Dynamic Analysis Extending a Shadow Runtime for
Profit

Aédron Munsters
Vrije Universiteit Brussel
Brussels, Belgium
amunster@vub.be

CCS Concepts: « Software and its engineering — Object
oriented frameworks; Dynamic analysis; « Information
systems — Web applications; « Security and privacy —
Information flow control.

Keywords: WebAssembly, dynamic analysis, instrumenta-
tion platform, shadow execution

1 Extended Abstract

WebAssembly [1] presents a compelling target for dynamic
analysis due to its well-defined formal semantics, determin-
istic execution model, and cross-platform portability. Source
code instrumentation platforms for WebAssembly such as
Wasabi [2] and Wastrumentation [3], typically expose a set
of hooks for which analysis developers can implement trap
functions. These traps serve as callbacks that are invoked
upon the execution of specific program events, enabling run-
time introspection and intercession. However, the runtime
context available within each trap remains limited. For in-
stance, during a memory load operation, the trap function
has access to the static instruction location, memory offset,
and the resulting value of the operation, but it lacks infor-
mation on the program state.

While these platforms offer accessible APIs that closely re-
flect WebAssembly’s runtime semantics, they do not expose
critical information for more sophisticated analyses, such
as the execution value stack, global variables state, and lin-
ear memory. As a result, analyses that require tracking state
across multiple traps, such as taint analysis, often resort to ad
hoc reconstruction of the virtual machine’s semantics. This
is, however, an error-prone and labour-intensive process that
must be reimplemented per analysis.

In this talk, we present ongoing work on a shadow execu-
tion framework that faithfully mimics the execution environ-
ment for WebAssembly programs designed to address these
limitations by providing a reusable foundation for heavy-
weight dynamic analyses. We have built our prototype as an
analysis layer for Wastrumentation and it is implemented in
Rust.

The shadow execution framework abstracts away the man-
ual effort of re-implementing VM semantics, enabling analy-
ses to reason over complete execution state and increase the
analysis complexity, leading to more interesting and novel
insights. We demonstrate this through two extensions: (a)
a taint tracking semantics that propagates metadata across

Angel Luis Scull Pupo
Vrije Universiteit Brussel
Brussels, Belgium
ascullpu@vub.be

Elisa Gonzalez Boix
Vrije Universiteit Brussel
Brussels, Belgium
egonzale@vub.be

instructions, and (b) an interactive online debugger that en-
ables step-by-step inspection of program execution, even for
high-level languages compiled to WebAssembly.

We aim to demonstrate how our approach shifts the bur-
den of maintaining execution state correctness away from
individual analysis implementations, leading to a shared ba-
sis for heavyweight analyses with improved correctness and
potential for better performance.

Because our shadow execution is implemented in Rust,
analyses built atop it can benefit from standard compiler
optimizations. For example, if a specific analysis does not
monitor interactions with linear memory, the Rust compiler
could eliminate the corresponding instrumentation logic en-
tirely, thereby reducing the runtime overhead and improving
efficiency of the analysis.

We believe the framework also serves as a validation tool
for the correctness and completeness of Wastrumentation’s
instrumentation logic. By executing the shadow execution in
parallel with the original program, we can detect mismatches
between expected and observed behavior, exposing subtle
bugs in the rewriting process.

References

[1] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017.
Bringing the web up to speed with WebAssembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2017). Association for Computing Machinery,
New York, NY, USA, 185-200. doi:10.1145/3062341.3062363
Daniel Lehmann and Michael Pradel. 2019. Wasabi: A Framework for
Dynamically Analyzing WebAssembly. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 1045-1058. doi:10.1145/
3297858.3304068
[3] Aédron Munsters, Angel Luis Scull Pupo, and Elisa Gonzalez Boix. 2025.
Wastrumentation: Portable WebAssembly Dynamic Analysis with Sup-
port for Intercession. In 39th European Conference on Object-Oriented
Programming (ECOOP 2025) (Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 333), Jonathan Aldrich and Alexandra Silva (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany,
23:1-23:29. doi:10.4230/LIPlcs.ECOOP.2025.23

[2

—


https://orcid.org/0000-0001-5593-1273
https://orcid.org/0000-0003-2083-1285
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.4230/LIPIcs.ECOOP.2025.23

	1 Extended Abstract
	References

