
Training Event on AspectJ

February, 2007

Vrije Universiteit Brussel

Many of the slides in this presentation are adapted from material
currently and previously available on http://www.aosd.net/

 p. 2

What is AOSD?

• A software development paradigm that advocates better
separation of concerns

• An AOP language allows the modularisation of
crosscutting concerns

Concern: “Something the developer needs to
care about” (e.g. functionality, QoS requirement,
software process requirement..)

Separation of concerns: handle each concern
separately

 p. 3

XML parsing in org.apache.tomcat

Good modularity:
handled by code in one class

[Picture taken from the aspectj.org website]

 p. 4

URL pattern matching in
org.apache.tomcat

Good modularity:
handled by code in two classes related by

inheritance

[Picture taken from the aspectj.org website]

 p. 5

Logging in org.apache.tomcat

BAD modularity:
handled by code that is scattered over almost

all classes

[Picture taken from the aspectj.org website]

 p. 6

Scattering & Tangling
• code scattering – code for one

concern is spread over many
modules

• code tangling – code in one
module addresses multiple
concerns

• scattering and tangling tend to
appear together; they
describe different facets of the
same problem

– redundant code, same or
similar fragment of code in
many places

– difficult to reason about
– difficult to change

• have to find all the code
involved

• and be sure to change it
consistently

 p. 7

The AOSD idea

• crosscutting is inherent in complex systems
“tyranny of the dominant decomposition”

• crosscutting concerns
– have a clear purpose What
– have some regular interaction points Where/When

• AOSD proposes to capture crosscutting
concerns explicitly...
– in a modular way
– not only in programming languages but in all stages

of software development
– and with appropriate tool support

 p. 8

AspectJ

• First production-quality AOP-technology
• Allows specifying crosscutting concerns as

separate entities: Aspects
• Introduces:

– Join point: some point in the execution of an application
– Pointcut: a set of logically related join points
– Advice: some behavior that should become active

whenever a join point is encountered
– Weaving: a technology for bringing aspects and base code

together

 p. 9

Aspect: a special kind of unit

Aspect applicability code

Aspect functionality code

Where / when

What

Pointcut

Advice

Aspect

 p. 10

Implicit Invocation

Pointcut

Advice

 Object 1
 ●

 Object 2

● Object 3
 ●

 Object 4

joinpoint: ●

 p. 11

a simple figure editor

operations that
move elements

factory methodsDisplay

*

2Point
-x: int
-y: int
+getX()
+getY()
+setX(int)
+setY(int)

Line
-p1:Point
-p2: Point
+getP1()
+getP2()
+setP1(Point)
+setP2(Point)

Figure
<<factory>>

+makePoint(..)
+makeLine(..)

FigureElement

+setXY(int, int)
+draw()

 p. 12

a simple figure editor

class Line implements FigureElement{
 private Point p1, p2;
 Point getP1() { return p1; }
 Point getP2() { return p2; }
 void setP1(Point p1) { this.p1 = p1; }
 void setP2(Point p2) { this.p2 = p2; }
 void setXY(int x, int y) {…}
}

class Point implements FigureElement {
 private int x = 0, y = 0;
 int getX() { return x; }
 int getY() { return y; }
 void setX(int x) { this.x = x; }
 void setY(int y) { this.y = y; }
 void setXY(int x, int y){…}
}

 p. 13

join point

– method & constructor call
– method & constructor execution
– field get & set
– returning normally from a method call
– returning from a method call by throwing an error
– exception handler execution
– static & dynamic initialization

a Line

dispatch

method call
join points

method
execution
join points

“a point of interest in a dynamic call graph”

 p. 14

join point

a Point

a Line

all join points on this slide are
within the control flow of

this join point

a Point

imagine l.setXY(2, 2)

 p. 15

primitive pointcuts

a pointcut is a kind of predicate on join points that:
– can match or not match any given join point and
– optionally, can pull out some of the values at that join

point

example: call(void Line.setP1(Point))

“a means of identifying join points”

matches if the join point is a method call with this signature

 p. 16

pointcuts

call(voidFigureElement.setXY(int,int)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int)) ||
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

