
Glitch: a programming model 
for Live Programming

Sean McDirmid

Microsoft Research Asia



Archer: 

Hose: 

Live Feedback: Archer Analogy
[Hancock, 2003]

aim shoot see repeat

edit run debug repeat

aim see

edit debug



Yin
Yang



Can we make this real?
(beyond small demos)



Challenges

Infrastructure (lots of change!)
Incremental compiler
Editor
Execution engine



Living it up with a Live Programming Language 
[McDirmid, 2007]

Superglue (my thesis)
FRP-like language with signals
Handling code changes “fit” into its 
programming model
Cool toy demos

What about real code!?

All infrastructure for this demo was 
written with something else!



Incremental Compilation Framework
Damage/repair of memoized tree nodes
Originally for Scala in Scala

Living it up with a Live Programming Language 
[McDirmid, 2007]



Incremental Compilation

Expr

foo(10, x)

IdE

Expr Expr

Cnst IdE

foo

10 x

Types
Code

Context
(Types)

Lex cursor

(int,int)  string

intint

intint

string



Expr

foo(10, xanadu)

IdE

Expr Expr

Cnst IdE

foo

10

xanadu

Types
Code

Context
(Types)

Lex cursor

(int,string)  string

stringint

stringint

string

Incremental Compilation



Type checkers need symbol tables
Indirection, key names depend on input, non-local

Go beyond plain memoization
Trace non-local dependencies
Log, undo symbol table entries per tree

Incremental Compilation



Expr

foo(10, x)
x = 20

IdE

Expr Expr

Cnst IdE

foo

10 x

Stmnt

Blck

Asgn

Stmnt

Expr

Cnst20

x

Symbol
Table

x int

def Assign(ref cursor):

var id = consume(ref cursor, ID)

consume(ref cursor, ASSIGN)

var to = Expr(ref cursor)

symtab.Add(id, to.Type)

def IdE(ref cursor):

var id = consume(ref cursor, ID)

return symtab[id]

Incremental Compilation



Expr

foo(10, x)
x = “hello”

IdE

Expr Expr

Cnst IdE

foo

10 x

Stmnt

Blck

Asgn

Stmnt

Expr

Cnst20

x

Symbol
Table

x int

string

def Assign(ref cursor):

var id = consume(ref cursor, ID)

consume(ref cursor, ASSIGN)

var to = Expr(ref cursor)

symtab.Add(id, to.Type)

def IdE(ref cursor):

var id = consume(ref cursor, ID)

return symtab[id]

Incremental Compilation



Expr

foo(10, x)
x = “hello”

IdE

Expr Expr

Cnst IdE

foo

10 x

Stmnt

Blck

Asgn

Stmnt

Expr

Cnst20

x

Symbol
Table

x string

def Assign(ref cursor):

var id = consume(ref cursor, ID)

consume(ref cursor, ASSIGN)

var to = Expr(ref cursor)

symtab.Add(id, to.Type)

def IdE(ref cursor):

var id = consume(ref cursor, ID)

return symtab[id]

Incremental Compilation



Able to weave this into scalac
Could mostly handle the way scalac was implemented
Actually this was a requirement…

No need to lose imperative programming
But then scalac also was not very imperative…

Adapted quickly for SuperGlue

Incremental Compilation





Live programming in 2013 is cool again!
Time to dust off my old tricks

This time…generalize
Infrastructure/language based on same programming model

“symbol table add”  any imperative operation?

Usable Live Programming
[McDirmid, 2013]



Glitch as the simplest model 
that could possibly work



Divide program execution up into nodes

Trace dependencies

Log side-effecting operations (imperatives)

Re-execute node on dependency change

Reap after re-exec: undo dead imperatives
Compare old and new log; recursively undo dead nodes

Glitch



Imperatives must be undoable

Nodes can re-execute in any order:
Imperatives must be commutative w.r.t. order!

Supported imperatives:
Set Add, Aggregation (trivial)
Assignment (dynamic single assignment restriction)
Dictionary Set (like assignment)
List.Append (provide ordered execution address)

Glitch



Expr

foo(10, x)
x = “hello”

IdE

Expr Expr

Cnst IdE

foo

10 x

Stmnt

Blck

Asgn

Stmnt

Expr

Cnst20

x

Symbol
Table

x string

def Assign(ref cursor):

var id = consume(ref cursor, ID)

consume(ref cursor, ASSIGN)

var to = Expr(ref cursor)

symtab.Add(id, to.Type)

def IdE(ref cursor):

var id = consume(ref cursor, ID)

return symtab[id]

Glitch



Expr

foo(10, x)
x = “hello”

IdE

Expr Expr

Cnst IdE

foo

10 x

Stmnt

Blck

Asgn

Stmnt

Expr

Cnst20

x

Symbol
Table

x string

def Assign(ref cursor):

var id = consume(ref cursor, ID)

consume(ref cursor, ASSIGN)

var to = Expr(ref cursor)

console.Append(“hello ” ++ to.Tp)

symtab.Add(id, to.Type)

def IdE(ref cursor):

var id = consume(ref cursor, ID)

return symtab[id]

Glitch



Consistency is eventual
No attempt is made to find an “optimal” re-execution order

Sandbox during development, commit when nothing is 
damaged in production

No fancy analyses; just logging
Kind of boring from a technical perspective, but it works!

Why “Glitch”?



Glitch in the stack

Incremental
Compiler

Editor

Programmer

Compiled
Code

Runtime

Program
Execution

GlitchC#

C#

YinYang

3500 loc2000 loc

8000 loc



Glitch payoffs

Expressive semi-imperative code

Automatic repair management

Simple implementation
Completely dynamic (also a cost…)



But wait, there's more!

Iterative computing
No restriction on what writes can be seen
Parsing and type checking together in same pass

Optimistic speculative parallelism
Distributed computing
…



Asynchronous Execution
// synchronous – old/blocking/determinstic

var dataA = fileA.read()

process(dataA)

var dataB = fileB.read()

process(dataB)

// asynchronous – new/non-blocking/non-determinstic

fileA.readAsync(dataA => process(dataA))

fileB.readAsync(dataB => process(dataB))

// Glitch – retro/non-blocking/determinstic

var dataA = fileA.read()

process(dataA)

var dataB = fileB.read()

process(dataB)



Glitch

Time as major future work

Cannot abstract over time, events, and interactivity
…so no debugging of time-stepped computations (yet)

Input State
Event 
Code

View
Code



Glitch

Time as major future work

Cannot abstract over time, events, and interactivity
…so no debugging of time-stepped computations (yet)

Input

State

Event 
Code

View
Code



Drawbacks

Tracing logging have costs (performance)
Only semi-imperative (expressiveness)
Eventual consistency makes pulling 
triggers harder
Not complete until time is included



Conclusion

Why not manage change like garbage 
collection manages memory?


