Glitch: a programming model
for Live Programming

Sean McDirmid
Microsoft Research Asia

Live Feedback: Archer Analogy

[Hancock, 2003]

Archer:
aim shoot see repeat A
edit run debug = repeat @é»
o

A

Hose:
aim see

edit debug

Can we make this real?
(beyond small demos)

Challenges

Infrastructure (lots of change!)

Incremental compiler
Editor
Execution engine

Living it up with a Live Programming Language
[McDirmid, 2007]

o T & CCanves,Cloc) | Superglue (my thesis)
- %ﬁ;;},}t-f"m FRP-like language with signals

- Handling code changes “fit” into its
O programming model

Cool toy demos

What about real code!?

All infrastructure for this demo was
written with something else!

Living it up with a Live Programming Language
[McDirmid, 2007]

Incremental Compilation Framework

Damage/repair of memoized tree nodes
Originally for Scala in Scala

Incremental Compilation

foo(10, x)

string
foo (int,int) = string
[Sqo]gl int

Context Types
)] Cnst int (Types) Code
Lex cursor

Incremental Compilation

foo(10, xanadu)

string
(int,string) = string
SN string

Context Types
10 [ES N | string (Types) Code
xanadu Lex cursor

Incremental Compilation

Type checkers need symbol tables
Indirection, key names depend on input, non-local

Go beyond plain memoization

Trace non-local dependencies
Log, undo symbol table entries per tree

Incremental Compilation

fOO(lO, X) def Assign(ref cursor):
var id = consume (ref cursor, ID)
X= 20 consume (ref cursor, ASSIGN)
var to = Expr(ref cursor)
symtab.Add (id, to.Type)

def IdE (ref cursor):

var id = consume (ref cursor, ID)
return symtab[id]

Incremental Compilation

fOO(lO, X) def Assign(ref cursor):
7 o var id = consume (ref cursor, ID)
x = “hello consume (ref cursor, ASSIGN)

var to = Expr(ref cursor)
symtab.Add (id, to.Type)

20 H®s

def IdE (ref cursor):
var id = consume (ref cursor, ID)
return symtab[id]

Incremental Compilation

fOO(lO, X) def Assign(ref cursor):
7 o var id = consume (ref cursor, ID)
x = “hello consume (ref cursor, ASSIGN)

var to = Expr(ref cursor)
symtab.Add (id, to.Type)

Symbol
Table

X string

def IdE (ref cursor): pJo0 Cnst
var id = consume (ref cursor, ID)
return symtab[id]

Incremental Compilation

Able to weave this into scalac

Could mostly handle the way scalac was implemented
Actually this was a requirement...

No need to lose imperative programming

But then scalac also was not very imperative...

Adapted quickly for SuperGlue

Usable Live Programming
[McDirmid, 2013]

Live programming in 2013 is cool again!
Time to dust off my old tricks

This time...generalize

Infrastructure/language based on same programming model

“symbol table add” = any imperative operation?

Glitch as the simplest model
that could possibly work

Glitch

Divide program execution up into nodes
Trace dependencies
_og side-effecting operations (imperatives)

Re-execute node on dependency change

Reap after re-exec: undo dead imperatives
Compare old and new log; recursively undo dead nodes

Glitch

Imperatives must be undoable

Nodes can re-execute in any order:
Imperatives must be commutative w.r.t. order!

Supported imperatives:
Set Add, Aggregation (trivial)
Assignment (dynamic single assignment restriction)
Dictionary Set (like assignment)
List. Append (provide ordered execution address)

Glitch

fOO(lO, X) def Assign(ref cursor):

7 . var id = consume (ref cursor, ID)
x = “hello consume (ref cursor, ASSIGN)
var to = Expr(ref cursor)
symtab.Add (id, to.Type)

Symbol
Table

X string

def IdE (ref cursor):

var id = consume (ref cursor, ID)
return symtab[id]

Glitch

fOO(lO, X) def Assign(ref cursor):

7 . var id = consume (ref cursor, ID)
x = “hello consume (ref cursor, ASSIGN)
var to = Expr(ref cursor)
console.Append(“hello ” ++ to.Tp)
symtab.Add (id, to.Type)

Symbol
Table

X string

def IdE (ref cursor):
var id = consume (ref cursor, ID)
return symtab[id]

Why “Glitch”?

Consistency is eventual

No attempt is made to find an “optimal” re-execution order

Sandbox during development, commit when nothing is
damaged in production

No fancy analyses; just logging

Kind of boring from a technical perspective, but it works!

Glitch in the stack

Programmer

2000 loc 3500 loc

Editor

Incremental
Compiler

Compiled
Code

8000 loc

Program
Execution

Glitch payoffs

Expressive semi-imperative code

Automatic repair management

Simple implementation
Completely dynamic (also a cost...)

But wait, there's more!

Iterative computing
No restriction on what writes can be seen
Parsing and type checking together in same pass

Optimistic speculative parallelism
Distributed computing

Asynchronous Execution

// synchronous - old/blocking/determinstic
var dataA = fileA.read()

process (dataA)
var dataB = fileB.read()

process (dataB)

// asynchronous - new/non-blocking/non-determinstic
fileA.readAsync (dataA => process (datald))
fileB.readAsync (dataB => process (dataB))

// Glitch - retro/non-blocking/determinstic
var dataA = fileA.read()

process (datad)
var dataB = fileB.read()

process (dataB)

Time as major future work

Cannot abstract over time, events, and interactivity
...s0 no debugging of time-stepped computations (yet)

Event
Code

Time as major future work

Cannot abstract over time, events, and interactivity
...s0 no debugging of time-stepped computations (yet)

Drawbacks

Tracing logging have costs (performance)
Only semi-imperative (expressiveness)
Eventual consistency makes pulling
triggers harder

Not complete until time is included

Conclusion

Why not manage change like garbage
collection manages memory?

