
Platform Variability

Dennis Wagelaar
Software Languages Lab
 dennis.wagelaar@vub.ac.be

mailto:dennis.wagelaar@vub.ac.be

01/03/10
Platform Variability

Slide: 2 © Dennis Wagelaar

Platform Variability:
Context

01/03/10
Platform Variability

Slide: 3 © Dennis Wagelaar

Platform Variability:
Context

It is hard to maintain software that is portable
to multiple platforms:
● Separate implementations for each platform
● Separate testing for each platform
● Disconnected software evolution
● Hard to reuse common parts between variants

01/03/10
Platform Variability

Slide: 4 © Dennis Wagelaar

Platform Variability example:
Skype (at a certain point in time)

➔Audio/Video
➔Conference
➔SkypeCast
➔PublicChat

➔Audio/video
➔Conference

➔Only audio

01/03/10
Platform Variability

Slide: 5 © Dennis Wagelaar

Platform Variability example:
Skype Mobile (at a certain point in time)

➔Only audio

01/03/10
Platform Variability

Slide: 6 © Dennis Wagelaar

Approach

Background

Outline
Context

Platforms

Platform-aware Configuration

Tool supportApplications

Summary

Software Product Lines

Classic solutions

Platform Ontologies

Integrated approach

01/03/10
Platform Variability

Slide: 7 © Dennis Wagelaar

Platforms:
What is a platform?

➔ What is meant by “platform” in general?
– “A platform is any base of technologies on which other technologies

or processes are built.” [Pohl et al. 2005]

➔ More specific:
– A platform is a combination of visible hardware and/or software

technologies on top of which other hardware and/or software is
built.

➔ Examples:
– Java, Windows, WinTel, ARM, EJB, Eclipse, ...

01/03/10
Platform Variability

Slide: 8 © Dennis Wagelaar

Platforms:
What is the purpose of a platform?

➔ Platforms originate from:
– A desire to “wrap” technologies, meant to be used as a part of an

end-user technology, as a standardised/stable platform.

– In Software Product Lines, a desire to organise core assets of the
product line into a platform that can safely be reused in all of the
derived products.

➔ So the purpose is:
– To provide a sound and stable basis for technology reuse.

– To provide a repository in which to put reusable technology.

01/03/10
Platform Variability

Slide: 9 © Dennis Wagelaar

Platforms:
Why vary the platform?

➔ Changing the platform goes against the purpose of the
platform:
– A platform was meant to be a “sound and stable basis”!

– A platform provides a means for reuse!

➔ So, why do it??

01/03/10
Platform Variability

Slide: 10 © Dennis Wagelaar

Platforms:
Why vary the platform?

➔ Let's look at common causes of Platform Variability:

01/03/10
Platform Variability

Slide: 11 © Dennis Wagelaar

Software Product Lines & Platforms:
Overview

Adapted from http://www.softwareproductlines.com

SPL
Configurator

Variation Points

Core Asset
N

Variation Points

Core Asset
N

Variation Points

Core Asset
N

Product Models

Product A

Product B

Product M

Pro
vi

de

Pro
vi

de

Pla
tfo

rm

Pla
tfo

rm

http://www.softwareproductlines.com/

01/03/10
Platform Variability

Slide: 12 © Dennis Wagelaar

Cause of Platform Variation in SPL:
The two lifecycles

Platform lifecycle

Product lifecycle

This is where you have
to re-integrate for each
platform release

01/03/10
Platform Variability

Slide: 13 © Dennis Wagelaar

Approach

Background

Outline
Context

Platforms

Platform-aware Configuration

Tool supportApplications

Summary

Software Product Lines

Classic solutions

Platform Ontologies

Integrated approach

01/03/10
Platform Variability

Slide: 14 © Dennis Wagelaar

Classic solutions for Platform Variability:
Overview

➔ Solutions for Platform Variability typically take the form of
an abstraction layer:
– Application of Design Patterns

– Bridge, Abstract Factory, Adapter, ...