This pointcut captures all the join points where a
FigureElement moves

Compose like predicates, using &&, || and !
Can crosscut types
Can use interface signatures

or

 p. 17

named pointcuts

Defined using the pointcut construct

Can be used in the same way as primitive pointcuts

pointcut move():
 call(void FigureElement.setXY(int,int)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point));

name
parameters

more on parameters
and how pointcut can
expose values at join
points in a few slides

 p. 18

name-based and property-
based pointcuts

All examples above are name-based pointcuts

Property-based pointcuts specify a pointcut in term of
properties of methods other than their name

call(void Figure.make*(..))

call(public * Figure.* (..))

cflow(move())

wildcard

special primitive pointcut

 p. 19

example primitive pointcuts
when a particular method body executes

execution(void Point.setX(int))
when a method is called

call(void Point.setX(int))
when an exception handler executes

handler(ArrayOutOfBoundsException)
when the object currently executing (i.e. this) is of type SomeType

this(SomeType)
when the target object is of type SomeType

target(SomeType)
when the executing code belongs to class MyClass

within(MyClass)
when the join point is in the control flow of a call to a Test's no-

argument main method
cflow(call(void Test.main()))

 p. 20

example pointcuts
Using wildcards

execution(* *(..))
call(* set(..))

Select elements based on types
execution(int *())
call(* setY(long))
call(* Point.setY(int))
call(*.new(int, int)

Composed pointcuts
target(Point) && call(int *())
call(* *(..)) && (within(Line) || within(Point))
within(*) && execution(*.new(int))
!this(Point) && call(int *(..))

Bases on modifiers and negation of modifiers
call(public * *(..))
execution(public !static * *(..))

 p. 21

advice

before before proceeding at join point

after returning a value
after throwing an exception
after returning either way

around on arrival at join point gets explicit
 control over when&if program

 proceeds

before(): move() {
 System.out.println("about to move");
}

after() returning: move() {
 System.out.println("just successfully moved");
}

 p. 22

exposing context in
pointcuts

Pointcut can explicitly expose certain values
Advice can use these values

after(FigureElement fe, int x, int y) returning:
 ...SomePointcut... {
 System.out.println(fe + " moved to (" + x + ", " + y +
")");}

after(FigureElement fe, int x, int y) returning:
 call(void FigureElement.setXY(int, int))
 && target(fe)
 && args(x, y) {
 System.out.println(fe + " moved to (" + x + ", " + y +
")");}

Advice declares
and use

parameter list

Pointcuts
publish values

 p. 23

exposing context in named
pointcuts

Named pointcuts may have parameters
When the pointcut is used it publishes its parameters by name

pointcut setXY(FigureElement fe, int x, int y):
 call(void FigureElement.setXY(int, int))
 && target(fe)
 && args(x, y);

after(FigureElement fe, int x, int y) returning:
 setXY(fe, x, y) {
 System.out.println(fe + " moved to (" + x + ", " + y +
").");}

pointcut
parameter list

pointcuts
publish context

value is ‘pulled’
right to left across ‘:’ left side : right side
from pointcuts to user-defined pointcuts
from pointcuts to advice, and then advice body

 p. 24

aspects

Wrap up pointcuts and advice in a modular unit
Are very much like a class, can have methods, fields and initialisers
Instantation is under the control of AspectJ
By default an aspect is a singleton, only one aspect instance is

created

aspect Logging {
 OutputStream logStream = System.err;

 before(): move() {
 logStream.println("about to move");
 }
}

 p. 25

inter-type declarations

Aspects may declare members and fields that cut across
multiple existing classes

aspect PointObserving {
 private Vector Point.observers = new Vector();
 public static void addObserver(Point p, Screen s) {
 p.observers.add(s); }
 public static void removeObserver(Point p, Screen s) {
 p.observers.remove(s); }
 pointcut changes(Point p):
 target(p) && call(void Point.set*(int));
 after(Point p): changes(p) {
 Iterator iter = p.observers.iterator();
 while (iter.hasNext()) {
 updateObserver(p, (Screen)iter.next()); }}
 static void updateObserver(Point p, Screen s) {
 s.display(p); }}

 p. 26

Examples

• Development aspects
– Instrumental during development of a Java

application
– Easily removed from production builds
– Tracing, profiling&logging, checking pre- and post-

