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1 Extended Abstract

WebAssembly [1] presents a compelling target for dynamic
analysis due to its well-defined formal semantics, determin-
istic execution model, and cross-platform portability. Source
code instrumentation platforms for WebAssembly such as
Wasabi [2] and Wastrumentation [3], typically expose a set
of hooks for which analysis developers can implement trap
functions. These traps serve as callbacks that are invoked
upon the execution of specific program events, enabling run-
time introspection and intercession. However, the runtime
context available within each trap remains limited. For in-
stance, during a memory load operation, the trap function
has access to the static instruction location, memory offset,
and the resulting value of the operation, but it lacks infor-
mation on the program state.

While these platforms offer accessible APIs that closely re-
flect WebAssembly’s runtime semantics, they do not expose
critical information for more sophisticated analyses, such
as the execution value stack, global variables state, and lin-
ear memory. As a result, analyses that require tracking state
across multiple traps, such as taint analysis, often resort to ad
hoc reconstruction of the virtual machine’s semantics. This
is, however, an error-prone and labour-intensive process that
must be reimplemented per analysis.

In this talk, we present ongoing work on a shadow execu-
tion framework that faithfully mimics the execution environ-
ment for WebAssembly programs designed to address these
limitations by providing a reusable foundation for heavy-
weight dynamic analyses. We have built our prototype as an
analysis layer for Wastrumentation and it is implemented in
Rust.

The shadow execution framework abstracts away the man-
ual effort of re-implementing VM semantics, enabling analy-
ses to reason over complete execution state and increase the
analysis complexity, leading to more interesting and novel
insights. We demonstrate this through two extensions: (a)
a taint tracking semantics that propagates metadata across
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instructions, and (b) an interactive online debugger that en-
ables step-by-step inspection of program execution, even for
high-level languages compiled to WebAssembly.

We aim to demonstrate how our approach shifts the bur-
den of maintaining execution state correctness away from
individual analysis implementations, leading to a shared ba-
sis for heavyweight analyses with improved correctness and
potential for better performance.

Because our shadow execution is implemented in Rust,
analyses built atop it can benefit from standard compiler
optimizations. For example, if a specific analysis does not
monitor interactions with linear memory, the Rust compiler
could eliminate the corresponding instrumentation logic en-
tirely, thereby reducing the runtime overhead and improving
efficiency of the analysis.

We believe the framework also serves as a validation tool
for the correctness and completeness of Wastrumentation’s
instrumentation logic. By executing the shadow execution in
parallel with the original program, we can detect mismatches
between expected and observed behavior, exposing subtle
bugs in the rewriting process.
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