Mapping Context-Dependent Requirements to
Event-Based Context-Oriented Programs for Modularity

Tetsuo Kamina
University of Tokyo

kamina@acm.org

ABSTRACT

There are several challenges in development of context-aware
systems. First, while contexts are abstract from the view-
point of behavior that depends on them, we need to elicit
more concrete level of contexts that are sensed by complex
context sensing technologies. Second, there are complicated
relations between contexts and behavioral variations. Sev-
eral variations may depend on multiple contexts, and several
behavioral variations crosscut across several requirements.
Third, contexts and context-dependent behavior reactively
change with respect to external/internal events, and these
changes also crosscut across several requirements. Finally,
these complexities in requirements make it difficult to mod-
ularly map requirements to the implementation. This pa-
per proposes a model of context-dependent requirements
and shows the modular mapping from the model to the im-
plementation in the existing COP language EventCJ. The
model represents the following facts: (1) abstract contexts,
context-dependent use cases, and groups of related use cases
called layers; (2) concrete level of contexts, context-related
external entities, and their correspondence to the abstract
contexts; and (3) events that trigger changes of the contexts
and thus switch the variations of behavior. We show that all
such facts are injectively translated into the program written
in EventClJ.

Keywords

Context-oriented programming, Events, Requirements model,
Translation to implementation

1. INTRODUCTION

Context-awareness is one of the major issues in many ap-
plication areas including reactive systems. It refers to the
capability of a system to behave appropriately with respect
to its surrounding contexts. A context is a specific state of
a system and/or an environment that affects the system’s
behavior. For example, a ubiquitous computing application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Tomoyuki Aotani
Tokyo Institute of Technology
aotani@is.titech.ac.jp

Hidehiko Masuhara
Tokyo Institute of Technology

masuhara@acm.org

behaves differently in relation to contexts such as geograph-
ical location, indoor or outdoor environment, and weather.
An adaptive user interface can also be considered as context-
aware as it provides different GUI components relative to the
current users task.

There are several difficulties in the development of context-
aware applications. First, while contexts are abstract from
the viewpoint of behavior that depends on them, we need
to elicit more concrete level of contexts that depend on the
underlying sensor technologies. Thus, we need to manage
different levels of abstraction of contexts in the require-
ments. Second, there are complicated relations between con-
texts and behavioral variations. Several variations may de-
pend on multiple contexts, and several behavioral variations
crosscut across several requirements. Third, contexts and
context-dependent behavior reactively change with respect
to external/internal events, and these changes also crosscut
across several requirements. In particular, technologies for
sensing external events that change contexts evolve contin-
uously, which means that context sensing is a subject to
change and thus it should be modularized. Finally, these
complexities in requirements make it difficult to modularly
map requirements to the implementation.

There are several research efforts that address these dif-
ficulties; they are devoted in requirements engineering [27,
26, 29, 21, 22, 2], frameworks [1, 25], and programming lan-
guages such as context-oriented programming (COP) lan-
guages [14, 4, 5, 9, 13, 28, 17] and event-based languages
[24, 10, 23, 11]. These research efforts address only some
parts of the aforementioned difficulties. For example, most
of the requirements engineering methods for context-aware
systems lack the viewpoint of fine-grained and volatile re-
quirements about context sensing, and that of how require-
ments are modularly mapped to the implementation. Simi-
larly, the implementation technologies lack the viewpoint of
requirements.

In this paper, we propose a model of context-dependent re-
quirements and show the modular mapping from the model
to the implementation in the existing COP language EventCJ
[17]. This model identifies the following facts: (1) abstract
contexts, context-dependent use cases, and groups of re-
lated use cases called layers; (2) concrete level of contexts,
context-related external entities, and their correspondence
to the abstract contexts; and (3) events that trigger changes
of the contexts and thus switch the variations of behavior.
The obtained requirements are modularly mapped to the im-
plementation with the assumption that the implementation
is performed by EventCJ. By formally define this mapping,

we show that it is mostly injective and performed system-
atically. Thus, our approach provides modularity in that
requirements are not scattered to several modules in the im-
plementation, and each module is not tangled with several
requirements.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the difficulties in development of context-
aware applications by using an example of simple pedestrian
navigation system. Section 3 describes our requirements
model. Section 4 defines mapping from the facts represented
by the model into the program written in EventCJ. Section
5 discusses related work. Finally, Section 6 concludes this

paper.