– Cross-platform interpreter/virtual machine

– Java, SmallTalk, JavaScript, Python, ...

– Transformation-based approach

– Model Driven Architecture, embedded DSLs (e.g. in Ruby), ...

01/03/10
Platform Variability

Slide: 15 © Dennis Wagelaar

Example Platform Variability solution:
Abstract Factory pattern

Source: Wikipedia

01/03/10
Platform Variability

Slide: 16 © Dennis Wagelaar

Example Platform Variability solution:
Abstract Factory pattern

Source: Wikipedia

Each element that requires
platform abstraction must
be added manually, and for
each platform

This design pattern
application only
covers the GUI

01/03/10
Platform Variability

Slide: 17 © Dennis Wagelaar

Example Platform Variability solution:
Java

“Write Once, Run Anywhere”

01/03/10
Platform Variability

Slide: 18 © Dennis Wagelaar

Example Platform Variability solution:
Java

JDK

PersonalJava

J2SE

J2EE

J2ME

Java SE

Java EE

CLDC

PBP PPCDC

MIDPJava ME

Which Java
technology do I

target?

01/03/10
Platform Variability

Slide: 19 © Dennis Wagelaar

Example Platform Variability solution:
Model Driven Architecture

PIM

PSM

Transformation

➔ Design a Platform Independent Model
(PIM)

➔ Automatically transform to a Platform
Specific Model (PSM)

➔ Repeat until you reach code
– “Platform Independent” is relative:

– Example: independent from J2SE, J2EE and
J2ME, but specific to Java

– Example: independent from OOP, RDBMS, but
specific to data modelling

01/03/10
Platform Variability

Slide: 20 © Dennis Wagelaar

Example Platform Variability solution:
Model Driven Architecture

PIM

PSM

Transformation

➔ Targeting multiple platforms requires
multiple transformation definitions

PSM

Transformation

PSM

Transformation

01/03/10
Platform Variability

Slide: 21 © Dennis Wagelaar

Example Platform Variability solution:
Model Driven Architecture

PIM

PSM

Transformation

➔ Targeting multiple platforms requires
multiple transformation definitions

PSM

Transformation

PSM

Transformation

Maintenance problem remains:
● Separate transformations for each platform
● For similar platforms, duplicated transformation code

01/03/10
Platform Variability

Slide: 22 © Dennis Wagelaar

Example Platform Variability solution:
Duplicated transformation code in the MDA

rule Property {
 from s : UML2!Property (...)
 to t : UML2!Property (
 ...,
 type <- if s.isSingle then

s.type
 else

'java::util::Vector'.type()
 endif)

}

Java SE Java ME PPJava ME MIDP

This is where a platform
binding/dependency is
introduced

This platform dependency works for all platforms below

01/03/10
Platform Variability

Slide: 23 © Dennis Wagelaar

Example Platform Variability solution:
Stepwise Refinement in the MDA

PIM

PSM
1

Transformation

➔ Use stepwise refinement
transformations:
– Smaller, reusable transformation steps

– Refinement transformations may be reused
for multiple target platforms

– E.g. Java SE, Java ME MIDP, Java ME PP, ...

PSM
2

Transformation

01/03/10
Platform Variability

Slide: 24 © Dennis Wagelaar

Classic solutions for Platform Variability:
Application of Design Patterns

➔ Advantages:
– Easy to apply, no extra

technology required

– Standard OO language
features are sufficient

– Platform Variability is bridged
at run-time

– Possibility to move platform

➔ Disadvantages:
– Must be applied manually

and locally for each
platform-specific context

– Maintenance effort for
supporting multiple platforms
is not much reduced

– Platform Variability is bridged
at run-time, even though the
target platform may have
been fixed before

– Can impose unnecessary
overhead

01/03/10
Platform Variability

Slide: 25 © Dennis Wagelaar

Classic solutions for Platform Variability:
Cross-platform interpreter/virtual machine

