conform to the simulation
insight.

5.6.1. Interpretation Popularity

The empirical studies, as well as the simulations, show a decrease in the
overestimation in the more balanced popularity scenario when compared to
imbalanced. The threat that we detected appears to be limited to highly
asymmetric popularity.

6. Threats and Limitations

The following are threats and limiting factors to our work.

• Generalizability Across Library Pairs: Evidence that stems from
our empirical case study is limited to the combinations of libraries ex-
amined. We presented two representative library combinations: JavaX

26

vs. MicroProfile, and JUnit vs. Mockito. We assume that other library
combinations should not deviate significantly from these scenarios, but
we cannot guarantee that. We also do not yet know how more complex
library structures involving more than just two libraries are related to
our findings.

On the other hand, we tried to mitigate threats of overfitting our ex-
periments to a particular library by showing our findings for a very
basic rule-mining algorithm. We do not learn parameters that could
relate to generalization in the sense of overfitting.

• Generalizability Across Mining Algorithms: We do not make
general statements about other mining algorithms.

• Potential Bias from Uncovered Filtering Criteria: Additional fil-
tering criteria, such as excluding forked repositories, archived projects,
and commented code, are relevant and often used in empirical software
engineering to reduce noise and improve data quality. For example,
forks can be found searching for the same dependencies as used to find
the original repository. This can cause libraries to be overrepresented
that are used in popular client projects that are forked a lot.

We assume that influence is marginal in our case. Out of the 2,693
repositories that use JavaX in our empirical study (imbalanced sce-
nario), none were forks, and only 6 were archived.

• GitHub as a Black Box: For our empirical study, we used the
GitHub search API to construct the samples. While the GitHub search
API provides access to a vast number of projects, the particular selec-
tion procedure applied by GitHub internally is not transparent to us.
This could have a strong effect on the way we ‘sample’ projects from
GitHub using the search API. One might not even call this sampling
in the strict sense. Even structuring of code files into repository might
have an impact.

We resolve this with transparency: We deploy the code used for this
study to allow for replication, but we cannot mitigate that the behavior
of the search API potentially changes. The black box nature of GitHub
Search remains a problem that is also part of the following discussion
section.

27

• Simulation Assumptions: The simulation study is limited by its
assumptions. Simulation results do not hold if the assumptions do
not hold. We tried to make the assumptions as realistic as possible.
However, most importantly, our assumptions are explicitly given in
code, executable, and can be subject to discussion and revision.

7. Related Work

There are many automated methods to extract properties about library
usage from a wide range of inputs. For a comprehensive survey, see [23]. Due
to the variety, we apply the following restrictions to scope our discussion.

• Our interest is in works that analyze regularities in software projects
that use (are clients of) a library. We do not focus on mining artifacts
specific to the library [24, 25, 26]. Such work is not relevant for a
systematic examination of methods to sample client projects.

• We focus on the static methods because dynamic ones work on data
collected from a running program. Such data is fundamentally different
from usage-related data and difficult to obtain. Future work should
examine the impact of sampling methods on dynamic techniques, too.

• We restrict our scope to works that infer usage patterns that represent
relationships between two elements X and Y . We exclude work for
retrieving code examples [27] or extracting usage data apart from API
usage [28, 29].

Element X and Y can be part of different or the same libraries or types.
Our structure follows such a division. The distinction between intra-library,
and inter-library usage is borrowed from [30].

7.1. Intra-library Usage Patterns

We first list methods that mine usage patterns that span multiple types
of a particular library. For example, a class in a client project may extend
or implement two different types from the same library. Examples for this
more general type of patterns include [31, 32, 33, 34, 17, 35, 36].

Authors of [8] derive the usages of a target library via the dependency
graph of its GitHub repository, and further remove ”demo” or ”toy” projects.
In [35], authors gather relevant code snippets from a code corpus obtained

28

through another baseline method. In [17], client projects are collected using
the domain-specific language and infrastructure called Boa [37].

Approaches like [34, 36, 33] retrieve relevant projects by searching for
the name of a library in the import statements of Java source files. Other
approaches, like [31], select projects manually.