2. DIFFICULTIES IN CONTEXT-AWARE AP-

PLICATIONS

We explain the difficulties in development of context-aware
applications by using a simple pedestrian navigation system
implemented on a mobile terminal, which displays the cur-
rent position of the user. This system changes its behavior
according to the situations. When the user is outdoors, it
displays a city map, which is updated whenever the current
position of the user is changed. When the user is inside a
building where a specific floor plan service is provided, it dis-
plays a floor plan of that building. When the user is inside a
building where no such services are provided, it displays the
city map as in the case where the user is outdoors, or, if no
positioning systems are available, it displays a static map.

Identification of context-dependent behavior.

A context-aware application changes its behavior with re-
spect to current executing context; i.e., there are several
variations of behavior depending on contexts. Thus, we need
to identify contexts and requirements variability depending
on them. For example, in the pedestrian navigation system,
we can identify contexts such as outdoors or indoors, the
availability of the special floor plan services, and the avail-
ability of the positioning systems. These contexts change
the behavior of the map and other functions such as GUI
components. For example, the variation of behavior “dis-
playing a city map” is selected when the user is “outdoors.”

Requirements volatility in context sensing.

In context-aware applications, contexts change dynami-
cally. While contexts are abstract from the viewpoint of vari-
ability of behavior, technologies for sensing context changes
are very complex. These technologies evolve continuously,
which means that requirements for context sensing are sub-
ject to change.

Different levels of abstraction.

As discussed in the volatility in context sensing, contexts
at the abstract level consist of several concrete contexts. For
example, the availability of positioning systems depends on
the hardware specifications such as the availability of GPS
and/or wireless LAN functions. Thus, we need to precisely
define what are contexts in terms of the target machine.
This chain of dependency leads to the difficulty in precise
definition on when the variations of behavior switches at
runtime. For example, there may be several state changes
in the target machine that trigger a context change, because,
as in the case of contexts, some states of executing hardware

may barrier or guard the change of abstract contexts.

Crosscutting of contexts in requirements.

In context-aware applications, several variations of behav-
ior that are at first irrelevant to each other may be eventually
considered relevant in that they are executable in the same
context. For example, we may also identify variations of
behavior for other functions such as GUI components. The
variation “displaying an alert message on the status bar”
may be considered relevant to “displaying a static map” if
the former is executable only when no positioning systems
are currently available.

Multiple dependency between contexts and behavior.

We also need to carefully analyze dependency between
contexts and variations of behavior, because several varia-
tions depend on multiple contexts. For example, according
to the problem description, the variation “displaying a city
map” depends both on outdoors/indoors situations and the
availability of the special floor plan service. In this case, this
variation is not selected if one of the contexts “the user’s situ-
ation is outdoors” and “the floor plan service is not available”
is not satisfied. In general, several contexts may barrier or
guard the execution of context-dependent behavior. This
dependency becomes more complicated when we consider
the concrete contexts as discussed above.

Crosscutting of behavioral changes in requirements.

One of the most important properties of context-aware
applications is that they change their behavior at runtime.
Thus, we need to identify when a variation of behavior switches
to another one. As discussed above, however, a variation
may depend on multiple (abstract) contexts, where each
context depends on several concrete contexts. In particular,
context changes are scattered in several requirements. Since
their specifications are subject to change, it is desirable to
localize them.

Modular translation to the implementation.

The above difficulties (from the viewpoint of requirements)
make it difficult to modularly map requirements to the im-
plementation. We need to carefully trace which require-
ments are implemented by which modules. It is also desir-
able if a module in the implementation is not tangled with
several requirements but it serves only a single requirement.
Thus, to support modularity, it is desirable that there is an
injective mapping from requirements to the implementation.

