
Ways to react:
Comparing Reactive Languages and

Complex Event Processing
Alessandro Margara
High Performance Distributed Computing Group
Vrije Universiteit Amsterdam

Guido Salvaneschi
Software Technology Group,
University of Darmstadt

BACKGROUND

Ways to react:
Comparing Reactive Languages and Complex Event Processing

• Continuous external/internal  reactions

– User input, network packet, interrupts, sensors, …

Reactive Applications

Complex Event Processing

Specific case of stream processing to…

…detect high-level situations of interest:

composite events
– Starting from low-level events.

• Central role of time:
– Timestamped events

– Sequences

– Temporal patterns

Rule R
define Fire(area: string)
from Smoke(area=$a) and

Avg(Temp(area=$a).value
within 5 min. from Smoke) > 45 and
not Rain(area=$a) within 10 min. from Smoke

where area=Smoke.area

Reactive Languages

• Overcome the limitations of the Observer pattern

– Not composable, no return type, Inversion of control, …

• Time changing values: signals or behaviors

• Graphical animations,
robotics, sensor networks, …

val tick = new Var(0)
val hour = Signal{ tick() % 24 }
val day = Signal{ (tick()/24) % 7 + 1 }

a

b
c d

e
f g

So far…

• Separate communities

– OOPSLA, ECOOP, ICFP, …

– DEBS, MIDDLEWARE, …

• Different analysis models

CEP & RLs

• It’s all about reactive applications

– Common analysis framework ?

– Synergies ? Differences ?

– Integration ?

COMPARING CEP AND RLS

Ways to react:
Comparing Reactive Languages and Complex Event Processing

Back to Reactive Applications

CEP RL

OBSERVATION Generic Events Value Changes

NOTIFICATION Explicit – Push Implicit – Push or Pull

PROCESSING Rules (primitive E  composite E) Expressions (signals  signals)

PROPAGATION Explicit – Multicast – Push Implicit – Multicast – Push or Pull

REACTION Generic Procedures – User-Defined Value Changes

Language Expressiveness

• Time and history are central in CEP
– However:

• Signal.last(n)

• Signal.delay(5)

Declarative language

Input: history of event occurrences Input: signals that hold a value at any
point in time and change

Output: time-annotated history
of composite events

Output: time changing value

Composability

Similar!
Hierarchies of events Hierarchies of signals

Rules can compose complex events

Usually no difference between rules
on primitive events and rules on
composite events

Event expressions compose signals

Observable values (Vars) and Signals
can appear in signal expressions

Consistency

Users lack control
on the order of evaluation

Primitive events processed in
timestamp order

Composite events are generated and
propagated in timestamp order

Typically guarantee
glitch freedom

Enforce correct propagation order in
the nodes of the dependency graph

No guarantees when the computation
escapes the controlled propagation

a

b c

d

a = Signal{ b() + c() }

Performance

Primary focus!
- Rate of input events
- Number of deployed rules
- Number of event sources/receivers

Less attention
Primary focus on language

abstractions

Optimizations:
- Rule rewriting techniques
- Sharing operators among rules
- Algorithms for parallel hardware

Optimizations:
- Lowering

- GADTs for dynamic optimization
- Incrementalization

• Kimberley Burchett, Gregory H. Cooper, and Shriram Krishnamurthi. 2007. Lowering: a
static optimization technique for transparent functional reactivity, PEPM '07.
• Henrik Nilsson, Dynamic optimization for functional reactive programming using
generalized algebraic data types, ICFP '05.

Distribution

CEP server collects and distributes
events to the clients

Load over multiple machines

Not much considered yet

AmbientTalk/R

Ongoing: Distributed + glitch free

Optimizations:
- Rule rewriting
- Selections close to the sources

Minimize exchanged messages

• A. Lombide Carreton, S. Mostinckx, T. Cutsem, and W. Meuter. Loosely-coupled
distributed reactive programming in mobile ad hoc networks. In J. Vitek, editor, Objects,
Models, Components, Patterns, 2010.

Safety

Type casts at the boundaries

- Stream processing:
table-like approach

- Event-based systems:
attribute-value pairs

Reactive abstractions
checked by the compiler

Advanced use of types:
- Execution in bounded space

- Liveness guarantees

Embedding into high-level languages
- EventJava

• Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann. 2012. Higher-order functional reactive
programming in bounded space, POPL'12.
• Alan Jeffrey. 2013. Functional reactive programming with liveness guarantees, ICFP '13.

Interaction with OO Features

Impedance mismatch

- Serialization

- Each event  object type
Object fields go into the event

EventJava integrates into the OO
model

Towards the integration with OO
programming

FrTime, REScala, …
Signals as objects fields

Abstract signals
Late binding

…

• Patrick Eugster and K. R. Jayaram. EventJava: An Extension of Java for Event Correlation. ECOOP’09
• Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in a call-by-value
language.,ESOP'06.

RESEARCH AGENDA

Ways to react:
Comparing Reactive Languages and Complex Event Processing

Research Agenda

Integration with OO

• OO + signals ? Reactive objects ?

• E.g. REScala: Signal-event
interface operators

• Guido Salvaneschi, Gerold Hintz and Mira Mezini, REScala: Bridging Between Object-oriented and
Functional Style in Reactive Applications, MODULARITY AOSD 2014 (Accepted)

Integration of RLs and CEP

• Common set of operators for rules and signals

– What about embedding CEP rules into RL languages ?

• Operators on time ?

– Windows ?

– Joins ?

Evolution of RLs

• RLs

– Expressiveness
• Temporal operators

– Performance
• Parallel processing

• Distribution

• Algorithms and opt.
from CEP

• i3QL: optimizations for reactive incremental
computations

Evolution of CEP

• CEP

– Language integration

– Safety

• “Stock price of IBM falls below $15.00 after a
quarterly loss”

class IBMMonitor {
event earnings(String firm1, float profit),

stockQuote(String firm, float price)
when (earnings < stockQuote &&

firm == firm1 && firm == “IBM” &&
price < 15.00 && profit < 0) {

triggerAlert(“IBM”,price)
} …

}

Ways to react: Comparing Reactive
Languages and Complex Event Processing

• CEP and RLs both apply to reactive applications

• We need…

…to bridge the two communities

…to develop a common analysis framework

…to envision a shared research roadmap

THANK YOU !
QUESTIONS ?

Ways to react:
Comparing Reactive Languages and Complex Event Processing

Ways to react: Comparing Reactive
Languages and Complex Event Processing

• CEP and RLs both apply to reactive applications

• We need…

…to bridge the two communities

…to develop a common analysis framework

…to envision a shared research roadmap

