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ABSTRACT
According to chapter 3 of Abelson & Sussman [1], there are
two fundamentally different ways to organise large systems:
according to the objects that live in the system, or according
to the streams of values that flow through the system. Even
though the notions of “object” and “stream” have meanwhile
taken many incarnations, the dichotomy still exists in mod-
ern programming languages. Marrying reactive program-
ming and OOP is a research endeavour to come up with a
unified model that embraces both styles of thinking. We
identify two opposing research tracks towards the marriage.
Existing work focuses on OO reactive programming, i.e., it
uses object technology to compose reactions. Our work ex-
plores the converse: in the paper, we present the ROAM
(Reactive Objects in AmbientTalk) model which is an ex-
perimental framework that explores objects as streams of
reactive state.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

Keywords
object-oriented programming, reactive programming, lan-
guage abstraction

1. INTRODUCTION
Modern applications are becoming ever more driven by ex-
ternally produced events and streams of values. These orig-
inate in network interactions, rich graphical user interfaces,
and a wide variety of on-board sensors (e.g GPS receiver,

accelerometer, physical activity trackers etc). Keeping such
applications responsive requires one to design them in an
event-based style all the way down. However, event-based
programming suffers from inversion of control [5], i.e., the
application logic is scattered across numerous small event
handlers (e.g., callbacks) that are triggered by a source ex-
ternal to the application. As a result, the control flow of the
application no longer follows the textual order specified by
the programmer, making it extremely hard to keep track of
what is happening.

In this context, early work on Functional Reactive Program-
ming (FRP), see e.g., [4], has been identified as a promising
research avenue because it allows event-driven code to be
written in a declarative style, thus avoiding the inversion
of control. Technically, FRP introduces the notion of event
streams and time-varying values and relies on the underlying
execution technology to automatically manage event depen-
dencies between expressions and their subexpressions. How-
ever, unfortunately today most software systems are still
built in an imperative object-oriented programming style
and this is something that will probably not change any-
where near soon. The fundamental question that needs to
be answered is thus how to reconcile reactive programming
with encapsulated mutable data structures, a.k.a. objects.

There are two fundamentally different ways in which object-
orientation can be reconciled with reactive programming
into one coherent programming model. First, the program-
ming model can be designed around the streams of events
and values that flow through a system. The idea is to design
language features that allow programmers to create com-
positions of streams in order to manage the complexity of
events streams and time-varying values. In other words,
one “objectifies” reactive streams and one offers object tech-
nology to build and compose streams. This is what we
call object-oriented reactive programming. Alternatively, the
programming model can be more centred around the objects
that live in a system, and offer language features that allow
programmers to evoke and manage state changes of object
fields by means of reactive computation. In other words, one
“reactifies” objects and their constituent fields. This is what



we call reactive object-oriented programming.

In recent work, reactive programming has affected impera-
tive languages. A famous example is Flapjax [7] for Java-
Script, but others exist as well (see [2] for an overview).
Moreover, a number of dedicated reactive language dialects
have been proposed including FrTime [3] for Scheme and
Scala.React [6] and REScala [8] for Scala. These language
designs basically allow developers to define reactive streams
of composite values (e.g., streams of cons cells and even ob-
jects) the constituents of which are immutable. As a con-
sequence, interactions of reactive programming and stateful
object-oriented programming remain largely unexplored. In
some of the aforementioned work, ideas have been explored
to connect stateful objects (e.g., in a GUI framework) to
reactive streams or — conversely — to feed the values of
reactive streams into the fields of stateful objects. In our
work, we attempt to go further and consider objects as en-
tities encapsulating behaviour and streams of mutable state.
As a result, a reactive stream can consist of objects whose
identity does not change over time but whose constituent
state does. Moreover, even though the identities (i.e., the
object seen as a value) do not change, dependencies installed
on such objects are reevaluated if one of their constituent
fields changes. We present ROAM (Reactive Objects in Am-
bientTalk) as a first experimental reactive object-oriented
framework. ROAM was implemented as a reflective exten-
sion to AmbientTalk [9], our own homegrown (distributed)
object-oriented programming language.