➔ Advantages:
– Platform differences are

bridged automatically

– Low maintenance

– Platform Variability is bridged
at run-time

– Possibility to move platform

➔ Disadvantages:
– Platform Variability is bridged

at run-time, even though the
target platform may have
been fixed before

– Performance hit

– There may not exist
general purpose
abstractions for all
platform differences

– Becomes especially clear in
the domain of user interfaces

01/03/10
Platform Variability

Slide: 26 © Dennis Wagelaar

Classic solutions for Platform Variability:
Transformation-based approach

➔ Advantages:
– Platform differences are

bridged automatically

– Low(er) maintenance

– Platform Variability is bridged
at compile-time

– No performance hit

➔ Disadvantages:
– Platform Variability is bridged

at compile-time

– Cannot move platform

– Transformations are domain-
specific

– Maintenance effort moved
to transformations

01/03/10
Platform Variability

Slide: 27 © Dennis Wagelaar

Classic solutions for Platform Variability:
Conclusions

➔ None of the classic solutions solves all our problems
– But each solution has strong and weak points!

➔ Platform Variability can be tackled using a combination of
these solutions, e.g.:
– If it is feasible to use an existing interpreter/virtual machine-based

solution, apply it first

– Smaller platform differences that occur many times can be covered
using a transformation-based approach

– Larger platform differences that occur locally can be covered using
design patterns

01/03/10
Platform Variability

Slide: 28 © Dennis Wagelaar

Integrated Platform Variability approach:
Overview

Product
1

Platform-specific
building blocks

...

Product
2

Product
3

C
onfigurator

Platform-independent
core

Software is described in a
Platform-independent core
that is valid for all targeted

platforms →
Targeted platforms must have

a common denominator,
such as a standard or

reference implementation!!!

01/03/10
Platform Variability

Slide: 29 © Dennis Wagelaar

Integrated Platform Variability approach:
Overview

Product
1

Platform-specific
building blocks

...

Product
2

Product
3

C
onfigurator

Platform-independent
core

Platform-specific
building blocks
(components, model
transformations, ...) are
combined with the
platform-independent
core

The result of these
combinations are the
platform-specific
software products

01/03/10
Platform Variability

Slide: 30 © Dennis Wagelaar

Integrated Platform Variability approach:
Platform Model

Product
1

Platform-specific
building blocks

...

Product
2

Product
3

C
onfigurator

Platform-independent
core

Platform
Dependency

Constraints

Platform
Model

As the number of
reusable platform-
specific building blocks
increases, it becomes
harder to remember for
which platforms they
are valid

We propose to make
platform
dependencies explicit
in a Platform Model

01/03/10
Platform Variability

Slide: 31 © Dennis Wagelaar

Platform Model:
Purpose and anatomy

➔ The Platform Model must be able to record platform
dependencies in general
– No technology-specific approach (Autoconf, ENVY, OSGi, …)

– A general domain description language is required

➔ The Platform Model must support checking dependencies
against specific platform instances
– Logic-based languages provide a general framework for this

➔ Ontologies, and OWL DL in particular, fit the bill
– The platform domain concepts are described first

– Dependencies and instances are described on top of these

01/03/10
Platform Variability

Slide: 32 © Dennis Wagelaar

Approach

Background

Outline
Context

Platforms

Platform-aware Configuration

Tool supportApplications

Summary

Software Product Lines

Classic solutions

Platform Ontologies

Integrated approach

01/03/10
Platform Variability

Slide: 33 © Dennis Wagelaar

Platform Ontologies:
Overview

Platform
vocabulary
ontology

Java
vocabulary
ontology

JDK 1.1
vocabulary
ontology

J2SE 1.2
vocabulary
ontology

J2ME PP 1.0
vocabulary
ontology

Platform
dependency
constraint
ontology

Platform
instance
ontology

01/03/10
Platform Variability

Slide: 34 © Dennis Wagelaar

Platform Ontologies:
Platform vocabulary ontology

Platform
Software

Hardware

Virtual
Machine

isa
providesFeature*

Library

Feature

isa

A Platform provides a
number of Features,
which can be
implemented in
Hardware or Software

