
Amorphous Geometry

Ellie D’Hondt1 and Theo D’Hondt2

1 Foundations of Exact Sciences (FUND)
2 Programming Technology Laboratory

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{eldhondt|tjdhondt}@vub.ac.be

Abstract. Amorphous computing is a recently introduced paradigm
that favours geometrical configurations. The physical layout of an amor-
phous computer is based on a possibly irregular and error-prone planar
distribution of a large number of simple processing components; this is
well-suited for handling spatial structures. It has come to our attention
that the well-known and long-since established discipline of computa-
tional geometry could benefit from the amorphous computing approach.
In this spirit we speculate on the use of having smart surfaces interact
with their environment or with autonomous entities such as robots. It
seemed natural to refer to this approach by the notion of amorphous
geometry. Although at this stage our exploration of this concept is fairly
modest, we feel that our experiments are sufficiently convincing and merit
further study. Exploring the possibilities of amorphous geometry should
show that amorphous computing can deal with various classes of prob-
lems from computational geometry and may eventually expand the field
considerably while providing a basis for useful applications.

1 Introduction

The context in which this paper is set is a newly emerging domain in computing
called Amorphous Computing [1]. It was developed in anticipation of the rapidly
developing fields of microfabrication and cellular engineering. These support the
mass production of small computational units with limited power, provided that
there need be no guarantee that each unit works faultlessly. A random distribu-
tion of such particles, equiped with a local communication protocol, constitutes
the basic model of an amorphous computer. However, while producing a system
composed of such units is within our reach, there as yet exist no programming
systems applicable to it. Amorphous computing is precisely the paradigm try-
ing to fill the gap between the construction and the programming techniques
required for an amorphous computer. More concretely, amorphous computing
addresses the important task of identifying the appropriate organising princi-
ples and programming methodologies for obtaining predefined global behaviour
through local interaction only; individual amorphous computing particles can-
not rely on any global knowledge about the system they are a part of. Since
disciplines such as biology and physics often operate within this context, they
were adopted as a source for metaphors applicable within the field of amorphous

computing, which among others led to the development of the Growing Point
Language (gpl) [2]. For a more detailed overview of amorphous computing and
a comprehensive list of references we refer to [4].

We propose introducing amorphous computing into the venerable field of
Computational Geometry (see for instance the excellent [3]). Computational ge-
ometry serves as a foundation for various disciplines, including but not limited
to operations research, artificial intelligence and robotics. Nearly as old as com-
puting itself, it encompasses a vast body of knowledge rooted in mathematics,
algorithms and programming. The fact that amorphous computing addresses
problems that exist in physical−generally planar−space, led us to the convic-
tion that it might be a useful addition to the domain of computational geometry.
The physical layout of an amorphous computer serves as a medium for the rep-
resentation of geometrical configurations; therefore it seems natural to introduce
the notion of amorphous geometry. Moreover, we can imagine a complete range
of useful applications, such as smart surfaces interacting with their environment
in any possible way. Thinking about amorphous computing can be done in terms
of representative applications; one of them is an active anechoic wall that reduces
noise by using an audio-sensing network of amorphous computing particles dis-
solved in the paint covering the wall. We like to fix our ideas about amorphous
geometry by thinking about examples such as active hospital floors that can
compute and visualise paths to be followed by people walking on them.

Exploring the possibilities of amorphous geometry is an immense task. In
order to show that amorphous computing can deal with more than a few prob-
lems taken from computational geometry, much more needs to be done than we
can present here. We will limit ourselves to a number of modest experiments
that nevertheless illustrate the point we want to make. The significance of our
work is dual: first, it provides an insight in how metaphors from computational
geometry are translated into an amorphous context; next, concrete simulations
of amorphous geometrical programs using gpl provide us with knowledge of how
powerful an environment it is. Both aspects are discussed using the construction
of polygons as a case study. Section 2 handles the metaphorical aspect of amor-
phous geometry, drawing on abstractions already present in gpl. In this way,
both the gpl architecture as well as the metaphors themselves are explained.
Our experiences with gpl are reported in section 3, where actual simulations of
polygon construction and their associated amorphous programs are presented.
Additionally, and in order to satisfy the need for more expressiveness, several ex-
tensions to gpl and their implementations are presented. We conclude in section
4 with some current and future work.

2 Metaphors for Amorphous Geometry

Ultimately, the objective of amorphous computing is to develop engineering prin-
ciples and languages to control, organise and exploit the behaviour of a set of
programmable computing particles. The first serious attempt to achieve this is
gpl [2], a language adopting the construction of complex patterns as a model

for global behaviour. The specification of these patterns relies on biological in-
gredients such as tropisms and pheromones, which help direct the growth of
structures towards or away from others. With the aid of these and other ab-
stractions, complex patterns such as digital circuits can be constructed. In this
section however, we use gpl as an aid to describe how metaphors from com-
putational geometry are interpreted in an amorphous style. While the emphasis
lies on the actual notion of geometrical metaphors, concretising them with the
help of gpl also sheds light on the architecture of an amorphous solution to a
particular geometrical problem.