2. MOTIVATION
Reactive programming languages facilitate the development
of event-driven and interactive applications by introducing
events and signals. Signals (also known as behaviours) rep-
resent continuous time-varying values whereas events refer
to streams of value changes that represent discrete values.
In the past there has been a lot of research on functional
reactive programming. Recently, languages like Scala.React
and REScala attempt to bridge the gap between OO and
functional reactive programming style of thinking. In this
section, we argue that those solutions do not provide true
reactive object-oriented programming.

2.1 Object-oriented Reactive Programming
Scala.React [6] is a representative scion of what we dub
object-oriented reactive programming. As in many other re-
active programming languages, Scala.React allows to trans-
parently lift traditional function calls so that such calls auto-
matically trigger reactive computations. Events in Scala.React
are modeled in the form of event streams which are the dis-
crete counterpart of signals.

In Scala.React, a signal s is initialized with the Signal{expr}
operation where expr is an arbitrary Scala expression. Af-
ter the evaluation of expr, s is said to depend on all other
signals that are referred to from within expr. This means
that a reevaluation of s will be triggered if any of them is
updated. An important constraint is that these dependen-
cies cannot be modified after the signal has been created.
According to [6], this constraint stems from the observation
that reassignment of signals would make applications harder
to understand as the signal values would then not only de-
pend on the control flow inside their expression, but also on

the control flow of the rest of the application.

Consider the example in Listing 1 taken from [6]. This exam-
ple denotes a signal that is conceived as an object with a sin-
gle state variable initialized with the new Path expression.
Every time the signal receives external event notifications
(e.g., mouseDown or MouseMove), the signal’s state vari-
able is updated by the self()= ... expression. This will
generate update notifications to all signals that depend on
this signal in their turn. Hence, the signal can be considered
as an object with one single mutable slot that accumulates
changes as it receives notifications.

Listing 1: A path signal in Scala.React

1 val path: Signal[Path] = Signal.flow(new Path) { self =>
2 val down = self await mouseDown
3 self()= self.previous.moveTo(down.position)
4 self.loopUntil(mouseUp) {
5 val movement = self awaitNext mouseMove
6 self()= self.previous.lineTo(movement.position)
7 }
8 self()= self.previous.close()
9 }

REScala is a follow-up model of Scala.React. In REScala,
signals are a third kind of class attributes next to the tradi-
tional fields and methods. This allows programmers to de-
fine composite signals based on signals from different classes.
A signal is initialized using an arbitrary Scala expression,
which — as in Scala.React — can also depend on one or
more other signals. From [8], it is unclear how a signal’s
implicit dependency on other lexically scoped signals as in
Scala.React differs from the explicit dependencies enumer-
ated on the class declaration level in REScala. It is our
conjecture that having signals declared as class attributes
creates the dependencies every time a new instance of the
class is created whereas creating these dependencies happens
only once for a signal that solely depends on lexically visi-
ble signals. Nevertheless, the essence of the REScala model
remains the same: signals are objects that can update local
fields. However, expressions depending on those objects are
not automatically reevaluated by updating those fields.

Apart from this difference, REScala adds many features to
Scala.React. In order to promote the integration of func-
tional code into an object-oriented setting, REScala allows
developers to convert signals to events and vice versa. Ap-
plying the hold function to an event returns a signal that
exposes the most recent occurrence of that event at any point
in time. Signals that are created by using hold are thus
stateless in the sense that they only expose the last occur-
rence of an event. On the other hand, the changed function
can be applied on signals and returns an event that fires ev-
ery time the value of the signal is updated. REScala offers
functions to accumulate or keep track of the history of oc-
currences of the event (i.e., fold, list and last(Int)).
Additionally, developers can use snapshot to get the cur-
rent value of a signal every time a certain event occurs. A
feature that is less common in previous approaches to re-
active programming is that REScala offers signal-enabled
(i.e., reactive) data structures, which expose some of their
attributes as signals.

Even though REScala goes much further than Scala.React



in its object-oriented abstraction facilities, the dominant
model of the language still consists of wiring together streams
of values by means of object technology (i.e., class declara-
tions).

