
Glitch: A Live Programming Model

Sean McDirmid
Microsoft Research Asia

Beijing China
smcdirm@microsoft.com

Abstract
Input changes are often handled by reactive and incremen-
tal constructs that are tedious to use or inexpressive, while
changes to program code are typically not handled at all dur-
ing execution, complicating support for “live programming.”
We propose that change in code and input should be man-
aged automatically, similar to how garbage collection elimi-
nates memory management as an explicit programmer con-
cern. Our programming model, Glitch, realizes such man-
aged time by progressively re-executing nodes of program
execution when they become inconsistent due input/code
state changes. Unlike many reactive models, Glitch supports
expressive shared-state procedural programming, but with
one caveat: operations on shared state must be undoable and
commutative to ensure re-execution efficiency and eventual
consistency. Still, complex programs like compilers can be
written in Glitch using mundane programming styles.

Overview
Programs react continuously to changing inputs by repairing
their execution state. Beyond tediously using callbacks and
observers, declarative approaches based on functions [6],
constraints [7], and data binding [15] automate state repair
by encoding intermediate state as data-flow; e.g. for Z = X

+ Y, Z’s value will be recomputed whenever X or Y change.
These approaches are, however, often too inflexible in defin-
ing complex programs like incremental compilers.

Change in program code during execution is handled even
more poorly, which is essential to providing programmers
with responsive execution feedback during live program-
ming [10] or in Bret Victor’s demoes [19, 20]. We showed
in [12] how input and code changes can be supported in sim-
ilar ways in SuperGlue [14], but this language was declar-
ative and not very expressive. Today, code changes are at

[Copyright notice will appear here once ’preprint’ option is removed.]

best handled with Smalltalk-style “fix-and-continue” [9] that
does not repair program state.

The goal of our work is to (a) manage input and code
changes automatically, removing change as an explicit pro-
grammer concern, while (b) also improving expressiveness
to expand what programs can take advantage of such man-
aged time, a concept that was introduced by Edwards [5].
Incremental programming models [16] exploit the fact that
small changes in input often only cause small changes in
output by updating, rather than redoing, computations. For
example, self-adjusting computation [1] uses dynamic de-
pendency graphs to record reads on state so state changes
can invalidate computations. However, this model involves
significant programmer effort, provides little support for im-
perative operations, and relies on code immutability.

To do better, we are inspired by Time Warps in virtual
time [11] where distributed simulation computations are ex-
ecuted optimistically without concern for dependency—if
state is read too early, computations are “rolled back” and
re-executed. Something similar could also help make incre-
mental computations more expressive: on a change, “undo”
and then redo effected computations. But we must be care-
ful: Time Warps are prone to inefficient cascading rollback
waves [18], while preparing for rollbacks can be expensive.

We meld elements of incremental computation and Time
Warps together to form an expressive managed time model
that can support input and code changes efficiently. Our solu-
tion improves on rollback by logging imperative operations
on execution, undoing them only when they are not per-
formed on re-execution. Because re-execution can occur in
arbitrary orders, imperative operations must also be commu-
tative. We have found that these requirements are not overly
restrictive; e.g. they are good enough to write a compiler.

Glitch
A program execution in our model, called Glitch, is decom-
posed into a tree of nodes that can be re-executed indepen-
dently on a code or input change. Node decompositions are
specified by programmers based on their understanding of
the program’s run-time modularity; e.g. execution nodes for
a compiler can be chosen to correspond to nodes of the syn-
tax tree (AST) for the code being compiled. Consider:

1 2013/8/16

node def ParseExpr(ref lexer, symtab): return match lexer.Peek:
| case ID: CallExpr(ref lexer, symtab)
| case INT: IntExpr(ref lexer)

def CallExpr(ref lexer, symtab):
| var id = Consume(ref lexer, ID)
| var args = new is List
| for ConsumeSeq(ref lexer, OPAR, COMMA, CPAR):
| | args.Add(ParseExpr(ref lexer, symtab))
| var sym = symtab.Get(id.Text)
| if sym == null: SemanticError("Not found")
| else: return sym.Apply(args)

The language used in this paper is mostly derived from
Python, but augmented with Scala pattern matching and
C# reference parameters; e.g. lexer is both an input to and
output of the ParseExpr and CallExpr methods. In this code,
ParseExpr is defined as a node method (node def), meaning
every call to ParseExpr will form a new node in the program’s
execution. The CallExpr method does not form a node itself
but nonetheless is called by ParseExpr nodes and can create
new ParseExpr nodes through recursive ParseExpr calls.