One could say that the two most basic components of geometry are points
and lines. Amorphous geometry has no sense without a clear interpretation of
these two concepts. Relying on the one-to-one correspondence between points in
space and amorphous computing particles, it is clear that a geometrical point
is represented trivially by one amorphous particle, while a contiguous set of
such particles arranged as a linear array play the role of a line. Since an amor-
phous computer is necessarily of bounded dimensions, only line segments can
be represented. Suppose we are capable of identifying two amorphous comput-
ing particles as being the endpoints of a line segment that is to be constructed.
Through local communication only, one endpoint has to initiate a ”search” for
the other endpoint, without knowing the global direction in which the second
endpoint is to be found. In order to do this, one can fall back on the biological
metaphor of chemical gradients1. In order to fix our thoughts, we will look at
the concrete representation of a line segment (inspired by [2]) in gpl, which is
as follows:

(define-growing-point (a-to-b-segment)
(material a-material)
(size 0)
(tropism (ortho+ b-pheromone))
(actions
(when ((sensing? b-material)

(terminate))
(default
(propagate)))))

The principal concept in gpl is the growing point, a locus of activity that
describes a path through connected elements in the system. At all times, a
growing point resides at a single location in the gpl domain, called its active
site; for example, the initial active site for the above growing point is the point
A. A growing point propagates itself by transferring its activity from a particle
to one of its neighbours according to its tropism. At its active site, a growing
point may deposit material and it may secrete pheromones. A growing point’s
tropism is specified in terms of the neighbouring pheromone concentrations; in
1 Biological systems use chemical gradients to determine the positions of cells. A chem-

ical is released from a cell, such that the concentration of this chemical decreases as
one moves further away from the cell, hence giving an indication of distance.

this case, ortho+ directs the growing point towards increasing concentrations of
b-pheromone.

As the segment between A and B is generated, the generator process itself will
require some cooperation from the endpoint B in order to produce the desired
line segment. This is indicated by the presence of b-pheromone and b-material
in the code above. Hence, a growing point is installed at B in the following way

(define-growing-point (b-point)
(material b-material)
(size 0)
(for-each-step
(secrete EDGE-LENGTH b-pheromone)))

For a schematic representation of the establishment of the line segment see
figure 1. This is taken from [2], where the amorphous process generating the
segment is described at length. Note that the segment only approximates a
straight line.

A

....

B

Fig. 1. Construction of a line segment.

The above code extracts are to be viewed as examples of concrete amorphous
representations of the geometrical metaphors point and line segment. While we
return to the gpl-specific code in the discussion of our experiments below, it
should be clear that it is important that we can successfully incorporate geo-
metrical concepts into amorphous computing; the specific code required in order
to do so is at this stage of lesser significance.

3 Experiments in Amorphous Geometry

While the first step in developing amorphous geometry is to redefine metaphors
in an amorphous style, at one stage a concrete implementation is required in
order to carry out experiments. As a typical geometrical problem, we discuss
polygon construction within the gpl framework. It is shown that amorphous

geometry is capable of solving more complex problems, while at the same time
gpl’s power as an amorphous language is investigated.

The problem of drawing a polygon can be divided into the subproblems
of constructing line segments from one vertex to another. For example, when
drawing a quadrangle with vertices a, b, c and d, one starts with establishing
the growing points a-to-b-segment and b-point, as defined in section 2, at
the vertices a and b respectively. Next, one has to define equivalent growing
points at the couples of vertices (b,c), (c,d) and (d, a). As a result, each vertex
is equipped with two growing points, a <vertex>-to-<next-vertex>-segment
and a <vertex>-point growing point. We say ”equivalent” and not ”equal”,
since if we were to use the same definitions for the required growing points
at every vertex, interference between pheromones would result. As a result, line
segments would not grow in a straight way and might not even halt at the correct
vertex. Hence, we have to use a unique pheromone and material for each vertex,
and define an associated segment-like growing point that grows towards that
particular pheromone. The whole process is presented schematically in figure 2.

a-point

a-to-b-segment

d-point

d-
to

-a
-s

eg
m

en
t

b-point

b-
to

-c
-s

eg
m

en
t

c-point

c-to-d-segment

Fig. 2. Drawing a quadrangle.

An interesting side issue concerns the generation of self-intersecting poly-
gons. Detection of edge material immediatly leads to the identification of points
where edges intersect; this is typically a much more complex task in conventional
geometry.