3. A MODEL OF CONTEXT-DEPENDENT
REQUIREMENTS

We propose a model of context-dependent requirements
that represents the following facts:

1. Abstract contexts, use cases that depend on them, and
groups of related use cases called layers

2. Concrete level of contexts, context-related external en-
tities, and their correspondence to the abstract con-
texts

3. Events that trigger changes of the contexts and thus
switch the variations of behavior

Using a city
map
1 S

situati ind
floorPlan=unavailable floorPlan=available

Using a
static map

J positioning=unavailable

Figure 1: Use case diagram for the pedestrian navi-
gation system

Using the main
menu

<<includesz _

Seeing an
alert message

| positioning=unavailahleJ

Figure 2: The context-dependent use case that dis-
plays an alert message

3.1 Abstract contexts

A context in our model is defined in terms of variables
that take finite states (values). In the pedestrian navigation
system, we identify the following variables:

name | values

situation outdoors, indoors
floorPlan available, unavailable
positioning | available, unavailable

Each of those variables corresponds to the situation for
using the system, the availability of the floor plan service,
and the availability of the positioning devices, respectively.
In the following sections, we call a specific setting of value
to a variable (i.e., a state of the variable) as a context.

3.2 Context-dependent use cases

Our model identifies context-dependent use cases. A context-

dependent use case is a use case annotated with a propo-
sition that specifies when it is executable. In general, a
context-dependent use case specializes another use case. For
example, in the pedestrian navigation system, we can iden-
tify a use case “using a map” (Map). We can then iden-
tify three context-dependent use cases “using a city map”
(CityMap), “using a floor plan” (FloorPlan), and “using a
static map” (StaticMap). All these context-dependent use
cases are specialization of Map. CityMap is annotated with
the proposition situation=outdoorsVfloorPlan=unavailable,
which means that it is executable only when the value of “sit-
uation” is “outdoors.” Similarly, FloorPlan is annotated with
situation=indoorsAfloorPlan=available, and StaticMap is an-
notated with positioning=unavailable (Figure 1).

3.3 Grouping context-dependent use cases

Context-dependent use cases that are executable under
the same context are grouped into one layer. In general, a
system consists of several use cases. Figure 2 shows a use
case diagram for another interaction between the pedestrian
navigation system and the user, namely “using the main

Layer CProposition

String name
CProposition proposition [L L

CBinary CAtom CUnary
Operator op Context context | | CProposition operand
CProposition left [
CProposition right Context
String name
String value

Figure 3: The model of layers

menu.” There is a context-dependent use case, namely “see-
ing an alert message” (Alert), which describes the behavior
of the pedestrian navigation system that displays an alert
message indicating that no positioning systems are avail-
able on the status bar. Note that this use case is annotated
with the same condition as StaticMap. This means that
the use cases StaticMap and Alert are executable under the
same context. To provide better maintainability, our model
groups such use cases into one layer'.

We show the model of layers by using the UML class di-
agram in Figure 3. A layer consists of its name and the
proposition annotated to the constituent context-dependent
use cases (in this diagram, we omit context-dependent use
cases, because they share the same proposition within the
same layer). This proposition is represented by the class
CProposition, which has three subclasses. CBinary repre-
sents binary operators A and V, CUnary represents the unary
operator —, and CAtom represents a ground term, which is
the name of context and its value represented by the class
Context. Note that we consider the contexts that share the
same name but have different values as different instances;
i.e., each field of Context is considered “final.”