Additionally, intra-library methods also apply filters to the collected data.
The approach proposed in [8] leverages a version of the mining algorithm
FP-Growth to mine frequent itemsets and further removes those that do not
contain at least one element of the library API. We have shown that this
might be harmful for inter-library usage patterns.

Graph-based models are usually built from library-related statements.
This is the case of the graph representation (GRAAM) produced in [32].
In [36] and [33], framework extension graphs must have at least one parameter
that is related to a framework type. Authors in [34] mine for patterns in
graphs derived from client class declarations that subtype a framework type.
In [31, 38], only public methods of the API of interest are considered.

The previous work does not mention sampling explicitly, but discusses the
data collection, or the data sets. However, in [31], Saied et al. evaluate the
generalizability of the detected patterns. The main assumption is that: API
usage patterns are generalizable if they have similar usage cohesion degree
in different contexts of client programs. In a subsequent paper [38], Saied
& Sahraoui intend to improve the generalizability of the mined patterns
also considering the library as such. More recent work uses representation
learning to improve the recommendation accuracy of statistical approaches,
especially for low-frequency APIs [39, 40].

All the discussed papers, except for [8], focus on a specific API and do
not analyze possible co-occurrences with APIs from other libraries. Data
collection, in particular the sampling, remains a central problem to all of
them.

7.2. Inter-library Usage Patterns

We did not find studies that particularly focus on mining inter-library
usage patterns. However, there is a group of studies positioned under the
term library co-usage.

In [41], authors visualize software component interactions between clients
and libraries, and between libraries and other libraries. In the conducted pilot
study, the authors selected 101 client projects of 11 libraries from Duets [42].
Sampling is not studied explicitly.

29

In [43], authors propose interactive tool support for exploration of API
usage scoped to a single project. This includes cases where two APIs are
used separately in two methods that perform different tasks and yet are in
the same project. The authors only restrict the collection of data to open-
source Java projects and use the Qualitas corpus [44] in their study. We can
see this as a form of random sampling.

In [30], the authors conduct an empirical study on API usages, which
explores, among other issues, to what degree programmers work with APIs
from different libraries. Authors count API usages involving single or multi-
ple libraries. In this case, the authors try to ensure the representativeness of
the collected data and select both small and large projects from various cate-
gories such as databases, servers, platforms, and API libraries. This is a form
of stratification in sampling that we did not yet examine. In [16], authors
conduct a large-scale study on Java and Android, and assess if popular APIs
tend to be used together. None of the previous work systematically examines
the impact of sampling methods on the quality of the mined patterns.

8. Discussion

Table 3 summarize the results of our hybrid study in terms of the different
types of patterns explored and the sampling methods where these patterns
best generalize to the population.

Table 3: Sampling methods that approximate results to the population. (∗ Theoretical
best approximation, less accurate than in the simulation)

Simulation Empirical

Type of pattern Rule examined
Available
baseline

Approximates
to baseline

Available
baseline

Approximates
to baseline

Intra-library high1→ high2
P

All Not examined

Inter-library
high→ low H H′ H ∨ L H′ H ∨ L∗low → high L L′ H ∨ L L′

From the insights presented in Sec. 3.3, we derived two main conclusions:

• When mining from client software projects, the sampling method used
influences the generalizability of the mined inter-library usage patterns;
see insight 1 and 2 (simulation) and insight 1 (empirical).

30

• Open-source forges, like GitHub, remain black boxes, and data col-
lected from them should be treated with caution; see insight 2 (em-
pirical).

We discuss these ideas in detail in the following subsections.

8.1. Sampling when Mining for Inter-library Usage Patterns

Our study shows that inter-library usage patterns in the form of implica-
tions A → B, where A and B involve different libraries, are complicated to
mine from samples. In particular, this is the case when sampling implies an
upfront filter by the libraries.

In a simulation study, we show that only when sampling for the disjunc-
tion of library A and B, the patterns generalize well. Sampling for library
A will provide misleading results for rules of the form B → A; sampling for
library B will provide misleading results for rules of the form A → B. This
poses a conceptual limitation for eventual approaches that need to mine both
directions.