2.2 Reactive Object-oriented Programming
Our work explores a programming model that marries object-
oriented programming and reactive programming by alter-
ing the traditional semantics of objects, fields and methods.
Entire objects become the unit of reactivity, rather than re-
active values that can be defined inside objects. This results
in what we call reactive objects.

Before explaining a particular language design experiment in
the following section, we first explain the model intuitively
by highlighting the difference with the work presented above.
To this end, consider the code snippet below. Lines 1 -
8 show the definition of a coordinate in a two-dimensional
grid. A coordinate is initialized with an x- and y-value and
understands one method that computes the addition of two
coordinates.

1 def Coordinate := object: {
2 def x;
3 def y;
4 def move(c) {
5 Coordinate.new(x + c.x, y + c.y);
6 }
7 }
8 def c1 := Coordinate.new(1,2);
9 def c2 := Coordinate.new(3,4);

10 def c3 := c1.move(c2);
11 c2.x := 42;

Lines 8-10 initialize two coordinate objects and compute
their addition which is stored in c3 variable. As a result,
there is now a dependency of c3 to c1 and c2. In line 11
we made a state change (here in the form of an assignment)
to one of the reactive values ( i.e., a field of object stored in
c2). This change is then propagated to the reactive value
c3.

In brief, our vision considers the objects themselves to be the
reactive values. In other words, the objects are streams of
local states that can change and yet maintain their identity.
The table 1 explains the essence of our model. Even though
the Coordinate identifier is not updated by means of an
assignment, the fact that it refers to an object that is mod-
ified triggers a reevaluation of all its dependent expressions
(i.e., Coordinate.move(c) gets reevaluated).

3. REACTIVE OBJECTS
The reactive objects model consists of three key concepts:
reactive objects, reactive fields and reactive methods. Reac-
tive objects are objects that unify the concept of a reactive
value into an imperative object-oriented setting. To fit well
in such a setting, reactive objects require special semantics
for the assignment of a field and method invocation. The se-
mantics of reactive fields and reactive methods are the essen-
tial building blocks that take care of fundamental concepts
of reactive programming such as lifting and automatically
initiate the propagation of change.

In our model, objects are the unit of reactivity and propa-
gation of change is triggered by performing assignments on

reactive fields. When a field of a reactive object is changed,
the local state of the reactive object is modified and the ob-
ject propagates this change. An assignment thus results in
a reevaluation of all the reactive objects that depend on the
changed reactive object.

The semantics of a method invocation on a reactive object
are defined by the argument list. If the argument list con-
tains at least one reactive object, the method will be lifted
implicitly. Lifting a method over an argument means record-
ing a dependency from the method’s result to the argument.
Invoking methods with reactive objects as arguments effec-
tively builds a dependency graph. The model tracks depen-
dencies to make sure that the change of a reactive object
can be propagated throughout the reactive application.

The semantics of lifting are defined in such a way that the
invocation of a lifted method always returns a reactive ob-
ject that encapsulates the return value of the evaluation of
the method body. The value that is returned by such a
lifted method is either already a reactive object, or it is a
native value that is wrapped in a reactive object. The local
state of the resulting reactive object is updated every time
the method is reevaluated to reflect state changes up in the
chain of dependencies. This allows us to define other reac-
tive abstractions in terms of such a reactive object that is
returned by a lifted method.

We distinguish between methods that do not perform side-
effects, called accessors, and methods that do perform side
effects, called mutators. Both types of methods have differ-
ent semantics which are described below;

Accessor Methods. Accessor methods do not only depend
on the reactive arguments with which they are invoked,
but also on state changes of the object on which the
method is defined. The object on which the reactive
field is defined thus not only depends on the reac-
tive objects that were passed as an argument to in-
voke the reactive method, but it also depends on self
(i.e., this in Java). This is useful in situations where
a method exposes information that is calculated based
on a number of fields of a reactive object. These se-
mantics are there to make sure that if a field points
to the return value of such an accessor-method, it will
always be in a consistent state with the state of the
object that encapsulates said accessor method.