01/03/10
Platform Variability

Slide: 35 © Dennis Wagelaar

Platform Ontologies:
Java vocabulary ontology

Platform
Software

Hardware

Virtual
Machine

isa
providesFeature*

Library

Feature

isa
JavaVMJavaLibrary

isa

isa

A JavaLibrary is a kind
of Library, and a
JavaVM is a kind of
VirtualMachine

01/03/10
Platform Variability

Slide: 36 © Dennis Wagelaar

Platform Ontologies:
J2ME PP 1.0 vocabulary ontology

Platform
Software

Hardware

Virtual
Machine

isa
providesFeature*

Library

Feature

isa
JavaVMJavaLibrary

isa

isa

J2me-pp-1_0ClassLibrary

JavaUtilLibraryJavaxMicroeditionIoLibrary

isa

isa

The J2ME PP 1.0 Class
Library can be
subdivided in its various
packages,
javax.microedition.io,
java.util, etc.

A JavaUtilLibrary is a
JavaLibrary that
provides the java.util
part of the J2ME PP 1.0
API.

01/03/10
Platform Variability

Slide: 37 © Dennis Wagelaar

Platform Ontologies:
J2ME PP 1.0 vocabulary ontology

Platform
Software

Hardware

Virtual
Machine

isa
providesFeature*

Library

Feature

isa
JavaVMJavaLibrary

isa

isa

J2me-pp-1_0ClassLibrary

JavaUtilLibraryJavaxMicroeditionIoLibrary

midp:JavaUtilLibrarymidp:JavaxMicroeditionIoLibrary

isa

isa isa

isa

The different
JavaLibrary subclasses
from different Java
platforms can be related
to each other in terms
of compatibility

The java.util part of the
J2ME PP 1.0 API is a
superset of the java.util
part of the J2ME MIDP 1.0
API →
Each PP JavaUtilLibrary
can also be considered an
MIDP JavaUtilLibrary

01/03/10
Platform Variability

Slide: 38 © Dennis Wagelaar

Platform Ontologies:
J2ME PP 1.0 vocabulary ontology

Platform
Software

Hardware

Virtual
Machine

isa
providesFeature*

Library

Feature

isa
JavaVMJavaLibrary

isa

isa

J2me-pp-1_0ClassLibrary

JavaUtilLibraryJavaxMicroeditionIoLibrary

midp:JavaUtilLibrarymidp:JavaxMicroeditionIoLibrary

isa

isa isa

isa

The actual platform ontologies contain many more concepts, and
also explain the concept hierarchy in a formal way

01/03/10
Platform Variability

Slide: 39 © Dennis Wagelaar

io

zaurusSL-C1000

platform:Platform

platform:providesFeature

j2me-pp-1_0:J2me-pp-1_0ClassLibrary

zaurusClassLibrary

io

Platform Ontologies:
Platform instances

The Zaurus SL-C1000
PDA provides a J2ME PP
with a J2ME PP Class
Library

01/03/10
Platform Variability

Slide: 40 © Dennis Wagelaar

rule Property {
 from s : UML2!Property (...)
 to t : UML2!Property (
 ...,
 type <- if s.isSingle then

s.type
 else

'java::util::Vector'.type()
 endif)

}

Platform Ontologies:
Platform dependencies

The java.util.Vector
class appears in the
java.util part of the
J2ME MIDP API.