Our empirical study shows that real empirical data sampled from GitHub
does not behave as we would expect from our simulation. Two important
sampling methods that should give the same correct result behave differently.
That means that one of the two sampling methods is definitely malfunction-
ing. We conclude that the GitHub search API is even more of a black box
than we originally expected.

This aligns with the findings of previous studies [3, 45, 46]. Although
it is a rich source of data on software development, mining GitHub for re-
search purposes must consider several pitfalls, like that some data is excluded
entirely, large files and long lines lead to truncated data and search is not
exhaustive2.

In essence, we don’t understand the indexing mechanisms and cannot
be sure what happens behind the GitHub search API. As a consequence,
researchers should investigate alternatives with more transparent and com-
prehensive indexing mechanisms.

8.2. Practical Implications and Recommendations

The main concern of our work is the generalizability of mined inter-library
usage patterns. When mining from a single library sample there is a risk of

2https://docs.github.com/en/search-github/github-code-search/

about-github-code-search#limitations

31

https://docs.github.com/en/search-github/github-code-search/about-github-code-search#limitations
https://docs.github.com/en/search-github/github-code-search/about-github-code-search#limitations

discovering patterns involving different libraries that do not generalize to the
broader population. The implication of this is relevant for both researchers
and developers.

8.2.1. Implications for Researchers

Researchers should be well aware of the possible implications for the va-
lidity of the results obtained depending on the applied sampling method.
When possible, relying only on single library samples for inter-library pat-
terns (without manual validation) should be avoided. Instead, it is advisable
to use random sampling.

Empirical papers studying libraries may have to deal with libraries that
are uncommon in the population. Since random sampling may still not work
for unpopular or rare libraries, other sampling methods (that combine mul-
tiple libraries) should be considered.

The paper shows that sampling projects using multiple libraries (e.g.,
H∨L) could improve generalizability in theory. However, in real-world data,
sample H ∨ L might not behave as expected. It is recommended to clearly
state the sampling strategy and its limitations in the threats to validity
sections of studies if producing and interpreting inter-library usage patterns.

Another important point to consider by researchers is that having a large
data set does not guarantee that results approximate the entire population.
Bigger datasets do not mitigate some threats of some sampling strategies. We
did show that when mining for patterns with multiple libraries, size might
not matter if limiting samples to specific libraries.

8.2.2. Implications for Developers

Mining of usage patterns has been widely adopted to automate various
software engineering tasks, such as bug and API misuse detection, code com-
pletion and recommendation systems, API documentation, and more [47].
The threats discussed in our paper are relevant for such tasks, especially
when the mined patterns are practically used in predictions across libraries.

Overestimation in the confidence of patterns extracted from single library
samples can lead to false positives during bug prediction activities and irrel-
evant recommendations in code completion systems or API documentation
techniques. Recommender systems could confidently suggest usage patterns
that do not work well outside this sample. Models trained on large samples
but obtained by limited sampling methods may show good performance in

32

the test environments but fail in real-world use. Even cross-validation will
not help if the original data is produced by a biased sampling method.

Developers using these tools and techniques that rely on mined patterns
should handle inter-library suggestions with caution, especially for rare li-
braries. Developers should be more skeptical about patterns for very unpop-
ular libraries. In popular libraries, this seems to be less of a problem.

8.2.3. Getting the Samples from GitHub

The last insight we can contribute is about a problem mostly out of our
reach (for developers and researchers). GitHub acts as a black box in the
sense that the way it stores, exposes, filters, and limits its data is not fully
transparent and accessible for us. The limitations of the GitHub search API
can be summarized by two main points:

1. Incomplete or unavailable data

2. Biased search

The GitHub search API do not expose all data about repositories. Some
historical data may be unavailable if a repository was deleted or made pri-
vate, and certain events are missing or truncated (e.g., long issue comments).
Additionally, API rate limits restrict data extraction, especially for unau-
thenticated requests, making it difficult to collect large datasets.