Mutator Methods. Mutator methods will not be reevalu-
ated when its encapsulating field changes. Such meth-
ods are thus not allowed to place dependencies on
the object on which they are defined as such a de-
pendency could result in a cycle in the dependency
graph. The consequence of having a cycle in the depen-
dency graph is that an invocation of a mutator method
would trigger a side-effect in the object, which in turn
will cause another reevaluation (and thus invocation)
of the method. Another problem that would occur
when a mutator method is reevaluated whenever self
changes, is that the reactive object may end up in an
inconsistent state.



Table 1: Reactive Object-Oriented Programming Explained
expression using Coordinate expression accessing Coordinate
(e.g., Coordinate.move(c)) (e.g., Coordinate.x)

Suppose the Coordinate Coordinate.move(c) Coordinate.x
variable is assigned is reevaluated is reevaluated

Suppose Coordinate’s Coordinate.move(c) Coordinate.x
field x is assigned is usually not reevaluated but is reevaluated

is reevaluated in our model

3.1 Integration of Reactive Values with Object-
Oriented Constructs

We now discuss how reactive objects behave with respect to
traditional object-oriented constructs such as inheritance,
delegation, constructors and object identity.

Inheritance Although we have not fully investigated in-
heritance yet, we propose semantics for two kinds of
objects present in our model, namely reactive and tra-
ditional objects. If a reactive object (the child) inherits
from a reactive object (the parent), a reactive object is
returned. The returned object will be a reactive object
encapsulating all of the fields and methods defined in
the child and parent. Since it is a reactive object, it
will also keep track of dependencies and trigger prop-
agation of change if necessary.

If a traditional object inherits from another traditional
object, the return value will be a traditional object as
well with the fields and methods of the child as well as
the parent encapsulated in the returned object. The
syntax of the inheritance rules in an object-oriented
programming language thus do not alter in this case.

Constructors The lifting semantics of our model do not
apply to constructors. This means that even though
such a constructor is invoked with one or more reactive
objects in its argument list, it will not be lifted. The
instantiation of a method will thus not be reevaluated
due to the change of a field of any reactive object.
Lifting such constructors would render it impossible
to instantiate reactive objects that encapsulate other
reactive objects.

Object Identity The lifting semantics of our model do
not apply to functions that check for equality between
objects. To preserve object identity, it is important
that the contents of reactive objects (that wrap the
return value of a lifted method) are changed whenever
a method is reevaluated rather than creating a new re-
active object every time change is propagated. When
a reactive method is invoked, the method is lifted and
the contents of the reactive object (instead of the re-
active object itself) is used throughout the rest of the
evaluation. When we compare object identity, these
semantics are not applied because we want to check
for the identity between the objects themselves and
not between the objects they wrap.

Delegation Our model does not provide any special seman-
tics in terms of delegation. Methods that are defined
inside reactive objects can invoke methods on other
reactive objects as well as on traditional objects. The

semantics of the other way around do not change ei-
ther, i.e., methods that are defined inside traditional
objects can invoke methods on other traditional ob-
jects as well as invoke methods on reactive objects.

3.2 Reactive Objects in AMbientTalk (ROAM)
In this section, we introduce the language features offered
in ROAM and we will see how they adhere to the model
that is explained above. We will do so by implementing
“Reactive Circles”, a small application that allows users to
draw circles and ovals. Changes to the characteristics of the
shapes will automatically update in the GUI. For example,
one can define circles that follow the movement of the mouse.
The implementation of this functionality is shown in listing
2.

Listing 2: Implementing reactive circles in ROAM

1 def mouse := reactiveObject: {
2 def x;
3 def y;
4 def clicked;
5 };
6 def ReactiveCircle := reactiveObject: {
7 def [jCircle, x, y, width, height, color];
8 def init(newx, newy, w,h,c) {
9 [x,y,width,height,color] := [newx, newy, w, h, c];
10 jCircle := JCircle.new(...);
11 };
12 def move(coordinates) {
13 x := coordinates.x;
14 y := coordinates.y;
15 };
16 };
17 def canvas := reactiveObject: {
18 def draw(circle) {
19 circle.jCircle.update(circle.x, circle.y, circle.

width, circle.height, circle.color);
20 };
21 };

The code above shows three reactive objects. The first reac-
tive object (defined in lines 1-5) represents the mouse. It has
three fields: an x- and y-coordinate and a boolean indicating
whether the mouse button is being clicked. At each point in
time these fields hold the current state of the mouse.

