
Experiments in Amorphous Geometry

Ellie D’Hondt1 and Theo D’Hondt2

1 Foundations of Exact Sciences (FUND)
2 Programming Technology Laboratory

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{eldhondt|tjdhondt}@vub.ac.be

tel +322629 {3474|3480}
fax +322629 {3495|3525}

Abstract. Amorphous computing is a recently introduced paradigm that favours geometrical
configurations. The physical layout of an amorphous computer is based on a possibly irregular
and error-prone planar distribution of a large number of simple processing components; this
is well-suited for handling spatial structures. It has come to our attention that the well-
known and long-since established discipline of computational geometry could benefit from the
amorphous computing approach. It seemed natural to refer to this approach by the notion of
amorphous geometry. Although at this stage our exploration of this concept is fairly modest,
we feel that our experiments are sufficiently convincing and merit further study.
Exploring the possibilities of amorphous geometry should show that amorphous computing
can deal with various classes of problems from computational geometry and may eventually
expand the field considerably while providing a basis for useful applications. Especially our
preliminary results concerning the triangulation problem are of importance since it is very
representative case in computational geometry: it covers a whole family of problems.

Keywords. amorphous computing, computational geometry, triangulation

1 Introduction

The context in which this paper is set is a newly emerging domain in computing called Amorphous
Computing [1]. It was developed in anticipation of the rapidly developing fields of microfabrication
and cellular engineering. These support the mass production of small computational units with lim-
ited power, provided that there need be no guarantee that each unit works faultlessly. A random
distribution of such particles, equiped with a local communication protocol, constitutes the basic
model of an amorphous computer. However, while producing a system composed of such units is
within our reach, there as yet exist no programming systems applicable to it. Amorphous computing
is precisely the paradigm trying to fill the gap between the construction and the programming tech-
niques required for an amorphous computer. More concretely, amorphous computing addresses the
important task of identifying the appropriate organising principles and programming methodolo-
gies for obtaining predefined global behaviour through local interaction only; individual amorphous
computing particles cannot rely on any global knowledge about the system they are a part of. Since
disciplines such as biology and physics often operate within this context, they were adopted as
a source for metaphors applicable within the field of amorphous computing, which among others
led to the development of the Growing Point Language (gpl) [2]. For a more detailed overview of
amorphous computing and a comprehensive list of references we refer to [4].

We propose introducing amorphous computing into the venerable field of Computational Geom-
etry (see for instance the excellent [3]). Computational geometry serves as a foundation for various
disciplines, including but not limited to operations research, artificial intelligence and robotics.
Nearly as old as computing itself, it encompasses a vast body of knowledge rooted in mathematics,
algorithms and programming. The fact that amorphous computing addresses problems that exist
in physical−generally planar−space, led us to the conviction that it might be a useful addition to
the domain of computational geometry. The physical layout of an amorphous computer serves as a
medium for the representation of geometrical configurations; therefore it seems natural to introduce



the notion of amorphous geometry. Moreover, we can imagine a complete range of useful appli-
cations, such as smart surfaces interacting with their environment in any possible way. Thinking
about amorphous computing can be done in terms of representative applications; one of them is an
active anechoic wall that reduces noise by using an audio-sensing network of amorphous computing
particles dissolved in the paint covering the wall. We like to fix our ideas about amorphous geometry
by thinking about examples such as active hospital floors that can compute and visualise paths to
be followed by people walking on them.

Exploring the possibilities of amorphous geometry is an immense task. In order to show that
amorphous computing can deal with more than a few problems taken from computational geometry,
much more needs to be done than we can present here. We will limit ourselves to a number of
modest experiments that nevertheless illustrate the point we want to make; all experiments are
presented within the context of gpl. Section 2 handles the amorphous construction of polygons.
Additionally, and in order to satisfy the need for more expressiveness, several extensions to gpl
and their implementations are presented. Next, section 3 covers diagonal construction, as well as
its application to the triangulation problem. We conclude in section 4 with some current and future
work.