01/03/10
Platform Variability

Slide: 41 © Dennis Wagelaar

platform:Platform

JavaUtilPlatform

 ≡ ∃ platform:providesFeature midp:JavaUtilLibrary

isa

Platform Ontologies:
Platform dependencies

We require a Platform that
provides a Library that
implements java.util from
J2ME MIDP 1.0

01/03/10
Platform Variability

Slide: 42 © Dennis Wagelaar

platform:Platform

JavaUtilPlatform

 ≡ ∃ platform:providesFeature midp:JavaUtilLibrary

isa

io

zaurusSL-C1000

platform:providesFeature

j2me-pp-1_0:J2me-pp-1_0ClassLibrary

io

zaurusClassLibrary

midp:JavaUtilLibrary

isa

io = inferred

Platform Ontologies:
Platform dependencies

An automatic
reasoner can
compare the
dependency
constraint against a
specific platform
instance...

...and the reasoner infers whether the
platform instance satisfies the
platform dependency constraint

01/03/10
Platform Variability

Slide: 43 © Dennis Wagelaar

platform:Platform

JavaUtilPlatform

 ≡ ∃ platform:providesFeature midp:JavaUtilLibrary

Java2UtilPlatform

 ≡ ∃ platform:providesFeature pp:JavaUtilLibrary

isa
pp:JavaUtilLibrary

midp:JavaUtilLibrary

isa

rule Property {
 ...
 'java::util::List'.type()
 ...
}

Platform Ontologies:
Platform dependencies

Different platform
dependencies can
also be compared...

01/03/10
Platform Variability

Slide: 44 © Dennis Wagelaar

isa = inferred

platform:Platform

JavaUtilPlatform

 ≡ ∃ platform:providesFeature midp:JavaUtilLibrary

Java2UtilPlatform

 ≡ ∃ platform:providesFeature pp:JavaUtilLibrary

isa
pp:JavaUtilLibrary

midp:JavaUtilLibrary

isa

Platform Ontologies:
Platform dependencies

...and automatically
classified as more-
specific by the
reasoner

01/03/10
Platform Variability

Slide: 45 © Dennis Wagelaar

Integrated Platform Variability approach:
Platform-aware Configuration

Product
1

Platform-specific
building blocks

...

Product
2

Product
3

C
onfigurator

Platform-independent
core

Platform
Dependency

Constraints

Platform
Model

Configuration
Models

Analogous to SPLs, we
can use Configuration
Models to specify a
platform-specific
product configuration

01/03/10
Platform Variability

Slide: 46 © Dennis Wagelaar

Platform-aware Configuration:
Configuration Language

A configuration language meta-
model provides configuration rules

01/03/10
Platform Variability

Slide: 47 © Dennis Wagelaar

AppletPlatform

MIDletPlatform

JavaMappingPlatform

Java1Platform Java2PlatformJavaObserverPlatform

Platform-aware Configuration:
Configuration Language

Each meta-class can be annotated with one or
more platform dependency constraints that
exist within a platform dependency ontology

01/03/10
Platform Variability

Slide: 48 © Dennis Wagelaar

Platform-aware Configuration:
At development time

Limit the available
configuration
options to the
ones valid for the
target platform

01/03/10
Platform Variability

Slide: 49 © Dennis Wagelaar

Platform-aware Configuration:
At development time

Limit the available
configuration
options to the
ones valid for the
target platform

Sort the
remaining
configuration
options most-
specific-first

01/03/10
Platform Variability

Slide: 50 © Dennis Wagelaar

Platform-aware Configuration:
At deployment time

A number of pre-
configured software
products are made
available for download

These products are
sorted most-specific-
first

The platform instance
description of the
client is provided

The most appropriate
software configuration
is returned for
download/installation