In the above solution for drawing a quadrangle, we are immediately con-
fronted with the inability of gpl to parametrise pheromones. While material
parametrisation is already present, we still need a different growing point def-
inition for every vertex to avoid pheromone interference, resulting in a lot of
duplicate code. Since gpl would gain considerably in expressiveness by allowing

pheromone parametrisation, we felt it was useful to include this in the gpl frame-
work. Pheromone parameters can occur either in a secrete- or in a tropism-
expression. In the former case, one has to ensure that the pheromone parameter is
explicitly evaluated before carrying out the associated secrete-expression. The
latter case is a bit more complicated since tropisms influence growing point prop-
agation, a command dependent on communication. In gpl, tropisms are trans-
lated beforehand into a combination of a filtering and sorting process through
the procedure analyse-tropism. Before a growing point propagates, it sends a
stream of pairs of neighbouring pheromone concentrations through the analysed
tropism. These pairs are first filtered according to the tropism in question, after
which they are sorted in order of preference. On the basis of this result a growing
point moves its active site towards a specific neighbour. However, when tropisms
can contain pheromone parameters they are no longer part of a growing point’s
static information, since parameters have to be evaluated dynamically at each
active site.

Once these additional gpl-features are implemented, the growing point def-
initions required to draw any polygon are as follows:

(define-growing-point (edge next-vertex-pheromone
next-vertex-material)

(material edge-material)
(size 0)
(tropism (ortho+ next-vertex-pheromone))
(actions
(when ((sensing? ’(: next-vertex-material))

(terminate))
(default
(propagate next-vertex-pheromone)))))

(define-growing-point (vertex vertex-pheromone vertex-material)
(material ’(: vertex-material))
(size 0)
(actions
(secrete+ EDGE-LENGTH vertex-pheromone)))

With the help of these growing points, the following code constructs the
desired quadrangle:

(with-locations (a b c d)
(at a (start-gp (vertex ’a-pheromone ’a-material))

(--> (start-gp (edge ’b-pheromone ’b-material))
(--> (start-gp (edge ’c-pheromone ’c-material))
(--> (start-gp (edge ’d-pheromone ’d-material))
(start-gp (edge ’a-pheromone ’a-material))))))

(at b (start-gp (vertex ’b-pheromone ’b-material)))
(at c (start-gp (vertex ’c-pheromone ’c-material)))
(at d (start-gp (vertex ’d-pheromone ’d-material))))

Here --> is the connect-command, which allows us to connect several grow-
ing points. Note that in the above, explicit pheromone and material names are
required to be quoted, which constitues a change in syntax with respect to the
previous version of gpl. Simulation results for the construction of a quadrangle
with the gpl-illustrator in the above way, as well as for the analogous construc-
tion of a triangle, pentagon and hexagon are shown in figure 3. It may be inferred
from these results that arbitrary polygons can be constructed in an amorphous
way.

Fig. 3. Several polygons constructed with gpl.

4 Conclusion and Future Work

Amorphous computing is an interesting new programming paradigm that is
based on the notion that a large network of computational particles can be
embedded in physical surfaces. It seems almost obvious to propose it as an alter-
native to some of the more conventional computational techniques used to tackle
geometrical problems. In this paper, we have suggested the notion of amorphous
geometry to explore this idea. Typically, each amorphous processing particle
governs a geometrical patch, such that the whole medium cooperates in finding
a global solution to a particular problem at hand. We only scratched the surface
by considering points, lines and polygons; we showed that they can be simulated
by very simple programs, composed in the growing point language. We rapidly
discovered that the expressiveness of gpl is too limited for tasks as elementary

as generating the edges of a polygon from the vertices. However, introducing a
particular kind of parametrisation in gpl seems to solve the shortcoming, and
did not pose any undue problem.

Extending gpl into a sufficiently expressive language so as to cover typical
problems from computational geometry would seem to be a worthwhile contin-
uation of the work described in this paper.

Fig. 4. Triangulating a polygon.

In figure 4 we show some initial results from an experiment to apply amor-
phous geometry to the triangulation of a polygon. This work is still very pre-
liminary; at this stage the approach is too imprecise to justify reporting on
it at length. However, it is sufficiently promising to warrant mentioning it as
future work. Triangulating a polygon is an extremely representative case in
computational geometry: it covers a whole family of problems. Being able to
solve it transforms the idea of intelligent surfaces from sheer speculation into a
conceivable−albeit futuristic−reality.

References

1. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpal,
E. Rauch, G. Sussman, and R. Weiss: Amorphous computing. Communications of
the ACM, 43(5), May 2000.

2. D. Coore: Botanical Computing: A Developmental Approach to Generating Inter-
connect Topologies on an Amorphous Computing. PhD thesis, MIT, 1999.

3. M. de Berg and M. van Kreveld and M. Overmars and O. Schwarzkopf: Computa-
tional Geometry: Algorithms and Applications. Springer (1998) second edition

4. E. D’Hondt: Amorphous Computing. MSc thesis in Computer Science, Vrije Uni-
versiteit Brussel (2000); available at http://student.vub.ac.be/~eldhondt/PDF

directory/thesisAmorphous.pdf