Nodes have direct data-flow dependencies with their par-
ents for arguments and their children for return values, where
they are re-executed if these change; e.g. if the code lexer
stream that a ParseExpr node is called on changes, the node
is re-executed to repair the parse tree accordingly. Likewise,
nodes are re-executed when the shared state they read, which
is traced dynamically, changes. For example, the CallExpr

method reads a symbol from the symtab dictionary based on
a parsed ID; the calling ParseExpr node is re-executed when-
ever the binding in the symtab changes for this ID’s text.
Such changes are propagated transitively: a ParseExpr node
is re-executed when a symtab change causes a called CallExpr

method to return different symbols. Return values are memo-
ized so that a re-executed CallExpr method reuses constituent
ParseExpr nodes without re-executing them.

Code in Glitch can do imperative operations; consider:

node def VarDecl(ref lexer, symtab):
| var kw = Consume(ref lexer, VAR)
| var id = Consume(ref lexer, ID)
| var asnOp = Consume(ref lexer, ASSIGN)
| var initial = ParseExpr(ref lexer, symtab)
| var sym = new is Symbol
| if !symtab.Put(id.Text, Sym):
| | SemanticError("Duplicate de�nition")

This code parses a variable declaration, allocating a symbol
that is put into the symtab dictionary based on a parsed ID.
The imperative operations of a node are placed in a log as the
node executes so they can later be undone during a rollback;
in our example, the Put operation on a key, an id’s text, and
the allocated symbol, is placed in the log of a VarDecl node
execution. When re-execution completes, the newly created
log is compared with the old log of the last execution to undo
operations that are no longer performed (they exist in the old
but not new log). If the ID read in the first execution of a
VarDecl node is "fo", and on re-execution is "foo", then the
Put("fo", ...) is undone as it has been replaced by a newly

installed Put("foo", ...) operation. Operation undo eliminates
the need for checkpoints, and because operations are undone
selectively by comparing old and new logs, indiscriminate
full rollbacks are avoided when change occurs.

Nodes must conserve the objects they allocate on re-
execution, otherwise shared state would be lost between re-
executions while operations would be constantly undone as
new object identities were created; e.g. the Put operation
would be prevented from being reused in our example if a
new Symbol object was allocated whenever a VarDecl node re-
executed. Glitch models allocations as imperative operations
identified by execution addresses that can be reproduced dur-
ing node re-executions. Allocations are then re-used by iden-
tifying them by their execution addresses in old logs; e.g.
the new Symbol assigned to the sym variable in our example
is always the same object when a VarDecl node re-executes.
Likewise, node invocations are also expressed as allocations
identified by execution addresses to conserve their results
and log state; e.g. a ParseExpr node conserves on re-execution
whatever ParseExpr nodes were called under it. When a log
comparison indicates that a node is no longer invoked by a
parent, it is undone by undoing its logged operations, which
can involve recursively undoing child node invocations.

Glitch makes no guarantees about node re-execution or-
der as changes can affect arbitrary nodes in a program exe-
cution. Accordingly, all imperative operations must be com-
mutative as they can be executed in any order, which is
similar to how retroactive data structures [3] are restricted.
Some operations, like aggregation or set insertion, are natu-
rally commutative and require little modification to be used
in Glitch. However, many necessary operations, like putting
an entry into a dictionary as in the above example or just as-
signing to a cell, are not commutative as they can interfere
with each other. We deal with this in Glitch by using execu-
tion addresses to restrict interfering operations to dynamic
single assignment semantics; e.g. notice that the Put opera-
tion in the above example can fail, meaning a symbol was
already placed into the symbol table at the same key. Once
an operation assigns a cell or dictionary entry, all other op-
erations with different execution addresses will fail dynam-
ically, ensuring commutativity; e.g. failure of the above Put

operation results in a “duplicate def” compiler error.
Due to commutativity, execution order is irrelevant in

Glitch; consider:

var A = B; var B = A

Two VarDecl nodes are created when this code is parsed;
initially, parsing of the A var is unable to find B, so an
error is raised, but after the B var is parsed, A’s initializer
is re-executed and B is found. As dependencies go, the A

initializer depends on B var, and the B var initializer depends
on A var. Such cycles are valid and meaningful in Glitch;
while nodes can even depend on themselves!