01/03/10
Platform Variability

Slide: 51 © Dennis Wagelaar

Approach

Background

Outline
Context

Platforms

Platform-aware Configuration

Tool supportApplications

Summary

Software Product Lines

Classic solutions

Platform Ontologies

Integrated approach

01/03/10
Platform Variability

Slide: 52 © Dennis Wagelaar

PlatformKit tool
attaches to a

configuration
language editor

Several built-in
prototype platform

models are provided

Given a set of platform
dependency
constraints,

PlatformKit can do its
work

Tool support:
PlatformKit Eclipse plug-in

01/03/10
Platform Variability

Slide: 53 © Dennis Wagelaar

Tool support:
PlatformKit Eclipse plug-in

Configuration models
can now be validated
against the selected

platform

01/03/10
Platform Variability

Slide: 54 © Dennis Wagelaar

Invalid choices are
removed from the

configurations options

Configurations options
are sorted most-
specific-first →

Optimise for maximum
or minimum platform

dependencies

Tool support:
PlatformKit Eclipse plug-in

01/03/10
Platform Variability

Slide: 55 © Dennis Wagelaar

UML model of platform
dependencies can be
automatically extracted
from Java bytecode

Support for defining
platform dependency

constraints is still limited

Tool support:
PlatformKit Eclipse plug-in

01/03/10
Platform Variability

Slide: 56 © Dennis Wagelaar

Platform dependencies
can be compared
against models of

existing platform API

Tool support:
PlatformKit Eclipse plug-in

01/03/10
Platform Variability

Slide: 57 © Dennis Wagelaar

A full compatibility
report is generated,

which helps to
determine the precise
platform dependencies

Missing: possibility to
automatically derive

the platform dependency
constraints in OWL DL

Missing: possibility
to directly derive the
platform dependency

constraints

Tool support:
PlatformKit Eclipse plug-in

01/03/10
Platform Variability

Slide: 58 © Dennis Wagelaar

Applications:
Instant messenger case study

➔ Instant messaging client
– 11 PIM-to-PSM refinement transformations

– One core PIM and 7 optional feature PIMs

– Targets all Java client platforms

01/03/10
Platform Variability

Slide: 59 © Dennis Wagelaar

Applications:
Industry case studies

➔ Java EE case study with Inno.com (IWT OZM)
– Introduce Platform Variability in the back-end of a medical imaging

storage system

➔ Data interchange case study with Steria Belgium*

– Apply Platform Variability approach to the adaptation of data
translators for the required external data format

– In the context of the VariBru project

➔ Telecom case study with Alcatel*

– Apply Platform Variability approach to heterogeneous client devices

– Introduce Platform Variability in telecom back-end systems
* Under consideration

01/03/10
Platform Variability

Slide: 60 © Dennis Wagelaar

Approach

Background

Outline
Context

Platforms

Platform-aware Configuration

Tool supportApplications

Summary

Software Product Lines

Classic solutions

Platform Ontologies

Integrated approach

01/03/10
Platform Variability

Slide: 61 © Dennis Wagelaar

Summary:
Reasons for Platform Variability

➔ Platform Variability goes against the purpose of a platform
– A platform was meant to be a “sound and stable basis”!

– A platform provides a means for reuse!

➔ But from the viewpoint of a software product built on the
platform, platform variation may be necessary
– New platform version

– Other (3rd party) platform is also relevant or even better

– Old platform becomes obsolete

– ...

01/03/10
Platform Variability

Slide: 62 © Dennis Wagelaar

Summary:
Solutions for Platform Variability

➔ Typically take the form of an abstraction layer:
– Application of Design Patterns (e.g. Abstract Factory)

– Cross-platform interpreter/virtual machine (e.g. Java)

– Transformation-based approach (e.g. MDA)

➔ None of the classic solutions solves all our problems
– But each solution has strong and weak points!