3.4 Specifying concrete contexts

While contexts are abstract from the viewpoint of be-
havioral variations, when we identify requirements from the
viewpoint of context sensing, we need to consider more con-
crete level of contexts. We firstly lists all resources of the
running machine and external entities that are relevant to
the context-dependent behavior. For example, we list the
following resources and external entities for the pedestrian
navigation system:

e Resources: GPS, Wi-Fi
e External entities: the floor plan services (FP)

We refer them as concrete conterts. Then, we map the
pairs of concrete contexts and their values to those of ab-
stract contexts and their values. By analyzing when the
system is in each context with respect to the status concrete
contexts, we can create a mapping from abstract contexts to
concrete contexts. For example, the value of “positioning” is
“available” when the GPS device is switched on, or the Wi-
Fi device is connected to the Internet. Table 1 summarizes
this mapping.

The model of concrete contexts and their mapping to ab-
stract contexts is shown in Figure 4. Each concrete context

!Bach layer directly corresponds to a layer declaration in
existing COP languages.

Mapping

RProposition
RProposition get(Context), 2
[I]
RBinary RAtom RUnary

Operator op Resource resource| | RProposition operand
RProposition left [
RProposition right

Resource

String name
String value

Figure 4: The model of resources and their mapping

2

Event

String name
Resource rl
Resource r2
Description description

Figure 5: The model of events

(represented as Resource in Figure 4) consists of its name
and value. As in the case of abstract contexts, we distin-
guish a concrete context that has the same name but pro-
vides the different value as a different instance. The class
Mapping provides the function get that takes an instance
of Context and returns a proposition, which is represented
by the class RProposition. This class has three subclasses
RBinary, RUnary, and RAtom to represent binary operators,
the unary operator, and ground terms, respectively.

3.5 Identifying Events

In terms of concrete level of contexts, we identifies events
that change those contexts. Each event consists of its name,
a pair of a concrete context and its value before the state
change occurs, a pair of the concrete context and its value af-
ter the state change occurs, and the description about when
this state change occurs. For example, the value of the GPS
becomes “over the criterion value” from “under the criterion
value” when the received GPS signal value becomes greater
than the preset value; we can identify this state change as
an event with the name StrongGPS. We list some examples
of the events identified in the pedestrian navigation system
in Table 2.

The model of events is shown in Figure 5. Each event
consists of its name, concrete contexts before and after the
event is generated, and its description.

Table 1: Mapping from contexts to machine-level
resources in the pedestrian navigation system

context | value | resource configuration
situation outdoors GPS=over the criterion
indoors GPS=under the criterion
floorPlan available FP=exists
unavailable | FP=do not exists
positioning | available GPS=on or Wi-Fi=connected
unavailable | GPS=off
and Wi-Fi=disconnected

11

12

14

15

17

19

Table 2: Examples of the identified events

name transition when
StrongGPS | GPS=over the criterion | the GPS signal
— GPS=under the value becomes
criterion under XXX
GPSEvent | GPS=off — GPS=on the GPS device
is becoming on
WifiEvent Wi-Fi=disconnected the Wi-Fi device
— Wi-Fi=connected is connected and
the IP address is
properly set

class Navigation extends MapActivity
implements Runnable, LocationListener {
MyLocationOverlay overlay;
void onStatusChanged(..) { .. }
void run() {}
void onCreate(Bundle status) {
.. overlay.runOnFirstFix(this);
}
layer CityMap when StrongGPS || !FPExists {
void run() { .. }
}
layer FloorPlan
when !StrongGPS && WifiConnect && FPExists {
void run() { .. }
}
layer StaticMap when !GPSon && !WifiConnect {
void run() { .. }
}
}

Figure 6: Layers and partial methods in EventCJ

4. MAPPING TO THE IMPLEMENTATION

This section discusses how the facts represented by our
model are modularly mapped to each linguistic construct of
the existing COP language, namely EventCJ [17, 18]. To
make this paper self-contained, we firstly provide a short
introduction to EventCJ. Then, we define the mapping from
our model to EventCJ to demonstrate how the mapping is
systematically performed.

4.1 Short Introduction to EventCJ
As in other COP languages, layers and partial methods

comprise the mechanism for modularization of context-dependent

behaviors in EventCJ.