On the other hand, the GitHub search API does not guarantee returning
all matching results, as searches are ranked, limited to a maximum number,
and filtered using undisclosed criteria. This means older or less popular
repositories may be excluded, and search results may differ between identical
queries. These limitations could be the reason for the discrepancies observed
in our empirical study.

As a consequence, researchers and practitioners looking to study inter-
library usage patterns should seek alternative datasets with transparent in-
dexing, explore other code forges, or mirror data from other sources such as:
GHTorrent [48] or GHS (GitHub Search) [4]. Combining data from diverse
sources and validating findings across different sampling strategies, rather
than relying solely on GitHub, is recommended for more representative data.
Finally, all technical limitations, including data constraints and rate-limit
impacts, should be explicitly documented as threats to validity.

33

9. Conclusion

For the specific case of mining inter-library usage patterns, we present an
empirical study showing that mining on data sampled from GitHub does not
behave as expected based on a corresponding simulation. Specifically, two
sampling methods that should theoretically yield the same results instead
produce different outcomes. This discrepancy suggests that at least one of
the sampling methods is unreliable, assuming our simulation assumptions
hold. Our findings highlight that the GitHub search API operates more as a
black box than previously anticipated.

At its core, this study examines the generalizability of findings in a spe-
cific area of software engineering. Our insights have practical implications:
they can inform the choice of sampling methods in future research, or be
highlighted as potential threats to validity in similar studies.

Relying only on data from single-library sampling for inter-library pat-
terns (without manual validation) can weaken the validity of results. Ran-
dom sampling is better but often not practical for rare libraries. Combining
data from multiple sources and considering alternative mirror datasets like
GHTorrent is recommended when possible.

Researchers and practitioners must stay alert. Recognizing and docu-
menting the limitations of data collection and the black box nature of the
GitHub search API is important to ensure the validity of mining studies. De-
velopers using mined usage patterns in tools should also be careful, especially
when working with patterns involving less popular libraries.

Future work should conduct more experiments to confirm these findings
in similar settings. It is important to address and resolve the issues identified
in this study. Further research should develop methods that help ensure the
generalizability of results when mining inter-library usage patterns. This
includes providing more transparent indexing mechanisms as alternatives to
GitHub.

[1] P. S. Levy and S. Lemeshow, Sampling of populations: methods and
applications. John Wiley & Sons, 2013.

[2] S. Baltes and P. Ralph, “Sampling in software engineering research: a
critical review and guidelines,” Empir. Softw. Eng., vol. 27, no. 4, p. 94,
2022.

[3] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “Findings from github:
methods, datasets and limitations,” in MSR. ACM, 2016, pp. 137–141.

34

[4] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in MSR. IEEE, 2021, pp. 560–564.

[5] W. J. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app
sampling problem for app store mining,” in MSR. IEEE Computer
Society, 2015, pp. 123–133.

[6] G. Gousios, “The ghtorent dataset and tool suite,” in MSR. IEEE
Computer Society, 2013, pp. 233–236.

[7] S. Ghaisas, P. Rose, M. Daneva, K. Sikkel, and R. J. Wieringa, “Gen-
eralizing by similarity: lessons learnt from industrial case studies,” in
CESI@ICSE. IEEE Computer Society, 2013, pp. 37–42.

[8] B. Nuryyev, A. K. Jha, S. Nadi, Y. Chang, E. Jiang, and V. Sundaresan,
“Mining Annotation Usage Rules: A Case Study with MicroProfile,” in
ICSME. IEEE, 2022, pp. 553–562.

[9] P. T. Nguyen, R. Rubei, J. D. Rocco, C. D. Sipio, D. D. Ruscio, and
M. D. Penta, “Dealing with popularity bias in recommender systems
for third-party libraries: How far are we?” in MSR. IEEE, 2023, pp.
12–24.

[10] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, “Defining
and continuous checking of structural program dependencies,” in ICSE.
ACM, 2008, pp. 391–400.