2 Polygon Construction

The problem of drawing a polygon can be divided into the subproblems of constructing line segments
from one vertex to another. In order to do this, one endpoint has to initiate a ”search” for the other
endpoint through local communication only, without knowing the global direction in which the latter
is to be found. Concretely, the representation of an edge in gpl is as follows:

(define-growing-point (edge next-vertex-pheromone next-vertex-material)
(material edge-material)
(size 0)
(tropism (ortho+ next-vertex-pheromone))
(actions
(when ((sensing? ’(: next-vertex-material))

(terminate))
(default
(propagate next-vertex-pheromone)))))

The principal concept in gpl is the growing point, a locus of activity that describes a path
through connected elements in the system. At all times, a growing point resides at a single location
in the gpl domain, called its active site; for example, the initial active site for the above growing
point is one of its endpoints. A growing point propagates itself by transferring its activity from a
particle to one of its neighbours according to its tropism. At its active site, a growing point may de-
posit material and it may secrete pheromones. A growing point’s tropism is specified in terms of the
neighbouring pheromone concentrations; in this case, ortho+ directs the growing point towards in-
creasing concentrations of next-vertex-pheromone. As an edge is generated, the generator process
itself will require some cooperation from the second endpoint in order to produce the desired line
segment. This is indicated by the presence of next-vertex-pheromone and next-vertex-material
in the code above. Hence, a growing point is installed at the second endpoint in the following way

(define-growing-point (vertex vertex-pheromone vertex-material)
(material ’(: vertex-material))
(size 0)
(actions
(secrete+ EDGE-LENGTH vertex-pheromone)))



Note that the above growing point definitions take a pheromone and a material parameter. The
latter is used in the sensing? and in the material expression, using the double point gpl syntax for
parameterised materials. Pheromone parametrisation however, is not present in standard gpl. We
included it in its framework since we felt gpl would gain considerably in expressiveness by allowing
pheromones as parameters. Indeed, without this feature each edge of a polygon to be constructed
would require a different growing point definition in order to avoid pheromone interference, involving
a lot of duplicate code. In order to construct a quadrangle, for example, we would have to use a
unique pheromone and material for each vertex, and define an associated edge-like growing point
that grows towards that particular pheromone. With pheromone parametrisation, a quadrangle is
constructed using only the above two growing points in the following way

(with-locations (a b c d)
(at a (start-gp (vertex ’a-pheromone ’a-material))

(--> (start-gp (edge ’b-pheromone ’b-material))
(--> (start-gp (edge ’c-pheromone ’c-material))
(--> (start-gp (edge ’d-pheromone ’d-material))
(start-gp (edge ’a-pheromone ’a-material))))))

(at b (start-gp (vertex ’b-pheromone ’b-material)))
(at c (start-gp (vertex ’c-pheromone ’c-material)))
(at d (start-gp (vertex ’d-pheromone ’d-material))))

Here --> is the connect-command, which allows us to connect several growing points. Note that
in the above, explicit pheromone and material names are required to be quoted, which constitutes
a change in syntax with respect to the previous version of gpl.

Fig. 1. Several polygons constructed with gpl.

Simulation results for the construction of a quadrangle with the gpl-illustrator in the above way,
as well as for the analogous construction of a triangle, pentagon and hexagon are shown in figure
1 (note that the segments only approximate a straight line). It may be inferred from these results
that arbitrary polygons can be constructed in an amorphous way.



3 Diagonal and Triangulation

Let us now look at the problem of constructing a convex polygon’s diagonals, defining a diagonal
as a straight line between non-adjacent vertices that lies entirely on the inside of the quadrangle.
One extra complication in this case is that in order for gpl to know what part of the domain is
the polygon’s inside, we need to establish an additional growing point at an arbitrary internal point
of the polygon1 – referred to as inside below. Its only task is the secretion of center-pheromone,
which directs the diagonals towards the inside of the quadrangle. However, in order for the diagonal
to reach an opposite vertex, at one point the positive orthotropism towards center-pheromone has
to be eliminated. Therefore, we have to split up the construction of the diagonal as shown if figure
2.

ccentera

diagonal-init diagonal-restdiagonal = +

Fig. 2. Composition of the diagonal growing point.

More concretely, in case of a quadrangle the diagonal growing point is a combination of two
growing points: diagonal-init, which ensures thatthe diagonal starts off towards the inside of the
quadrangle, and diagonal-rest, which constructs the rest of the diagonal. The growing point defini-
tions required for the above scheme are as follows – note that we included pheromone parametrisation
in view of having to construct several diagonals at the same time.

(define-growing-point (diagonal-init length)
(material diagonal-material)
(size 0)
(tropism (ortho+ center-pheromone))
(actions

(secrete+ 1 diagonal-pheromone)
(when ((< length 1)

(terminate))
(default
(propagate (- length 1))))))

(define-growing-point (diagonal-rest endpoint-pheromone endpoint-material)
(material diagonal-material)
(size 0)
(tropism (and (ortho- diagonal-pheromone)

(ortho+ endpoint-pheromone)))
(actions

(secrete+ 1 diagonal-pheromone)
(when ((sensing? endpoint-material))

1 The choice of an internal point is inspired by [2]; alternatives could have been: considering polygons filled
with a specific material, or two-material edges.