The second reactive object (defined in lines 6-16) represents
a circle shape in the application. A circle first holds a ref-
erence to a Java RBall object1 in the jball field. Addi-
tionally, a circle has fields for the x- and y-coordinate of the
center, width, height and color. ReactiveCircle also de-
fines a move method that accepts an object that holds coor-
dinates as an argument and changes the x- and y-coordinate
of the reactive circle accordingly. It is important to note that

1AmbientTalk features linguistic symbiosis with Java. De-
velopers can use Java classes and objects from within Am-
bientTalk programs and vice versa.



this method, since it is defined inside a reactive object, is a
reactive (mutator) method. This means that the method is
automatically lifted when it is invoked with a reactive object
as its argument and that it will be reevaluated whenever a
reactive field of this reactive object (that was passed as an
argument) is reassigned.

Finally, the canvas object (defined in lines 17- 21) repre-
sents the canvas on which shapes are drawn. The canvas
has one reactive method draw that updates the circles in
the Java GUI. Note that the glue-code interfacing with Java
is only necessary because we use the Java Swing and AWT
frameworks to draw the GUI. In a full-fledged version of
ROAM we would have a native reactive GUI-toolkit that
eliminates the need for this glue-code.

The following code snippet creates two circles and draw
them on the canvas.

22 def c1 := ReactiveCircle.new(5,150,20,20,‘green);
23 def c2 := ReactiveCircle.new(20,20,110,110,‘yellow);
24 canvas.draw(c1);
25 canvas.draw(c2);

The reactive method draw now depends on its arguments:
the reactive objects representing the circles.

Below, in lines 26 and 27 we assign the width and color fields
of respectively c1 and c2. Because c1 & c2 are reactive
objects, these assignments trigger a propagation of change
and therefore reevaluation of the calls of the draw method.

26 c1.width := 40;
27 c2.color := ‘blue;
28 c1.move(mouse);

Line 28 invokes the method move on c1 with the reactive
object mouse as its argument. This means that whenever
the coordinates of mouse change (i.e., every time the mouse
is moved), the move method is invoked on c1. The reeval-
uation of move assigns the x and y field of c1. This evokes
the redrawing of c1 because the reactive draw method was
invoked with the reactive object c1 (on line 24).

3.3 Limitations
As discussed before, objects are the unit of reactivity in
ROAM. This coarse grained granularity renders it impossi-
ble to distinguish between different kinds of events occurring
within one object. If we revisit the mouse example in listing
2 on lines 1 to 5, we see that an event source (i.e., the mouse)
is implemented as a reactive object. The mouse exposes two
kinds of events: the clicking of the mouse button (the field
clicked is assigned) and the moving of the mouse (the
fields x and y are reassigned). In the current implemen-
tation of ROAM it is however not possible to distinguish
between these two events. The move method for example
that is invoked on line 28 in listing 2 is reevaluated whenever
one of the fields of mouse happens to change. This means
that it will be reevaluated whenever the mouse moves but
also whenever the mouse is clicked. We believe that it would
be useful to introduce additional abstractions that allow to
encapsulate multiple events of one concept (i.e., the mouse)
inside one reactive object along with the functionality to
distinguish which event was triggered.

The current implementation of ROAM enables embedding a
reactive object ro2 in another reactive object ro1. If ro2
changes, only the dependents of ro2 are reevaluated and not
those of ro1. This means, that object composition has no
effect on change propagation. We feel some use cases would
benefit from a propagation strategy in which the change of
the embedded ro2 reevaluates the dependents of ro2 as
well as those of ro1. We are looking to further explore
these semantics in the future.

4. CONCLUSION
In this paper we have identified two research tracks that
target the marriage of reactive programming and object-
oriented programming. In contrast to traditional approaches,
which start from functional reactive abstractions and add
object-oriented mechanisms to compose reactions, we ex-
plore reactive object-oriented programming. We have intro-
duced a model for reactive objects in which objects are the
unit of reactivity. Finally, we presented ROAM, an experi-
mental reactive framework that implements the reactive ob-
jects model.
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