Figure 6 shows an example of layers and partial meth-
ods in EventCJ that are responsible for displaying a map
in the pedestrian navigation system. The class Navigation
declares the method run that updates the map. Navigation
also declares three layers, namely CityMap, FloorPlan, and
StaticMap. CityMap defines the behavior of the map when
the system is outdoors; FloorPlan defines the behavior of
the map when there is a special floor plan service; and Stat-
icMap defines the behavior when there are no available po-
sitioning devices. All layers extend the original behavior of
run by declaring around partial methods, which are executed
instead of the original run method when the respective layer

is active?.

In COP languages, we can dynamically activate and deac-
tivate layers. For this purpose, EventCJ provides the when
clauses in the layer declarations (this feature is available
from the later version of EventCJ [18]), layer transition rules,
and events.

The when clauses control the implicit activation of lay-
ers. If a layer is declared with a when clause (as shown in
Figure 6), it implicitly becomes active when the proposition
specified by the when clause becomes true. In this propo-
sition, each ground term is the name of a layer (true when
active). For example, the layer CityMap is active only when
StrongGPS is active or FPExists is not active. We can use
the logical operators | |, & and ! to compose propositions.

A layer that does not have a when clause is called a context
(we may declare partial methods and other members in such
a layer. In this example, though, all such layers have an
empty body):

layer StrongGPS {}
layer WifiConnect {3}
layer FPExists {}
layer GPSon {}

The activation of such layers are controlled by layer transi-
tion rules, which are triggered by events (explained below).
Examples of layer transition rules upon events GPSEvent and
WifiEvent are as follows:

transition GPSEvent: -> GPSon
transition WifiEvent: -> WifiConnect

Each rule starts from the keyword transition, and is fol-
lowed by an event name and a rule. The left-hand side of the
-> operator (omitted in this example) consists of contexts
to be deactivated, and the right-hand side consists of con-
texts to be activated. We may add a guard for the rule by
putting the ? operator at the left hand side of ->, which is
also omitted in this example. We may concatenate multiple
subrules by the | operator; in such a case, only the left-
most applicable rule is applied. Thus, the first rule above is
read as, “upon the generation of GPSEvent, the layer GPSon
is activated.”

EventCJ provides events to trigger the layer transition
rules. The following code fragment shows a declaration of
event GPSEvent:

declare event GPSEvent(Navigation n, int s)
:after call(void Navigation.onStatusChanged(s))
&&target (n)&&args(s)
&&if (s==LocationProvider.AVAILABLE);

An event declaration consists of two parts: a specifica-
tion that indicates when the event is generated and a spec-
ification that indicates where the event is sent. The for-
mer is specified by using AspectJ-like pointcut sublanguage
[20], and the latter is specified by using the sendTo clause
that lists instances that receive the event. For example, GP-
SEvent specifies when it is generated by using the pointcut
specification that specifies a join-point just after the onSta-
tusChanged method on Navigation is called with the argu-
ment value indicating that the location provider is available.

2There are also before and after partial methods that exe-
cute before and after the execution of the original method,
respectively, when the respective layer is active.

ECLayer WhenClause
String name
WhenClause proposition [I |
ECBinary ECAtom ECUnary
Operator op EContext context| | WhenClause operand
WhenClause left |
WhenClause right EContext
String name
ECEvent LT

ECEvent event
EContextcl
EContext c2
EContext c3

String name
Pointcut spec

Figure 7: The model of EventCJ

In this example, the sendTo clause is omitted, which means
that the effect of the event is global, i.e., it changes the be-
havior of all classes in the program.

To discuss the correspondence between our model and
EventCJ, we show the metamodel of EventCJ programs in
Figure 7. Each layer, represented by the class ECLayer, con-
sists of its name and the when clause, which is represented
by the class WhenClause (we abstract other irrelevant con-
structs such as classes from this metamodel). This class has
three subclasses: ECBinary, ECUnary, and ECAtom. ECAtom
represents a ground term for the when clauses, which is a
context (i.e., a layer that does not have a when clause). This
is represented by the class ECContext. ECBinary and ECU-
nary represent binary operators and the unary operator for
the when clauses, respectively. An event, represented by
ECEvent, consists of its name and the specification about
when this event is generated written in the pointcut lan-
guage. A layer transition rule, represented by LT, consists
of the corresponding event, a context that guards the tran-
sition (cl), a context that is deactivated (c2), and a context
that is activated (c3).