Glitch provides primitive state structures like sets, sorted
trees, dictionaries, cells, and simple aggregators, which can

2 2013/8/16

be composed into user-defined structures like tables, syntax
trees, and so on. Still, some data structures cannot be ex-
pressed efficiently because their operations are not undoable
and/or commutative; e.g. a maximum value aggregator must
be encoded as the last element of a sorted set, while even
simple lists must leverage sorted execution addressees for
ordering. Beyond this, Glitch is expressive in how stateful
structures can be organized: they can be nested inside other
structures, aliased freely, and accessed indirectly; dynamic
tracing ensures that dependencies are always recorded pre-
cisely based on actual accesses. Even dependencies are en-
coded as logged set insertions that are undone as soon as a
node no longer depends on certain shared state, eliminating
the weak references needed for more conservative tracing.

Glitch supports code changes through logs that only ob-
serve actual node executions; no analysis of code is neces-
sary. When code changes are considered, reproduced exe-
cution addresses must remain stable as code is inserted and
deleted around it, which we accomplish through custom in-
cremental lexing that conserves token identities through an
edit, and then using these tokens and the call stack to form
execution addresses. Loops present an additional challenge:
we could append an integer index to an execution address to
represent each loop iteration, but this would break down as
elements were added to whatever structure was being iter-
ated over; consider code to parse call expression arguments:
| for ConsumeSeq(ref lexer, OPAR, COMMA, CPAR):
| | args.Add(ParseExpr(ref lexer, symtab))

This code iterates over a parenthesis delimited, comma sepa-
rated list, but uses tokens, rather than integer indices, to form
execution addresses that identify each iteration, allowing the
state of each ParseExpr call to be conserved even as arguments
are added/removed around it via code editing.

Live Programming
Glitch as presented in this paper is used to implement a live
programming experience that augments debugging with re-
sponsive execution feedback [13]. Our implementation in-
volves very-incremental compiler and editor code written in
C# that leverages Glitch as a library; as a result, execution
addresses must be provided manually while code changes
are not supported. The C# library approach is very flexible;
e.g. parse nodes are scheduled for re-execution directly by
the incremental lexer, which otherwise cannot use Glitch due
to a lack of reasonable node boundaries. Currently, 3,000
lines of parsing code, 2,000 lines of type checking code,
1,000 lines of code generation code, and 2,000 lines of UI
code (all C#) use Glitch to implement live programming—
most of this code is oblivious to incremental capabilities.
Glitch itself consists of 1,500 lines of C# code.

Glitch also forms the basis behind the programming
model of our live programming language, called YinYang,
that is supported with transparent execution addresses, us-
ing conserved lexical token identities, and repairs program

executions after every keystroke-based code edit. Code
changes bubble through the incremental compiler, trigger-
ing code generation, which then invalidates (schedules for
re-execution) nodes of the executing program whose code
has changed. Execution of a YinYang program then pro-
duces a list of trace entries, ordered by execution addresses,
and individual probe entries that are displayed in the editor
to help the programmer debug code.

Looking Forward
We believe that Glitch is efficient, performing well enough
for our current live programming demos. However, while
computations are conserved effectively, the logs for some
nodes can grow to have many entries, e.g. 50+ operations
for one AST parse node, raising concerns about memory
efficiency. Additionally, we must consider the cost of log-
ging during execution as well as unnecessary redundant re-
executions. Other systems, such as those based on topologi-
cal sorts [2] or Edwards’ Coherent Reactions [4], attempt to
find a “correct” order of re-evaluation that avoids redundant
computations. Such orders are impossible to find in Glitch,
and so we just deal with the temporary inconsistencies of
imperfect executions orders—hence the name “Glitch.”