conditions, contract enforcement
• Production aspects

– To be used in both development and production
– Change monitoring, context passing, providing

consistent behavior

 p. 27

Tracing

Prints a message at specified method calls

thisJoinPoint is a special variable that is bound to an
object that describes the current joinpoint

aspect SimpleTracing {
 pointcut tracedCall():
 call(void FigureElement.draw(GraphicsContext));

 before(): tracedCall() {
 System.out.println("Entering: " + thisJoinPoint);
 }
}

 p. 28

Profiling and Logging

Counts the number of calls to the rotate method on a line
Counts the number of calls to the set methods of a point that

happen within the control flow of those calls to rotate
aspect SetsInRotateCounting {
 int rotateCount = 0;
 int setCount = 0;

 before(): call(void Line.rotate(double)) {
 rotateCount++; }

 before(): call(void Point.set*(int))
 && cflow(call(void Line.rotate(double))) {
 setCount++;
 }
}

 p. 29

Pre- and post- conditions

Checks whether the x and y coordinates of a point stay within given bounderies
aspect PointBoundsChecking {
 pointcut setX(int x):
 (call(void FigureElement.setXY(int, int)) && args(x, *))
 || (call(void Point.setX(int)) && args(x));

 pointcut setY(int y):
 (call(void FigureElement.setXY(int, int)) && args(*, y))
 || (call(void Point.setY(int)) && args(y));

 before(int x): setX(x) {
 if (x < MIN_X || x > MAX_X)
 throw new IllegalArgumentException("x is out of
bounds."); }

 before(int y): setY(y) {
 if (y < MIN_Y || y > MAX_Y)
 throw new IllegalArgumentException("y is out of
bounds."); }}

 p. 30

Contract enforcement

Identifies a method call that in a correct program should not exist
Enforces the constraint that only the well-known factory methods can add

an element to the registry of figure elements

aspect RegistrationProtection {
 pointcut register():
 call(void Registry.register(FigureElement));

 pointcut canRegister():
 withincode(static * FigureElement.make*(..));

 before(): register() && !canRegister() {
 throw new IllegalAccessException("Illegal call " +
thisJoinPoint);
 }
}

 p. 31

Contract enforcement

In this example the compiler can signal the error

aspect RegistrationProtection {
 pointcut register():
 call(void Registry.register(FigureElement));

 pointcut canRegister():
 withincode(static * FigureElement.make*(..));

 declare error: register() && !canRegister(): "Illegal
call"}
}

 p. 32

Change monitoring

Supports the code that refreshes the display when a figure element moved
Whithout AOP every method that updates the position of a figure element

should manipulate the dirty bit (or call refresh)
aspect MoveTracking {
 private static boolean dirty = false;
 public static boolean testAndClear() {
 boolean result = dirty;
 dirty = false;
 return result; }
 pointcut move():
 call(void FigureElement.setXY(int, int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int));
 after() returning: move() {
 dirty = true;
 }
}

 p. 33

Context passing

Captures calls to the factory methods of figure elements within the control
flow of all calls to methods of a particular client and runs after advice that
allows this client to pass context to the new object

Comes in the place of an extra parameter in all methods from the client
method down to the factory methods to pass that context

aspect ColorControl {
 pointcut CCClientCflow(ColorControllingClient client):
 cflow(call(* * (..)) && target(client));

 pointcut make(): call(FigureElement Figure.make*(..));

 after (ColorControllingClient c) returning
 (FigureElement fe):
 make() && CCClientCflow(c) {
 fe.setColor(c.colorFor(fe));
 }
}

 p. 34

Providing consistent
behavior

Enshures that all public methods of a given package log any Error
they throw to their caller

The cflow primitive can be used to avoid logging an exception twice when a
method of the package calls another public method of the package

aspect PublicErrorLogging {
 Log log = new Log();

 pointcut publicMethodCall():
 call(public * com.bigboxco.*.*(..));

 after() throwing (Error e): publicMethodCall() {
 log.write(e);
 }
}

 after() throwing (Error e):
 publicMethodCall() && !cflow(publicMethodCall()) {
 log.write(e);
 }