4.2 Definition of mapping

We define the mapping from our model to EventCJ. First,
concrete contexts represented in our model are mapped to
contexts in EventCJ. We define a function mapy that maps
each instance of Resource in Figure 4 to an instance of EC-
Context in Figure 7. This function is injective. Note that
this function may be a partial function, because some con-
crete contexts take just two exclusive values and thus we
need to identify only one context in EventCJ. Example map-
pings defined for the pedestrian navigation system are as
follows (we represent an instance of ECContext by its name
in the typewriter format):

mapp (GPS=over the criterion value) = StrongGPS
mapgr(GPS=on) = GPSon
mapg(Wi-Fi=connected) = WifiConnect
mapp (FP=exists) = FPExists

This mapping should be manually defined by the developer.

Next, we define the mapping from layers in the model to
those in EventCJ. For this purpose, we define the function
map;, that takes an instance of Layer in Figure 3 and returns
an instance of ECLayer in Figure 7. The returned instance
consists of a name mapped from the name of the argument
instance, and the when clause that is mapped from the corre-
sponding context annotation CProposition in Figure 3 (let

I be an instance of Layer):

new ECLayer(id(l.name),
mapg (l.annotation))

mapy (l) =

For the name mapping, we assume the identity function id
that takes a string text and returns it. We further need
to elaborate how to map an instance of CProposition to
that of WhenClause, which is defined by the function map .
Since CProposition is an abstract class, we need to define
the cases for each concrete class. If the instance of CPropo-
sition is a composite proposition, i.e., that is an instance
of either CUnary or CBinary, we define the map function as
follows (let ¢, c1, and c2 be instances of CProposition):

mapc(cl) A mapC(CQ)
mapg(c1) V mapg(cz)
—~map(c)

mapg(c1 Ae2) =
mapg(c1 Ve2) =
mapg(—c) =

If the instance of CProposition is an atom, we obtain the
corresponding proposition by the class Mapping in Figure 4,
and map it to the when clause:

map (c) = mapgp(Mapping.get(c.context))

The get function returns a proposition (an instance of RPropo-
sition in Figure 4), which is mapped to an instance of When-
Clause in Figure 7 by the mapyp function at the right-hand
side. Since RProposition is an abstract class, we also need
to define the cases for each concrete class. We only show the
case when the instance of RProposition is RAtom (let r be
an instance of RProposition):

mapgp(r) = new ECAtom(mapg(r.resource))

It firstly maps a resource to a context in EventCJ, and cre-
ates an instance of ECAtom.

The mapping from events (in the model) to events (in
EventClJ) is obvious (let e be an instance of Event):

new ECEvent(
id(e.name),
mappg(e.rl), mapg(e.r2), mapp(e.d))

mapp(e) =

It maps the name, resources, and the description to the cor-
responding constructs in EventCJ, and creates an instance
of ECEvent. For the name mapping, we may assume the
identity function. The description is mapped to the cor-
responding pointcut expression. This mapping is manually
performed by the developer. We may apply the method to
identify AspectJ’s pointcut from the extension pointcut in
use cases, described in [16].

The events in the model are also mapped to layer transi-
tion rules. For this purpose, we define the function map;
that takes an instance of Event and returns an instance of
LT in Figure 7:

new LT(
new ECEvent(id(e.name), mapp,(e.d)),

mapg(e.rl), mapg(e.rl), mapg(e.r2))

maprr(e) =

For the concrete implementation, we need to populate def-
initions of classes, methods, and partial methods into the
source code. Designing base code (i.e., classes and meth-
ods) from use cases is fully discussed in [15], and we do not
describe it in detail in this paper. The method for designing
layers is a straightforward extension of [15].