➔ Platform Variability can be tackled using a combination of
these solutions
– Integrated approach

01/03/10
Platform Variability

Slide: 63 © Dennis Wagelaar

Summary:
Management of Platform Dependencies

➔ As the number of reusable platform-specific building
blocks increases, it becomes harder to remember for
which platforms they are valid
– We propose to make platform dependencies explicit through

Platform Ontologies, expressed in OWL DL

– Can record platform dependencies in general

– Supports checking dependencies against specific platform instances

– Analogous to SPLs, we can use Configuration Models to specify a
platform-specific product configuration

– Platform-aware configuration of software products

– Platform-driven deployment of alternative software products

01/03/10
Platform Variability

Slide: 64 © Dennis Wagelaar

Summary:
Platform Variability tool support & applications

➔ PlatformKit supports:
– Extracting platform dependencies from existing Java binaries

– Platform-aware configuration

– Platform-driven deployment

➔ Platform Variability applications:
– Instant Messenger case study

– Industrial case study with Inno.com (IWT OZM)

– Industrial case studies under consideration with Steria Belgium
(VariBru) and Alcatel

01/03/10
Platform Variability

Slide: 65 © Dennis Wagelaar

Further reading:
Books

➔ K. Pohl, G. Böckle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques (2005)
http://www.software-productline.com/

➔ A. Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven
Architecture : Practice and Promise (2003)
http://books.google.be/books?vid=ISBN032119442X

➔ S.J. Mellor, K. Scott, A. Uhl, D. Weise, MDA Distilled: Principles of
Model-Driven Architecture (2004)
http://my.safaribooksonline.com/0201788918

➔ D. Wagelaar, Platform Ontologies for the Model-Driven Architecture
(2008)
http://www.vubpress.be/article.aspx?article_id=PLATFO014U

http://www.software-productline.com/
http://books.google.be/books?vid=ISBN032119442X
http://my.safaribooksonline.com/0201788918
http://www.vubpress.be/article.aspx?article_id=PLATFO014U

01/03/10
Platform Variability

Slide: 66 © Dennis Wagelaar

Further reading:
Papers

➔ J. Coplien, D. Hoffman, D. Weiss, Commonality and variability in
software engineering, IEEE Software 15(6), pp. 37—45, 1998.
http://doi.ieeecomputersociety.org/10.1109/52.730836

➔ T. Mens, P. Van Gorp, A Taxonomy of Model Transformation. Electr.
Notes Theor. Comput. Sci. 152, pp. 125—142, 2006.
ftp://ftp.umh.ac.be/pub/ftp_infofs/2005/GraMOT-taxonomy.pdf

➔ D. Wagelaar and R. Van Der Straeten, Platform Ontologies for the
Model-Driven Architecture, European Journal of Information Systems
16(4), pp. 362-373, 2007.
http://www.palgrave-journals.com/ejis/journal/v16/n4/abs/3000686a.html

http://doi.ieeecomputersociety.org/10.1109/52.730836
ftp://ftp.umh.ac.be/pub/ftp_infofs/2005/GraMOT-taxonomy.pdf
http://www.palgrave-journals.com/ejis/journal/v16/n4/abs/3000686a.html

01/03/10
Platform Variability

Slide: 67 © Dennis Wagelaar

Further reading:
Websites

➔ Software Product Lines website by BigLever:
http://www.softwareproductlines.com

➔ Open Model CourseWare: http://www.eclipse.org/gmt/omcw/resources/

➔ VariBru - Variability in Software-Intensive Product Development:
http://www.varibru.be/

➔ MDSE research within the Software Languages Lab:
http://soft.vub.ac.be/soft/research/mdd

➔ PlatformKit tool: http://soft.vub.ac.be/soft/research/mdd/platformkit

➔ ENVY/Developer: http://c2.com/ppr/envy/

➔ OSGi reference: http://www.osgi.org/Specifications/Reference

➔ GNU Autoconf: http://www.gnu.org/software/autoconf/

http://www.softwareproductlines.com/
http://www.eclipse.org/gmt/omcw/resources/
http://www.varibru.be/
http://soft.vub.ac.be/soft/research/mdd
http://soft.vub.ac.be/soft/research/mdd/platformkit
http://c2.com/ppr/envy/
http://www.osgi.org/Specifications/Reference
http://www.gnu.org/software/autoconf/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