(terminate))
(default
(propagate)))))

(define-growing-point (diagonal endpoint-pheromone endpoint-material)
(material diagonal-material)
(size 0)
(actions

(--> (start-gp diagonal-init 2)
(start-gp diagonal-rest endpoint-pheromone endpoint-material))))

As one can see, diagonal-init determines the initial direction, while diagonal- rest behaves
like a growing point with inertia, maintaining the same direction by growing away from its own
pheromone. In case of general polygons, one should define diagonal-rest as being positively or-
thotropic towards all possible endpoints; for a pentangle for example, this requires diagonal-rest
to have two different pheromone parameters, one for each possible diagonal endpoint.

Fig. 3. Triangulating a polygon.

Once diagonal construction is possible, we can envisage tackling the triangulation problem by
allowing diagonals to grow from each vertex. Triangulating a polygon is an very representative case
in computational geometry: it covers a whole family of problems. In figure 3 we show some initial
results from an experiment to apply amorphous geometry to the triangulation of a polygon. Again,
pheromone parametrisation proved valuable, since otherwise we would have had to define a different
growing point for each constructed diagonal. However, in order to solve this problem in general still
requires research. This is due to the following: an ideal solution would be to allow diagonals to grow
from each vertex with the additional constraint that they cannot intersect; once a triangulation is
found, the construction of superfluous diagonals should be cancelled. At this stage however, it is not
entirely clear to us how to cancel growing points while they are still being constructed. A possible
solution is to first search the opposite vertex, then reconstructing the found diagonal. In this case,
we could only display the diagonal material when backtracking, thus avoiding a cluttered result
due to unfinished growing points desperately trying to find a vertex while none are left. However,
further investigations are required in order to clarify this issue. As for non-intersecting diagonals,
these can be implemented easily by including the clause (avoids diagonal-pheromone) in a diagonal’s
definition. In spite of this, we found that for the order of simulations we could run the avoids clauses
resulted in stuck growing points. This is because for not too large simulations the density of particles



is too small to leave enough choice for a diagonal growing point whilst encountering other diagonals.
Therefore, we only established as many diagonals as required for the triangulation in question, thus
eliminating the need for the avoids-clause as well as that of cancelling superfluous diagonals once
a triangulation has been constructed.

It should be clear from the above reasoning that solving the triangulation problem is entirely
within reach of gpl. The problem of shutting down eager growing points after a solution is found
is practical rather than theoretical, since the main goal of constructing a polygon triangulation is
reached anyhow.

4 Conclusion and Future Work

Amorphous computing is an interesting new programming paradigm that is based on the notion that
a large network of computational particles can be embedded in physical surfaces. It seems almost
obvious to propose it as an alternative to some of the more conventional computational techniques
used to tackle geometrical problems. In this paper, we have suggested the notion of amorphous
geometry to explore this idea. Typically, each amorphous processing particle governs a geometrical
patch, such that the whole medium cooperates in finding a global solution to a particular problem at
hand. We only scratched the surface by considering points, lines, polygons and diagonals; we showed
that they can be simulated by very simple programs, composed in the growing point language. We
rapidly discovered that the expressiveness of gpl is too limited for tasks as elementary as generating
the edges of a polygon from the vertices. However, introducing a particular kind of parametrisation
in gpl seems to solve the shortcoming, and did not pose any undue problem.

Extending gpl into a sufficiently expressive language so as to cover typical problems from com-
putational geometry would seem to be a worthwhile continuation of the work described in this paper.
In particular, solving the triangulation problem in general is an interesting challenge. We expect it
to be possible to continue from this basis on towards a whole family of related geometrical problems,
such as, for example, traject planning for robots.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal, E. Rauch, G. Sussman,
and R. Weiss: Amorphous computing. Communications of the ACM, 43(5), May 2000.

2. D. Coore: Botanical Computing: A Developmental Approach to Generating Interconnect Topologies on
an Amorphous Computing. PhD thesis, MIT, 1999.

3. M. de Berg and M. van Kreveld and M. Overmars and O. Schwarzkopf: Computational Geometry: Algo-
rithms and Applications. Springer (1998) second edition

4. E. D’Hondt: Amorphous Computing. MSc thesis in Computer Science, Vrije Universiteit Brussel (2000);
available at http://student.vub.ac.be/~eldhondt/PDF directory/thesisAmorphous.pdf