This mapping is mostly mechanized. The developer needs
to provide the name mapping from resources to contexts (in

EventCJ) and pointcut expressions for each event. How-
ever, we may automate other parts. Furthermore, all the
mapy functions are injective. Thus, this mapping provides
modularity in that requirements are not scattered to sev-
eral modules in the implementation, and each module is not
tangled with several requirements.

S. RELATED WORK

Several COP languages have been developed thus far, and
most of these share the same abstraction mechanism based
on layers and partial methods [4, 5, 9, 13]. Thus, we can ap-
ply the same implementation scheme for these languages to
translate context-dependent use cases into layers and par-
tial methods. Since most of the existing COP languages
are based on a dynamically scoped layer activation mech-
anism via so-called with-blocks, we need a different treat-
ment to map context changes to the implementation; i.e.,
context changes and events specify the locations in source
code where with-blocks should be inserted.

Considerable effort has been devoted to apply relatively
recent programming paradigms, specifically aspect-oriented
programming and feature-oriented programming, to soft-
ware development. In particular, Jacobson’s approach of
aspect-oriented software development with use cases [16] is
similar to our approach in many ways. For example, events
declared in use case scenarios are based on the notion of ex-
tension points under Jacobson’s approach. The major differ-
ence is that in our approach, events are not used as extension
hooks but as triggers of layer transitions. Feature-oriented
software development [3] is a method that maps feature dia-
grams [19], which are obtained from the analysis of software
to be developed, to implementations. Feature diagrams are
useful for analyzing dependency among features from which
software is constructed. Costanza proposed a method to an-
alyze the dependency between layers using feature diagrams
[8]. The objective of our approach is not to analyze such
dependency between layers but to analyze dynamic context
changes.

Context-aware applications may effectively be developed
by the application of frameworks. Henrichsen and Indul-
ska proposed a software engineering framework for perva-
sive computing [12]. It provides a modeling language called
CML to model contexts based on four types and to describe
states of contexts using propositional logic. The literature
[7] describes a framework for Web applications that imple-
ment adaptation on the basis of contexts. The literature [6]
describes an ontology-based framework for service selection
depending on contexts. One drawback of framework-based
solutions is that they are only applicable in specific appli-
cation domains. Our approach may effectively be applied
to wider range of application domains, because it does not
depend on any special purpose frameworks.

6. CONCLUDING REMARKS

In this paper, we proposed a model of context-dependent
requirements. The model is well expressive to describe vari-
ations of behavior with respect to the abstract contexts, as
well as to represent more concrete and volatile requirements
about context sensing. This model supports modularity in
that the facts represented by it is injectively mapped to the
program written in the existing event-based context-oriented
language.

This paper only describes the model of requirements and
its mapping to the implementation by using a simple exam-

ple.

How to instantiate this model (i.e., how to document

the requirements based on this model) in more sophisticated
case studies remains as future work.

7.
1]

=

[12]

[13]

REFERENCES

Gregory D. Abowd, Christopher G. Atkeson, Jason
Hong, Sue Long, Rob Kooper, and Mike Pinkerton.
Cyberguide: A mobile context-aware tour guide.
Wireless Networks, 3(5):421-433, 1997.

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini.
Goal-based self-contextualization. In CAiSE 2009,
pages 37-43, 2009.

Sven Apel and Christian Késtner. On overview of
feature-oriented software development. Journal of
Object Technology, 8(5):49-84, 2009.

Malte Appeltauer, Robert Hirschfeld, Michael Haupt,
and Hidehiko Masuhara. ContextJ: Context-oriented
programming with Java. Computer Software,
28(1):272-292, 2011.

Malte Appeltauer, Robert Hirschfeld, Hidehiko
Masuhara, Michael Haupt, and Kazunori Kawauchi.
Event-specific software composition in
context-oriented programming. In Proceedings of the
International Conference on Software Composition
2010 (5C’10), volume 6144 of LNCS, pages 5065,
2010.