[11] Y. Smaragdakis and M. Bravenboer, “Using datalog for fast and easy
program analysis,” in Datalog, ser. Lecture Notes in Computer Science,
vol. 6702. Springer, 2010, pp. 245–251.

[12] C. D. Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL
tool suite for querying programs in symbiosis with eclipse,” in PPPJ.
ACM, 2011, pp. 71–80.

[13] C. C. Aggarwal, Data Mining - The Textbook. Springer, 2015. [Online].
Available: https://doi.org/10.1007/978-3-319-14142-8

[14] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules
between sets of items in large databases,” in SIGMOD Conference.
ACM Press, 1993, pp. 207–216.

35

https://doi.org/10.1007/978-3-319-14142-8

[15] A. Ceglar and J. F. Roddick, “Association mining,” ACM Comput.
Surv., vol. 38, no. 2, p. 5, 2006.

[16] C. Lima and A. C. Hora, “What are the characteristics of popular apis?
A large-scale study on java, android, and 165 libraries,” Softw. Qual. J.,
vol. 28, no. 2, pp. 425–458, 2020.

[17] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “In-
vestigating next steps in static api-misuse detection,” in MSR. IEEE
/ ACM, 2019, pp. 265–275.

[18] T. P. Morris, I. R. White, and M. J. Crowther, “Using simulation studies
to evaluate statistical methods,” Statistics in medicine, vol. 38, no. 11,
pp. 2074–2102, 2019.

[19] J. Härtel and R. Lämmel, “Operationalizing threats to MSR studies by
simulation-based testing,” in MSR. ACM, 2022, pp. 86–97.

[20] ——, “Operationalizing validity of empirical software engineering stud-
ies,” Empir. Softw. Eng., vol. 28, no. 6, p. 153, 2023.

[21] J. Härtel, “Improved labeling of security defects in code review by active
learning with llms,” in EASE, 2025, to appear.

[22] G. W. Imbens and D. B. Rubin, Causal inference in statistics, social,
and biomedical sciences. Cambridge University Press, 2015.

[23] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2012.

[24] R. Lämmel, E. Pek, and J. Starek, “Large-scale, ast-based api-usage
analysis of open-source java projects,” in SAC. ACM, 2011, pp. 1317–
1324.

[25] D. Qiu, B. Li, and H. Leung, “Understanding the API usage in java,”
Inf. Softw. Technol., vol. 73, pp. 81–100, 2016.

[26] J. Härtel, H. Aksu, and R. Lämmel, “Classification of apis by hierarchi-
cal clustering,” in ICPC. ACM, 2018, pp. 233–243.

36

[27] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: mining and
recommending API usage patterns,” in ECOOP, ser. Lecture Notes in
Computer Science, vol. 5653. Springer, 2009, pp. 318–343.

[28] M. A. Saied, A. Ouni, H. A. Sahraoui, R. G. Kula, K. Inoue, and D. Lo,
“Improving reusability of software libraries through usage pattern min-
ing,” J. Syst. Softw., vol. 145, pp. 164–179, 2018.

[29] C. Thiede, W. Scheibel, D. Limberger, and J. Döllner, “Augmenting
library development by mining usage data from downstream dependen-
cies,” in ENASE. SCITEPRESS, 2022, pp. 221–232.

[30] H. Zhong and H. Mei, “An empirical study on API usages,” IEEE Trans.
Software Eng., vol. 45, no. 4, pp. 319–334, 2019.

[31] M. A. Saied, O. Benomar, H. Abdeen, and H. A. Sahraoui, “Mining
multi-level API usage patterns,” in SANER. IEEE Computer Society,
2015, pp. 23–32.

[32] A. Shokri, J. C. S. Santos, and M. Mirakhorli, “Arcode: Facilitating
the use of application frameworks to implement tactics and patterns,”
in ICSA. IEEE, 2021, pp. 138–149.

[33] Y. Pacheco, J. D. Bleser, T. Molderez, D. D. Nucci, W. D. Meuter, and
C. D. Roover, “Mining scala framework extensions for recommendation
patterns,” in SANER. IEEE, 2019, pp. 514–523.

