
C
o
n
te
xt

http://prog.vub.ac.be/amop
Further Reading:
[1] Stijn Mostinckx, Jessie Dedecker, Elisa Gonzalez Boix, Tom Van Cutsem, Theo D'Hondt, Wolfgang De Meuter, "Ambient-Oriented Exception Handling", in Advanced Topics in
Exception Handling Techniques", eds. C. Dony, J. L. Knudsen, A. Romanovsky, A. Tripathi. LNCS 4119, p. 141-160, Springer-Verlag, 2006.

P
ri
m
it
iv
e
s

Stijn Mostinckx Tom Van Cutsem Elisa Gonzalez Boix
Jessie Dedecker Theo D’Hondt Wolfgang De Meuter

Ambient-Oriented Exception Handling

Programming Technology Laboratory
Vrije Universiteit Brussel, Belgium

P
ro
b
le
m
s

future = editor#merge(myLocalChanges);
when(future) { /* post-processing code */ }

Mobile Networks
Pervasive Computing

Actors

Wireless (ad hoc) network
(Mobile) Autonomous Devices

Asynchronous Messages

Transparent Network References

Example: Collaborative Editor

Asynchrony Concurrency

editor#merge(myLocalChanges);

- message scheduled for transmission
- future (placeholder for result) created

try {
 editor#merge(myLocalChanges);
} catch(MergeX exc) {

}

no need to wait for a result

try {
 editor#merge(myLocalChanges);
} catch(TimeOutX exc) {

}

Context is left before
exceptions may be reported

Future may never get resolved

for editor in participants
 editor#merge(myLocalChanges);

each message is executed in parallel

try {
 for editor in participants
 editor#merge(myLocalChanges);
} catch(MergeX exc) {

}

independent futures

try {
 for editor in participants
 editor#merge(myLocalChanges);
} catch(MergeX exc) {

}

Multiple exceptions
may be reported concurrently

Implicit dependencies

Future-based Propagation Concerted Exceptions Collaborative Handling

- scheduled upon resolving the future
- access to lexical environment

reconciling events with
"sequential" code

when(future) {
 /* post-processing code */
} catch(MergeX exc) {

}

when(future) {
 /* post-processing code */
} due(60 seconds) {

}

Context is captured and
bound to a future rather than the stack

Attribute deadlines to future resolution

group {
 for editor in participants
 editor#merge(myLocalChanges); }

Observes all futures within a block
and resolves a future of its own

group {
 for editor in participants
 editor#merge(myLocalChanges);
} catch(MergeX exc) {

}

clustering for futures

group {
 for editor in participants
 editor#merge(myLocalChanges);
} resolve(Exception[] exc) {

}

Immediate handling given a
log of previously raised exceptions

Wait for all futures to be resolved
Treat all raised exceptions jointly

conversation(editors)

Participants observe the conversation
and will propagate exceptions to it.

startConversation(conv) {
 when(conv) { /* when finished */
 } catch(MergeX exc) {
 /* handler */ }
}

clustering for actors

catch(MergeX exc) {
 become(recoveryBehaviour);
 thisActor#mergeConflict(exc)
}

Hook to install handlers
Collaborative handling by switching

in dedicated failure handling behaviour