Cinzia Cappiello, Marco Comuzzi, Enrico Mussi, and
Barbara Pernici. Context-management for adaptive
information systems. Electronic Notes in Theoretical
Computer Science, 146:69-84, 2006.

Stefano Ceri, Florian Daniel, Federico M. Facca, and
Maristella Matera. Model-driven engineering of active
contet-awareness. World Wide Web, 10:387-413, 2007.
Pascal Costanza and Theo D’Hondt. Feature
descriptions for context-oriented programming. In 2nd
International Workshop on Dynamic Software Product
Lines (DSPL’08), 2008.

Pascal Costanza and Robert Hirschfeld. Language
constructs for context-oriented programming — an
overview of ContextL. In Dynamic Language
Symposium (DLS) 05, pages 1-10, 2005.

Patrick Eugster and K.R. Jayaran. EventJava: An
extension of Java for event correlation. In ECOOP’09,
volume 5653 of LNCS, pages 570-594, 2009.

Vaidas Gasiunas, Lucas Satabin, Mira Mezini,

Angel N1 nez, and Jacques Noyé. EScala: Modular
event-driven object interactions in Scala. In AOSD’11,
pages 227-240, 2011.

Karen Henrichsen and Jadwiga Indulska. A software
engineering framework for context-aware pervasive
computing. In PERCOM’04, 2004.

Robert Hirschfeld, Pascal Costanza, and Michael
Haupt. An introduction to context-oriented
programming with ContextS. In GTTSE 2007, volume
5235 of LNCS, pages 396—407, 2008.

Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125-151, 2008.

Ivar Jacobson, Magnus Christerson, Patrik Jonsson,
and Gunnar Overgaard. Object-Oriented Software

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

25]

(26]

27]

28]

29]

Engineering: A Use Case Driven Approach. Pearson
Education, 1992.

Ivar Jacobson and Pan wei Ng. Aspect-Oriented
Software Development with Use Cases. Pearson
Education, 2005.

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. EventCJ: a context-oriented programming
language with declarative event-based context
transition. In AOSD ’11, pages 253-264, 2011.

Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko
Masuhara. Introducing composite layers in EventCJ.
IPSJ Transactions on Programming, 6(1):1-8, 2013.
Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson.
Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon
University, 1990.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Grisword. An
overview of AspectJ. In ECOOP’01, pages 327-353,
2001.

Alexiei Lapouchnian and John Mylopoulous. Modeling
domain variability in requirements engineering with
contexts. In ER 2009, volume 5829 of LNCS, pages
115-130, 2009.

Sotirious Liaskos, Alexei Lapouchnian, Yijun Yu, Eric
Yu, and John Mylopoulos. On goal-based variability
acquisition and analysis. In RE’06, pages 79-88, 2006.
Angel N1 nez, Jacques Noyé, and Vaidas Gasitunas.
Declarative definition of contexts with polymorphic
events. In COP’09, 2009.

Hridesh Rajan and Gary T. Leavens. Ptolemy: A
language with quantified, typed events. In ECOOP’08,
pages 155-179, 2008.

Daniel Saliber, Anind K. Dey, and Gregory D. Abowd.
The context toolkit: Aiding the development of
context-enabled applications. In CHI’99, pages
434-441, 1999.

Mohammed Salifu, Bashar Nuseibeh, Lucia Rapanotti,
and Thein Than Tun. Using problem descriptions to
represent variability for context-aware applications. In
VaMoS 2007, 2007.

Mohammed Salifu, Yujun Yu, and Bashar Nuseibeh.
Specifying monitoring and switching problems in
context. In RE’07, pages 211-220, 2007.

Guido Salvaneschi, Carlo Ghezzi, and Matteo
Pradella. ContextErlang: Introducing context-oriented
programming in the actor model. In AOSD’12, 2012.
Alistair Sutcliffe, Stephen Fickas, and McKay Moore
Sohlberg. PC-RE: a method for personal and
contextual requirements engineering with some
experience. Requirements Engineering, 11(3):157-173,
2006.