Nodes in Glitch conceptually execute concurrently and
only interact through data dependencies, which are simply
re-executed until these data-dependencies stabilize. As a re-
sult, Glitch is currently suitable only for programs that can
tolerate eventual consistency; i.e. programs that do not per-
form irrevocable real world actions. While programs are re-
executed until consistent, it is possible to construct programs
that will never be consistent, e.g. A = B and B = !A, and result
in infinite re-execution. Future work is needed to determine
how such hazards can be detected or avoided.

Without a notion of time, Glitch is also inappropriate for
interactive or event-based non-batch programs, where time,
not just input or code changes, can drive state and output
changes. To support such “event” time, we are looking at
Time Warp-related [11] space-time memory [8] that adds a
time dimension to state. State in a Glitch program would
then be allowed to change according to an external event,
while nodes could be “split” on re-execution if their behav-
ior changed across an event. Such support would then al-
low us to implement demos where programmers can easily
“scrub” through time, and provide responsive feedback as
code changes propagate through a time line.

Finally, the Time Warps that Glitch is inspired by deal
with distributed and parallel computation, not incremental
computation. The fact that optimistic execution is useful for
concurrency is also not surprising, which is exploited by
software transactional memory [17]. We should explore if
the re-execution mechanism that allows Glitch to manage
change for incremental computation, could also be useful for
eliminating inconsistency that arise in concurrent, parallel,
and distributed computing contexts.

3 2013/8/16

References
[1] U. A. Acar. Self-adjusting computation: (an overview). In

Proc. of PEPM, pages 1–6, 2009.

[2] G. H. Cooper and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Proc. of ESOP, pages
294–308, 2006.

[3] E. D. Demaine, J. Iacono, and S. Langerman. Retroactive data
structures. In Proc. of SODA, pages 281–290, 2004.

[4] J. Edwards. Coherent reaction. In Proc. of Onward!, pages
925–932, 2009.

[5] J. Edwards. Time is of the essence. alarmingdevelop-

ment.org/?p=739, Feb. 2013.

[6] C. Elliott and P. Hudak. Functional reactive animation. In
Proc. of ICFP, pages 263–273, 1997.

[7] B. N. Freeman-Benson. Kaleidoscope: mixing objects, con-
straints, and imperative programming. In Proc. of OOP-
SLA/ECOOP, pages 77–88, 1990.

[8] K. Ghosh and R. M. Fujimoto. Parallel discrete event sim-
ulation using space-time memory. In Proc. of ICPP, pages
201–208, 1991.

[9] A. Goldberg and D. Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing
Co., Inc., 1983.

[10] C. M. Hancock. Real-time programming and the big ideas of
computational literacy. PhD thesis, Massachusetts Institute of

Technology, 2003.

[11] D. R. Jefferson. Virtual time. ACM TOPLAS, 7(3):404–425,
July 1985.

[12] S. McDirmid. Living it up with a live programming language.
In Proc. of OOPSLA Onward!, pages 623–638, October 2007.

[13] S. McDirmid. Usable live programming. In Proc. of SPLASH
Onward!, 2013. To Appear.

[14] S. McDirmid and W. C. Hsieh. Superglue: Component pro-
gramming with object-oriented signals. In Proc. of ECOOP,
pages 206–229, 2006.

[15] A. Nathan. Windows Presentation Foundation Unleashed
(WPF) (Unleashed). Sams, 2006.

[16] G. Ramalingam and T. Reps. A categorized bibliography on
incremental computation. In Proc. of POPL, pages 502–510,
1993.

[17] N. Shavit and D. Touitou. Software transactional memory. In
Proc. of PODC, pages 204–213, 1995.

[18] S. C. Tay, Y. M. Teo, and R. Ayani. Performance analysis of
time warp simulation with cascading rollbacks. In Proc. of
PADS, pages 30–37, 1998.

[19] B. Victor. Inventing on principle. Invited talk at CUSEC, Jan.
2012.

[20] B. Victor. Learnable programming. worrydream.com/Learn-

ableProgramming, Sept. 2012.

4 2013/8/16