[34] Y. Pacheco, A. Zerouali, and C. D. Roover, “Mining for framework
instantiation pattern interplays,” in SCAM. IEEE, 2022, pp. 121–131.

[35] X. Gu, H. Zhang, and S. Kim, “Codekernel: A graph kernel based
approach to the selection of API usage examples,” in ASE. IEEE,
2019, pp. 590–601.

[36] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Recom-
mending framework extension examples,” in ICSME. IEEE Computer
Society, 2017, pp. 456–466.

[37] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories,”
in ICSE. IEEE Computer Society, 2013, pp. 422–431.

37

[38] M. A. Saied and H. A. Sahraoui, “A cooperative approach for combining
client-based and library-based API usage pattern mining,” in ICPC.
IEEE Computer Society, 2016, pp. 1–10.

[39] C. Ling, Y. Zou, and B. Xie, “Graph neural network based collaborative
filtering for API usage recommendation,” in SANER. IEEE, 2021, pp.
36–47.

[40] Y. Chen, C. Gao, X. Ren, Y. Peng, X. Xia, and M. R. Lyu, “API us-
age recommendation via multi-view heterogeneous graph representation
learning,” IEEE Trans. Software Eng., vol. 49, no. 5, pp. 3289–3304,
2023.

[41] S. Venkatanarayanan, J. Dietrich, C. Anslow, and P. Lam, “Vizapi:
Visualizing interactions between java libraries and clients,” in VISSOFT.
IEEE, 2022, pp. 172–176.

[42] T. Durieux, C. Soto-Valero, and B. Baudry, “Duets: A dataset of repro-
ducible pairs of java library-clients,” in MSR. IEEE, 2021, pp. 545–549.

[43] C. D. Roover, R. Lämmel, and E. Pek, “Multi-dimensional exploration
of API usage,” in ICPC. IEEE Computer Society, 2013, pp. 152–161.

[44] E. D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The qualitas corpus: A curated collection
of java code for empirical studies,” in APSEC. IEEE Computer Soci-
ety, 2010, pp. 336–345.

[45] G. Gousios and D. Spinellis, “Mining software engineering data from
github,” in ICSE (Companion Volume). IEEE Computer Society, 2017,
pp. 501–502.

[46] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and
D. E. Damian, “An in-depth study of the promises and perils of mining
github,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2035–2071, 2016.

[47] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API property inference techniques,” IEEE Trans. Software
Eng., vol. 39, no. 5, pp. 613–637, 2013.

[48] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in MSR. IEEE Computer Society, 2012, pp. 12–21.

38

	Introduction
	Motivation
	Problem Statement
	Research Method and Results
	Contributions and Actionable Insights
	Roadmap

	Background on Pattern Mining and Sampling
	Pattern Mining Method
	Representational Mapping
	Confidence and Support

	Examined Sampling Methods
	Random Sample
	Single Library Samples
	Restrictive Single Library Samples
	Co-used library samples

	Research Method
	Scenarios on Asymmetric Library Popularity
	Hybrid Study
	Simulation Study
	Empirical Study

	Insights

	Simulation Study
	Common Assumptions
	Co-usage
	Population
	Rules
	Sampling Methods
	General Simulation Setup

	Intra-library Usage Patterns
	Specialized Rules
	Simulation Results

	Inter-library Usage Patterns: Simulation Results
	Sample Size

	Empirical Study
	Baseline Related Work
	Characteristics of the Samples
	Random Sample
	Single Library Samples
	Co-used library samples

	Mining Algorithm
	Rule Selection, Comparisons and Baseline
	Results
	Random Samples
	Single Library Samples
	Co-used library samples

	Interpretation GitHub Search API
	Interpretation Popularity

	Threats and Limitations
	Related Work
	Intra-library Usage Patterns
	Inter-library Usage Patterns

	Discussion
	Sampling when Mining for Inter-library Usage Patterns
	Practical Implications and Recommendations
	Implications for Researchers
	Implications for Developers
	Getting the Samples from GitHub

	Conclusion

